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Abstract	
Root	Cause	Analysis	(RCA)	of	product	defects	is	crucial	to	improving	manufacturing	quality	

and	 productivity.	 Nowadays,	manufacturers	 tend	 to	 rely	 on	 on-site	 expert	 knowledge	 to	

identify	the	root	cause	of	product	failure.	However,	manual	RCA	is	extremely	difficult	and	

cumbersome,	 especially	 in	 big	 data	 environments	 yielded	 by	 the	 advancement	 of	

information	technology	and	sensor	technology.	While	different	model-based	methods	have	

been	 introduced	 in	 the	 literature	 to	 localise	 root	 causes	 in	 a	 data-driven	 and	 automated	

manner,	most	of	them	are	prone	to	various	limitations	in	the	aspect	of	robustness,	causality	

discovery,	knowledge	representation,	stochasticity,	and	sample	size.	Therefore,	we	proposed	

a	product-wise	framework	of	the	ensembled	Bayesian	Network	(BN)	approach	to	provide	a	

robust,	 intelligent	 and	 human-interpretable	 probabilistic	 reasoning	 method	 for	 RCA	 to	

circumvent	 the	 issues	 in	 the	 existing	 techniques.	 BN	 is	 adopted	 to	 enable	 interpretable	

probabilistic	reasoning	under	uncertainty,	which	provides	reliable	decision	support	for	RCA	

in	 industrial	 practice.	We	 developed	 various	 structure	 learning	 algorithms,	 a	 parameter	

learning	algorithm	and	a	Bayesian	 inference	algorithm	 for	BN	to	 learn	 the	root	causes	of	

product	quality	issues	from	historical	product	defect	records.	The	Ensemble	Learning	(EL)	

techniques	 enhance	 BN	 base	 learners	 with	 bootstrapped	 re-sampling	 and	 combine	 the	

predictions	from	multiple	structure	learning	algorithms,	ensuring	a	robust	performance	of	

BN.	 The	 structure	 of	 the	 framework	 is	modularised	 by	 different	 products	 to	 reduce	 the	

sample	size	and	to	realise	high	efficiency.	As	a	result,	the	proposed	method	can	uncover	the	

causal	 relationship	 in	 the	 industrial	 data	 to	 support	manufacturers	 to	make	 data-driven	

decisions	under	 the	circumstances	of	product	quality	 failures.	To	achieve	such	goals,	 this	

project	 has	 automatically	 acquired	 causal	 knowledge,	 identified	 the	 root	 cause	 with	

probabilities	 and	 predicted	 quality	 risks	 in	 production.	 The	 proposed	 method	 has	 been	

implemented	on	real-world	data	collected	 from	the	plastic	 industry.	Experimental	results	

have	shown	that	the	ensembled	BN	framework	successfully	discovers	the	root	cause	along	

with	corresponding	probabilities	and	predicts	the	poor-quality	instances	with	considerable	

robustness	and	accuracy.	

Karen Wang
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Chapter	1 	
Introduction		
With	 the	 surging	 demand	 for	 consumable	 products,	 manufacturers	 urge	 to	 increase	

operational	performance	to	maintain	competency.	However,	product	quality	failures	have	

been	 a	 common	 problem	 in	 manufacturing	 that	 can	 hinder	 production	 efficiency	

dramatically.	 Root	 Cause	 Analysis	 (RCA)	 provides	 a	 systematic	 way	 of	 identifying	 the	

product	 defect	 reasons.	 Concurrently,	manufacturers	 heavily	 rely	 on	 humans	 to	 perform	

RCA,	 making	 it	 a	 cumbersome	 task.	 A	 variety	 of	 scientific	 methods	 for	 RCA	 have	 been	

proposed	 in	 the	 literature.	However,	 they	are	 faced	with	distinct	 limitations	 in	 industrial	

practice	such	as	the	lack	of	model	robustness,	causality	discovery,	human-understandable	

knowledge	visualisation	and	stochasticity	explanation.	Therefore,	it	is	important	to	develop	

a	 robust,	 intelligent,	 and	 human-interpretable	 probability	 reasoning	 method	 for	 RCA	 in	

manufacturing.	

	

1.1	Product	Quality	Problem	in	Manufacturing	

The	 manufacturing	 sector	 has	 been	 under	 prominent	 pressure	 to	 elevate	 operational	

performance	in	the	growingly	competitive	market.	Product	quality	is	one	of	the	key	factors	

to	 drive	manufacturing	 success	 [1].	 However,	 in	 the	 global	marketplace,	 the	 presence	 of	

product	defects	remains	to	be	the	main	obstacle	to	achieving	production	excellence.	RCA	was	

therefore	 used	 to	 identify	 causes	 of	 product	 defects	 and	 provide	 insights	 for	 improving	

production	control	schemes	[2].	It	is	the	process	of	discovering	the	causal	mechanism	of	the	

underlying	transition	from	desirable	to	undesirable	conditions	and	identifying	the	root	cause	

of	the	problem	using	a	structured	procedure	[3].	Consequently,	RCA	provides	guidance	on	

how	to	handle	product	failures	and	prevent	them	from	recurring	in	the	future.	
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1.2	RCA	Challenges	

However,	 RCA	 is	 a	 difficult	 and	 time-consuming	 engineering	 problem	 [2].	 Conventional	

approaches	[4],	such	as	Pareto	Chart,	Cause-Effect	Diagram	(CED),	the	Current	Reality	Tree	

(CRT),	 Failure	 Modes	 and	 Effects	 Analysis	 (FMEA),	 and	 Fault	 Tree	 Analysis	 (FTA),	 use	

domain	knowledge	from	on-site	experts	to	recognise	product	defect	root	causes	[5].	Their	

reliance	on	domain	knowledge	leads	to	a	series	of	limitations.	First,	the	valuable	knowledge	

is	centralised	 in	the	mind	of	some	key	persons	at	 the	 factory	and	cannot	be	conveniently	

transferred	between	the	site	workers	or	be	accessed	in	the	future	[5].	This	could	leave	the	

factory	 vulnerable	 in	 the	 absence	 of	 key	 employees.	 Second,	 conventional	 RCA	methods	

require	an	in-depth	understanding	of	the	production	system	which	is	time-consuming	to	be	

established	 by	manpower	 [6].	Moreover,	 human	 experts	 could	 be	 biased	 in	 deriving	 the	

causality	of	a	problem,	and	so	inaccurate	in	their	conclusions	[5].	Lastly,	the	development	of	

advanced	sensors	and	information	technology	leads	to	a	huge	volume	of	high-dimensional	

data	being	produced	in	the	production	process	[7].	The	occurrence	of	big	data	makes	it	even	

harder	for	humans	to	comprehend	using	existing	RCA	tools	[8][9].	Thus,	it	raises	a	pressing	

need	 for	 a	more	 robust,	 intelligent	 and	human-interpretable	RCA	method	 in	 the	modern	

industry.	

	

1.3	Gaps	in	Existing	Scientific	Methods	

In	 response	 to	 the	challenges	 in	 traditional	RCA	methods,	 scholars	have	been	developing	

more	scientific	and	data-driven	RCA	techniques.	A	popular	category	of	tools	for	RCA	is	data-

driven	multivariate	statistical	procedures	[10].	Studies	have	shown	their	capability	to	isolate	

the	 root	 cause	 of	 failed	 processes	 in	 high-dimensional	 data	 space	with	 a	 relatively	 short	

sample	 time	 [11][12].	 Nevertheless,	 the	 statistical	 methods	 alone	 are	 insufficient	 for	 an	

efficient	and	fully	automated	RCA.	They	normally	require	integration	with	other	techniques	

such	as	classifiers	[9]	and	multivariate	statistical	control	charts	[13][14].	Furthermore,	they	

are	sensitive	to	sample	size	[9],	and	incompetent	to	represent	nonlinear	behaviour	in	the	
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data	[12],	making	them	impractical	in	industrial	cases.	On	the	other	hand,	machine	learning	

methods	 [15]	 have	 shown	 higher	 accuracy	 than	 conventional	 and	 statistical	 methods	

[16][17][18].	 Nonetheless,	 most	 machine	 learning	 algorithms	 focus	 on	 discovering	 the	

correlation	between	variables	rather	than	causality	[6].	Their	lack	of	probabilistic	properties	

can	 overlook	 the	 stochasticity	 involved	 in	RCA.	On	 the	 contrary,	 Bayesian	Network	 (BN)	

stands	 out	 with	 its	 probabilistic	 reasoning	 ability	 to	 discover	 the	 root	 cause	 under	

uncertainty	[6][19]	and	to	support	decision-making	[20].	Its	graphical	nature	of	BN	enables	

interpretable	 knowledge	 representation	 in	 practice	 [21].	 The	 aforementioned	

characteristics	 make	 BN	 an	 exceptionally	 strong	 candidate	 for	 RCA.	 Conversely,	

implementation	 of	 BN	 could	 be	 computational	 expensive	 [19].	 BN	 model	 can	 also	 be	

unrobust	 as	 its	 accuracy	 might	 drop	 evidently	 with	 big	 and	 sparse	 datasets	 [22].	

Additionally,	 its	 performance	 tends	 to	 vary	 with	 the	 selection	 of	 BN	 structure	 learning	

algorithms	 [23].	 However,	 it	 has	 been	 found	 that	 the	 robustness	 of	 the	 models	 can	 be	

improved	by	bootstrap	sampling	[24]	and	fusing	different	learning	algorithms	[25].	Fusing	

multiple	learning	algorithms	using	ensemble	learning	technique	could	provide	more	robust	

RCA	 results,	 inspired	 by	 successes	 of	 ensemble	 learning	 in	 other	 technological	 domains	

[26][27].	Therefore,	this	research	is	going	to	address	the	limitations	of	BN	using	ensemble	

learning	techniques	and	a	product-wise	framework.	

	

In	summary,	most	of	the	existing	methods	for	RCA	lack	the	capability	of	causality	discovery,	

understandable	 knowledge	 representation	 and	 explaining	 stochasticity	 in	 a	 real-world	

context.	BN	is	able	to	provide	visualised	probabilistic	reasoning;	however,	it	is	prone	to	the	

limitations	of	stable	prediction	accuracy,	computational	efficiency	and	model	robustness.	As	

a	 result,	 there	 is	 an	 urgent	 need	 for	 a	 robust,	 accurate	 and	 interpretable	 probabilistic	

reasoning	method	for	RCA.	

	

1.4	Objectives	and	Proposed	Methods	

Therefore,	we	aim	to	mine	the	causal	relationships	from	historical	production	data	for	a	real-

world	industry	to	provide	robust,	accurate	and	human-interpretable	probabilistic	reasoning	
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for	RCA.	In	this	way,	the	acquired	insights	can	help	manufacturers	to	identify	the	root	causes	

of	product	defects	and	mitigate	the	risks	from	occurring	in	the	future.	To	achieve	this,	we	

proposed	 a	 product-wise	 framework	 of	 ensembled	 BN	 where	 BN	 is	 adopted	 as	 the	

fundamental	 method	 for	 RCA	 to	 accommodate	 the	 stochastic	 nature	 of	 manufacturing	

process	 variations	 [19]	 and	 to	predict	 the	 likelihood	of	 the	potential	 product	defect	 root	

causes.	Ensemble	 learning	 techniques	are	 integrated	 to	address	 the	 lack	of	 robustness	 in	

single	BN	learners.	The	framework	is	modularised	by	product	type	to	reduce	the	size	of	BN,	

increasing	computational	efficiency.		

	

Specifically,	we	work	with	 a	 plastic	manufacturer	 ABC,	 to	 develop	 an	 RCA	 algorithm	 for	

establishing	 causal	 relations	 between	 product	 quality	 and	 production	 attributes	 such	 as	

operation	machines,	raw	material	used	and	production	speed.	Historical	quality	records	of	

every	production	batch	are	recorded,	 together	with	the	machines,	raw	material,	operator	

and	 production	 parameters.	Domain	 experts	 believe	 that	 although	 the	 real	 root	 cause	 of	

product	quality	may	be	deeply	affected	by	the	real	microfabrication	process,	there	may	be	

causal	 influences	 between	 production	 attributes	 and	 product	 quality.	 Therefore,	 our	

objective	is	to	develop	a	method	to	discover	causality	in	product	quality	from	these	gathered	

production	records	in	a	robust,	intelligent	and	human-interpretable	manner.	

	

1.5	Contributions	

We	made	the	following	knowledge	contributions	in	this	project:	

1. Developed	an	interpretable,	data-driven	and	probabilistic	reasoning	solution	for	RCA	

using	 BN,	 allowing	 manufacturers	 to	 engage	 the	 causal	 knowledge	 visually	 and	

efficiently.	 The	 probabilistic	 nature	 of	 the	 results	 is	 exceedingly	 powerful	 for	

identifying	the	root	causes	of	product	quality	issues.	

	

2. Incorporated	ensemble	learning	methods	to	address	the	robustness	issues	in	existing	

BN	 models.	 By	 aggregating	 multiple	 BNs	 learnt	 from	 bootstrapped	 samples	 and	
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combing	 different	 structure	 learning	 algorithms	 for	 BN,	 the	 robustness	 of	 BN	 has	

been	increased	in	identifying	root	causes.	

	

	

3. Compared	 the	 performance	 among	 different	 structure	 learning	 algorithms	 and	

different	knowledge	sources	for	BN.	In	our	findings,	tabu	search	algorithm	exhibits	

the	 best	 performance	 for	 both	 probabilistic	 root	 cause	 reasoning	 and	 quality	 risk	

prediction.	 Hybrid	 knowledge	 source	 shows	 an	 advantage	 in	 inferring	 root	 cause	

probabilities.	The	results	of	the	comparison	offer	a	direction	for	model	strengthening	

as	well	as	model	selection.	

	

4. An	evaluation	method	for	assessing	the	results	of	probabilistic	reasoning	has	been	

designed.	 It	 provides	 a	 way	 to	 quantify	 the	 difference	 between	 sequences	 of	

probabilities.	 The	 developed	 method	 can	 measure	 the	 deviation	 between	 the	

observation	and	prediction	both	in	magnitude	and	in	ranking.	

	

1.6	Thesis	Outline	

The	remainder	of	this	thesis	is	organised	as	follows.	Chapter	2	introduces	the	background	of	

RCA	and	presents	a	review	of	the	work	related	to	the	existing	RCA	methods.	In	Chapter	3,	the	

problem	 of	 this	 project	 is	 defined.	 The	 RCA	 problem	 is	 formulated	mathematically.	 The	

proposed	RCA	framework	is	also	described.	Chapter	4	explains	the	data	preparation	process,	

followed	by	the	demonstration	of	prediction	model	construction.	A	case	study	is	provided	to	

illustrate	the	implementation	of	ensembled	BN.	Chapter	5	shows	the	evaluation	methods	and	

discusses	the	results	of	 the	predicted	root-cause	probabilities	and	quality	risk	prediction.	

Finally,	 the	 achievements	 of	 this	 research	 and	 recommendations	 for	 future	 work	 are	

concluded	in	Chapter	6.	
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Chapter	2 	
Literature	Review	
In	this	chapter,	the	background	of	RCA	will	be	introduced.	The	literature	work	related	to	RCA	

will	 be	 reviewed.	 Then	 the	 research	 gaps	 identified	 in	 the	 literature	 review	 will	 be	

summarised.	 Section	 2.1	 discusses	 RCA	 and	 its	 application	 in	 real-world	 manufacturing	

practice.	Section	2.2	elaborates	on	the	existing	methods	for	RCA	in	the	literature.	Section	2.3	

summarises	the	gaps	in	the	existing	methods.	

	

2.1	Background	of	RCA	

Root	cause	analysis	of	product	defects	is	the	process	of	investigating	the	causal	factors	that	

lead	to	quality	deviations	[5].	The	purpose	of	RCA	is	threefold:	i)	to	identify	the	root	cause	of	

a	 problem,	 ii)	 to	 learn	 and	understand	 the	underlying	mechanics	 of	 the	 issue,	 and	 iii)	 to	

identify	 appropriate	 corrective	 action	 to	 systematically	 rectify	 the	 situation.	 Root	 cause	

analysis	can	be	performed	with	a	collection	of	principles,	 techniques,	and	methodologies.	

Nowadays,	manufacturers	still	perform	RCA	manually	[28]	using	generic	methods,	such	as	

Pareto	 Chart,	 Cause-Effect	 Diagram,	 the	 Current	 Reality	 Tree,	 Failure	Modes	 and	 Effects	

Analysis,	and	Fault	Tree	Analysis	[29].	However,	manual	RCA	is	very	restricted	in	knowledge	

communication	 and	 extraction.	 Moreover,	 it	 is	 time-consuming	 to	 localise	 the	 causes	

manually	[4].	Experienced	technical	experts	are	needed	for	RCA,	whereas	human	judgement	

can	be	biased	and	inadequate,	resulting	in	an	unsound	analysis	[5].	In	addition,	the	evolution	

of	information	technology	has	stimulated	the	growth	of	big	data,	making	it	even	harder	for	

human	beings	to	comprehend	the	rich	data	to	perform	RCA	[7].	According	to	Rokach	and	

Hutter	[2],	the	process	of	localising	the	root	cause	is	an	extremely	challenging	engineering	

task,	especially	in	large-scale	systems.	
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2.2	Existing	Methods	for	RCA	

This	 section	 summarises	 the	 scientific	methods	 for	 RCA	 that	 have	 been	 proposed	 in	 the	

literature.	 The	 researched	 methods	 have	 been	 categorised	 into	 two	 groups	 –	 statistical	

techniques	(Section	2.2.1)	and	machine	learning	methods	(Section	2.2.2).	

2.2.1	Statistical	Techniques	

Statistical	approaches	exploit	the	statistical	features	in	the	data	to	assist	the	RCA	process,	

including	Principal	Component	Analysis	(PCA)	[30],	Partial	Least	Squares	(PLS)	[30],	Fisher	

Discriminant	 Analysis	 (FDA)	 [30],	 Dynamic	 Principal	 Component	 Analysis	 (DPCA)	 with	

minimax	 distance	 classifier	 [9],	 Discriminant	 Partial	 Least	 Squares	 (DPLS)	 [11].	 Among	

these,	 FDA	 has	 the	 best	 performance,	 followed	 by	 DPLS	 and	 PCA	 [30].	 Nevertheless,	

integration	of	statistical	methods	with	other	classifiers	[9]	or	multivariate	statistical	control	

charts	[13][14]	or	feature	selection	techniques	[12]	is	indispensable	to	empower	their	ability	

to	identify	the	root	cause.	In	other	words,	the	statistical	methods	alone	are	not	sufficient	to	

perform	 a	 sophisticated	 RCA.	 Moreover,	 as	 the	 data	 size	 decreases,	 their	 performance	

deteriorates	[9].	A	statistical	method,	fusing	Dynamic	Principal	Component	Analysis	(DPCA)	

and	minimax	distance	classifier,	was	implemented	to	simultaneously	monitor	and	diagnose	

an	automatically	controlled	process	 [9].	 It	has	proven	a	decent	success	rate,	however,	 its	

performance	degrades	with	smaller	samples	[9].	In	the	meantime,	DPLS	was	used	for	RCA	

on	the	failure	in	the	Tennessee	Eastman	chemical	plant	by	maximizing	covariance	between	

the	predictors	[11][30].	The	root	cause	was	successfully	detected,	whereas	the	assumption	

of	 multivariate	 Gaussian	 distribution	 for	 the	 control	 limits	 of	 the	 PCA	 or	 PLS-based	

monitoring	indices	restricted	their	validity	and	adaptability	to	realistic	process	data	[31].	An	

application	of	FDA	for	RCA	in	the	chemical	processing	industry	revealed	FDA’s	shortcoming	

in	capturing	nonlinear	behaviour	in	the	data	[12].	It	led	to	poor	performance	with	an	overall	

misclassification	 rate	 of	 38	 %.	 With	 the	 aid	 of	 feature	 selection	 algorithms,	 the	

misclassification	rate	dropped	to	17%	[12].	In	general,	statistical	RCA	approaches	can	assist	

RCA	in	a	short	run	time	[11].	However,	their	performance	is	not	the	most	competitive	[30].	

They	struggle	with	non-linear	relationship	modelling	[12],	the	requirement	of	large	data	size	
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[9]	 and	 support	 algorithms	 [4][5][12]	 and	 lack	 of	 interpretability.	 Therefore,	 more	

integrated	and	automated	RCA	methods	are	in	demand.		

2.2.2	Machine	Learning	Methods	

Machine	 learning	 techniques	 enable	 automated	RCA	 by	 pattern	mapping	 and	 knowledge	

acquisition	from	historical	product	defect	records.	Algorithms	such	as	decision	tree,	Support	

Vector	Machine	(SVM),	Neural	Network	(NN)	and	BN	have	been	 leveraged	to	 identify	 the	

root	 cause	 from	 the	 historical	 production	 data	 automatically	 under	 faulty	 situations.	

