Chapter 6

Regression Method of Estimation

The ratio method of estimation uses the auxiliary information which is correlated with the study
variable to improve the precision which results in the improved estimators when the regression of Y on
Xis linear and passes through the origin. When the regression of Y on X is linear, it is not necessary that
the line should always pass through the origin. Under such conditions, it is more appropriate to use the

regression type estimator to estimate the population means.

In ratio method, the conventional estimator sample mean y was improved by multiplying it by a factor

x| | |

where X is an unbiased estimator of the population mean X which is chosen as the population

mean of auxiliary variable. Now we consider another idea based on difference.

Consider an estimator X of X for which E(X—X)=0.
Consider an improved estimator of Y as
V' =¥+ u(X—X)
which is an unbiased estimator of Y and x is any constant. Now find z such that the Var(YA*) is
minimum

Var(Y*) =Var(y) + £2Var(X) + 21 Cov(X, )
ovar(Y')
ou -
_ Cov(x,y)

T Var(X)
N-n

Nn SXY
" N-n 52

0

1 3 — — 1 & —
where S, ZWZ(Xi_X)(Yi -Y), S)2< =m2(xi—X).
T L=

Consider a linear regression model y=xg+e where y is the dependent variable, x is the independent

variable and e is the random error component which takes care of the difference arising due to lack of

exact relationship between x and y.
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Note that the value of regression coefficient £ in a linear regression model y=xg+e of y on X

n S
obtained by minimizing Zef based on n data sets (x,Y;), i=12,..,nis ﬂ:%&;):s—?. Thus the
i=1 X

optimum value of x is same as the regression coefficient of y on X with a negative sign, i.e.,
p==p.

So the estimator Y~ with optimum value of x is
Y_reg = )7+ﬂ()?—¥)

which is the regression estimator of Y and the procedure of estimation is called as the regression

method of estimation.

The variance of \7 IS

reg
Var(Y,,) =V (Y)[L- p*(X, Y]
where p(X,Y) is the correlation coefficient between X and y. So \ﬁeg would be efficient if X and y are

highly correlated. The estimator \ﬁeg is more efficient than Y if p(X,¥) =0 which generally holds.

Regression estimates with preassigned g:

If value of g is known as S, (say), then the regression estimator is

Y_reg = y+ﬂ0(>z_7)

Bias of \ﬁeg X

Now, assuming that the random sample (x;,Y:), i=12,..,n is drawn by SRSWOR,

E(Y,,)=E(¥)+4[X-E®]
V4 p,[X-X]
v

Thus Vreg is an unbiased estimator of Y when g is known.
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Variance of Y,

A

Var(Y,,) =E[V,, ~E(7,,)|
=E[y+4(X-%)-Y]
—E[(Y-V)-AF-X)]
=E[(V-Y) + B (X-X)’ —2BE(X-X)(V-Y) ]
=Var(y) + BVar(X) — 23,Cov(X, )

f
= F[S\? +ﬂozs>2< - zﬂosxv]

f
=87+ A4Sk ~2/:pS,S, |

where
f=N—n
N
SZ—LEN:(X - X)?
X N-1% i
2= 1 Sy, -y
Y N-1% i

p :Correlation coefficient between X and Y.

A

Comparing Var(Y,,) with Var(y), we note that

A

Var(Y,,) < Var(y)

reg

if ﬂo28>2< _Zﬂosxv <0

25
or ﬂosi [ﬁo - S;Y J <0
X

which is possible when

either B, <0 and (,BO—ZSS;‘Y]>O:>ZSS%<,6’0 <0.

X X

25,
S

)J<O:>O<,6’O<ZSS;_<Y :

X

or g, >0 and (ﬂo—
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Optimal value of g

A

Choose g such that Var(Y,,) is minimum.
So
Nar(V)) 0 res aed
T:@[SY +B°S; —23pS, S, |=0
SY SXY
= pf=p—L+=—""
p=p s, s
. . > . S, .
The minimum value of the variance of Y, with optimum value of S, = % is
X

V2 — f 2 2 S\? 2 SY
Varmin(Yreg)_F SY +p S_ZSX ZpS—pSXSY

X X

f
=—S/(1-p°).
n

Since —1< p<1, so

A

Var Wreg ) S VarSRS (y)

which always holds true. So the regression estimator is always better than the sample mean under
SRSWOR.

Departure from g:
If B, is the preassigned value of regression coefficient, then
va freo 202
Var,, (Yeg) = F[SY + oSy —2B8,pSx Sy ]
= L[S0+ 457 ~208,8,, ~p'SE+ 07} ]
n
f
=—[A=p")S7 + S5 ~ 2558 s + B |

:%[(1—/)2)85 +(By = Pon) 5% ]
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Estimate of variance

A

An unbiased sample estimate of Var(Y,.) is

reg

S -9) - (% -]

Var(ereg) = n(n-1) 2

f
=~ (5] + A5 ~ 255,
Note that the variance of V,eg increases as the difference between S, and g, increases.

