
19. Sample correlation coefficient
Lehmann §5.4; Ferguson §8

Suppose that (X1, Y1), (X2, Y2), . . . are iid vectors with E X4
i < ∞ and E Y 4

i < ∞. For the sake of simplicity,
we will assume without loss of generality that E Xi = E Yi = 0 (alternatively, we could base all of the
following derivations on the centered versions of the random variables).

We wish to find the asymptotic distribution of the sample correlation r = sxy/(sxsy), where if we let
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Notice that we have suppressed the n in the notation above in order to keep things slightly simpler. According
to the central limit theorem,
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Let Σ denote the covariance matrix in expression (39). Define a function g : R5 → R3 such that g applied
to the vector of moments in equation (37) yields the vector (s2
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then by the delta method,
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Therefore, if A denotes the 1× 3 matrix in equation (40), using the delta method once again yields
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Consider the special case of bivariate normal (Xi, Yi). In this case, we may derive
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In this case, AΣ∗At = (1− ρ2)2, which implies that
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In the normal case, we may derive a variance-stabilizing transformation. According to equation (42), we
should find a function f(x) satisfying f ′(x) = (1− x2)−1. Since
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This is called Fisher’s transformation; we conclude that

√
n

(
1
2

log
1 + r

1− r
− 1

2
log

1 + ρ

1− ρ

)
L→N(0, 1).

Problems

Problem 19.1 Verify expressions (41) and (42).

Problem 19.2 Assume (X1, Y1), . . . , (Xn, Yn) are iid from some bivariate normal distribution. Let
ρ denote the population correlation coefficient and r the sample correlation coefficient.

(a) Describe a test of H0 : ρ = 0 against H1 : ρ 6= 0 based on the fact that

√
n[f(r)− f(ρ)] L→ N(0, 1),

where f(x) is Fisher’s transformation f(x) = (1/2) log[(1 + x)/(1− x)]. Use α = .05.

(b) Based on 5000 repetitions each, estimate the actual level for this test in the case when
E (Xi) = E (Yi) = 0, Var (Xi) = Var (Yi) = 1, and n ∈ {3, 5, 10, 20}.

Problem 19.3 Suppose that X and Y are jointly distributed such that X and Y are Bernoulli
(1/2) random variables with P (XY = 1) = θ for θ ∈ (0, 1/2). Let (X1, Y1), (X2, Y2), . . . be iid
with (Xi, Yi) distributed as (X, Y ).

(a) Find the asymptotic distribution of
√

n
[
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]
.

(b) If rn is the sample correlation coefficient for a sample of size n, find the asymptotic
distribution of

√
n(rn − ρ).
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(c) Find a variance stabilizing transformation for rn.

(d) Based on your answer to part (c), construct a 95% confidence interval for θ.

(e) For each combination of n ∈ {5, 20} and θ ∈ {.05, .25, .45}, estimate the true coverage prob-
ability of the confidence interval in part (d) by simulating 5000 samples and the corresponding
confidence intervals.

Hint: To generate a sample of (X, Y ), first simulate the X’s from their marginal distribution,
then simulate the Y ’s according to the conditional distribution of Y given X. To obtain this
conditional distribution, simply find P (Y = 1 | X = 1) and P (Y = 1 | X = 0) using the
definition of conditional probability.
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