Decision	tree	is	popular	among	the	machine	learning	methods	for	RCA	thanks	to	its	nature	

of	generating	human-interpretable	results	[15].	Chen	[32]	presented	a	decision	tree	learning	

approach	to	diagnose	failures	in	large	internet	sites.	An	improved	method	of	the	interactive	

decision	 tree	was	 proposed	 by	 Detzner	 to	 combine	 experts’	 domain	 knowledge	 into	 the	

pattern	recognition	process	in	the	automotive	industry	[15].	However,	decision	tree	did	not	

seem	to	be	a	well-performed	classifier	[33]	as	it	required	a	longer	sampling	time	[2]	and	was	

incompetent	 in	 handling	 scarce	 datasets	 [32].	 Other	 research	 has	 shown	 that	 SVM	

outperforms	many	 conventional	 classification	 technologies	 when	 it	 comes	 to	 root	 cause	

diagnosis	[16].	Chiang	[12]	explored	the	feasibility	of	using	SVM	to	determine	the	root	cause	

of	the	observed	out-of-control	status	in	the	chemical	processing	industry.	It	turned	out	that	

SVM	outperformed	FDA	by	three	times	on	the	misclassification	rate.	SVM	also	tends	to	run	

faster	 [17]	 and	 to	 have	 a	 stronger	 generalization	 capability	 with	 small	 sample	 learning	

problems	[16].	Unfavourably,	the	recognition	accuracy	of	SVM	degrades	severely	when	the	

two	 crucial	 structural	 parameters,	 penalty	 factor	 and	 kernel	 function	 parameter,	 are	 not	

tuned	 desirably	 [12].	Han	 et	 al.	 visualised	 the	 significant	 effect	 of	 the	 choice	 of	 different	

parameter	 pairs	 on	 the	 performance	 of	 SVM	 [17].	 Artificial	 Neural	 Network	 (ANN)	 has	

proven	effective	for	RCA	to	recognise	patterns	in	the	data	easily	even	over	distorted	inputs	

whilst	yielding	relatively	high	accuracy	[18]	and	flexibility	[34]	in	classifying	the	root	causes.	

On	the	flip	side,	ANN	is	subjected	to	a	long	training	time	[34]	and	the	risk	of	poor	convergence	

with	increasing	layers	[18].	One	of	the	heated	discussions	about	ANN	is	its	black	box	feature,	

omitting	a	logical	explanation	between	inputs	and	outputs	[34].	Accordingly,	manufacturers	

are	reluctant	to	employ	it	in	the	real	world.	Lee	addresses	this	issue	by	proposing	a	Fault	

Detection	Classification	Convolutional	Neural	Network	 (FDC-CNN)	model	 to	 intentionally	
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map	 the	 artificial	 variables	 with	 substantial	 features	 representing	 process	 fault	 [35].	 In	

general,	the	aforementioned	machine	learning	methods	are	faced	with	various	issues	such	

as	prediction	accuracy,	data	scarcity	and	causality	discovery.	Moreover,	most	of	the	methods	

model	the	RCA	problem	as	a	classification	problem	in	determining	whether	the	reason	for	

defects	belongs	to	a	class.	Such	approaches	do	not	account	for	the	probability	of	multiple	

root	 causes	 as	well	 as	 the	distinct	 strength	of	 their	 causal	 influences	 on	product	 quality.	

However,	probabilistic	reasoning	explains	the	causal	influence	of	the	potential	root	causes	

with	stochasticity.	 It	 is	an	important	attribute	for	RCA	in	industrial	practice	as	it	 includes	

uncertainty	 and	 supports	 decision-making	 for	 on-site	 staff.	 Another	 common	 limitation	

among	the	existing	RCA	methods	is	the	lack	of	interpretability.	Even	though	the	final	root	

causes	are	identified,	it	is	intractable	to	explain	the	causality	of	the	root	cause	(i.e.,	why	the	

identified	 root	 cause	 contributes	 to	 the	 issue)	without	 a	human-interpretable	knowledge	

representation.	This	limits	the	manufacturer’s	ability	to	find	corresponding	actions	to	solve	

the	problem	in	the	real-world	scenario	as	the	results	are	not	explainable	and	not	visualised.	

Therefore,	there	is	an	urgent	need	for	a	robust,	intelligent,	human-interpretable	probabilistic	

reasoning	method	for	RCA.			

	

BN	has	emerged	in	the	field	of	RCA	with	sheering	benefits.	[5][36]Many	studies	have	proven	

it	effective	to	address	uncertainty	[6]	[19]	where	multiple	root	causes	can	contribute	to	the	

occurred	product	 failure	with	various	probabilities	 instead	of	 just	one	defect	reason.	The	

probabilities	of	different	root	causes	inferred	from	BN	can	also	quantify	the	strength	of	their	

causal	influences	on	the	quality	issue.	Causal	relationships	can	be	discovered	in	BN	through	

modelling	 conditional	 dependencies	 between	 different	 variables,	 making	 it	 powerful	 for	

reasoning	 in	 RCA	 [5][36].	 BN	 is	 also	 a	 powerful	 tool	 for	 knowledge	 representation	 as	 it	

displays	the	relationship	amidst	different	features	[21].	Acceptable	results	can	be	obtained	

by	BN	even	with	incomplete	data	[21].	Weidl,	G.	[20]	has	further	highlighted	its	advance	in	

decision	 support	 with	 the	 ability	 of	 probabilistic	 reasoning.	 Every	 coin	 has	 two	 sides,	

implementation	of	BN	is	an	NP-hard	problem.	The	computational	expense	increases,	as	the	

network	size	goes	up	[19].	Furthermore,	BN’s	performance	can	be	worsened	without	any	

prior	knowledge	[6].	The	robustness	of	BN	is	sensitive	to	data	sparsity	[23]	and	the	choice	of	
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different	 structure	 learning	algorithms	 [26].	BN	models	 tend	 to	 lose	 robustness	 from	big	

datasets.	The	sparsity	from	big	data	can	make	BNs	have	low	independent	validation	accuracy	

and	be	overfit	[23].	Moreover,	the	prediction	accuracy	of	an	individual	BN	model	has	been	

demonstrated	to	be	dependent	on	the	selection	of	the	BN	structure	learning	algorithm	[26].		

This	means	that	BN	learnt	from	a	single	structure	learning	algorithm	can	be	insufficient	and	

unrobust	for	identifying	root	causes.	Comparatively,	fusing	multiple	learning	algorithms	can	

improve	the	robustness	of	the	models	[25].	Ensemble	learning	techniques	have	the	ability	to	

combine	different	models	to	improve	performance.	Yu	et	al.	have	used	ensemble	techniques	

to	integrate	Gaussian	mixture	models	to	detect	and	recognize	various	defect	patterns	in	the	

semiconductor	 manufacturing	 process	 [37].	 Ensemble	 learning	 technique	 has	 also	 been	

applied	 to	 extract	 more	 robust	 features,	 allowing	 an	 effective	 fault	 diagnosis	 of	 a	

reciprocating	compressor	[27].	As	a	result,	we	are	inspired	to	integrate	ensemble	learning	

techniques	into	the	proposed	method.	

	

2.3	Summary	

In	summary,	RCA	has	proven	to	be	a	difficult	and	time-consuming	engineering	problem	using	

conventional	 methods.	 Statistical	 techniques	 alone	 tend	 to	 be	 insufficient	 for	 a	 fully	

automated	RCA.	Machine	 learning	methods	have	shown	higher	accuracy	and	efficiency	 in	

identifying	 the	 root	 cause.	 However,	 most	 of	 the	 papers	 model	 RCA	 as	 a	 classification	

problem.	Such	approaches	do	not	account	for	multiple	root	causes	as	well	as	the	distinctive	

strength	 of	 their	 causal	 influences	 on	 product	 quality.	 Another	 common	 shortage	 of	 the	

existing	methods	is	the	lack	of	interpretability,	where	the	process	of	root	cause	identification	

cannot	be	explained	or	visualised.	These	 limitations	hinder	 its	practical	use	 in	real-world	

manufacturing.	 On	 the	 other	 hand,	 BN	 has	 the	 ability	 to	 perform	 human-interpretable	

probabilistic	learning.	Nevertheless,	its	prediction	accuracy	is	sensitive	to	scarce	data	and	

has	the	tendency	of	overfitting	with	big	datasets.	The	robustness	of	BN	model	has	also	been	

found	to	be	contingent	on	the	choice	of	structure	learning	algorithms	and	prior	knowledge.	

Therefore,	there	is	an	urgent	need	for	a	robust,	intelligent,	human-interpretable	probabilistic	

reasoning	method	to	address	the	limitations	in	the	existing	RCA	methods.	
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Chapter	3 	
Problem	Definition	
This	chapter	provides	a	definition	of	the	RCA	problem.	In	Section	3.1,	the	RCA	problem	is	

described	in	the	context	of	the	plastic	industry	with	an	introduction	of	the	factory’s	historical	

production	data.	It	 lists	three	questions	that	we	aim	to	answer	in	this	project.	Section	3.2	

formulates	the	RCA	problem	mathematically	with	technical	objectives.	Section	3.3	presents	

the	proposed	method	to	outline	how	it	can	achieve	the	technical	objectives,	which	guides	the	

process	of	prediction	model	construction	in	Chapter	4.		

3.1	RCA	Problem	Definition	

The	RCA	problem	is	based	on	a	real	production	system	from	a	plastic	factory,	ABC.	They	have	

collaborated	with	APT	to	collect	and	store	their	production	performance	data.	The	historical	

production	data	contains	different	production	features	and	observations	about	the	operated	

jobs.	The	variables	selected	from	the	historical	production	data	are	presented	in	Table	3.1	to	

impart	a	basic	understanding	of	the	factors	involved	in	the	RCA	problem.	

Table	3.1	Variables	selected	from	the	historical	production	data	collected	from	factory	ABC	
for	RCA		

Variable	Name	 Variable	Type	 Data	Description	

jobRun	 Feature	 the	number	of	operations	performed	for	a	job	
jobStartTime	 Feature	 the	timestamp	the	job	starts	
Equip	 Feature	 the	machine	a	job	runs	on	
jobStartUser	 Feature	 the	operator	who	starts	the	job	
jobStopUser	 Feature	 the	operator	who	stops	the	job	
ProductionTime	 Feature	 the	time	it	takes	to	complete	a	job	
DownTime	 Feature	 the	downtime	rate	of	a	job	
jobPLCSetupTime	 Feature	 the	time	it	takes	to	set	up	a	job	
RejWeight_kg	 Feature	 the	weight	of	rejected	products	in	kg	
rrnDescription	 Feature	 the	names	of	the	potential	reject	reasons	
ActRejectPC	 Observation		 the	reject	rate	of	a	job	
isRejectFail	 Observation	 Binary;	1	indicates	a	job	with	quality	issues,	0	otherwise	
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In	particular,	“isRejectFail”	is	the	indicator	of	the	quality	performance	of	a	job.	It	is	a	binary	

variable,	comprising	only	“0”	and	“1”.	“1”	indicates	that	the	job	has	an	unusually	high	reject	

rate.	Intuitively,	this	job	is	classified	as	a	risky	job	with	a	quality	issue;	“0”	shows	that	the	job	

has	no	alarming	quality	issue.	Its	value	is	determined	by	

	 !"#$%$&'()!*  = -
1	,   !1 2&'#$%$&'34  >  6&&#$%$&'34  +  '8*

0, 8'ℎ$;<!"$
	 (1)	

where	 "2&'#$%$&'34" 	is	 the	 reject	 rate	 that	 reflects	 the	 quality	 of	 a	 job	 by	 counting	 the	

number	of	rejected	products	in	ratio	to	the	total	quantity	of	the	produced	products	during	

the	job;		"6&&#$%$&'34"	is	the	target	reject	rate	defined	by	the	manufacturers,	embodying	the	

ideal	 reject	 rate	 that	 the	 factory	 aims	 to	 achieve;	 and	'8* 	represents	 the	 tolerance	 of	 the	

reject	rate,	reflecting	the	permissible	limit	of	variation	in	reject	rate	for	the	job.		

	

";;>?$"&;!6'!8>"	holds	a	list	of	root	causes	that	has	historically	led	to	quality	failures	for	a	

job.	These	root-cause	variables	provide	a	list	of	root-cause	candidates	for	RCA,	guiding	the	

analyst	 to	 localise	 the	 causal	 relationship	 between	 the	 root-cause	 variables	 and	 the	

observations.	Other	 features	 listed	 above	 can	 also	 contribute	 to	 a	 quality	 issue	 for	 a	 job.	

Knowing	the	variables	from	the	historical	production	data	gives	a	clearer	direction	to	define	

the	RCA	problem	in	the	manufacturing	context.	

	

After	understanding	some	key	variables	in	the	historical	production	data	in	factory	ABC,	RCA	

can	be	defined	more	specifically	by	referring	to	the	variables	presented	in	Table	3.1.	RCA	is	

the	task	of	finding	the	root	causes	of	an	issue.	It	is	triggered	when	an	anomaly	occurs.	For	

factory	ABC,	its	main	issue	is	product	quality.	It	has	been	found	that	their	average	reject	rate	

("2&'#$%$&'34" )	is	around	10%,	which	can	adversely	affect	the	workflow	and	the	cost	level.	

Therefore,	RCA	is	required	to	solve	the	product	quality	problem	in	the	factory.	
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The	 RCA	 starts	 with	 understanding	 the	 underlying	 mechanics	 of	 the	 quality	 issue.	 The	

experts	 in	 ABC	 normally	 perform	 RCA	 on	 a	 problematic	 job	 (i.e.,	"isRejectFail"  = 1)	 by	

analysing	the	historical	pattern	on	an	excel	sheet	to	identify	the	causal	factors	intuitively.	

This	 conventional	 approach	 is	 difficult	 and	 time-consuming	 as	mentioned	 in	 Section	 2.1.	

Therefore,	 this	 project	 aims	 to	 find	 a	 more	 robust,	 intelligent	 and	 human-interpretable	

method	 for	 RCA.	 By	 inspecting	 the	 historical	 data	with	 the	 domain	 experts	 from	ABC,	 it	

appears	that	some	job	features	in	Table	3.1	such	as	the	operator	(“jobStartUser”),	the	types	

of	machines	(“Equip”),	and	production	time	(“ProductionTime”)	can	have	a	causal	influence	

on	 the	 reject	 rate	 ( "2&'#$%$&'34") 	of	 the	 jobs.	 Since	 this	 information	 is	 captured	 by	

AspectPL,	this	research	is	inspired	to	uncover	the	hidden	causal	relationships	between	the	

variables	from	these	historical	production	records	automatically.	Based	on	the	discovered	

causal	relationships	between	the	variables	from	the	historical	production	data,	we	also	want	

to	know	the	probability	of	each	root	cause	causing	the	quality	issue	for	a	job.	In	this	way,	the	

obtained	probabilities	of	each	reject	reason	can	help	the	on-site	staff	to	make	data-driven	

decisions	on	fixing	the	quality	issue.	To	take	one	step	further,	we	would	like	to	foresee	what	

jobs	might	be	subjected	to	quality	issues	in	the	future	to	prevent	the	risk	in	production.	

	

Thus,	this	problem	can	be	encapsulated	into	the	following	three	questions	with	a	focus	on	

Q2:	

Q1.	Given	a	product,	what	are	the	causal	relationships	in	the	production	system	based	on	the	

historical	data?	

Q2.	 Given	 a	 job	 that	 has	 been	 finished	 and	 discovered	with	 quality	 issues,	 what	 are	 the	

potential	reject	causes,	and	what	are	their	corresponding	probabilities	based	on	the	known	

features?	

Q3.	Given	a	job	yet	to	be	run,	is	the	job	going	to	pose	a	quality	issue	(i.e.,	a	high	reject	rate)?	
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3.2	Mathematical	Formulation	of	RCA	Problem	

As	the	three	questions	that	RCA	needs	to	solve	 in	this	study	have	been	identified,	we	can	

further	formulate	the	RCA	problem	mathematically	to	allow	technological	models	to	be	built.	

First,	all	the	elements	in	the	RCA	problem	such	as	jobs,	historical	data,	features,	observed	

quality	 issues	 and	 root	 causes	will	 be	 defined	mathematically.	 Then,	 the	 three	 questions	

proposed	in	Section	3.1	will	be	translated	into	the	mathematical	format.	See	Table	3.2	for	the	

list	of	notations.	

	

In	 a	 factory,	 it	 has	 produced	K 	distinct	 types	 of	 products	3L	 = {3L!, 3L", … , 3L#} 	and	

operated	P 	jobs	 	 Q	 = {Q!, Q", … , Q$} 	on	 the	 production	 floor.	 The	 historical	 dataset	? 	is	

collected	 from	 the	 records	 of	P 	jobs.	 The	 features	 of	 job	 records,	R = {R!, R", … , R%} ,	 are	

stored	in	the	dataset	?, R ∈ ?	.	R	contains	a	number	of	T	features.	Each	individual	feature	is	

indexed	as	R& 	or	(R& , R')	in	a	pair.	R	encodes	the	production	information	about	the	jobs	such	

as	the	operator,	the	type	of	machines	used,	and	production	time	as	shown	in	Table	3.1	with	

the	variable	type	“Feature”.	Let	#( be	the	product	quality	of	job	Q(, signifying the observational 

variable “isRejectFail”	presented	in	Section	3.1. It	is	a	binary	variable,	#( ∈ {0, 1};	1	indicates	

that	job	Q(	is	problematic	with	quality	issues;	and	0	indicates	that	job	Q(	has	no	quality	issue.	

The occurred root causes, W = 	 {W!, W",·	·	·	, W)}	where 4 denotes the total number of occurred root 

causes, in the records are regarded as the root-cause candidates leading to product quality issues 

(i.e., # = 1). Each root cause W*  has a corresponding probability 3*  implying the likelihood of 

root-cause W* causing the identified quality issues.	

 

With	all	the	elements	involved	in	RCA	defined,	the	three	questions	in	RCA	can	be	formulated	

mathematically	as	follows:		

Q1.	Given	the	historical	production	data	D	with	features	R = {R!, R", … , R%},	how	do	we	build	

a	function	ℎ:		such	that	it	can	satisfy	all	the	components	in	equation	(2),	where	“1”	indicates	

there	is	causality	between	the	pair	and	“0”	otherwise.	ℎ	is	developed	to	detect	the	existence	

of	causal	relationships	between	the	job	features	R& 	and	R' , ℎZR& , R'[ → {0, 1};	the	existence	of	
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causal	relationships	between	the	job	feature	R& 	and	the	root	cause	W* ,	ℎ(R& , W*) → {0, 1};	the	

existence	 of	 causal	 relationships	 between	 the	 job	 feature	 R& 	and	 the	 observation	 # ,	

ℎ(R& , #) → {0, 1};	and	the	existence	of	causal	relationships	between	the	root	cause	W* 	and	the	

observation	#,	ℎ(W* , #) → {0, 1}.	

	 ℎZR& , R'[ → {0, 1};	ℎ(R& , W*) → {0, 1};	ℎ(R& , #) → {0, 1}	,	ℎ(W* , #) → {0, 1}		

for	R& , R' ∈ R, ! ≠ %, R& , W* ∈ W	

(2)	

Q2.	Given	a	job	Q(	that	has	been	finished	with	quality	issues	#( = 1	,	what	are	the	nonempty 

set of root-cause variables _ = {W!, W",·	·	·	, W)! }	 for	 4′ ≤ 4 ,	 	 Z	⊆ W ,	 and	 what	 are	 their	

corresponding	probabilities	3 = {3!, 3",·	·	·	, 3)!}	based	on	its	job	feature	vector	R(	?	

Q3.	Given	a	job	Q(! 	that	has	not	been	operated	yet,	what	is	the	value	of		#(! , #(! ∈ {0,1}	?	

