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1 Overview

The multiple correlation coefficient generalizes the standard coef-

ficient of correlation. It is used in multiple regression analysis to

assess the quality of the prediction of the dependent variable. It

corresponds to the squared correlation between the predicted and

the actual values of the dependent variable. It can also be inter-

preted as the proportion of the variance of the dependent variable

explained by the independent variables. When the independent

variables (used for predicting the dependent variable) are pairwise

orthogonal, the multiple correlation coefficient is equal to the sum

of the squared coefficients of correlation between each indepen-

dent variable and the dependent variable. This relation does not

hold when the independent variables are not orthogonal. The sig-

nificance of a multiple coefficient of correlation can be assessed

with an F ratio. The magnitude of the multiple coefficient of corre-

lation tends to overestimate the magnitude of the population cor-

relation, but it is possible to correct for this overestimation. Strictly

speaking we should refer to this coefficient as the squared multi-

ple correlation coefficient, but current usage seems to ignore the
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adjective “squared,” probably because mostly its squared value is

considered.

2 Multiple Regression framework

In linear multiple regression analysis, the goal is to predict, know-

ing the measurements collected on N subjects, a dependent vari-

able Y from a set of J independent variables denoted

{X1, . . . , X j , . . . , X J } . (1)

We denote by X the N×(J+1) augmented matrix collecting the data

for the independent variables (this matrix is called augmented be-

cause the first column is composed only of ones), and by y the N×1

vector of observations for the dependent variable. These two ma-

trices have the following structure.

X =




1 x1,1 · · · x1, j · · · x1,J
...

...
. . .

...
. . .

...

1 xn,1 · · · xn, j · · · xn,J
...

...
. . .

...
. . .

...

1 xN ,1 · · · xN , j · · · xN ,J




and y =




y1
...

yn
...

yN




(2)

The predicted values of the dependent variable Ŷ are collected

in a vector denoted ŷ and are obtained as:

ŷ = Xb with b =

(
XTX

)−1
XTy . (3)

The regression sum of squares is obtained as

SSregression = bTXTy−
1

N
(1Ty)2 (4)

(with 1T being a row vector of 1’s conformable with y).

The total sum of squares is obtained as

SStotal = yTy−
1

N
(1Ty)2 . (5)
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The residual (or error) sum of squares is obtained as

SSerror = yTy−bTXTy . (6)

The quality of the prediction is evaluated by computing the

multiple coefficient of correlation denoted R2
Y .1,...,J . This coeffi-

cient is equal to the squared coefficient of correlation between the

dependent variable (Y ) and the predicted dependent variable (Ŷ ).

An alternative way of computing the multiple coefficient of cor-

relation is to divide the regression sum of squares by the total sum

of squares. This shows that R2
Y .1,...,J can also be interpreted as the

proportion of variance of the dependent variable explained by the

independent variables. With this interpretation, the multiple co-

efficient of correlation is computed as

R2
Y .1,...,J =

SSregression

SSregression +SSerror
=

SSregression

SStotal
. (7)

2.1 Significance test

In order to assess the significance of a given R2
Y .1,...,J , we can com-

pute an F ratio as

F =
R2

Y .1,...,J

1−R2
Y .1,...,J

×
N − J −1

J
. (8)

Under the usual assumptions of normality of the error and of in-

dependence of the error and the scores, this F ratio is distributed

under the null hypothesis as a Fisher distribution with ν1 = J and

ν2 = N − J −1 degrees of freedom.

2.2 Estimating the population correlation:

shrunken and adjusted R

Just like its bivariate counterpart r , the multiple coefficient of cor-

relation is a descriptive statistic which always overestimates the

population correlation. This problem is similar to the problem

of the estimation of the variance of a population from a sample.
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Table 1: A set of data. The dependent variable Y is to be predicted
from two orthogonal predictors X1 and X2 (data from Abdi et al.,

2002). These data are the results of an hypothetical experiment on
retroactive interference and learning. Y is the number of sentences
remembered from a set of sentences learned, X1 is the number of
learning trials, and X2 is the number of interpolated lists learned.

Number of

interpolated lists (T )

Number of

learning trials (X ) 2 4 8

2 35 21 6

39 31 8

4 40 34 18

52 42 26

8 61 58 46

73 66 52

In order to obtain a better estimate of the population, the value

R2
Y .1,...,J needs to be corrected. The corrected value of R2

Y .1,...,J goes

under different names: corrected R , shrunken R , or adjusted R (th-

ere are some subtle differences between these different appella-

tions, but we will ignore them here) and we denote it by R̃2
Y .1,...,J .