Regression estimates when g is computed from the sample

Suppose a random sample of size n on paired observations on (X, Y;), 1=12,..,n is drawn by SRSWOR.
When g is unknown, it is estimated as

Sy
ﬂ=s—2
X

and then the regression estimator of Y is given by

A

Yreg = y+ﬁ(>z_7)

It is difficult to find the exact expressions of E(Y,) and Var(Yireg). So we approximate them using the

same methodology as in the case of the ratio method of estimation.

Let
&y :yY%Y: y=Y(1+g,)
g = X__X =X=X1+¢)
X
Sxy XY
&, = Sy = S,y (1+¢,)
XY
2 SZ
£y = Sx X =52 =5 (1+¢,)
X
Then

E(z)=0,  E(5)=0,
E(e,) =0, E(e;) =0,
E(s3) =~-C7,

n

f
E(gf):FCf(,

f
E(s6) = F pC,C,
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and

— Sxy N/ -
Yieg = y+s—2(X —X)

Sy @+85)

=Y (1+¢g,)+
e+ ey

(_gl)z)'

The estimation error of Y, is

A

(Yreg -

Y)=Ye, - BXe(l+e,)A+e)?
where [ = Sxr is the population regression coefficient.
SZ
X

Assuming |&;|<1,

A

(Yreg -Y) :Y_gO —,B)Z(gl +&&,)1-¢ +g32 —.)

Retaining the terms up to second power of £'S and ignoring other terms, we have

(Y_reg _Y_) = Y_go _ﬂx(gl +e6,)(l-¢g+ 532)
=Yg,

- 18)2(51 —&&;+868,)

Bias of Y,
Now the bias of Vreg up to the second order of approximation is

E(Y_Areg -Y)= E[Y_g0 — BX (g, +&e,)1—¢g, +g§)}

:_,Bif Ha Mo
n | XS,, XS%

where f = N-n and (r , s)™ cross-product moment is given by

ts =E[(x=X)"(y-Y)° ]
So that

fy = E[ (x=X)*(y-Y) |

Hy =E[ (x=X)*].

Thus

E(ereg) z_ﬁ_f{&_@}'

n|S, S
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Also,

E(Y,,) = E(Y)+EL[B(X -X)]

=Y + XE(f) - E(BX)

=Y +E(X)E(B) - E(8X)
=Y —Cov(S,X)
)=E(Y..)-Y =—Cov(j,X)

reg

BIaS(Y

reg

MSE of Y,

To obtain the MSE of Y consider

reg !
E( reg -Y)? ~E[50Y BX (g, - 6‘183+€182):|

Retaining the terms of £'S up to the second power second and ignoring others, we have

E(Y,, )’ ~E| &Y+ B K2 - 2KV gyt |
=Y?E(&2)+ B*X? E(e )= 2BXYE(&,¢,)
f 52 S, S,
Y22 x2 —2BXY p
n[ i d XY }
MSE(Yreg) E(Yreg Y_)2
=—(SY2 + 7S5 —23pS,Sy)
Since f= ps—
X SX

so substituting it in MSE (ereg), we get

MSE(Yreg)_ S (1 10)

So up to the second order of approximation, the regression estimator is better than the conventional
sample mean estimator under SRSWOR. This is because the regression estimator uses some extra
information also. Moreover, such extra information requires some extra cost also. This shows a false
superiority in some sense. So the regression estimators and SRS estimates can be combined if the cost

aspect is also taken into consideration.
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Comparison of \ﬁeg with ratio estimate and SRS sample mean estimate

2 f
MSE(Yreg) = FSYZ(]-_pZ)

MSE(Y,) = %(SYZ +R2S2 —2pRS, S, )

. f
VarSRS (y) = F SYZ-

(i) As MSE (\ﬁeg) =Varg (¥)1- p°) and because p? <1, so ﬁg is always superior to Y .

A

(ii) Y., is better than Y, if MSE(Y,.,) < MSE(Y,)
or if %33(1—,02) s%(sf +R?SZ —2pRS, S,)
or if (RS, —pS,)’ >0

which always holds true.

So regression estimate is always superior to the ratio estimate upto the second order of

approximation.

Regression estimates in stratified sampling

Under the set up of stratified sampling, let the population of N sampling units be divided into k

K
strata. The strata sizes are N;,N,,..,N, such that ZNizN. A sample of size n; on
i=1

(%, ¥;): §=12,..,n;, is drawn from i strata (i = 1,2,..,k) by SRSWOR where x; and y; denote the

j™ unit from i strata on auxiliary and study variables, respectively.

In order to estimate the population mean, there are two approaches.

1. Separate regression estimator
e Estimate regression estimator
Y_reg = y'|_ﬂ0(>Z _7)

from each stratum separately, i.e., the regression estimate in the i stratum is

A

Y_reg(i) =Y, +18i()zi _Z)
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A

e Find the stratified mean as the weighted mean of =12,..,k as

reg (i) I

A

A kK N. )
Ysre — i'reg(i)
g ; N
k —
= [Wi{yi +18i(xi _Z)}]
i=1
S, .
where £, = S'Xzy , W, :%.