	

Table	3.2	Table	of	notations	for	mathematical	symbols	in	RCA	problem	formulation	and	

proposed	method	formulation	

Symbol	 Description	

Indices		 	
d	 Index	of	produced	products	
>	 Index	of	jobs	
!	 Index	of	job	features	
&	 Index	of	root-cause	variables	
e	 Index	of	structure	learning	algorithm	
"	 Index	of	bootstrapped	samples	
	 	

Sets		 	
3L	 Set	of	products,	3L	 = {3L!, 3L", … , 3L#}	
Q	 Set	of	jobs,	Q	 = {Q!, Q", … , Q$}		
R	 Set	of	job	features,	R = {R!, R", … , R%},	
W	 Set	of	root-cause	variables,	W = 	 {W!, W",·	·	·	, W)}	
3	 Set	of	probabilities	for	root-cause	variables,	3 = {3!, 3",·	·	·	, 3)!}	
R& 	 Job	features	for	job	!	
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?	 Set	 of	 historical	 job	 records	 for	 corresponding	 product,	?	 =
{?!, ?", … , ?#}	

f	 Set	of	BN	models	learnt	by	different	structure	learning	algorithms	
g	 Set	of	vertices	in	a	BN	structure	f		
2	 Set	of	arcs	in	a	BN	structure	f		
6	 Set	of	conditional	probabilities	for	vertices	g	in	a	BN	structure	f		
h	 Set	of	evidence	of	a	to-be-predicted	job	Q(	to	be	input	into	a	BN	

structure	f	for	Bayesian	inference,	h ← R(	
Constants		 	

K	 Number	of	products	
P	 Number	of	jobs	
T	 Number	of	features	
4	 Number	of	occurred	root	causes	
j	 Number	of	implemented	structure	learning	algorithms	
k	 Number	of	total	bootstrapped	samples	

Variables		 	
R& 	 !	th	production	feature	of	the	jobs	
W* 	 &	th	root	cause	contributing	to	the	quality	issues	of	the	jobs	
#(	 Binary	variable:	1	indicating	job	Q(	has	quality	issues;	0	otherwise	
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3.3	Proposed	Method	Formulation	

This	section	presents	the	proposed	product-wise	framework	of	ensembled	BN.	It	illustrates	
how	 the	 proposed	 method	 can	 solve	 the	 previously	 formulated	 RCA	 problems	
mathematically.	The	fundamental	BN	model	has	also	been	defined	to	lay	the	foundation	of	
model	construction	in	the	next	chapter.	

	
Fig.	3.1	The	proposed	product-wise	framework	of	ensembled	BN	for	finding	the	root	cause	

relations	between	job	features	X,	potential	root	causes	Wand	the	observation	of	product	

quality	#	for	product	3L+	based	on	its	historical	data	?+	
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The	proposed	method	employs	a	product-wise	framework	of	the	ensembled	BN	model	to	

find	the	causal	relationships	between	job	features	R,	potential	root	causes	Wand	observation	

of	product	quality	#	for	a	product	3L+	based	on	its	historical	production	data	?+.	Once	the	

causal	 network	 is	 discovered,	 the	 job	 features	 of	 the	 to-be-predicted	 job	 Q( ,	R(will	 be	

introduced	as	external	evidence	h	into	the	causal	network	to	allow	probability	inferencing	

and	risk	predictions.	The	proposed	framework	consists	of	three	steps	outlined	in	Fig.	3.1:	I.	

Modularise	 Data	 by	 Products,	 II.	 Construct	 bagged	 BN	 models,	 and	 III.	 Combine	 BN	

predictions	using	the	Weighted	Average	Ensemble	Learning	(WAEL)	technique.	The	three	

steps	 will	 be	 described	 following	 the	 mathematical	 formulation	 of	 the	 RCA	 problem	 in	

Section	 3.2.	 The	 notations	 of	 the	 mathematical	 symbols	 mentioned	 in	 the	 section	 are	

displayed	in	Table	3.2.	

	

In	the	first	step,	given	a	 job	Q(	producing	product	3L+,	 the	proposed	method	modularises	

the	historical	data		?	into	K	(i.e.,	the	number	of	products)	small	product-wise	data	samples	

{ ?!, ?" ,	 …,	 ?# }.	 Each	 dataset	 captures	 the	 historical	 job	 records	 that	 produce	 the	

corresponding	product.	This	strategy	reduces	the	sample	size	for	BN.	Hence,	it	increases	BN	

learning	efficiency	and	avoids	sparsity	that	often	occurs	in	big	datasets	[23].	As	a	result,	the	

historical	data	sample	for	job	Q(	will	be	?+	according	to	its	product	3L+.	

	

Based	on	the	modularised	historical	record	?+,	in	the	second	step,	the	structures	of	BN	will	

be	learnt	using	a	specific	structure	learning	algorithm	2, 	with	bagging	ensemble	technique.	

In	 total,	 there	 are	 j 	different	 structure	 learning	 algorithms,	 2, ∈ 	 {2!, 2", … , 2-} ,		

implemented	to	learn	BN	models.	Initially,	?+	is	bootstrapped	evenly	into	k	subsets	for	all	

the	j	algorithms	as	shown	in	part	II	of	Fig.	3.1.	Each	bootstrapped	sample	?+" 	is	a	subset	of	

?+,		?+" ⊆ ?+.	Then,	the	structure	learning	algorithm	2, ,	2, ∈ 	 {2!, 2", … , 2-},	will	learn	a	

BN	model	f+",, 	for	each	subset	?+" 	resulting	 in	a	 total	of	k	models	{f+#,, , f+$,, , … , f+%,,}	

for	algorithm	2, .	The	implementation	of	different	structure	learning	algorithms	2, 	learning	

BN	model	f+",, 	will	be	illustrated	in	Section	4.2.3.2.	At	the	end	of	Step	2,	a	number	of	k	learnt	

BN	models	{f+#,, , f+$,, , … , f+%,,}	are	aggregated	into	one	BN	structure	f+,, 	using	bagging	
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ensemble	technique.	The	bagging	ensemble	technique	is	 integrated	to	account	for	sample	

variations	 and	 to	 reduce	 the	 risk	of	 scarce	data	by	 fusing	 the	models	 from	 the	 various	k	

bootstrapped	samples,	enabling	robust	BN	structure	learning.	The	detailed	implementation	

of	model	aggregation	using	bagging	ensemble	is	shown	in	Section	4.2.2.	After	the	bagged	BN	

structure	f+,, 	is	 constructed	 with	 distinct	 structure	 learning	 algorithm	2, ,	 parameter	

learning	and	inferencing	of	BN	structures	f+,, 	need	to	be	conducted	in	Step	3	to	infer	a	set	

of	root-cause	probabilities.	To	present	these	processes,	the	properties	of	BN	structures	f+,, 	

need	to	be	defined.	

	

The	BN	structures	f+,, 	learnt	from	Step	2	or	in	general	form	f	are	directed	acyclic	graphs	

(DAGs).	Mathematically,	 BN	 can	 be	 encoded	 as	BN:	f	 = 	 (g, 2)	where	g 	denotes	 vertices	

(l& 	 ∈ 	g),	 corresponding	with	 the	 variables	 selected	 from	 the	 job	 features	R	,	 root-cause	

variables	W	and	quality	risk	indicator	#	mentioned	in	Section	3.3,	g ⊆ {R, W, #}.	In	the	case	of	

RCA	for	product	3L+,		{R, W, #} ⊆ ?+.	For	example,	the	vertices	g = {l!, l", l/, l0	}	in	Fig.	3.2		

represent	the	quality	issue	indicator	#,	the	potential	root	causes	W!, W"	occurred	in	?+	and	

the	 job	 feature	R!	respectively.	Each	node	l& 	has	different	states	"& ,	 embodying	 the	values	

that	the	specific	variable	can	take	(e.g.,	l!	in	Fig.	3.2	has	two	states	“0”	and	“1”	indicating	the	

existence	of	quality	issues	of	a	job).	2	denotes	the	set	of	arcs	that	directly	link	the	vertices,	

signifying	the	conditional	dependency	between	the	connected	random	variables	(l& ,	l').	The	

main	task	of	BN	structure	learning	is	to	determine	the	existence	of	the	arcs	between	random	

variables	(l& ,	l').	The	strength	of	causal	dependency	relations	is	quantified	by	conditional	

probabilities	 6(l&|l') 	[19].	 Accordingly,	 each	 vertex	 is	 associated	 with	 a	 Conditional	

Probability	Table	(CPT)	that	defines	probabilities	for	the	distinct	states	of	the	node	given	the	

states	of	its	parents	[19].	The	procedure	of	parameter	learning	in	BN	is	to	obtain	the	CPT	of	

each	vertex,	6(l&|l')		or	6(l&)	if	l& 		has	no	parent.	
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Fig.	3.2	An	abstract	BN	consists	of	variables	{l!, l", l/, l0	}	

	

Knowing	the	formulation	of	bagged	BN	structure	f+, 	from	Step	2,	parameter	learning	and	

inferencing	 can	be	 illustrated	on	each	bagged	BN	model	f+,, 	to	obtain	a	 set	of	predicted	

root-cause	probabilities	3+,, = {3+,,# , 3+,,$ ,·	·	·	, 3+,,&}.	As	shown	in	part	III	of	Fig.	3.1,	Step	

3	 starts	with	BN	parameter	 learning	where	6(l&)	for	 each	l& 	from	 all	 the	 vertices	g+,, 	in	

model	 f+, 	is	 estimated,	 	 l& 	 ∈ 	g+,, .	 The	 explicit	 parameter	 learning	 method	 will	 be	

elaborated	in	Section	4.2.4.	Then	inference	introduces	the	job	features	of	the	to-be-predicted	

job	Q(	as	external	evidence	h	into	the	BN	model		f+, 	(i.e.,	h ← R(	).	Bayesian	inference	then	

updates	 the	 belief	 distribution	 for	 each	l& ∈ 	g+,, ,	nho(l&)	based	 on	 the	 new	 evidence	h	

using	 junction	 tree	 algorithms	 (explained	 in	 Section	 4.2.5).	 nho(l&) 	stands	 for	 the	

conditional	 distribution	of	 	l& ,	 given	 all	 the	 associated	 evidence	 in	 the	network.	When	l& 	

corresponds	 the	 root-cause	 variable	W* ,	nho(l&)	contains	 the	 probability	 of	 root	 cause	W* 	

contributing	 to	 quality	 failures,	3) .	 Similarly,	 the	 probabilities	 can	 be	 inferred	 for	 any	

potential	 defect	 root	 cause	 W	 ⊆ ?+ ,	 obtaining	 3 = {3!, 3",·	·	·	, 3)} .	 The	 resulting	

probabilities	are	denoted	as	3+,, = {3+,,# , 3+,,$ ,·	·	·	, 3+,,&}	in	the	context	of	using	structure	

learning	 algorithm	2, 	based	 on	 dataset	?+ .	 Finally,	 the	 sets	 of	 predicted	 probabilities	

{3+,!, … , 3+,-}	from	different	BN	models	{f+,!, f+,", … , f+,-}	 learnt	by	distinct	algorithms	

{2!, 2", … , 2-}	are	fused	into	a	single	set	of	root-cause	probabilities	3+ = {3+# , 3+$ , … , 3+&}	
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through	WAEL	technique	to	enhance	prediction	accuracy	and	robustness,	which	is	further	

explained	in	Section	4.2.6.	The	resulting	root-cause	probabilities	3+	can	answer	Q2	for	RCA.	

The	same	procedures	are	taken	to	predict	the	quality	risk	#(! ,		of	a	job	Q(! 	to	answer	Q3.	

	

In	 general,	 the	 proposed	 solution	 comprises	 two	 functional	 modules,	 BN	 models	 and	

ensemble	learning	techniques.	BN	is	the	fundamental	model	of	our	proposed	method.	It	is	a	

probabilistic	graphical	model	for	reasoning	under	uncertainty	[23].	BN	development	process	

goes	 through	 three	 procedures	 namely,	 structure	 learning,	 parameter	 learning,	 and	

inference	to	provide	probabilistic	graphical	reasoning.	Structure	learning	algorithms	for	BN	

uncover	the	causal	relationships	between	the	variables	V	⊆ {R, W, #}	from	the	historical	data	

?	and	construct	human-interpretable	graphical	networks	accordingly.	Parameter	learning	

estimates	the	CPT	for	each	vertex	l& ,	which	is	an	important	attribute	for	inference.	Inference	

updates	 the	 belief	 in	 the	 network	 by	 passing	 the	 messages	 regarding	 probability	

distributions	 throughout	 the	 network	 to	 infer	 the	 probabilities	 of	 different	 root	 causes	

leading	to	the	event	of	interest.	As	a	result,	intelligent	and	human-interpretable	probabilistic	

reasoning	 is	 achieved	 by	 BN.	 On	 the	 other	 hand,	 ensemble	 learning	 techniques	 are	

incorporated	to	reinforce	the	robustness	of	the	constructed	BN	models.	Bagging	ensemble	

techniques	 are	 applied	 during	 BN	 structure	 learning	 to	 counter	 BN’s	 sensitivity	 to	 data	

sparsity.	 The	 weighted	 average	 ensemble	 learning	 technique	 is	 integrated	 after	 the	 BN	

inferencing.	 It	 fuses	 the	predictions	 from	 the	 structures	of	BN	models	 learnt	by	different	

learning	algorithms	to	alleviate	the	deficiencies	in	the	accuracy	and	stability	of	a	single	BN	

model,	 ensuring	 robustness.	 The	 implementation	 of	 the	 ensembled	 BN	 models	 will	 be	

explained	explicitly	with	a	case	study	 in	Section	4.2	 in	 the	sequence	of	bagging	ensemble	

learning,	BN	structure	learning,	parameter	learning,	Bayesian	inference	and	WAEL,	which	

follows	the	workflow	of	the	proposed	RCA	framework.	
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Chapter	4 	
Prediction	Model	Construction	
To	build	the	models,	data	and	job	features	need	to	be	collected	and	pre-processed.	Then,	the	

proposed	 ensembled	 techniques	 and	 BN	 models	 are	 implemented	 to	 provide	 a	 robust,	

intelligent	and	human-interpretable	RCA	method.	Section	4.1	explains	the	processes	of	data	

collection	and	data	pre-processing.	Section	4.2	explains	the	design	and	the	construction	of	

the	 ensembled	 BN	 framework	 for	 automated	 RCA.	 A	 case	 study	will	 be	 presented	 as	 an	

example	to	demonstrate	the	process	and	to	answer	the	proposed	RCA	questions.	

4.1	Data	Preparation	

As	 shown	 in	 the	 proposed	 method	 in	 Section	 3.3,	 job	 features	 are	 essential	 to	 the	

construction	of	ensembled	BN	models	for	RCA.	Therefore,	the	production	data	need	to	first	

be	collected	from	the	machines.	Then,	data	pre-processing	is	needed	to	prepare	and	extract	

job	features	from	the	data	for	the	prediction	model	construction.	Sequentially,	Section	4.1.1	

presents	the	process	of	data	collection.	Section	4.1.2	demonstrates	the	process	of	data	pre-

processing,	including	data	cleaning,	feature	selection	and	data	discretisation.	

4.1.1	Data	Collection	

Data	are	generated	by	various	sensors	stalled	on	the	machines	in	factory	ABC.	Programmable	

Logic	 Controller	 (PLC)	 offers	 a	 digital	 connection	 between	 the	 physical	 system	 and	 the	

computational	system	to	collect	data.	It	is	a	special-purpose	computer	designed	to	withstand	

industrial	 conditions	 (e.g.,	 extended	 temperature	 ranges,	 electrical	 noises,	 and	 various	

vibrations	and	 impacts.).	 Its	 fundamental	 role	 in	 system	control	 is	achieved	by	executing	

programmed	control	functions	on	corresponding	physical	devices.	Fig.	4.1	demonstrates	the	

overall	model	 of	 a	 PLC-controlled	manufacturing	 system.	 An	 input	 device	measures	 and	

transmits	data	from	the	manufacturing	system	into	the	PLC	[38].	On	the	other	hand,	output	

devices	receive	commands	from	the	PLC	to	execute	a	specific	operating	action.	
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Fig.	4.1	The	overall	model	for	a	PLC	controlled	manufacturing	system	[42]	

In	this	research,	the	data	sample	of	the	plastic	industry	is	extracted	from	AspectPL	software.	

AspectPL	uses	an	advanced	PLC,	Beckhoff	Embedded	PC	Automation	Controllers,	 for	data	

collection	to	realize	a	larger	memory	space	and	more	economical	use.	Machine	connectivity	

is	supported	with	EtherCAT	for	a	wide	range	of	connections	at	a	high	speed.	AspectPL	was	

designed	with	 the	 ISA-95	 standard,	 an	 international	 standard	 for	 building	 an	 automated	

interface	 between	 enterprise	 and	 control	 systems.	 This	 provides	 manufacturers	 with	

consistent	terminology	and	information	operation	models	globally.	A	snapshot	of	the	data	

collected	from	ABC	industry	has	captured	in	Fig.	4.2.	It	contains	the	raw	data	with	all	the	job	

features.	

	

Fig.	4.2	A	snippet	of	raw	historical	production	data	collected	from	factory	ABC	
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4.1.2	Data	Pre-processing		

This	 section	 demonstrates	 the	 process	 of	manipulating	 the	manufacturing	 data	 collected	

from	the	plastics	factory	ABC.	The	extracted	raw	data	goes	through	data	cleaning	(Section	

4.1.2.1),	 feature	 selection	 (Section	 4.1.2.2)	 and	 data	 discretisation	 (Section	 4.1.2.3)	 to	 be	

prepared	for	predictive	model	construction	later	in	Section	4.2.	

	

4.1.2.1	Data	Cleaning	

Some	erroneous	and	unusual	data	points	might	occur	 in	 the	raw	data	extracted	 from	the	

factory.	The	data	cleaning	process	will	first	inspect	the	quantitative	data	to	exclude	irrational	

data	points.	Then	a	filter	process	will	be	undertaken	to	ensure	a	sufficient	sample	size	for	

model	construction	using	the	proposed	method.		

	
Fig	4.3	(a)	Data	distribution	of	reject	related	variables	 Fig	4.3	(b)	Data	distribution	of	“rejContributor”		

					before	data	cleaning	 	 	 	 										before	data	cleaning	

	
Fig	4.3	(c)	Data	distribution	of	performance	metrics	 Fig	4.3	(d)	Data	distribution	of	duration	variables		

					before	data	cleaning	 	 	 	 												before	data	cleaning	
Fig.	4.3	Data	distribution	of	quantitative	variables	from	the	historical	production	data	

before	data	cleaning	
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Fig	4.4	(a)	Data	distribution	of	reject	related	variables	 Fig	4.4	(b)	Data	distribution	of	“rejContributor”		

					after	data	cleaning	 	 	 	 										after	data	cleaning	

	
Fig	4.4	(c)	Data	distribution	of	performance	metrics	 Fig	4.4	(d)	Data	distribution	of	duration	variables		

					after	data	cleaning	 	 	 	 												after	data	cleaning	
Fig.	4.4	Data	distribution	of	quantitative	variables	from	the	historical	production	data	after	

data	cleaning	

Firstly,	the	quantitative	variables	are	inspected	to	guarantee	the	rationality	of	the	data.	The	

difference	in	data	distribution	for	different	numeric	attributes	before	and	after	data	filtering	

has	been	shown	in	Fig.	4.3	and	Fig.	4.4	respectively.	In	common	sense,	the	reject	quantity	

(“rejQuantity”)	of	a	 job	should	be	equal	 to	or	above	zero.	However,	a	 few	negative	values	

occur	in	the	first	boxplot	on	the	left	 in	Fig.	4.3.	This	could	be	caused	by	workers'	delayed	

action	on	starting	product	count	in	AspectPL	system	for	the	job.	In	AspectPL,	reject	quantity	

is	calculated	as	the	difference	between	the	number	of	produced	materials	and	the	number	of	

packed	 good	 products.	 If	 the	 software	 receives	 an	 indication	 of	 a	 job	 starting	 later	 than	

reality,	the	total	product	count	for	the	job	will	end	up	much	lower	than	the	actual	number,	

while	the	number	of	good	products	remains	unchanged,	resulting	in	a	possibility	of	negative	

reject	values.	Therefore,	such	values	are	incorrect	and	should	be	excluded	from	the	dataset.		
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Instinctively,	 some	 invalid	 data	 are	 expected	 in	 the	 probability	 of	 reject	 causes	

(“rejQuantity”)	 and	 the	 reject	 rate	 (“ActRejectPC	 “)	 of	 the	 jobs	 as	 these	 two	variables	 are	

formulated	in	accordance	with	reject	quantity.	These	incorrect	values	are	also	discarded	to	

ensure	that	the	sample	falls	inside	the	reasonable	range	after	cleaning	as	displayed	in	Fig.	

4.4.	

	

The	data	is	then	filtered	to	make	sure	that	each	material	included	in	the	sample	has	more	

than	10	historical	 job	records.	This	 is	to	accommodate	the	overall	 framework	of	product-

wise	BNs,	which	has	been	described	in	Section	3.3.	Consequently,	it	reduces	the	data	size	to	

199	products	with	6721	job	instances.	

	

4.1.2.2	Feature	Selection	

This	 section	 explains	 the	 process	 of	 selecting	 relevant	 and	 valid	 features	 from	 the	

perspective	of	composite	variables	and	correlated	variables.	Feature	selection	is	to	ensure	

the	attributes	used	to	build	the	model	will	not	hinder	the	model	performance.	

4.1.2.2.1	Composite	Variables	

To	avoid	repetitive	information	and	multicollinearity	induced	by	including	both	composite	

variables	and	their	constituent	variables	in	the	model,	some	individual	features	need	to	be	

eliminated.		