There are several correction formulas available, the one most of-

ten used estimates the value of the population correlation as

R̃2
Y .1,...,J = 1−

[(
1−R2

Y .1,...,J

)( N −1

N − J −1

)]
. (9)
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3 Example 1:

Multiple correlation coefficient

with orthogonal predictors

When the independent variables are pairwise orthogonal, the im-

portance of each of them in the regression is assessed by comput-

ing the squared coefficient of correlation between each of the in-

dependent variables and the dependent variable. The sum of these

squared coefficients of correlation is equal to the multiple coeffi-

cient of correlation. We illustrate this case with the data from Ta-

ble 1. In this example, the dependent variable (Y ) is the number or

sentences recalled by participants who learned a list of unrelated

sentences. The first independent variable or first predictor, X1 is

the number of trials used to learn the list. It takes the values 2,

4, and 8. It is expected that recall will increase as a function of the

number of trials. The second independent variable, X2 is the num-

ber of additional interpolated lists that the participants are asked

to learned. It takes the values 2, 4, and 8. As a consequence of

retroactive inhibition, it is expected that recall will decrease as a

function of the number of interpolated lists learned.

Using Equation 3, we found that Ŷ can be obtained from X1

and X2 as

Ŷ = 30+6×X1 −4×X2. (10)

Using these data and Equations 4 and 5, we find that

SSregression = 5824, SStotal = 6214, and SSerror = 390 . (11)

This gives the following value for the multiple coefficient of corre-

lation:

R2
Y .1,...,J =

SSregression

SStotal
=

5824

6214
= .9372 . (12)

In order to decide if this value of R2
Y .1,...,J is large enough to be con-

sidered significant, we compute an F ratio equal to

F =
R2

Y .1,...,J

1−R2
Y .1,...,J

×
N − J −1

J
=

.9372

1− .9372
×

15

2
= 111.93 . (13)
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Such a value of F is significant at all the usual alpha levels, and

therefore we can reject the null hypothesis.

Because X1 and X2 are orthogonal to each other (i.e., their cor-

relation is equal to 0), the multiple coefficient of correlation is equal

to the sum of the squared coefficients of correlation between the

independent variables and the dependent variable:

R2
Y .1,...,J = .9372 = r 2

Y ,1 + r 2
Y ,2 = .6488+ .2884 . (14)

A better estimate of the population value of the multiple coef-

ficient of correlation can obtained as

R̃2
Y .1,...,J = 1−

[(
1−R2

Y .1,...,J

)( N −1

N − J −1

)]
= 1−(1−.9372)

17

15
= .9289 .

(15)

4 Example 2:

Multiple correlation coefficient

with non-orthogonal predictors

When the independent variables are correlated, the multiple coef-

ficient of correlation is not equal to the sum of the squared corre-

lation coefficients between the dependent variable and the inde-

pendent variables. In fact, such a strategy would overestimate the

contribution of each variable because the variance that they share

would be counted several times.

For example, consider the data given in Table 2 where the de-

pendent variable is to be predicted from the independent variables

X1 and X2. The prediction of the dependent variable (using Equa-

tion 3) is found to be equal to

Ŷ = 1.67+X1 +9.50X2 ; (16)

this gives a multiple coefficient of correlation of R2
Y .1,...,J = .9866.

The coefficient of correlation between X1 and X2 is equal to rX1.X2 =

.7500, between X1 and Y is equal to rY .1 = .8028, and between X2

and Y is equal to rY .2 = .9890. It can easily be checked that the
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Table 2: A set of data. The dependent variable Y is to be predicted
from two correlated (i.e., non-orthogonal) predictors: X1 and X2

(data from Abdi et al., 2002). Y is the number of digits a child can
remember for a short time (the “memory span"), X1 is the age of
the child, and X2 is the speech rate of the child (how many words
the child can pronounce in a given time). Six children were tested.

Y (Memory span) 14 23 30 50 39 67

X1 (age) 4 4 7 7 10 10

X2 (Speech rate) 1 2 2 4 3 6

multiple coefficient of correlation is not equal to the sum of the

squared coefficients of correlation between the independent vari-

ables and the dependent variables:

R2
Y .1,...,J = .9866 6= r 2

Y .1 + r 2
Y .2 = .665+ .9780 = 1.6225 . (17)

Using the data from Table 2 along with Equations 4 and 5, we

find that

SSregression = 1822.00, SStotal = 1846.83, and SSerror = 24.83 .

(18)

This gives the following value for the multiple coefficient of corre-

lation:

R2
Y .1,...,J =

SSregression

SStotal
=

1822.00

1846.83
= .9866 . (19)

In order to decide if this value of R2
Y .1,...,J is large enough to be con-

sidered significant, we compute an F ratio equal to

F =
R2

Y .1,...,J

1−R2
Y .1,...,J

×
N − J −1

J
=

.9866

1− .9866
×

3

2
= 110.50 . (20)

Such a value of F is significant at all the usual alpha levels, and

therefore we can reject the null hypothesis.

A better estimate of the population value of the multiple coef-

ficient of correlation can obtained as

R̃2
Y .1,...,J = 1−

[(
1−R2

Y .1,...,J

)( N −1

N − J −1

)]
= 1− (1− .9866)

5

2
= .9776 .

(21)
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