In this approach, the regression estimator is separately obtained in each of the strata and then

combined using the philosophy of the stratified sample. So Y., is termed as separate regression

estimator,

2. Combined regression estimator

Another strategy is to estimate X and y in the Vreg as respective stratified mean. Replacing X

k k
by X, = WX and ¥ by ¥, => Wy, we have
i=1 i=1
Y_creg = yst -i_/B()z _Kst)'
In this case, all the sample information is combined first and then implemented in regression

estimator, so ﬁeg is termed as combined regression estimator.

Properties of separate and combined regression
In order to derive the mean and variance of ﬁ,eg and VC,eg , there are two cases
- when g is pre-assigned as £,
- when g is estimated from the sample.
S

We consider here the case that £ is pre-assigned as /. Other case when g is estimated as ,B = S—Xzy can
X

be dealt with the same approach based on defining various &'S and using the approximation theory as

in the case of Y .
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1. Separate regression estimator

Assume g is known, say £, . Then
~ k _
sreg ZW[)_’.+,30.(X._Y.)]
i=1

E(Y_Asreg) :Zk:Wi [E(yi)+ﬂ0i (Xu _E(Z)):I

i=1

=S WY+ (K, - X,)]

Var(Ysreg) E[ sreg E(YSFBQ)}Z
=E iwlyi +i +iwiﬂ0i(>zi _Yu)_Y_}

E{ZW.(Y. -Y)- ZWﬂo.(X X)}

=D WE, Y)2+zw BLE(%~ X)T - 2Zwﬂo.E<x X)(5,~Y))
inar(y.) +2vv piVar(X,) - zzw SCOV(%,. 7))

k 2

=Y M (8% LSS -2 )]

Sy
2
iX

Var (Y. Sreg) is minimum when £, = and so substituting £, we have

me(Ysreg) Z|: : I(S ﬂozusui)}

where f, = N =,

Since SRSWOR is followed in drawing the samples from each stratum, so
E(s’) =S’
E(s )=S2
E(S,,) =Siy

Thus an unbiased estimator of variance can be obtained by replacing S’ and S’ by their respective

ixy

unbiased estimators s’ and s’ , respectively as

iy

Var(Ysreg) Z|: : I(S|y+ 0i Six 2ﬂ0|slxy)i|

and

Varmm(Ysreg) Z|: : I(S|y_ﬂ0| |x):|

Sampling Theory| Chapter 6 | Regression Method of Estimation | Shalabh, IIT Kanpur Page 10



2. Combined regression estimator:

Assume £ is knownas f;. Then
Y’\_creg =_Zwiyi +ﬂ0()z_zvle)
£ (Fo ) = S WET)+ ALK - L WE)]

:Z\NiY_i'i_ﬂO[)Z_ZWi)zi]
=Y + B,(X =X)
=Y.

Thus Ycreg is an unbiased estimator of Y.

Var(Y, creg) [Ycreg E(Ycreg )]
= E[Zwivi +ﬁo(>?—2wx>—Y‘]2

= E[Zwi(vi —Y‘)—ﬂoni(x - X)F

= S WVar(y) + A2 wVar() — 23 wA,CoM(R, )
= ) Wiz fi [Sif( +ﬁ028i§( —20,Sixy ]
n

i=1 i

Var (Y, Creg) is minimum when
COV(Yst’ yst)
B=—
Var(X,,)
kw2t
[ S
B ; ni iXyY
Tk g2
>l
i=1 ni
and the minimum variance is given by
~ k 2
| | 22
Varmln creg) (S ﬂo SiX )

i=1 i
Since SRSWOR is followed to draw the sample from strata, so using E (si ) SZ, E (s@) =S and

E(S,y ) = Sixv » We get the estimate of variance as

Var(Ycreg) Z{ I I(Sly-i_ o Six 2IBOISIX)’):|
and

Varmm(Ycreg) Z|: : I(S|y_ Oi IX):|
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Comparison of Y, and Y, :

reg creg -

The variance of ireg Is minimum when g, = g, forall i.

The variance of Y,,,, is minimum when g, = M e
Var(X,)

COV(YS'{ ' yst )
Jar(®,)Var(y,)

The minimum variance is Var(\ireg)min =Var(y,)(1- p?) where p. =

W f,
S

Var (V.. ) ~Var (Voe,) = 3 (5~ 47)

2 A k. f
Var creg )min _Var(Ysreg )ﬂoi:ﬁo = Zn_l(ﬂol _ﬂo )ZWiZSii(

i=1 1
>0
which is always true.
So if the regression line of y on x is approximately linear and the regression coefficients do not vary
much among the strata, then separate regression estimate is more efficient than combined regression

estimator.
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