	
#$%$&'	#)'$	 = 	

#$%$&'	pq)>'!'r
3;8Lq&'	48q>'

	 (3)	

As	displayed	in	equation	(3),	the	reject	rate	of	a	job	(“ActRejectPC”)	is	calculated	from	reject	

quantity	(“rejQuantity”)	and	product	count	(“ProductCount”),	which	implies	multicollinearity	

between	these	attributes.	This	means	that	the	outcome	of	“rejQuantity”	and	“ProductCount”	

can	alternate	the	probabilistic	information	on	the	outcome	of	“ActRejectPC”,	and	vice	versa.	

According	to	Song	et	al.’s	statement	[39],	composite	variables	are	widely	applied	in	practice	

to	control	Type	I	error	rate	(i.e.	false	positive	rate),	circumvent	multicollinearity,	or	condense	

useful	information.	Therefore,	the	composite	variables	will	be	kept	in	the	models	and	their	
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respective	 constituent	 attributes	 will	 be	 excluded.	 Accordingly,	 “rejQuantity”	 and	

“ProductCount”	will	 not	 be	 considered	 as	 inputs	 of	 the	model.	 Reject	 rate	 is	 chosen	 also	

because	it	reflects	the	quality	level	of	a	job,	which	is	an	important	causal	factor	to	be	included.	

Following	the	same	philosophy,	"jobPLCDownTime"	and	"ProductionTime"	are	also	discarded	

and	the	composite	feature	“ActDowntimePC”	has	been	conserved	in	the	model	as	a	predictor.	

	

4.1.2.2.2	Correlated	Variables	

It	 is	well	known	that	correlated	 features	 in	regression	analysis	can	 lead	to	an	 inflation	of	

Type	I	Error,	whereas	such	issue	is	inclined	to	persevere	in	BN	[40].	If	random	variables	in	

the	model	are	correlated,	it	indicates	that	changes	in	one	variable	are	associated	with	shifts	

in	 another.	 This	 is	 because	 the	 change	 in	 unison	 among	multiple	 independent	 attributes	

makes	 it	 harder	 for	 the	 model	 to	 establish	 the	 relationship	 between	 each	 independent	

variable	and	the	dependent	variable	separately.	Bae	et.al	[40]	have	given	mathematical	proof	

and	 straightforward	 experiment	 results	 in	 Table	 4.1	 regarding	 the	 adverse	 effect	 of	

neglecting	correlation	on	false	positive	rate	during	network	structure	learning	regardless	of	

the	model	selection	metrics.		

	

Table	4.1	Experiment	results	on	the	effect	of	ignoring	the	correlation	[40]	

	 IID	Data	 Correlated	Data	

	 BIC	 AIC	 LRT	 BIC	 AIC	 LRT	

No.	of	times	the	true	
network	was	selected		

(out	of	1000	simulations)	
79	 363	 386	 71	 246	 301	

	 	 	 	 	 	 	

False	Positive	Rates	 0.0033	 0.1432	 0.0490	 0.0136	 0.1986	 0.0893	

	

	



	 28	

The	same	problem	is	likely	to	occur	in	the	inference	process	of	BN.	For	example,	two	features	

highly	correlated	with	each	other	and	with	y,	might	both	be	identified	as	insignificant	in	an	

inference	 model,	 potentially	 missing	 an	 important	 explanatory	 signal.	 Furthermore,	

removing	 highly	 correlated	 features	 allows	 more	 accurate	 relations	 to	 be	 found,	 and	

facilitates	computation	storage	and	run	speed.	Therefore,	 it	 is	generally	recommended	to	

trim	out	highly	correlated	features.		

	

Fig.	4.5	Correlation	matrix	of	all	job	features	

	

With	acknowledgement	of	the	necessity	to	drop	high	correlation,	a	pairwise	correlation	test	

is	 conducted	 in	 Fig.	 4.5.	 It	 suggests	 a	 high	 correlation	 between	 the	 tool	 used	 for	 the	 job	

(“ToolID”)	and	the	machine	that	the	job	runs	on	(“EquID”),	while	all	other	job	features	seem	

not	 to	 be	 highly	 correlated	 so	 these	 features	will	 be	 kept.	 The	 occurred	high	 correlation	

between	the	tool	and	the	machine	features	makes	sense	because	the	tool	of	the	job	is	the	

corresponding	mould	of	its	produced	materials.	The	mould	has	to	adapt	to	specific	operating	

machines,	 making	 it	 highly	 correlated.	 Accordingly,	 one	 of	 the	 attributes	 needs	 to	 be	
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removed.	 To	 retain	 as	 much	 valuable	 information	 as	 possible,	 the	 variable	 with	 higher	

variation	will	be	selected	as	 it	 is	 likely	 to	have	higher	predictive	 importance.	One	way	 to	

measure	the	variability	for	a	categorical	variable	is	entropy.	This	concept	was	introduced	by	

Shannon	 [41]	who	has	defined	 that	 for	a	categorical	 random	variable	R	with	 the	value	of	

{s!, s", … , s(}	and	probabilities	6(s&),	its	entropy	is	formulated	as	

	
t(R) 	= 	−v 6(s&) *8w 6(s&)

(

&	2	!

	
(4)	

where	6(s&)	is	the	probability	of	value	s& ,	>	is	the	total	number	of	possible	values,	and	H(X)	

represents	the	Shannon	diversity	index.	The	higher	the	index,	the	more	variations	there	is	

within	 the	 variable.	 Fig.	 4.6	 below	 displays	 the	 distribution	 of	 the	 entropy	 of	 tools	 and	

equipment	within	different	products	in	our	data.	It	is	obvious	that	equipment	lies	at	a	higher	

entropy	 level	 than	 the	 tool.	 It	 also	encloses	a	 larger	area	under	 the	 curve.	This	 implies	a	

higher	variability	in	the	equipment	variable;	therefore,	the	tool	variable	will	be	discarded.	

	

	

Fig.	4.6	Entropy	distribution	of	tools	and	equipment	
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4.1.2.3	Data	Discretisation	

A	broad	background	of	Bayesian	network	structure	learning	theory	and	algorithms	assumes	

all	the	random	variables	to	be	discrete	[42].	However,	it	is	common	to	have	continuous	and	

discrete	variables	coexist	in	practical	circumstances	[43].	In	our	case,	there	are	both	discrete	

variables	 such	 as	 equipment,	 Tool,	 and	 continuous	 ones	 (start	 time,	 downtime,	 etc.)	 in	

Manufacturing	Execution	Systems	(MES)	data.	Whereas	these	continuous	attributes	in	the	

practical	operation	do	not	always	fulfil	the	gaussian	hypothesis	[44],	which	can	violate	the	

assumption	of	Gaussian	Bayesian	Network	 involving	 continuous	parameters.	 In	our	 case,	

most	of	the	attributes	are	heavily	skewed	and	do	not	follow	a	normal	distribution.	Therefore,	

data	discretisation	needs	to	be	considered.	Furthermore,	data	binning	is	widely	practised	to	

mitigate	 variable	 interactions	 preliminary	 to	 Bayesian	 network	 structure	 learning,	 since	

implicit	 complexity	 can	 be	 induced	 by	 the	 interactions	 and	 dependencies	 between	

continuous	 variables	 in	 the	 networks	 [45].	 It	 is	 also	 easier	 for	 BN	 classifiers	 to	 handle	

discrete	values	 thanks	 to	 their	 simplicity.	As	a	 result,	 data	discretisation	 leads	 to	a	more	

efficient	model	 development	 process.	 Lastly,	 one	 of	 the	main	 goals	 of	 this	 research	 is	 to	

provide	insights	to	assist	factory	workers	with	decision-making.	Thus,	the	results	must	be	

interpretable	for	human	beings	to	read	and	process.	However,	it	is	less	likely	for	continuous	

attributes	 to	correlate	with	 the	 response	variable	because	of	 infinite	degrees	of	 freedom.	

Hence,	 models	 with	 continuous	 features	 tend	 to	 be	 more	 difficult	 to	 interpret.	 After	

discretising	the	features,	the	resulting	groups	corresponding	to	the	target	can	be	explained	

more	easily.	Therefore,	discretised	Bayesian	network	 is	recommended	with	regard	to	the	

compatibility,	 efficiency,	 and	 interpretability	 of	 the	 resulting	 models	 even	 though	

discretisation	may	cause	some	loss	of	information.	

	

There	 are	 discretisation	 algorithms	 that	 discretise	 the	 data	 automatically	 without	 any	

knowledge	 about	 the	 features	 in	 the	data.	However,	 the	 focus	 of	 our	 study	 is	 to	 support	

manufacturing	 staff	 to	make	 data-driven	 decisions.	 Thus,	 the	 obtained	 features	must	 be	
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interpretable,	and	the	discretisation	methods	ought	to	be	flexible	toward	distinct	factories.	

Hence,	the	choice	of	discretisation	policy	is	determined	adaptively	according	to	field-specific	

expertise.	"ActCycleTime”	and	“ActDownTime”	are	aggregated	into	two	groups,	normal	and	

abnormal	as	demonstrated	in	Fig.	4.7.	For	example,	if	a	job’s	downtime	exceeds	the	tolerance	

set	 by	 the	 manufacturer,	 then	 it	 will	 be	 classified	 as	 Abnormal.	 Moreover,	 additional	

information	 is	 extrapolated	 through	 discretisation	 of	 the	Date	 Time	 variable	 inspired	 by	

expert	knowledge.	According	 to	on-site	staff	with	domain	knowledge,	 the	season	and	 the	

shift	during	which	production	takes	place	also	play	a	significant	role	in	the	quality	of	the	job.	

Therefore,	we	have	derived	two	categorical	attributes,	season	and	shift,	from	the	job	start	

time	 column.	 Finally,	 equal-width	 interval	 discretization	 is	 used	 to	 split	 reject	 weight	

(“RejWeight_kg”)	and	job	set-up	time	(“jobPLCSetupTime”)	in	Fig.	4.7.	This	method	is	chosen	

due	to	its	ability	to	preserve	the	probability	distribution	of	each	input	variable.	It	divides	the	

domain	 of	 a	 continuous	 variable	 x,	 into	 k	 intervals	 with	 a	 uniform	 width,	 where	 k	 is	 a	

predetermined	parameter	[46].	The	width	of	the	interval,	x,	is	calculated	by:	

	

	
x	 =

R+34	–	R+&(
e

	 (5)	

where	R+34	=	d)s{R!, R", . . . , R(}	and	R+&(	=	d!>{R!, R", . . . , R(}.	
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    Fig. 4.7.1 (a) “ActDowntimePC” before binning	 					Fig.4.7.1 (b) “ActDowntimePC” after binning  

									 	
    Fig. 4.7.2 (a) “ActCycleTime” before binning	 					Fig.4.7.2 (b) “ActCycleTime” after binning  

									 	
    Fig. 4.7.3 (a) “RejWeight_kg” before binning	 					Fig.4.7.3 (b) “RejWeight_kg” after binning  

									 	
    Fig. 4.7.4 (a) “jobPLCSetupTime” before binning	 					Fig.4.7.4 (b) “jobPLCSetupTime” after binning  

Fig.	4.7	Relationships	between	“ActRejectPC”	and	four	quantitative	features		
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4.2		Prediction	Model	Construction	

Once	the	job	features	are	prepared,	ensembled	BN	models	can	be	built	to	perform	RCA.	This	

section	will	demonstrate	how	ensembled	BN	models	are	constructed	and	conducted	based	

on	a	case	study,	which	will	be	described	in	Section	4.2.1.	We	will	follow	the	workflow	of	the	

proposed	 RCA	 framework	 introduced	 in	 Section	 3.3	 to	 explain	 the	 development	 of	 the	

functional	modules	in	the	proposed	methods	and	to	solve	the	questions	raised	in	Section	3.1.	

The	answers	to	the	questions	will	be	presented	concisely	at	the	end	of	this	section.	Firstly,	

the	 bagging	 ensemble	 learning	 technique	 is	 illustrated	 in	 Section	 4.2.2	 so	 that	 it	 can	 be	

incorporated	 into	 the	 following	 procedure	 of	 BN	 structure	 learning	 to	 ensure	 model	

robustness.	 Then	 structure	 learning	 is	 undertaken	 in	 Section	 4.2.3	 to	 unveil	 the	 causal	

relationships	from	the	historical	job	records	and	to	construct	graphical	models	accordingly.	

The	learnt	causal	graphs	of	BN	offer	human-interpretable	knowledge	representation	and	aid	

to	approach	Q1.	Different	structure	 learning	methods	and	knowledge	sources	are	used	to	

learn	BN	structures	so	that	various	BN	models	can	be	obtained	and	fused	later	using	WAEL	

technique	 to	 circumvent	 the	existing	deficiencies	 in	 accuracy	and	 stability	 in	 a	 single	BN	

model.	 After	 that,	 the	 parameters	 of	 BN	 are	 learnt	 by	 Bayesian	 parameter	 estimation	 in	

Section	4.2.4	to	allow	Bayesian	inference.	Consequently,	Bayesian	inference	is	developed	in	

Section	4.2.5	to	 infer	the	probabilities	of	reject	root	causes	as	well	as	the	classification	of	

quality	risk	for	a	job.	Lastly,	the	predictions	from	different	BN	models	are	combined	using	

WAEL	technique	in	Section	4.2.6,	resulting	in	a	set	of	root-cause	probabilities	for	Q2	and	a	

single	quality	risk	prediction	for	Q3.	In	this	way,	the	proposed	method	answers	the	three	

defined	RCA	questions,	summarised	in	Section	4.2.7.	And	it	provides	a	robust,	intelligent	and	

human-interpretable	probabilistic	reasoning	method	for	RCA.		
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4.2.1		Description	of	the	Case	Study	

A	case	study	has	been	used	to	showcase	the	development	of	the	proposed	method.	It	also	

provides	an	example	to	demonstrate	how	and	how	well	the	proposed	method	answers	the	

three	questions	raised	 in	Section	3.1.	The	 job	 features,	historical	production	records,	and	

potential	root	causes	related	to	the	case	are	described	in	this	section.	The	observed	ground	

truth	of	the	case	regarding	the	three	questions	is	also	presented,	serving	as	a	benchmark	for	

the	predictions	obtained	by	the	proposed	model.	

	

Selected	Case:	

A	job	with	ID	‘5077’	producing	the	product	‘ABC500’	is	selected	as	the	testing	case	for	the	

problem	(i.e.,		Q(	=	5077,	3L+ = ′ABC500′)	

Job	Features	X5077:	

Table	4.2	Job	Features	X5077	for	job	‘5077’	

Tool	

ID	

Equip	

ID	

Season	 Shift	 Job	

Start	

User	

Job	

Stop
User	

Is	

RejectFail	

R5077	

Act	

Downtime
PC	

RejWeight_
kg	

Job	

Setup	

Time	

1216	 BM01	 Autumn	 Night	 25	 29	 1	 Abnormal	 150306	 70200	

	

Historical	records:		

The	proposed	method	will	uncover	the	causal	relationships	from	the	historical	job	records	

that	have	also	produced	the	product	‘ABC500’,	?567899.	It	has	been	found	that	the	product	

with	ID	‘ABC500’	has	a	historical	record	of	30	jobs,	among	which	6	are	problematic	with	high	

reject	rates.	This	case	will	follow	the	proposed	product-wise	RCA	framework	of	ensembled	

BN	to	illustrate	the	model	construction	process	and	to	answer	the	three	questions.	
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Ground	truth	for	the	three	questions	that	we	are	trying	to	solve:	

1. It	is	hard	to	define	the	ground	truth	for	a	causal	graph,	however,	a	causal	network	
solely	suggested	by	the	experts	at	the	plastic	plant	has	been	obtained	as	a	reference	
in	Fig.	4.8.	
	

	

Fig.	4.8	Manually	constructed	BN	

2. True	probabilities	of	different	reject	reasons	causing	the	quality	issues	are	listed	
below.	
	
Setup	Reject:	0.08		
Yield	Update	Adjustment:	0.92	
i.e.		 													W89:: = {k$'q6#$%$&', W!$*L~6L)'$2%q"'d$>'}	

					389:: 	= 	 {0.08, 0.92}	

	

3. This	job	is	a	problematic	job	with	quality	issues,	so	the	result	we	are	expecting	in	
prediction	is	“isRejectFail”	=	1	(#89:: = 1).	
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4.2.2	Bagging	Ensemble	Learning	for	BN	

Bagging	ensemble	learning	technique	is	developed	first	so	that	it	can	be	used	to	reinforce	the	

structure	learning	process	of	BN	in	the	following	section.	It	is	the	first	functional	module	in	

the	proposed	RCA	 framework.	Much	research	has	proven	 the	advantage	of	bagging	EL	 in	

improving	overall	performance	[47].	Li	et	al.	[26]	integrated	the	bagging	method	with	three	

different	BN	learning	algorithms,	revealing	bagging	EL’s	excellent	generalization	capability	

and	its	stable	performance	among	different	BNs.	Another	study	has	shown	that	the	bagging	

learning	method	outperforms	 the	 single	 classifier	widely	 as	well	 as	 the	boosting	method	

[48].	Bagging	technique	accounts	for	sample	variations	and	reduces	the	chance	of	a	poor	BN	

model	induced	by	sparse	data,	enabling	robust	BN	structure	learning.	As	a	result,	the	bagging	

method	 is	 chosen	 in	our	project.	Bagging	 is	 also	known	as	bootstrap	aggregating	 [49].	 It	

resamples	the	original	data	with	replacement	and	implements	homogenous	learners	on	the	

varying	resulting	samples	[48].	Eventually,	the	predictions	are	aggregated	by	average	voting.	

Following	bagging	procedures,	we	bootstrapped	10	subsets	from	the	training	data	?;<)899	

of	the	target	product	(i.e.,	k	=	10).	Then,	BN	structure	learning	algorithms	are	performed	on	

each	of	 the	10	samples,	Ç?;<)899# , ?;<)899$ , … , ?;<)899#'É.	Ultimately,	 the	 learnt	 structures	

are	 combined	 by	 averaging	 the	 arc	 strength	 of	 each	 BN	 model,	 resulting	 in	 a	 bagging	

ensembled	Bayesian	structure.		

	

Algorithm	1	Bayesian	Network	Structure	Learning	with	Bagging	Ensemble	
Input:	Training	data	for	product	3L+,	?+,	Structure	learning	algorithm	2,;									
														Bootstrap	rounds,	k.	
Output:	Bagged	Bayesian	Structure	f+,, 	.	
	
for	each	?+" 	in	{?+# , ?+$ , … , ?+%}:																																																	Step	1	Bootstrapping	
							f+",,	 =	2, 	(	?+")																																																																									Step	2	Training	
end	
!!,# 	= 	 $% 	∑ !!!,#	

%
'($ 																																																																														Step	3	Aggregating	
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Following	 the	 bagging	 ensemble	 process	 in	 Algorithm	 1,	 the	 effect	 of	 bagging	 ensemble	

learning	is	visualized	in	the	case	study	as	shown	in	Fig.	4.9.		The	network	on	the	right	is	learnt	

on	a	single	sample,	while	the	structure	on	the	left	is	the	aggregated	model	of	10	Bayesian	

networks	learnt	from	varying	bootstrapped	training	sets.	As	the	red	lines	indicated,	many	

arc	 directions	 are	 reversed	 in	 the	 bagged	BN.	More	 importantly,	 the	 link	 between	 reject	

weight	(“RejWeight_kg”)	and	season	(“Season”)	is	eliminated	in	the	bagged	structure.	This	

could	be	because	the	sample	in	a	single	run	can	coincide	to	have	a	dependency	between	these	

two	nodes	by	chance.	However,	the	bagging	ensemble	can	account	for	sampling	variability	

and	impair	the	bias	that	could	occur	in	a	single	sample,	resulting	in	a	more	representative	

structure.		

	

	

	

Fig.	4.9	Comparison	between	a	single	BN	and	a	bagged	BN	using	tabu	search	with	hybrid	

knowledge	for	product	‘ABC500’	
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4.2.3	Structure	Learning		

The	 structure	 of	BNs	will	 then	be	 learnt	 by	 adopting	 the	bagging	 ensemble	 technique	 to	

provide	a	causal	network	that	describes	the	causal	relationships	in	the	production	system	of	

the	industry.	These	learnt	causal	graphs	help	answer	Q1	of	the	questions	raised	in	Section	

3.1.	They	also	contribute	to	one	of	the	elements	of	the	objectives	–	to	be	human-interpretable	

because	the	causal	graphs	visualise	the	causal	relationships	in	the	production	system.	This	

section	will	present	the	causal	structures	learnt	from	the	historical	production	data	of	the	

case	 study.	Moreover,	different	knowledge	sources	and	structure	 learning	algorithms	are	

used	to	learn	the	BN	structures.	This	is	to	allow	the	weighted	average	ensemble	learning	to	

fuse	the	predictions	from	the	structures	learnt	by	different	learning	algorithms	to	ensure	a	

robust	 solution.	 The	 performances	 of	 the	 individual	 structure	 learning	 algorithms	 and	

knowledge	sources	can	also	be	compared	to	the	performance	of	the	proposed	ensembled	BN	

in	 Chapter	 5.	 Therefore,	 this	 section	will	 demonstrate	 how	 BN	models	 can	 be	 learnt	 by	

different	types	of	knowledge	sources	and	structure	learning	methods.	

	

	

4.2.3.1	Knowledge	Sources	

This	section	describes	different	knowledge	sources	from	which	the	BN	structures	are	learnt.	

In	 the	 context	 of	 BN,	 knowledge	 represents	 the	 causal	 relationships	 between	 different	

variables	l& .	When	 a	 causal	 relationship	 exists	 between	l& 	and	l' ,	 an	 arc	 linkage	)=(,=) 	is	

established	in	the	corresponding	BN	model,	f	 = 	 (g, 2).		)=(,=) 	can	be	referred	to	as	causal	

knowledge.	 If	 the	 arc	 linkage		)=(,=) 	in	 the	network	 is	 known	ahead	of	 structure	 learning,	

	)=(,=) 	is	 called	 prior	 knowledge.	 They	 are	 normally	 discovered	 by	 human	 instinct	 or	

experience.	 Structure	 learning	 is	 the	 process	 of	 deducing	 the	 structure	 of	 BN	 from	 the	
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dependency	relations	in	the	data,	aided	by	any	prior	knowledge	as	constraints	[5].	 In	our	

experiment,	there	are	three	different	knowledge	sources	that	the	BN	can	learn	from,	namely	

“Data”,	“Hybrid”	and	“Human”.	When	a	structure	is	purely	learnt	from	the	data	without	any	

prior	knowledge,	 its	knowledge	source	 is	 labelled	as	“Data”;	When	the	entire	structure	 is	

solely	built	on	human	knowledge	without	any	structure	learning	algorithm,	it	is	classified	as	

“Human”	knowledge	source;	When	structure	learning	algorithms	learn	the	BN	structure	with	

prior	 knowledge,	 it	 is	 defined	 as	 a	 “Hybrid”	 knowledge	 source	 as	 it	 involves	 both	 prior	

knowledge	obtained	 from	human	and	structure	 learning	 from	 the	data.	 In	 this	 study,	 the	

prior	knowledge	is	found	by	the	data	analysts	in	the	factory	presented	in	Fig.	4.10.	It	points	

to	the	variables	that	embody	the	potential	reject	reasons,	towards	the	quality	failure	node,	

abbreviated	 as	 “isRejectFail”.	 These	 arcs	 reflect	 the	 directed	 causality	 from	 root-cause	

variables	to	quality	failure.		

	

	

Fig.	4.10	Hybrid	knowledge	indicating	directed	causality	from	root-cause	variables	to	

quality	issues	
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Furthermore,	a	BN	constructed	purely	from	human	knowledge	is	obtained	in	Fig.	4.11.	The	

causal	relationships	in	the	graph	are	elicited	by	the	on-site	experts	from	the	plastic	industry.	

It	implies	some	causal	influences	from	job	features	to	the	root-cause	variables	(e.g.,	the	type	

of	“Shift”	can	cause	the	occurrence	of	“Setup	Reject”).	As	a	result,	we	will	build	BNs	using	

these	 three	 different	 knowledge	 sources.	 Particularly,	 “Data”	 and	 “Hybrid”	 knowledge	

sources	can	be	 integrated	with	different	structure	 learning	algorithms.	A	comparison	will	

also	 be	 conducted	 in	 chapter	 5	 to	 evaluate	 the	 performance	 of	 BN	 structures	 built	 from	

different	knowledge	sources.	For	demonstration	purposes,	the	following	Section	4.2.3.2	will	

only	present	the	structure	learnt	from	hybrid	knowledge	for	each	of	the	structure	learning	

algorithms	that	have	been	used.	

	

	

Fig.	4.11	Structure	purely	learnt	from	Human	knowledge	indicating	directed	causality	from	

tail	node	to	head	node	
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4.2.3.2	Structure	Learning	Algorithms	

In	 BNs,	 predicted	 probabilities	 are	 inferred	 based	 on	 a	 causal	 structure.	 However,	 the	

structure	of	Bayesian	network	is	not	often	known.	In	the	context	of	manufacturing,	normally	

only	a	few	arcs,	representing	causal	relationships,	in	the	network	could	be	established	based	

on	expert	knowledge.	To	achieve	a	more	intelligent	and	efficient	RCA	process,	the	structure	

needs	 to	 be	 learnt	 automatically.	 Therefore,	 structure	 learning	 algorithms	 are	 used	 to	

automatically	deduce	the	structure	of	BN	from	the	dependency	relations	in	the	data,	aided	

by	any	prior	knowledge	as	constraints	[5].		The	task	of	learning	the	structure	of	a	BN	from	a	

dataset	of	?+	for	Product	3L+	can	be	defined	as	determining	a	set	of	directed	arcs	2	for	the	

DAG	f	 = 	 (g	, 2)	to	 achieve	 some	 criterion	used	 for	 evaluating	 the	 goodness	 of	 fit	 of	 the	

model.	 As	 formulated	 in	 Section	 3.2,	g 	denotes	 vertices	(l& 	 ∈ 	g) .	 Here	 it	 stands	 for	 the	

variables	selected	from	the	historical	job	records,	including	the	job	features	R	,	root-cause	

variables	W	and	quality	risk	indicator	#,	g ⊆ {R, W, #}.	Since	this	research	aims	for	a	robust	

RCA,	different	structure	learning	algorithms	will	be	explored	to	evaluate	and	compare	their	

performances.	Furthermore,	the	results	of	different	learners	will	be	optimised	through	the	

weighted	average	ensemble	to	overcome	the	existing	shortages	of	model	stability	in	a	single	

BN	 learning	 algorithm	 (explained	 in	 Section	 4.2.6).	 This	 study	 has	 categorised	 the	 BN	

structure	 learning	 approaches	 into	 four	 groups:	 score-based	 learning,	 constraint-based	

learning,	 hybrid	 learning,	 and	 pairwise	 mutual	 information	 algorithms.	 And	 each	 learnt	

causal	graph	can	serve	as	an	answer	for	Q1.	

	

	

4.2.3.2.1	Score-based	Learning	

The	score-based	approach	construes	the	problem	of	structure	learning	as	an	optimization	

problem	[50].	These	algorithms	score	each	BN	candidate	based	on	a	predefined	 function.	

Then,	 the	 heuristic	 search	 algorithm	will	 be	 applied	 to	 search	 for	 the	 structure	with	 the	

maximal	 score.	The	scoring	 function	 that	numerically	measures	 the	 fit	of	models	and	 the	
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search	 algorithm	 to	 traverse	 the	 search	 space	 of	 possible	 models	 are	 the	 two	 essential	

elements	of	score-based	learning.	In	this	study,	we	have	chosen	the	Bayesian	Information	

Criterion	 (BIC)	 as	 the	 scoring	 function.	 It	 approximates	 the	 posterior	 probability	 of	 the	

network	 candidate	 based	 on	 the	 available	 data	 with	 the	 assumption	 of	 a	 uniform	 prior	

probability	distribution	on	the	entire	search	space	[51].	The	lowest	BIC	is	selected	by	the	

metrics,	whose	mathematical	formulation	is	computed	in	equation	(6).	The	first	term	with	

the	 log-likelihood	 for	 the	model	 expresses	 the	 accuracy	 (i.e.,	 how	well	 the	model	 fits	 the	

training	 data).	 The	 second	 regularization	 term	 penalizes	 the	 complexity	 of	 the	model	 in	

favour	of	sparsity	to	avoid	overfitting	data.	In	combination,	the	BIC	metric	favours	accurate	

and	simple	models	[52].	

	
nT4(f; ?) = − *8w 3(?|Ñ) +

L
2
*8w >	 (6)	

where	?	denotes	 the	 data,	Ñ	signifies	 the	 parameters	 of	 the	models, 	L	is	 the	 number	 of	

parameters	in	the	structure,	>	is	the	sample	size.				

	

For	the	heuristic	search	of	the	optimal	structure,	Hill-Climbing	(HC)	and	Tabu	Search	(TS)	

algorithms	have	been	considered	in	the	experiment.	They	both	adopted	the	greedy	search	

technique	for	the	steepest	descent.	HC	is	a	local	greedy	heuristic	that	repeatedly	performs	

single-edge	 manipulations	 to	 the	 structure	 and	 accepts	 the	 changes	 that	 improve	 BIC.	

Random	restarts	are	implemented	to	avoid	the	search	space	being	trapped	in	local	optima.	

On	the	other	hand,	tabu	search	is	a	metaheuristic	that	directs	a	local	greedy	search	out	of	

local	optima	using	a	memory	list.	It	monitors	the	progress	of	the	search	and	stores	the	search	

history	to	adaptively	modify	the	permitted	neighbourhood	networks	to	guide	the	solution	

space	 into	 more	 promising	 areas	 of	 interest,	 in	 particular,	 beyond	 local	 optimality.	 The	

search	 is	 directed	 by	 making	 tabu	 (i.e.,	 banning)	 the	 moves	 that	 have	 been	 performed	

recently	recorded	on	the	list.	The	implementation	of	the	two	selected	score-based	structure	

learning	algorithms	follows	the	logic	presented	in	Algorithm	2.		
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Algorithm	2	Score-based	Structure	Learning	[53]	
Input:	a	training	dataset	?+,	an	initial	empty	DAG	f,	a	score	function	nT4	(f, ?+).	
Output:	the	DAG	f+34	that	optimises	nT4	(f, ?+).	
Step	1	Score:	Compute	the	score	of	f,	k> = nT4	(f, ?+),	and	k+34 ←	k> 	,		f+34 ← f.	
Step	2	Hill-Climbing:		
														while			k+34 >		k+34′	do		
																						#	compute	the	score	for	every	possible	arc	addition,	deletion	or	reversal	in	f+34		

											for	each	Ö	 ∈ Ü2(f+34)\	{)=(,=)}, 2(f+34) ∪ {)=(,=)}, ;$(2(f+34))	â		do		
																		Arc	operation	on	f, f∗ = Ö(f)	

																													k>∗ = nT4(f∗, ?+)	
																													if		k>∗ >	k+34	and	k>∗ >	k> 		then	
																																		f ←	f∗,		k> ← k>∗ 		
																													end	
																						end	
																						if			k> >	k+34	then	
																													k+34 ←		k+34′,		k+34 ←	k> ,		f+34 ← f	
																						end	
														end	
Step	3	Tabu	Search:		
#	pick	the	DAG	with	highest	k> 	that’s	been	unvisited	in	the	last	'!	steps	regardless	of	k+34	
															for		' < '9	do	
																					while			k+34 >		k+34′	do		

																		for	each	Ö	 ∈ Ü2(f+34)\	{)=(,=)}, 2(f+34) ∪ {)=(,=)}, ;$(2(f+34))	â		do		
																									Arc	operation	on	f, f∗ = Ö(f)	

																																				k>∗ = nT4(f∗, ?+)	
																																				if		k>∗ >	k+34	and	k>∗ >	k> 		then	
																																									f ←	f∗	such	that	f∗ ∉ åo('!)	
																																									k> ← k>∗ 		
																																			end	
																													end	
																													if		k> >	k+34	then	
																																		k+34 ←		k+34′,		k+34 ←	k> ,		f+34 ← f	

																							Update	TL	
																												end	
																					end	
														end	
Step	4	Random	Restart:		
														for	1:	;		do	
																				perturb	f’ = Ö(f+34	)	such	that	
																				Ö	 ∈ Ü2(f+34)\	{)=(,=)}, 2(f+34) ∪ {)=(,=)}, ;$(2(f+34))	â	
														end	
														Search	from	Step	2	
														Return	f+34 	
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The	structures	using	the	score-based	learning	method	from	our	example	are	obtained	in	Fig.	

4.12.	 The	 graph	 shows	 that	 the	 skeletons	 learnt	 by	HC	 and	 TS	 are	 the	 same	 despite	 the	

orientation	of	the	two	arcs	highlighted	in	red.	This	makes	sense	since	the	two	algorithms	

resemble	 each	 other	 by	 both	 using	 the	 greedy	 algorithm	with	 only	 the	 difference	 in	 the	

memorised	list.	The	learnt	causal	graphs	express	some	causal	relationships	with	the	tail	node	

being	 the	 causes	 and	 the	 head	node	being	 the	 root.	 For	 example,	 “Shift”	à	 “isRejectFail”	

indicates	that	the	states	of	shift	(i.e.,	day	shift	or	night	shift)	can	contribute	causally	to	the	

quality	issues.	By	interpreting	the	learnt	graphs,	Q1	can	be	answered.	

	

	

	

Fig.	4.12	Bagged	BN	structures	learnt	by	hill-climbing	and	tabu	search	using	hybrid	

knowledge	for	product	‘ABC500’	showing	high	similarity	except	for	reversed	arc	direction	

highlighted	in	red		
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4.2.3.2.2	Constraint-based	Learning	

The	constraint-based	structure	learning	algorithms	learn	independence	within	the	network	

structure	by	performing	a	series	of	conditional	hypothesis	tests	between	pairwise	variables.	

Then	 the	 DAG	 will	 be	 constructed	 according	 to	 the	 inductive	 causation	 (conditional	

independence	 tests).	 There	 are	 a	 few	 constraint-based	 learning	 algorithms	 selected	 for	

structure	learning	in	our	experiment,	the	Peter	and	Clark	stable	algorithm	(PC.stable),	Grow-

Shrink	 (GS)	 algorithm	 and	 Incremental	 Association	 Markov	 Blanket	 (IAMB)	 algorithm.	

PC.stable	algorithm	is	the	modern	adoption	of	the	first	practical	implementation	of	causal	

graphical	models	 originated	by	Pearl	 (1991).	 The	 algorithm	 requires	 the	 ordering	 of	 the	

edges	to	consider	the	correct	links	early	in	the	search	in	avoidance	of	an	exhaustive	search.	

The	process	of	PC.stable	implementation	is	encoded	in	Algorithm	3.	First,	it	starts	with	a	fully	

connected	undirect	graph.	Then	inductive	causation	is	conducted	heuristically	in	Step	2	to	

test	 if	 there	 is	any	(conditional)	 independence	between	any	pair	of	 the	adjacent	nodes	 in	

ascending	order.	If	the	hypothesis	is	accepted,	the	correspondent	edge	will	be	removed	from	

the	structure.	Step	3	identifies	the	v-structures	among	all	the	pairs	of	non-adjacent	nodes	

with	a	common	neighbour.	In	the	end,	it	sets	the	directions	of	all	other	arcs	in	a	way	to	satisfy	

the	acyclicity	constraint.	The	BN	structure	learnt	by	PC.stable	algorithm	based	on	historical	

data	 DABC500	 is	 shown	 in	 Fig.	 4.13.	 Different	 from	 the	 structures	 learnt	 by	 score-based	

algorithms,	 the	 structure	 learnt	 by	 PC.stable	 algorithm	 is	 quite	 sparse.	 No	 job	 feature	 is	

linked	to	the	quality	failure	node,	indicating	that	the	quality	issues	are	only	caused	by	the	

root-cause	variables.	
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Algorithm	3	The	Peter	and	Clark	Stable	Algorithm	
Input:	a	training	data	set	?+,	a	conditional	independence	test	å$"'(l& 	, l' 	|	k; 	?+),	
Output:	Partially	oriented	DAG	f.	

	
Step	1	Initialisation:	a	complete	undirected	graph	f	
Step	2	Inductive	Causation:		

						for	each	pair	(l& , l'),	! ≠ 	%	,	8;L$;(l&)	=	8;L$;(l)+&(	do	
															å$"'	(l& , l' 	|	k; 	?+)	#	conditional	independence	test	on	l& 	and	l' 	
														#	if	l& 	and	l' 	are	independent	given	set	k,	set	k	as	the	separating	set	of	(l& , l'),											
														if		l& 	⫫ l' 	|		S	then	
																					k	=(=) ← 	k		
																					G	\	{l& − l'}	
													#	move	onto	the	next	pair	if	there	is	no	other	subset	k	with	the	same	ordering	
													else		
																				if		∃	k	such	that	8;L$;(k) = 8;L$;(l&)		then	
																										go	to	å$"'	(l& , l' 	|	k; 	?+)	
																				end	
														end	
						end	

Step	3	Learn	Arc	Directions:		
							for	each	non-adjacent	(l& , l'),	∃l,such	that	l& − l, , l' − l, 	and	l, ∈	/k	=(=) 	do	
													#	Replace	the	triplets	with	a	v-structure		
													{	l& − l, − l' 	}	←	{l& → l, ←	l'}	
							end		

														#	If	l& 	is	adjacent	to	l' 	and	there	is	a	strictly	directed	path	from	l& 	to	l' ,	
							if		l& − l' 	and		∃	6)'ℎ(	l& →	l' 	)	then	
													{l& − l'}	←	{l& → l'}	#	to	avoid	introducing	cycles	
							end	
							if		¬	(l& − l')	,	l& → l' 	and	l, − l' ,	then	
													{l, − l' ,	}	←	{	l, → l'}	
						end	
						Return	f 	
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Fig.	4.13	A	bagged	BN	learnt	by	PC.stable	algorithm	with	hybrid	knowledge	for	product	

‘ABC500’	

	

	

Grow-shrink	 algorithm	 and	 incremental	 association	 Markov	 blanket	 algorithm	 follow	 a	

similar	procedure	as	the	PC.stable	algorithm,	except	that	it	utilises	the	Markov	blankets	[6]	

to	 reduce	 the	 number	 of	 candidate	DAGs	 early	 on	 so	 that	 quicker	 heuristics	 is	 achieved.	

Grow-shrink	algorithm	starts	structure	learning	by	resolving	the	Markov	blanket	for	each	

node	Kn(l&)	in	order.	It	is	achieved	in	two	phases,	grow	phase	and	shrink	phase.	In	grow	

phase,	if	l& 	and	l' 	are	dependent,	l' 	is	added	to	the	blanket	of	l& ,	and	shrink	phase	removes	

extraneous	variables	that	are	supposed	to	be	outside	the	blanket	as	shown	in	Algorithm	4.	

The	 rest	 of	 the	 algorithm	 follows	 the	 regular	 routine	 of	 the	 constraint-based	 learning	

approach.	It	looks	for	a	d-separating	set	for	every	variable	pair.	Then,	the	edges	are	oriented	

whenever	the	shared	neighbour	creates	a	dependency	satisfying	the	DAG	conditions.		
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Algorithm	4	Grow-Shrink	Algorithm	
Input:	a	training	data	set	?+,	a	conditional	independence	test	å$"'(l& 	, l' 	|	k; ?+),	
												Kn(·):	the	Markov	blanket	information	for	node	l& 	 ∈ 	g	
Output:	Partially	oriented	DAG	f.	
	
Step	0	Learning	Markov	blankets:		
for	each	variable	l& 	do	
								learn	Markov	blanket	Kn(l&):	
								while	∃		l' ∈ 	g\{l&}	such	that	T(l& 	, l'|	Kn(l&))	do		
																		Kn(l&) ∪ {l'}		[Grow	Phase]	
								end	
								while	∃	l' 	 ∈ 	Kn{l&}	such	that	T(l& 	, l'|	Kn(l&)\{l'})	do		
																	Kn(l&)\{l'}	[Shrink	Phase]	
								end	
end	
The	rest	follows	Algorithm	4	The	Peter	and	Clark	Stable	Algorithm	

	

The	BN	structure	learnt	by	GS	algorithm	based	on	historical	data	DABC500	is	shown	in	Fig.	4.14.	

The	structure	becomes	slightly	denser	than	the	one	from	pc	algorithm.	Extra	 job	features	

such	as	“Season”	and	“Reject	weight”	have	direct	causality	towards	quality	issues.		

	

Fig.	4.14	A	bagged	BN	learnt	by	grow-shrink	algorithm	with	hybrid	knowledge	for	product	

‘ABC500’	

IAMB	 algorithm	 resembles	 GS	 learning	 with	 two	 phases	 of	 Markov	 blanket	 discovery,	 a	

forward	phase	and	a	backward	phase.	With	 the	application	of	 the	Markov	blanket,	 IAMB	

restricts	the	subset	of	variables	to	test	for	independence	in	advance,	enabling	more	efficient	
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learning.	For	each	variable	l& ,	the	algorithm	keeps	track	of	the	hypothesis	set	of	l& ,	signifying	

the	potential	set	of	parents	of	l& .	In	the	forward	phase,	it	finds	the	variables	with	a	strong	

association	with	l& 	to	be	added	to	Kn(l&).	The	dependence	is	measured	by	an	information-

theoretic	heuristic	 function	called	Conditional	Mutual	 Information	(CMI).	Consequently,	 it	

determines	the	variables	in	the	Markov	blanket.	The	backward	phase	discards	all	the	false	

positive	variables	from	the	hypothesis	set,	leaving	the	true	Kn(l&).	The	implementation	of	

IAMB	described	above	 is	encoded	 into	pseudo-code	 in	Algorithm	5,	 and	 the	 resulting	BN	

structure	is	presented	in	Fig.	4.15.	From	the	BN	structures	learnt	by	the	constraint-based	

algorithms,	it	has	been	found	that	the	networks	are	generally	sparse	with	fewer	links	than	

the	score-based	algorithms.	This	could	be	a	result	of	the	pairwise	dependence	test	with	the	

restriction	 of	 acrylic	 graphs.	 Furthermore,	 the	 structures	 learnt	 by	 the	 constraint-based	

algorithms	contain	undirected	arcs.	In	this	study,	the	orientation	is	automatically	extended	

to	satisfy	the	constraints	of	DAGs.	

Algorithm	5	Incremental	Association	Markov	Blanket	Algorithm	
Input:	a	training	data	set	?+,	a	conditional	independence	test	å$"'(l& 	, l' 	|	k; 	?+),	
												Kn(·):	the	Markov	blanket	information	for	node	l& ∈ 	g	
Output:	Partially	oriented	DAG	f.	
	
Step	0	Learning	Markov	blankets:		
Forward	Phase:	Add	true	positives	to	MB(T)	
while	Kn(l&)′ = 	Kn(l&)	do	
										Kn(l&)′ = 	Kn(l&)		
										Find	l+34	in	g\Kn(l&)\{l&}		such	that	maximizes	4KT(l+34	; 	l& 	|	Kn(l&))		
										if		l+34 ⊥ 	l& 	|	Kn(l&)	then		
															Kn(l&) = Kn(l&) ∪ {l+34}		
										end		
end		
Backward	Phase:	Remove	false	positives	from	MB(T)		
for	each	l' 	 ∈ 	Kn(l&)	do		
										if		l' ⊥ 	l& 	|	Kn(l&)\	{	l'}	then	
														Kn(l&) = Kn(l&)\{l'}	
									end		
end		
The	rest	follows	Algorithm	4	The	Peter	and	Clark	Stable	Algorithm	
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Fig.	4.15	A	bagged	BN	learnt	by	IAMB	algorithm	with	hybrid	knowledge	for	product	

‘ABC500’	

	

	

4.2.3.2.3	Hybrid	Learning	

Max-Min	 Hill-Climbing	 (MMHC)	 algorithm	 is	 adopted	 in	 this	 experiment	 for	 structure	

learning.	 It	 is	 a	 hybrid	 algorithm	 that	marries	 the	 ideas	 from	 both	 constraint-based	 and	

search-and-score	 techniques.	Max-min	hill-climbing	algorithm	begins	with	 reconstructing	

the	 skeleton	 of	 a	 BN	 using	 a	 local	 discovery	 algorithm,	 Max-Min	 Parents	 and	 Children	

(MMPC)	 to	 restrict	 the	 search	 space	 demonstrated	 in	 Step	 1	Algorithm	6.	 After	 that,	 the	

direction	of	the	edges	is	determined	by	a	hill-climbing	algorithm,	a	greedy	Bayesian-scoring	

search.	This	hybrid	method	offers	the	advantage	of	a	sound	skeleton	identification	process	

and	parameter	 tuning	 [54].	The	BN	structure	acquired	by	MMHC	algorithm	based	on	 the	

historical	records	?;<)899	is	demonstrated	in	Fig.	4.16.	In	this	case,	the	structure	tends	to	be	

separated	 into	 two	 subgraphs.	 One	 contains	 the	 job	 features	 and	 the	 other	 consists	 of	

potential	root	causes	plus	the	“Reject	Weight”	feature.	Indicating	that	the	job	features	might	

not	have	strong	causal	influences	on	quality	issues.		
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Algorithm	6	Max-Min	Hill-Climbing	Algorithm	
Input:	a	training	data	set	?+,	Max-Min	Parents	and	Children	algorithm	KK34.	
Output:	a	Bayesian	Structure	f.	
	
Step	1	Restrict	Search	Space:		
														for	each	node	l& ∈ 	g	do	
																					34=( 	= 	KK34	(l& , ?+)	
														end		
Step	2	Learn	Arc	Directions:		
														Initialisation:	an	empty	graph	f	
														while			k+34 >		k+34′	do		

											for	each	Ö	 ∈ Ü2(f+34)\	{)=(,=)}, 2(f+34) ∪ {)=(,=)}, ;$(2(f+34))	â		do		
																			Arc	operation	on	f, f∗ = Ö(f)	

																														k>∗ = nT4(f∗, ?+)	
																													if		k>∗ >	k+34	and	k>∗ >	k> 		then	
																																			f ←	f∗,		k> ← k>∗ 		
																													end		
																						end		
																						if		k> >	k+34	then	
																													k+34 ←		k+34′,		k+34 ←	k> ,		f+34 ← f	
																						end	
														end		
	

	

Fig.	4.16	A	bagged	BN	learnt	by	max-min	hill-climbing	algorithm	with	hybrid	knowledge	for	

product	‘ABC500’	
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4.2.3.2.4	Pairwise	Mutual	Information	Algorithms	

Finally,	the	study	includes	chow.liu	structure	learning	algorithm	to	explore	its	performance	

on	learning	Bayesian	structure.	It	is	a	tree	search-based	application	that	seeks	the	maximum-

likelihood spanning	 tree	structure	closest	 to	 the	 true	one.	This	approach	 is	exceptionally	

time-efficient	 at	 finding	 the	DAG	 thanks	 to	 its	 tree	 structure	nature.	The	 implementation	

process	of	chow.liu	algorithm	is	encoded	in	Algorithm	7.	Step	1	calculates	pairwise	mutual	

information	measures	between	the	variables.	In	Step	2,	Kruskal’s	(KL)	algorithm	is	applied	

to	 construct	 the	 Maximum	Weight	 Spanning	 Tree	 (MWST).	 In	 the	 end,	 the	 root	 node	 is	

picked,	 and	 the	direction	of	 the	 edges	 is	 radiating	outward	 from	 the	 root	node.	 Fig.	 4.17	

shows	the	BN	structure	learnt	by	chow.liu	algorithm.	As	expected,	it	exhibits	a	tree	structure.	

All	 the	nodes	are	connected	 in	the	graph.	However,	 the	arc	direction	between	the	quality	

issue	 node	 and	 the	 potential	 root	 causes	 seems	 to	 be	 problematic.	 For	 example,	 the	 arc	

pointing	from	“isRejectFail”	to	“Startup	Reject”	might	not	be	reasonable.	The	learnt	direction	

signifies	that	the	quality	issue	node	should	lead	to	the	root	cause	node,	which	does	not	align	

with	 common	 sense.	 Normally,	 the	 orientation	 should	 be	 reversed	 such	 that	 the	 rejects	

which	occurred	at	the	starting	up	period	of	a	job	can	cause	the	job	to	have	quality	problems.	

The	reason	for	the	irrational	directionality	from	chow.liu	algorithm	could	be	due	to	its	last	

step	of	assigning	directions,	where	a	root	node	is	picked	randomly	to	blindly	set	all	the	edges	

points	away	from	the	root	node.	This	step	does	not	incorporate	the	statistical	features	from	

the	data,	making	the	arc	orientation	likely	to	be	unrealistic.	
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Algorithm	7	Chow.liu	Algorithm	
Input:	a	training	data	set	?+,	mutual	information	measure	M(l& 	, l' 	),	Kruskal’s	algorithm	
jo	
Output:	a	Bayesian	Structure	f.	
	
Step	1	Compute	Pairwise	Mutual	Information:		
														for	each	pair	(l& 	, l' 	),	! ≠ 	%	such	that	8;L$;(l&)	=	8;L$;(g)+&(	do	
																					K(l& 	, l' 	)	
														end		
Step	2	Find	MWST:		
														for	each	)Zl& 	, l'[ ∈ 2		in	?hk î<=(	,=)ï	do	
																					Find	å@AB	such	that	jo(3, 3C) 	≤ 	jo(3, 3B)	
														end		
Step	3	Pick	the	Root	Node:	
														lD ← ∀l& 				
														for	each	{l& −	l'} ∈ 2(å)		do	
																					assign	Çl& −	l'É	direction	such	that	{l& ←	l' ←	lD}	|	{l' ←	l& ←	lD}	
														end		
													Return	å	

	

	

Fig.	4.17	A	bagged	BN	learnt	by	chow.liu	algorithm	with	hybrid	knowledge	for	product	

‘ABC500’	
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4.2.4	Parameter	Learning	

After	the	structures	of	BN	are	learnt,	the	conditional	probability	tables	between	each	pair	of	

parent	and	child	nodes	in	the	network	need	to	be	obtained	to	allow	probability	inferencing.	

Parameter	 learning	 entails	 computing	 the	 CPTs	 of	 each	 node	 given	 its	 parent	 nodes.	

Implicitly,	CPTs	can	be	obtained	by	counting	the	occurrence	of	each	state	of	the	variables	

from	 the	 data.	 However,	 the	 implicit	 method	 becomes	 exponentially	 computationally	

expensive	as	the	level	of	variable	states	increases.	Hence,	Bayesian	parameter	estimation	is	

applied	 to	 estimate	 the	 values	 of	 CPTs	 in	 the	 experiment.	6(l&) 	denotes	 the	 probability	

density	 function	 of	 an	 observable	 random	 variable	l& ,	 reflecting	 the	 contribution	 to	 the	

quality	 issue	 in	 our	 case.	With	 its	 distribution	 depending	 on	 the	 unknown	 parameter	ó ,	

6(l&|ó)	represents	the	prior	probability	density	function	for	variable	l& ,	given	ó.	When	new	

evidence	 h	 = 	 {l!, l", …	 , l(} 	is	 found	 for	 variable	 l& 	in	 the	 experiment,	 the	 goal	 of	

parameter	learning	is	to	compute	6(l&|h)	so	that	its	value	approaches	the	unknown	6(l&)	as	

close	as	possible.	It	is	noted	that	the	parameter	θ	is	modelled	as	a	random	variable	following	

distribution	6(ó).	Then	the	probability	density	function	of	l& 	given	a	set	of	evidence	h	can	be	

inferred	as	follows:	

	 6(l&|h) = ò6(l& , ó|h) Ló		

= ò6(l&|ó, h)	6(ó|h) Ló		

= ò6(l&|ó)	6(ó|h) Ló	

(7)	

	

As	6(l&|ó) 	is	 known	 before	 obtaining	 new	 evidence	h ,	 the	 posterior	 probability	 density	

function	for	parameter	ó	after	h,	6(ó|h),	needs	to	be	obtained.	This	is	achieved	by	adapting	

Bayes’	theorem	as	shown	in	equation	(8).	
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6(θ|h) =

6(h|ó)	6(ó)
6(h)	

	= 	
6(h|ó)	6(ó)

∫6(h|ó) 6(ó)	Ló
	 (8)	

	

where	6(ó)	is	 the	prior	distribution,	and	6(h|ó)	is	 the	likelihood	function.	6(ó)	represents	

the	 knowledge	 of	 the	 parameter	 prior	 to	 engaging	 the	 information	 from	 the	 data,	 while	

6(ó|h)	updates	the	distribution	succeeding	the	introduction	of	new	evidence.	Consequently,	

the	probability	distribution	of	node	l& 	can	be	estimated.	For	example,	the	manual	structure	

has	undertaken	 the	Bayesian	parameter	estimation	on	 ‘ABC	500’	data,	and	 the	estimated	

CPTs	are	shown	in	Fig.	4.18	below.	The	arcs	in	the	network	signify	the	existence	of	causality	

from	the	tail	node	to	the	head	node.	For	example,	 the	arc	of	“DownTime”	à	 “isRejectFail”	

indicates	that	the	states	of	“DownTime”	(i.e.,	“normal”	or	“abnormal”)	have	causal	influences	

on	the	states	of	“isRejectFail”	(i.e.,	“0”-normal	or	“1”-quality	issue).	For	a	node	l& ,	l& ∈ g,	if	

l& 	has	a	parent,	its	CPT	will	be	conditional	probability	distribution	based	on	the	states	of	its	

parent	nodes	6(l&õ6)(l&)[	shown	 in	black	 tables	 in	Fig.	4.18;	else,	 its	CPT	will	be	 its	own	

probability	 distribution	 6(l&) 	illustrated	 in	 blue.	 These	 conditional	 probabilities	 also	

embody	the	strength	of	causal	dependency	relations	between	a	pair	of	variables	(l& 	, l').	For	

instance,	 6(isRejectFail = 1|DownTime = "abnormal") = 0.18 	implies	 that	 given	 the	

feature	“DownTime”	is	“abnormal”,	it	has	a	probability	of	0.18	to	cause	the	“isRejectFail”	to	

be	“1”	(i.e.,	problematic	with	quality	issues).	These	learnt	CPTs	can	now	be	used	in	Bayesian	

inference	to	infer	the	probabilities	of	reject	root	causes.	
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Fig.	4.18	Manual	BN	structure	with	parameters	learnt	from	?567899	using	Bayesian	

parameter	estimation	where	each	CPT	represents	the	probability	distribution	of	a	node	l& .	

	

4.2.5	Inference	

Once	 the	 parameters	 of	 the	 BN	models	 are	 learnt,	 Bayesian	 inference	 then	 needs	 to	 be	

performed	to	obtain	the	root-cause	probabilities	from	the	learnt	BN	models.	The	purpose	of	

a	 Bayesian	 network	 is	 to	 enable	 the	 efficient	 computation	 of	 updated	 probability	

distributions	for	a	set	of	events	in	the	Bayesian	network,	given	the	evidence	of	the	newly	

observed	cases	(e.g.,	the	job	feature	R89::).	If	our	Bayesian	network	is	a	tree	structure,	then	

Belief	 Propagation	 (BP)	 can	 be	 applied	 to	 infer	 the	 probability	 of	 interest	 automatically.	

However,	as	displayed	previously,	most	of	the	learnt	structures	are	more	complicated	than	

trees.	Therefore,	Junction	Tree	(JT)	algorithm	needs	to	be	implemented	in	our	study	to	infer	

the	probability	of	each	reject	cause	from	the	complex	structures	that	are	learnt	previously.	

The	core	idea	of	the	junction	tree	algorithm	is	to	turn	a	graph	into	a	tree	of	clusters	that	are	

amenable	to	Belief	Propagation.	We	start	with	a	Bayesian	structure	with	its	corresponding	
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parameters	learnt	from	above,	and	then	undergo	the	following	steps	for	a	JT	inference:	(1)	

Moralize	 the	 graph	 (2)	 Triangulate	 the	 graph	 (3)	 Build	 a	 junction	 tree	 (4)	 Apply	 Belief	

Propagation.	For	presentation	purposes,	a	simplified	Bayesian	network	f	 = 	 (g, 2)	is	used	

for	demonstrating	the	process	of	JT	algorithm.	

Step	1	Moralisation	

In	this	step,	the	parents	of	each	node	are	connected	as	demonstrated	in	red	in	Fig.	4.19.	Then	

the	directionality	of	the	arcs	is	dropped	so	a	uniform	treatment	of	directed	and	undirected	

graphs	is	possible.	

	
Fig.	4.19	Moralisation	of	BN	to	connect	parents	and	undirect	the	graph,	adapted	from	[55]	

Step	2	Triangulation	

Triangulation	adds	chords	into	the	moral	graph	f# 	such	that	any	cycle	of	more	than	three	

vertices	short	in	the	graph	is	cut	short.	In	Fig.	4.20,	the	cycle	{A-B-C-D-E}	is	identified,	and	

two	chords	A-D	and	A-E	are	added	to	avoid	cycles	with	more	than	three	vertices.	
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Fig.	4.20	Triangulation	of	BN	to	remove	cycles	with	nodes	≥ 3,	adapted	from	[55]	

Step	3.	Construct	Junction	Tree	

Based	 on	 the	 triangulated	 graph	fC ,	 a	 junction	 tree	 can	 be	 built	 by	 forming	 a	 maximal	

spanning	tree	from	the	cliques.	First,	all	the	maximal	cliques	are	identified	from	fC 	in	Fig.	

4.21.	

	
Fig.	4.21	Identifying	cliques	in	triangulated	graph,	adapted	from	[55]	

Then,	a	junction	graph	fE	presented	in	Fig.	4.22	is	reconstituted	with	nodes	representing	the	

cliques	identified	from	fC .		If	two	cliques	intersect,	they	are	joined	in	the	junction	graph	by	

an	edge	labelled	with	their	intersection,	called	separators.		
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Fig.	4.22	Junction	graph	construction,	adapted	from	[55]	

After	that,	a	junction	tree	fEC 	is	extracted	from	the	junction	graph	in	Fig.	4.23	such	that	the	

tree	contains	all	the	cliques	(spanning	tree)	and	satisfies	the	running	intersection	property:		

For	each	pair	of	nodes	R,	W,	all	nodes	on	the	path	between	R	and	W	contain	R	 ∩ 	W.		

	

Fig.	4.23	Junction	tree	construction,	adapted	from	[55]	

Finally,	the	probability	distributions	of	the	cliques	(nodes)	and	separators	(edge	labels)	in	

the	junction	tree	fEC 	need	to	be	transferred	from	the	conditional	probability	distribution	of	

the	original	Bayesian	network	f	using	potentials.	The	process	is	carried	out	as	follows.	For	

each	(conditional)	distribution	from	the	BN,	create	a	node	potential:	

	 3(l&|6);(l&)) 	⇒ 	®&(l& , 6);(l&))	 (9)	

where	6);(l&)	is	the	parent	of	node	R& ,	®& 	signifies	the	potential	between	the	nodes.	

Assign	each	node	potential	to	its	associated	clique	4,	and	compute	the	clique	potential	®) 	for	

4	as	the	product	of	its	assigned	node	potentials:	

	 ®) =	©®=(
F+(

	 (10)	

Such	that	{l&} 	∪ 	6);(l&) 	⊆ 	 l) 		
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Step	4.	Belief	Propagation		

Belief	propagation,	also	 identified	as	 sum-product	message	passing,	 is	a	message-passing	

algorithm	 for	 delivering	 inference	 on	 tree-like	 structures.	 Since	 the	 learnt	 Bayesian	

networks	have	been	converted	into	tree	structures	by	JT	algorithms,	now	BP	can	be	used	to	

infer	 the	 probability	 of	 each	 reject	 reason	 from	 the	 junction	 trees,	 conditional	 on	 any	

observed	nodes	with	the	external	evidence.	In	addition,	belief	propagation	is	a	generalisation	

of	the	Forward-Backward	method	and	consists	of	two	passes,	one	from	the	leaf	nodes	to	the	

root	node,	and	the	other	from	the	root	node	to	the	leaf	nodes.	The	logical	application	of	BP	is	

demonstrated	according	to	the	two	passes,	Pass	1	(Upward	Pass)	and	Pass	2	(Downward	

Pass).		

	

Fig.	4.24	Belief	propagation	upward	pass	

	

Pass	 1	 starts	 from	 the	 leaf	 nodes	 highlighted	 as	 light	 blue	 in	 Fig.	 4.24	 to	 the	 root	 node	

coloured	in	red.	For	each	node	l& 	that	the	algorithm	is	processing	on,	BP	takes	the	evidence	
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at	the	node	l& 	(e.g.,	node	‘DEF’)	and	message	from	its	child	node	if	there	is	any	to	compute	

the	message	™(l&)	to	pass	 it	upwards	to	 its	parent	node	(e.g.,	node	 ‘ADE’).	™(l&)	embodies	

the	conditional	probability	of	observing	future	evidence,	given	the	outcomes	of	node	l& .	Its	

calculation	 is	 illustrated	 in	 Fig.	 4.25.	When	 the	message	 reaches	 its	 parent	 node	6);(R),	

information	 received	 by	6);(l&) 	becomes	™=((6);(l&))	where	 the	 conditional	 probability	

matrix	K=( 	is	 incorporated	 into	 the	 message.	 In	 the	 case	 of	 a	 junction	 tree,	K=( 	will	 be	

transferred	to	the	potential	®Zl& , 6);(l&)[	from	the	original	conditional	probability	tables.	

The	upward	message-passing	process	 iterates	 through	all	 nodes	until	 it	 reaches	 the	 root	

node.	 Then	 all	 the	 new	 evidence	 has	 been	 included	 to	 update	 the	 probabilities	 in	 one	

direction.	The	logic	flow	of	BP	Pass	1	is	also	encoded	in	Algorithm	8.1.	

	

Algorithm	8.1	Belief	Propagation	–	Pass	1	
Input:	a	Bayesian	Structure	f,	condition	probability	table	for	each	node		l& ∈ 	g#+( 	
Output:	Inferred	probability	nho(l&).	
for	l& ∈ 	g#+( 	do	
							if		l& ∈ 	o	then	
												p.push	(l&)		
							else	
												count	(l&)	=	|4=(|	
							end	
end		
while	length(p) ≠ 0	do	
							l& = p.pop	()	
							™(l&) 	= ó(l&)	
							for	& ∈ 4=( 	do	
            ™(l&) = 	™(l&) ⊙ 	™&(l&) 
      end 
      if R ≠ # then 
            ™=((6)(l&)) 	= 	K=(™(l&) 
            count (6)(l&)) = count (6)(l&)) - 1 
            if count (6)(l&)) = 0 then 
               p.push (6)(l&)) 
           end 
      end 
end 
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Fig.	4.25	Messages	passed	in	pass	1	and	pass	2	in	belief	propagation	

After	all	 the	messages	holding	the	new	information	have	been	delivered	in	Pass	1,	Pass	2	

starts	in	the	opposite	direction	from	the	root	node	to	the	leaf	nodes	following	the	blue	arrows	

in	Fig.	4.26.	At	each	iteration,	BP	takes	the	prior	distribution	of	the	current	node	l& 	and	the	

message	 from	 its	 parent	 nodes	 if	 there	 is	 any	 to	 compute	 the	 message	¨	(l&) 	to	 pass	 it	

downwards	to	its	child	nodes.	¨	(l&)	represents	the	conditional	distribution	for	variable	l& ,	

given	 the	 evidence	 preceding	 node	 l& 	 in	 the	 networks.	 Since	 the	 node	 l& 	has	 already	

captured	both	messages	from	its	children	and	parents,	now	the	belief	probability	nho(l&)	

can	be	calculated	by	combining	these	messages,	™(l&)	and	¨	(l&).	nho(l&)	encapsulates	the	

conditional	distribution	for	a	node	l& ,	given	all	the	associated	evidence	in	the	network.	The	

message	containing	the	belief	probabilities	keeps	being	passed	down	to	its	child	nodes	with	

the	 elimination	 of	 duplicate	 information	 to	 update	 the	 belief	 of	 its	 child	 nodes.	 Once	 it	

reaches	 all	 the	 leaf	 nodes,	 all	 the	 belief	 probabilities	nho(l&) 	in	 the	 network	 have	 been	

inferred.	The	logic	flow	of	BP	Pass	2	is	also	encapsulated	in	Algorithm	8.2.	
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Fig.	4.26	Belief	propagation	downward	pass	

	

When	 the	 inferred	 variable	 is	 a	 root-cause	 variable	 (i.e.,	l& ⇒ W* ),	nho(l&)	expresses	 the	

probability	of	a	root	cause	W* 	leading	to	quality	failures,	given	all	the	evidence	in	the	network,	

which	is	our	probability	of	interest	for	Q2.	If	the	variable	is	the	quality	risk	indicator	l& ⇒ #,		

the	belief	probability	nho(l&)	encodes	the	probability	of	the	quality	risk	indicator	#	being	

“1”,	implying	whether	the	job	will	have	quality	issues	or	not.	If	the	probability	is	greater	than	

the	classification	threshold	of	0.5,	the	job	is	predicted	to	be	problematic	with	quality	issues.	

Otherwise,	the	job	is	projected	to	be	normal.	In	this	way,	Q3	can	also	be	solved.	The	inferred	

root-cause	probabilities	and	risk	prediction	 for	each	of	 the	BN	models	 learnt	by	different	

learning	algorithms	and	knowledge	sources	based	on	the	case	sample	are	displayed	in	Table	

4.3	at	the	end	of	the	section.	However,	we	are	not	using	the	predictions	from	one	of	the	BN	

models	to	answer	Q2	and	Q3.	Instead,	the	predictions	will	be	fused	into	aggregated	results	

using	WAEL	 to	answer	 the	 research	questions.	This	 is	 to	mitigate	 the	 risk	of	 the	existing	

shortages	 in	prediction	accuracy	and	stability	of	a	single	BN	model	 [26].	Accordingly,	 the	

implementation	of	WAEL	is	presented	in	the	next	section.	
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Algorithm	8.2	Belief	Propagation	–	Pass	2	
Input:	a	Bayesian	Structure	f,	condition	probability	table	for	each	node	l& 	 ∈ 	g#+( 	
Output:	Inferred	probability	nho(l&)	
	
p.push (#) 
while	length(p) ≠ 0	do	
							l& = p.pop	()	
      if R = # then 
          ¨(l&) 	= 	K=(

C 
      else  
         ¨(l&) = 	K=(

C¨=(Z6)(l&)[ 
      end   
      BEL (l&) = ⟨™(l&) ⊙	¨(l&)⟩ 
							for	& ∈ 4=( 	do	
            ¨) 	(l&) 	= 	 ⟨nho	(l&) 	⊘ 	™)(l&)⟩  
            p.push (4) 
      end  
end 
 

	

4.2.6	Weighted	Average	Ensemble	Learning	

Although	the	probabilities	of	reject	root	causes	and	quality	risk	predicted	based	on	distinct	

BN	models	are	available	to	answer	the	RCA	questions,	they	might	be	insufficient	regarding	

accuracy	and	stability.	It	has	been	found	that	a	single	BN	learner	is	faced	with	deficiencies	in	

prediction	 accuracy	 and	 model	 robustness	 [26].	 Such	 phenomenon	 is	 also	 observed	 in	

Section	4.2.3.2.	where	some	of	the	learnt	BN	structures	are	sparse	and	contain	unreasonable	

arc	directions.	This	entails	the	risk	of	poor	causality	discovery	and	inaccurate	prediction	of	

a	 single	BN	model.	For	 the	purpose	of	providing	a	 robust	and	accurate	RCA	solution,	 the	

predictions	from	different	BN	models	will	be	fused	to	achieve	a	more	accurate	and	stable	

prediction.	WAEL	has	been	used	in	a	broad	range	of	research	fields	to	aggregate	multiple	

models	 [56].	 It	 has	 also	 been	 demonstrated	 with	 better	 performance	 than	 constituent	

regression	or	classification	models	alone	[57].	Thus,	we	have	integrated	the	WAEL	with	BN	

models	to	improve	accuracy	and	model	robustness.	WAEL	is	a	voting	ensemble	method	that	

combines	 the	 predictions	 from	 multiple	 models	 by	 taking	 the	 weighted	 sum	 of	 the	

predictions	 for	regression	models	or	selecting	 the	class	with	 the	 largest	weighted	sum	of	
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predicted	probabilities	for	classification	models.	The	choice	of	weight	is	an	important	aspect	

of	the	weighted	average	ensemble.	The	weight	ought	to	reflect	the	skill	of	each	model.	In	our	

case,	the	weights	of	the	BN	models	are	determined	by	their	robustness,	which	is	reflected	by	

their	 likelihood	of	being	 the	best	 classifier.	The	 likelihood	 is	 computed	as	 the	number	of	

times	that	a	BN	model	outputs	the	most	accurate	prediction	(optimal	frequency)	in	ratio	to	

the	 total	 number	 of	 times	 that	 a	 prediction	 has	 been	 performed	 (total	 frequency).	

Accordingly,	the	weights	are	formulated	as	below:	

	
x>	-,/ = 	 #//v #0

1

0	=	1
	 (11)	

where	x>	+., 	is	the	weight	assigned	to	Bayesian	learning	algorithm	2- 	for	Product	3;+,		fH	is	

the	optimal	frequency	for	algorithm	e,	and	j	is	the	total	number	of	BN	learning	algorithms.	

To	 calculate	 the	 values	 of	 the	weights,	 the	 optimal	 frequency	 of	 each	model	 needs	 to	 be	

obtained.	 We	 have	 compared	 all	 the	 BN	 models	 learnt	 by	 different	 structure	 learning	

algorithms	and	knowledge	sources	on	the	entire	dataset	to	summarise	the	frequency	of	each	

learner	being	the	best-performed	model	as	shown	in	Fig.	4.27.	

	

Fig.	4.27	Optimal	model	frequency	for	different	structure	learning	methods	and	different	
knowledge	sources	
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Subsequently,	the	WAEL	technique	follows	Algorithm	9	to	obtain	the	fused	predictions	for	

ensembled	BN.	It	first	gathers	the	BN	structures	learnt	by	different	learners	in	Step	1.	Then	

the	predictions	are	performed	through	parameter	learning	and	inference	on	the	collected	

distinct	structures	in	Step	2.	After	that,	each	prediction	is	assigned	a	weighted	according	to	

equation	 (11).	 Lastly,	 the	weighted	predictions	 are	 summed	up	 to	 obtain	 the	 aggregated	

results.	In	this	way,	WAEL	combines	the	predictions	from	distinct	BN	models	into	one	set	of	

root-cause	probabilities	and	a	single	risk	prediction	for	a	job	as	displayed	in	Table	4.3.	

	

	

	

4.2.7	Answering	the	RCA	Questions		

Since	the	predictions	from	different	BN	models	have	been	fused	into	a	robust	aggregated	

solution,	 the	 RCA	 questions	 raised	 in	 Section	 3.1	 can	 be	 answered.	 For	 Q1,	 the	 casual	

relationships	 have	 been	 discovered	 from	 the	 historical	 production	 data	 	?567899 	for	 the	

testing	instance,	job	‘5077’	producing	product	‘ABC500’.	And	the	acquired	causal	knowledge	

has	been	presented	in	a	human-interpretable	form	of	graphical	BN	structures	using	various	

structure	learning	algorithms	in	Section	4.2.3.2.		

	

Algorithm	9	Bayesian	Network	Prediction	with	Weighted	Average	Ensemble	Learning	
Input:	Testing	data	for	product	3;+,	?+;		
													a	list	of	bagged	models	for	product	3;+,	f+,, ∈ {f+,!, … , f+,-};		
													weights	of	each	bagged	model,	x>	+,,	 ∈ Çx>	+,!, … ,x>	+,-É.	
Output:	Weighted	average	prediction,	3+ 	
	
for	each	f+,, 	in	Çf+,!, … , f+,-É	do																											Step	1	Get	Models	
								3+,, =	f+,,(?+)																																																			Step	2	Prediction	
end	for	
3+ = ∑ x>	+,/		3+,,

-
,	2! 																																																		Step	3	Weighted	Sum	
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For	 Q2,	 the	 parameters	 of	 the	 BN	models	 are	 learnt,	 and	 the	 job	 features	 of	 the	 testing	

instance	 X5077	 are	 input	 into	 the	 learnt	 BNs	 during	 Bayesian	 inference.	 By	 following	 the	

procedures	of	 the	 junction	 tree	algorithm,	 the	probabilities	of	potential	 reject	 causes	are	

inferred	from	different	BNs	shown	in	Table	4.3	below.	Lastly,	the	root-cause	probabilities	

predicted	from	different	BN	models	are	fused	into	an	aggregated	set	of	probabilities	using	

WAEL	to	output	a	robust	solution.	This	ensembled	solution	is	highlighted	in	red	in	Table	4.3.	

It	is	used	to	answer	Q2	as	follows:	the	probability	of	“Setup	Reject”	causing	the	job	to	have	a	

quality	issue	is	0.08,	and	the	probability	of	“Yield	Update	Adjustment”	causing	the	job	to	have	

a	quality	issue	is	0.92.	From	the	table,	we	can	also	see	the	predictions	for	the	example	case	

from	 various	 BN	 models.	 The	 results	 have	 shown	 that	 besides	 the	 proposed	 ensemble	

method,	TS	and	HC	algorithms	also	tend	to	provide	accurate	probabilistic	reasoning	even	

when	the	structures	are	purely	learnt	from	the	data.	Whereas,	constraint-based	and	hybrid	

techniques,	as	well	as	manual	graphs,	seem	to	underperform	in	identifying	the	root	cause	

with	stochasticity.		

	

For	Q3,	we	assume	that	job	‘5077’	has	not	been	run	yet,	so	the	quality	risk	of	the	job	is	what	

we	want	to	know.	In	this	question,	some	features	that	can	only	be	obtained	at	the	end	of	a	

job	operation	are	not	known	such	as	reject	weight	quantity	and	downtime.	Therefore,	only	

the	job	features	that	can	be	obtained	prior	to	the	job	operations	are	introduced	into	different	

BN	models	to	predict	the	quality	risk	of	job	‘5077’.	Similar	to	Q2,	the	results	are	ensembled	

using	 WAEL	 to	 achieve	 a	 stable	 solution.	 The	 quality	 risk	 obtained	 using	 the	 proposed	

method	is	“1”,	#89:: = 1,	indicating	the	test	case	job	‘5077’	has	quality	issues.	The	results	of	

other	stand-along	BN	models	are	also	presented	in	Table	4.3	below.	It	has	been	shown	that	

all	methods	exhibit	a	strong	ability	in	predicting	the	high-reject	jobs	except	the	manual	and	

PC.stable	models.	It	is	worth	noting	that	these	results	are	only	based	on	one	specific	product,	

more	experiments	need	to	be	conducted	to	draw	a	reliable	and	representative	conclusion.	

Therefore,	Chapter	5	evaluates	the	performance	of	the	proposed	ensembled	BN	method	as	

well	as	other	constituent	BN	models	on	a	sample	of	6721	jobs	(199	products).	
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Table	4.3	Inferred	root	cause	probabilities	and	risks	using	different	methods	

Network Type:  Q2: Reject Reason Probability Q3: Risk Prediction 
Structure Learning 
Alg. 

Knowledge 
Source 

Setup Reject 
3ID 

Yield Update 
Adjustment 3JK;  

isRejectFail 
#89:: 

Ground	Truth	 /	 0.08	 0.92	 1	
Manual	 Human	 0	 0.97	 0	
HC	 Data	 0.08	 0.92	 1	
TS	 Data	 0.08	 0.92	 1	
PC.stable	 Data	 0.15	 0.85	 0	
GS	 Data	 0.15	 0.85	 1	
IAMB	 Data	 0.15	 0.85	 1	
MMHC	 Data	 0.15	 0.85	 1	
chow.liu	 Data	 0.07	 0.89	 1	
HC	 Hybrid	 0.08	 0.92	 1	
TS	 Hybrid	 0.08	 0.92	 1	
PC.stable	 Hybrid	 0.07	 0.93	 0	
GS	 Hybrid	 0.07	 0.93	 1	
IAMB	 Hybrid	 0.07	 0.93	 1	
MMHC	 Hybrid	 0.07	 0.93	 1	
chow.liu	 Hybrid	 0.07	 0.93	 1	
WAEL	 WAEL	 0.08	 0.92	 1	
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Chapter	5 	
Evaluation	and	Discussions	
This	chapter	evaluates	the	results	obtained	from	the	proposed	RCA	framework	on	the	entire	

dataset,	compares	the	performance	of	different	BN	learning	techniques,	and	discusses	the	

robustness	of	the	ensembled	BN	models.	Section	5.1	focuses	on	the	inferred	probabilities	of	

different	 reject	 causes	 for	 RCA	 regarding	 Q2.	 Section	 5.2	 examines	 the	 accuracy	 of	 the	

predicted	 product	 failure	 risk	 reflecting	 the	 performance	 of	 the	 proposed	 method	 in	

answering	Q3.	

	

5.1	Evaluation	Methods	for	RCA	

In	this	study,	the	proposed	product-wise	RCA	framework	of	ensembled	BNs	is	applied	to	the	

processed	data	with	a	sample	size	of	6721	jobs	(199	products).	The	k-fold	cross-validation	

scheme	is	used	to	train	and	test	the	models.	Different	metrics	have	been	chosen	and	designed	

to	evaluate	the	performance	of	the	proposed	model	for	both	predicting	the	probabilities	of	

the	reject	causes	for	Q2	in	Section	5.1.1,	and	classifying	the	quality	risk	of	scheduled	(i.e.,	to-

be-run)	jobs	for	Q3	in	Section	5.1.2.		

5.1.1	Evaluation	Methods	for	Risk	Prediction	

Question	 2	 in	 Section	 3.1	 is	 to	 identify	 a	 list	 of	 potential	 reject	 reasons	 and	 their	

corresponding	probabilities	for	a	job	with	quality	issues.	This	means	that	the	predicted	result	

of	 an	 instance	will	 be	 a	 sequence	of	probabilities.	The	ordering	of	 the	 root	 causes	 in	 the	

sequence	is	important,	indicating	which	reject	causes	are	the	dominant	reasons.	Therefore,	

both	the	accuracy	of	each	predicted	probability	and	their	ranking	in	the	sequence	need	to	be	

evaluated	 to	 have	 a	 comprehensive	 judgement	 on	 the	 predicted	 lists	 of	 probabilities.	 To	

realise	 this,	 a	 prediction	 error	 metric	 is	 designed	 to	 measure	 the	 accuracy	 score	 for	 a	

sequence	 of	 probabilities.	 There	 are	 two	 elements	 in	 the	 prediction	 error	 metric,	 Mean	

Absolute	Error	(MAE)	and	ranking	error,	where	MAE	is	to	quantify	the	difference	between	
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the	predicted	and	observed	probabilities	for	a	group	of	root	causes	on	average,	and	ranking	

error	is	to	identify	the	ranking	difference	between	prediction	and	observation	as	sequences.	

The	calculation	of	prediction	error	includes	3	steps:	

1. Calculate	MAE	for	the	list	of	predicted	probabilities		

2. Compute	the	ranking	error	of	the	sequence		

3. Compute	the	final	prediction	error	

	

Step	1	MAE	

MAE	is	calculated	by	

	
K2h	 = 	

1
>
	v |	rL≥ − r& 	|

(

&2!
	 (12)	

where	rM& 	is	 the	 predicted	 probability	 for	 root	 cause	! 	in	 the	 sequence,	rM 	is	 the	 observed	
probability,	 and	> 	is	 the	 length	 of	 the	 probability	 list	 (i.e.,	 the	 number	 of	 identified	 root	

causes	in	the	list	for	a	job).	In	our	study,	MAE	is	chosen	over	the	Root	Mean	Square	Error	

(RMSE)	because	RMSE	is	more	specialised	 in	describing	 large	errors	that	are	particularly	

undesirable.	However,	 in	our	case,	probabilities	are	predicted,	and	the	difference	and	the	

variance	 are	 normally	 quite	 small.	 Therefore,	MAE	 is	 favoured	 to	 capture	 the	 nuance	 in	

probability	differences.	

	

Step	2	Ranking	error		

Before	 computing	 the	 ranking	 error	 of	 the	 predicted	 sequence,	 all	 the	 noises	 in	 the	

probabilities	need	to	be	removed	so	that	the	ranking	metric	will	not	be	oversensitive	toward	

considerably	 small	 probabilities.	 This	 is	 achieved	 by	 truncating	 the	 probabilities	 to	 2	

significant	 figures.	 Then	 each	 probability	 in	 the	 list	 is	 assigned	 a	 rank	 according	 to	 the	

magnitude	of	the	predicted	probabilities.	The	ranking	difference	between	the	observed	and	

predicted	 sequences	 can	 be	 quantified.	 Eventually,	 the	 ranking	 difference	 in	 ratio	 to	 the	

possible	maximum	ranking	difference	is	computed	as	ranking	error.	The	possible	maximum	

ranking	difference	is	formulated	as	follows:	
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(13)	

where	e	is	the	length	of	the	predicted	list.	

Step	3	Prediction	Error	

Lastly,	MAE	and	ranking	error	are	combined	by	a	weighted	sum	to	comprise	the	prediction	

error.	In	this	study,	both	MAE	and	ranking	error	are	designated	with	a	weighting	of	0.5.	

	 ∑ANOP&*B&@(_ONN@N 	= 	<#;R 	∑#;R 	+ 	<N3(,&(S_ONN@N 	∑N3(,&(S_ONN@N 	 (14)	

In	this	way,	both	the	accuracy	of	the	predicted	probability	values	and	their	ranking	in	the	

sequence	can	be	captured	in	the	prediction	error	metric.	

	

5.1.2	Evaluation	Methods	for	Risk	Prediction	

The	third	question	(Q3)	proposed	in	Section	3.1	is	a	classification	problem	where	the	jobs	

with	quality	issues	need	to	be	predicted	prior	to	the	execution.	Hence,	a	confusion	matrix	can	

be	incorporated.	Subsequently,	accuracy,	sensitivity	and	specificity	can	be	derived	from	the	

confusion	matrix	to	evaluate	the	performance	of	the	proposed	method.	The	formula	for	the	

accuracy	metric	is	illustrated	in	Fig.	5.1.	So	as	the	equations	for	sensitivity	and	specificity.	

They	are	commonly	used	to	measure	the	performance	of	a	predictive	model.		
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Fig.	5.1	Confusion	matrix	with	classification	metrics	

	

In	the	context	of	manufacturing,	we	are	more	concerned	with	Type	I	Error	(False	Positives).	

Since	the	system	should	not	distract	the	staff	often	with	a	false	alarm,	it	needs	to	guarantee	

all	the	alarms	that	went	off	are	correct	and	worth	taking	note	of.	Otherwise,	the	alert	system	

will	 lose	 its	credibility	among	the	factory	workers.	As	a	result,	 the	evaluation	system	will	

emphasise	False	Positive	Rate	(FPR),	which	is	the	proportion	of	identified	positives	(i.e.,	jobs	

predicted	to	be	problematic)	among	the	normal	jobs.	This	is	also	defined	as	1-specificity.	The	

Receiver	Operating	Characteristics	(ROC)	curve	provides	a	good	way	to	visualise	the	true	

positive	rate	(or	sensitivity	on	the	y-axis)	against	the	false	positive	rate	(or	“1-specificity”	on	

the	 x-axis).	 It	 also	 gives	 a	 picture	 of	 the	 classifier’s	 performance	 across	 all	 possible	

probability	 thresholds.	 Additionally,	 the	 Area	 Under	 the	 ROC	 Curve	 (AUC)	 provides	 an	

aggregate	measure	of	performance	across	the	whole	spectrum	of	classification	thresholds.	

One	way	of	interpreting	AUC	is	as	the	ability	of	a	classification	model	to	distinguish	1s	from	

0s.	 Lastly,	 the	 robustness	 of	 different	 algorithms	 will	 be	 assessed	 by	 the	 likelihood	 of	

generating	the	worst	predictions.	
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5.2	Predicted	Probabilities	of	Reject	Causes	for	RCA	

This	section	shows	the	results	for	question	Q2,	predicting	the	probabilities	of	each	root	cause	

for	 each	 job.	 The	 following	 passages	 will	 compare	 the	 prediction	 performance	 between	

different	learning	techniques	in	Section	5.2.1	and	evaluate	the	robustness	of	the	proposed	

method	in	Section	5.2.2.	

5.2.1	Accuracy	Comparison	Between	Different	Methods	

	

Fig.	5.2	Faceted	scatter	plots	of	predicted	vs	observed	probabilities	for	different	reject	

reasons	by	distinct	knowledge	sources	and	structure	learning	methods	

The	 faceted	 scatter	 plot	 in	 Fig.	 5.2	 gives	 a	 straightforward	 illustration	 of	 the	 association	

between	 prediction	 and	 observation.	 It	 plots	 the	 probabilities	 of	 all	 the	 identified	 reject	

reasons	for	every	single	job	in	the	dataset.	The	observed	values	lie	on	the	x-axis,	while	the	y-
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axis	shows	the	predicted	probabilities	for	the	reject	causes.	The	regression	line	fitting	the	

data	 is	presented	as	 the	dashed	red	 line.	And	the	black	diagonal	 line	 in	 the	centre	with	a	

gradient	of	1	acts	as	a	reference	for	a	perfect	prediction	(i.e.	100%	accuracy).	Directly,	we	

can	see	that	the	projected	dashed	lines	in	the	first	row	deviate	away	from	the	reference	line	

except	for	score-based	algorithms	(“hc”,	“tabu”).	Whereas	the	regression	lines	for	the	models	

in	the	middle	row	are	closer	to	the	diagonal	line,	suggesting	a	better	prediction.	The	manual	

model	seems	 to	exhibit	 relatively	poor	performance	as	 it	diverges	 further	away	 from	the	

reference	line.	Last	but	not	least,	the	weighted	average	ensemble	learning	technique	fits	the	

data	reasonably	well,	indicating	a	strong	correlation	between	the	model’s	predictions	and	its	

actual	results.		

	

Fig.	5.3	Bar	plot	of	averaged	prediction	error	for	RCA	over	different	structure	learning	

methods	with	different	knowledge	sources	

The	 bar	 graph	 in	 Fig.	 5.3	 portrays	 the	 average	 prediction	 error	 of	 the	 reject	 reason	

probability	using	different	structure	learning	methods	and	involving	different	levels	of	prior	

knowledge.	Among	all	the	structure	learning	methods,	tabu	search	(“tabu”)	and	hill-climbing	

(“hc”)	algorithms	seem	to	lead	to	the	lowest	mean	prediction	error	despite	the	level	of	prior	
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knowledge.	 In	 particular,	 tabu	 search	 reaches	 a	 slightly	 smaller	 error	 than	 hill-climbing	

algorithm	when	the	structure	is	purely	learnt	from	the	data.	Their	prediction	variances	are	

almost	identical	as	shown	in	the	boxplot	in	Fig.	5.4.	This	is	because	they	belong	to	a	greedy	

search	 score-based	 method	 with	 the	 only	 difference	 in	 the	 solution	 memorisation	 step.	

Moreover,	the	BNs	learnt	by	“hc”	and	“tabu”	are	very	similar	in	the	case	study	demonstrated	

in	Fig.	4.12,	which	explains	 the	 similar	performance	of	 the	 two	algorithms.	Marco	et	al.’s	

study	also	agrees	with	our	findings	on	tabu	search	being	the	overall	most	accurate	method	

than	constraint-based	algorithms	 [58].	This	phenomenon	 is	 caused	by	 the	 scarcity	 in	 the	

structures	 learnt	by	 the	 constraint-based	algorithms.	According	 to	 the	 structure	 learning	

processes	of	the	constraint-based	algorithms	shown	in	Algorithm	3-5	in	Section	4.2.3.2,	we	

have	found	that	they	share	similar	structure	learning	procedures	in	which	they	only	accept	

an	arc	when	there	is	a	conditional	dependence	between	two	nodes	under	the	constraint	that	

the	 introduced	edge	will	not	 create	cycles	 in	 the	graph.	This	 strategy	 largely	 reduces	 the	

chance	 of	 node	 linkage	 in	 the	 graph,	 hence	 bringing	 about	 a	 sparse	 connection	 and	 an	

inadequate	accuracy.	

	

Fig.	5.4	Boxplot	of	averaged	prediction	error	for	RCA	over	different	structure	learning	

methods	with	different	knowledge	sources	

0.0

0.2

0.4

0.6

0.8

hc tabu mmhc pc.stable gs iamb chow.liu manual WAEL
Structure Learning Method

Av
er

ge
 P

re
di

ct
io

n 
Er

ro
r

Knowledge Source
Data
Hybrid
Human
WAEL



	 76	

By	shifting	the	focus	onto	the	effect	of	different	knowledge	sources	on	RCA	performance,	we	

found	 a	 distinctive	 favour	 on	 the	 models	 learnt	 with	 hybrid	 knowledge	 as	 their	 mean	

prediction	error	is	significantly	lower	than	models	with	other	knowledge	sources.	This	aligns	

with	 the	 expectation	 that	 extra	 knowledge	 provides	 insights	 and	 guidance	 to	 structure	

learning	so	resulting	in	a	better	prediction.	However,	BN	purely	built	on	expert	knowledge	

exhibits	a	worse	prediction	than	hybrid	knowledge.	It	contrasts	with	the	expectation	of	the	

more	guidance,	the	better	the	prediction.	This	could	be	because	the	exclusively	human-made	

network	makes	 the	structure	 insensitive	 to	any	relationship	 that	occurs	 in	 the	data.	As	a	

consequence,	it	misses	the	features	and	causality	that	are	hidden	in	the	data.	The	full	human	

knowledge	 also	brings	 rigidity	 to	 the	 structure	 that	 restricts	 the	parameter	 learning	 and	

inference	processes,	resulting	in	a	performance	shabbier	than	expected.	On	the	other	hand,	

hybrid	knowledge	mines	the	causal	relationships	mainly	from	the	data	with	a	hint	of	expert	

insights.	By	incorporating	both	knowledge	sources,	it	integrates	flexibility	by	learning	from	

the	 stochastic	 industrial	data	 and	 the	 realistic	 reasoning	 from	 the	 real-world	 experience,	

therefore,	outputting	better	performance	in	RCA.	
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Fig.	5.5	Residual	histogram	plot	over	different	structure	learning	methods	from	different	

knowledge	sources	

	

Residuals	are	also	 inspected	to	check	 if	 the	model	 is	appropriate	and	trustworthy	 for	 the	

data.	They	are	 the	estimates	of	 experimental	 error	obtained	by	 subtracting	 the	observed	

probabilities	 from	 the	 predicted	 probabilities	 for	 the	 root	 cause.	 Fig.	 5.5	 illustrates	 the	

faceted	residual	histogram	plot	for	different	structure	learning	methods.	Its	y-axis	shows	the	

frequency	of	each	residual	value	that	has	occurred	in	the	experiment.	From	the	plot,	we	can	

see	 that	 the	 overall	 patterns	 of	 the	 residuals	 for	 all	 the	 models	 approach	 a	 bell	 shape,	

signifying	a	normally	distributed	variance.	Thus,	 the	normality	assumption	 is	 likely	 to	be	

true.	
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Fig.	5.6	Residual	scatter	plot	over	different	structure	learning	methods	from	different	

knowledge	sources	

	

The	residuals	are	further	investigated	in	a	scatter	plot	based	on	the	models	using	different	

structure	learning	methods	and	knowledge	sources.	The	residual	plot	not	only	helps	to	check	

the	 validity	 of	 a	 regression	model	 but	 also	 provides	 guidance	 on	 how	 to	 improve	 it.	 As	

displayed	in	Fig.	5.6,	no	special	pattern	such	as	a	curve	or	a	fluctuating	pattern	is	speculated	

in	the	plots.	This	implies	that	the	error	term	is	random	so	the	independent	variables	in	our	

models	have	well	explained	the	underlying	patterns	in	the	data.	Correspondingly,	the	models	

are	well	behaved.	
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5.2.2	Robustness	of	Ensembled	BN	

	

Fig.	5.7	Worst	model	frequency	for	RCA	over	different	structure	learning	methods	and	

different	knowledge	sources		

Finally,	 the	 robustness	 of	 the	models	 is	 assessed	 as	 it	 is	 crucial	 to	 industrial	 practice	 in	

manufacturing.	The	accuracy	of	the	predicted	root	cause	probabilities	requires	to	be	stable	

among	different	products	and	jobs	under	various	configurations.	Frequent	prediction	swings	

will	 diminish	 the	 value	 of	 the	 models,	 confuse	 the	 workers,	 and	 hinder	 the	 production	

process.	Therefore,	the	stability	of	the	models	is	vital.	This	study	has	tested	the	robustness	

across	the	6792	jobs	in	the	data,	and	it	is	assessed	by	counting	the	occurrence	of	each	model	

outputting	the	worst	prediction	for	each	job.	The	higher	the	frequency,	the	less	robust	the	

model.	In	Fig.	5.7,	we	can	see	that	the	proposed	WAEL	method	proves	to	be	the	most	stable	

technique	among	all	the	algorithms.	It	has	never	appeared	to	be	the	worst	model	for	any	job	

instance.	This	is	mainly	due	to	its	voting	nature	of	putting	more	weights	on	the	more	stable	

algorithms	as	elaborated	in	Section	4.2.6.	This	weighting	method	alleviates	the	risk	of	the	

existing	deficiencies	in	accuracy	and	stability	in	stand-alone	algorithms	[26].	As	a	result,	it	

achieves	our	goal	of	providing	a	robust	RCA	model.	
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5.3	Defect	Risk	Prediction	

This	section	shows	the	results	for	question	Q3,	predicting	whether	a	scheduled	job	will	be	a	

risk	in	the	aspect	of	product	quality.	Section	5.3.1	compares	the	prediction	performance	of	

the	models	using	different	learning	techniques.	Then,	the	robustness	of	the	proposed	method	

is	assessed	against	the	constituent	algorithms	in	Section	5.3.2.	

5.3.1	Accuracy	Comparison	between	Different	Methods	

	

Fig.	5.8	Classification	accuracy	over	different	structure	learning	methods	grouped	by	

knowledge	source	for	risk	prediction	

In	 the	 task	of	predicting	a	risky	 job,	 the	graph	above	(Fig.	5.8)	shows	the	accuracy	of	 job	

classification	 using	 different	 structure	 learning	 algorithms	 based	 on	 different	 knowledge	

sources.	In	general,	all	methods	seem	to	exhibit	a	high	accuracy	for	prediction,	among	which	

score-based	methods	(“hc”,	“tabu”)	still	yield	the	best	results.	This	matches	the	observation	

from	probabilistic	reasoning	in	Section	5.2.1	(Q2).	Comparatively,	knowledge	acquired	from	
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hybrid	 resources	 (both	data	 and	human	knowledge)	draws	 little	 advantage	 in	prediction	

accuracy	 between	 score-based	 structure	 learning	 methods.	 Surprisingly,	 models	 learnt	

purely	 from	data	outperform	other	knowledge	 sources	 in	prediction	accuracy	by	a	 slight	

amount	 for	 constraint-based	 structure	 learning	methods	 (“pc.stable”,	 “gs”,	 “iamb”).	 Such	

phenomenon	 occurs	 possibly	 because	 of	 the	 lack	 of	 evidence	 during	 inferencing	 for	 the	

nodes	in	the	added	knowledge	substructure	(prior	knowledge)	from	the	hybrid	knowledge	

source	(exemplified	in	Fig.	4.10).	In	the	case	of	risk	prediction,	the	jobs	are	yet	to	be	run	so	

there	will	be	no	external	information	introduced	to	the	observational	variables	such	as	the	

occurrence	of	reject	cause	reasons.	This	makes	the	added	links	(i.e.,	knowledge)	from	the	

reject	cause	nodes	to	job	failure	nodes	redundant	in	the	hybrid	models.	Conversely,	hybrid	

methods	can	also	introduce	noises	into	the	inference	process	due	to	the	extra	connection	

from	 the	 prior	 knowledge	 with	 null	 parameters	 in	 the	 risk	 prediction.	 As	 a	 result,	 the	

accuracy	of	the	hybrid	algorithms	will	be	adversely	impacted	as	Oniśko	et	al.	stated	that	the	

diagnostic	accuracy	of	Bayesian	network	models	suffers	from	imprecision	in	parameters	of	

zeros	[2].		

	

On	the	other	hand,	the	proposed	WAEL	model	continues	to	show	a	prominent	advantage	in	

job	classification	as	it	does	in	probabilistic	reasoning	in	Section	5.2.1.	The	overall	accurate	

predictions	of	all	the	algorithms	also	contribute	to	the	excellent	performance	from	the	WAEL	

method	as	 it	applies	 the	weighting	 to	 the	probabilities	of	 the	predicted	class	obtained	by	

various	algorithms	and	determines	the	riskiness	of	the	job	using	the	weighted	sum	of	the	

likelihood	against	the	classification	threshold	of	0.5.		
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Fig.	5.9	ROC	over	different	structure	learning	methods	from	different	knowledge	sources	

for	risk	prediction	

The	ROC	curve	above	reveals	the	performance	of	Bayesian	network	classifiers	developed	by	

different	 structure	 learning	 methods	 and	 knowledge	 sources	 at	 all	 discrimination	

thresholds.	Similar	to	the	outcome	from	the	accuracy	chart,	the	networks	built	solely	from	

data	 bring	 about	 more	 excelling	 performance	 than	 other	 knowledge	 sources,	 except	 for	

score-based	algorithms.	In	addition,	tabu	search	and	hill-climbing	continue	to	dominate	the	

model	 performance	 amid	 all	 structure	 learning	methods	 across	 all	 possible	 classification	

thresholds	with	an	AUC	of	0.994.	Whilst	human-built	model	leads	to	poor	performance	at	an	

AUC	of	0.672.	Peculiarly,	WAEL	rises	a	 relatively	 large	AUC	of	0.988	 following	 the	 score-

based	algorithms	(Fig.	5.9).	This	hints	that	WAEL	is	an	accurate	and	robust	classifier	across	

a	wide	range	of	classification	cut-offs.		
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5.3.2	Robustness	of	Ensembled	BN	

	

Fig.	5.10	Worst	model	frequency	for	risk	prediction	over	different	structure	learning	

methods	and	different	knowledge	sources	

As	reasoned	in	Section	5.2.2,	stable	and	robust	models	are	essential	and	mandatory	in	real-

world	industry.	Thus,	the	robustness	of	the	models	is	also	examined	in	the	task	of	classifying	

whether	a	job	will	be	high-risk	(high-reject	rate)	given	the	assignable	attributes.	Again,	the	

models	of	interest	are	put	through	vigorous	testing	across	the	data	sample	of	6792	jobs	to	

check	 the	 strength	of	different	models.	Here,	 the	model	 strength	 is	 reflected	 through	 the	

number	of	times	that	each	model	produces	an	incorrect	classification.	The	more	frequent	the	

occurrence	 of	 misclassification,	 the	 less	 reliable	 the	 model.	 As	 Fig.	 5.10	 displays,	 WAEL	

remains	to	be	the	most	robust	model.	Whereas	tabu	search	algorithm	also	follows	tightly	as	

a	 strong	 candidate	 for	 classification	problems.	Therefore,	 a	Bayesian	network	using	 tabu	

search	or	WAEL	technique	will	be	recommended	for	a	classification	problem.	
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Chapter	6 	
Conclusions	and	Future	Work	
This	chapter	summarises	the	achievements	and	the	findings	of	this	project	in	Section	6.1.	We	

have	also	suggested	possible	future	work	for	this	research	in	Section	6.2.		

	

6.1	Conclusions	

This	project	addresses	the	product	quality	problem	in	manufacturing	where	RCA	is	in	urgent	

demand	to	identify	the	reasons	behind	a	large	number	of	defects	for	quality	and	productivity	

improvement.	However,	RCA	remains	to	be	a	challenging	task	in	the	concurrent	industry	due	

to	the	heavy	reliance	on	expert	knowledge	from	conventional	methods.	A	variety	of	modern	

RCA	methods	have	been	developed	by	scholars.	Whereas	most	of	 them	lack	the	ability	 to	

offer	robust,	intelligent	and	illustrative	probabilistic	reasoning.	As	a	result,	a	product-wise	

framework	 of	 ensembled	 Bayesian	 networks	 has	 been	 proposed	 in	 this	 study	 with	 the	

objective	to	provide	a	robust,	intelligent,	and	human-interpretable	probabilistic	reasoning	

for	RCA	in	manufacturing.	

	

To	fulfil	the	objective,	three	research	questions	for	RCA	have	been	asked.	This	research	has	

then	implemented	the	proposed	method	on	the	data	from	a	real-world	industry	to	answer	

these	questions.	Firstly,	interpretable	causal	graphs	have	been	elicited	automatically	from	

the	historical	data	to	provide	insights	for	factory	workers	(Q1).	Secondly,	root-cause	analysis	

has	been	performed	on	the	problematic	jobs	to	identify	the	reject	reasons	with	probabilities	

(Q2).	Lastly,	we	have	predicted	the	potential	high-reject	jobs	prior	to	execution	to	evade	risk	

proactively	(Q3).	
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By	 conducting	 the	 experiments	 on	 a	 sample	 of	 6791	 jobs,	 we	 have	 found	 out	 that	 the	

proposed	 method	 of	 ensembled	 BNs	 shows	 a	 prominent	 advantage	 in	 robustness	 and	

accuracy	amidst	all	the	models	in	inferring	accurate	probabilistic	reasoning.	It	has	also	been	

discovered	that	among	all	the	constituent	structure	learning	algorithms,	tabu	search	exhibits	

the	highest	accuracy	in	RCA	followed	by	hill-climbing	algorithm.	The	methods	using	hybrid	

knowledge	sources	outperform	the	ones	using	purely	human	or	purely	data	knowledge	in	

inferring	root-cause	probabilities.	In	the	task	of	classifying	risky	jobs,	the	proposed	method	

remains	to	be	the	strongest	and	most	stable	model,	and	tabu	search	persists	to	dominate	the	

performance	accuracy.	

	

In	summary,	this	project	is	considered	successful	in	that	it	achieved	the	goal	of	providing	a	

robust,	 accurate	 and	 interpretable	 probabilistic	 reasoning	 method	 for	 RCA	 to	 support	

manufacturers	with	data-driven	decision-making	under	the	circumstance	of	quality	failures.	

This	research	has	also	overcome	the	issue	of	unrobust	BN	models	in	the	existing	methods	

using	ensemble	 learning	techniques.	A	comparison	between	different	 learning	algorithms	

for	BN	has	been	presented	to	provide	guidance	on	model	selection	and	enhancement.	Lastly,	

an	evaluation	method	has	been	designed	to	assess	the	accuracy	of	predicted	sequences	of	

probabilities.		

	

6.2	Future	Work	

Future	work	 can	be	undertaken	 to	 further	 reinforce	 this	 research.	Additional	 features	 of	

machinery	measurements	 (e.g.,	 vibrations)	and	environmental	 conditions	 (e.g.,	 humidity)	

can	be	involved	to	provide	a	more	comprehensive	knowledge	representation	of	the	industry.	

Research	direction	in	developing	delicate	parameter	calibration	models	can	be	explored	to	

fine-tune	the	parameters	for	BN	and	ensemble	learning	techniques	such	as	the	resampling	

time	of	bagged	BN	and	the	weights	of	WAEL.	Lastly,	more	product-tailored	prior	knowledge	

can	be	introduced	to	fit	each	model	adaptively.	
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