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Abstract

A scale to measure a psychological construct is subject to measurement error. When meta-analyzing

correlations obtained from scale scores, many researchers recommend correcting measurement error. We

considered three caveats when conducting meta-analysis of correlations: (1) the distribution of true scores

can be non-normal, resulting in a violation of the normality assumption for raw correlations and Fisher’s z

transformed correlations; (2) coefficient alpha is often used as the reliability, but correlations corrected for

measurement error using alpha can be inaccurate when some assumptions (e.g., tau-equivalence) of alpha

are violated; and (3) item scores are often ordinal, making the disattenuation formula potentially

problematic. Via three simulation studies, we examined the performance of two meta-analysis approaches

with raw correlations and z scores. In terms of estimation accuracy and coverage probability of the mean

correlation, results showed that (1) the true score distribution alone had slight influence; (2) when the

tau-equivalence assumption was violated and coefficient alpha was used for correcting measurement error,

the mean correlation estimate can be biased and coverage probability can be low; and (3) discretization of

continuous items can result in under-coverage of the mean correlation even when tau-equivalence was

satisfied. With more categories and/or items on a scale, results can improve when tau-equivalence was met

or not. Based on these findings, we then gave recommendations when conducting meta-analysis of

correlations. KEY WORDS: meta-analysis of correlations; measurement error; coefficient alpha; ordinal

scale
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Meta-Analysis of Correlation Coefficients: A Cautionary Tale on Treating

Measurement Error

Meta-analysis is a statistical technique to combine information from different studies (Glass,

MacGaw, & Smith, 1984). Specifically, it can be used to provide an overall estimate of population effect

size, and examine whether and how effect sizes across studies differ. Effect sizes that are commonly used

in meta-analysis include Pearson product moment correlation, standardized mean difference, odds ratio,

and so forth. In this study, we focus on meta-analyzing Pearson product moment correlation (in the

remainder of the article, we use “correlation” for simplicity). It goes without doubt that correlations are

very commonly used in social science studies to depict bi-variate linear relationships. Meta-analysis of

correlations are also widely used and discussed in various fields. Examples in recent years include

meta-analysis of correlations between sleep and work (Litwiller, Snyder, Taylor, & Steele, 2017),

emotional intelligence and job performance (Joseph, Jin, Newman, & O’Boyle, 2015), boldness and

psychopathic personality (Lilienfeld et al., 2016), openness and academic achievement (Gatzka & Hell,

2018), and so forth.

Meta-analysis of correlations involves two constructs X and Y . In psychological and educational

studies, often times X and Y are measured by scales consisting of multiple items. Scales for measuring X

and Y are subject to measurement error (Nunnally, 1978). Based on classical test theory, the variance of

observed scores is a sum of the true score variance and the measurement error variance. The ratio of the

true score variance to the observed score variance is the reliability, which can be used to gauge to what

extent scales measure the true scores. We consider the scenario that primary studies provide reliability

estimates of the scales and focus on measurement error as an artifact when conducting meta-analysis.1

Denote reliabilities of the scales for X and Y as relX and relY respectively. It is well established

that an observed nonzero correlation coefficient is attenuated such that rXY =rXTYT ×
√
relXrelY , where

rXY is the observed correlation and rXTYT is the underlying/true correlation (Spearman, 1904). To obtain

the correlation corrected for unreliability, theoretically we can use

rXTYT =
rXY√
relXrelY

. (1)
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Equation 1 is referred to as correction for attenuation due to measurement error. When conducting

meta-analysis of correlations, there have been debates on whether to correct measurement error.

Researchers who oppose correcting measurement error argue that the disattenuated effect size would be

obtained under the conditions of perfect measurement and therefore consider the corrected effect size as

“hypothetical” (e.g., LeBreton, Scherer, & Lawrence, 2014; Nunnally, 1978). Muchinsky (1996) argued

that the corrected correlation (in his term, validity) coefficients are biased in an “ideal world” while adding

that when the research interest is about a particular sample only with no desire of generalization, corrected

correlation coefficients are upward biased. This may imply that for the purpose of generalization, which

often is the case, correction of measurement error seems reasonable.

Researchers advocating for correcting measurement error point out usefulness of correction when

focusing on reliable variance of the measures (e.g., Hunter & Schmidt, 2004; Oswald, Ercan, McAbee, Ock

& Shaw, 2015). Moreover, primary studies may use different scales on the same construct, resulting in

“study effects” when meta-analyzing correlations. Using observed correlations obtained from the scale

scores may make them not directly comparable across studies. Therefore, Ahn (2008) recommended

obtaining the pure effect size with accounting for the study effects. Even with the same scale, reliability

estimates are likely to be different across primary studies. An important field, reliability generalization, is

centered on obtaining a typical reliability, variability of reliabilities, and sources of variability across

studies (Vacha-Haase, 1998). Thus, not correcting measurement error may result in misleadingly larger

variability of effect sizes when they are actually homogeneous, or larger/smaller variability than the truth

with heterogeneous effect sizes across studies. Focusing on meta-analysis of correlations while accounting

for potentially varied reliabilities across studies, we mainly study approaches to correcting measurement

error.

To correct measurement error of observed correlations based on Equation 1, researchers need to have

rXY that is usually obtained using scale scores of X and Y and reliability estimates for the scales of X and

Y for each study. As Oswald et al. (2015) correctly argued, however, psychometric corrections may not be

entirely appropriate. As far as we are concerned, there are several caveats when using the disattenuation

formula for correcting measurement error. These caveats may have individual and/or combined influence



Meta-Analysis of Correlation Coefficients 5

on estimation of the mean effect size, which is the focal parameter in this study.

Caveat 1: The true scores of X and Y may be non-normal.

In many of the previous methodological studies about meta-analysis of correlations, the true scores

of X and Y are assumed to be normally distributed (e.g., Field, 2001, 2005; Hafdahl, 2010; Hall &

Brannick, 2002). In reality, the true scores of X and Y may be normal (e.g., intelligence) or non-normal

(e.g., depression). Lambert (1996) examined the influence of non-normality and dependency between

effect sizes on between-studies variance estimate and found that data distribution did influence the variance

estimate and therefore validity generalization result. Estimation and statistical inference of the mean effect

size may also be influenced by the distribution of the true scores as the commonly used interval estimates

and tests of the mean effect size are often based on the normality assumption (Sánchez-Meca &

Marín-Martínez, 2008). Furthermore, in practice, researchers of meta-analysis can not obtain correlations

based on true scores directly. With the use of measurement scales of X and Y , the underlying distribution

of true scores can interact with other factors to have influence on the results of meta-analysis of

correlations. In caveats 2 and 3, we will discuss other factors that can also impact estimation of the mean

correlation by themselves and/or interacting with the distribution of true scores.

Caveat 2: The assumption of linear association between the observed and true scores may be violated,

which can influence estimates of the individual corrected correlations.

In many cases, ordinal items are used for a scale. For example, educational or cognitive assessments

are often scored as binary responses (correct/incorrect); personality scales such as PANAS (Watson, Clark,

& Tellegen, 1988) consist of two 10-item scales to measure both positive and negative affects, with each

item rated on a 5-point scale of 1 (not at all) to 5 (very much). Assuming items on a scale measure a single

construct (i.e., unidimensionality),2 a continuous item is often times regarded as linearly associated with

the corresponding latent variable such that Itemj = λjT + ej (j = 1, ...J), where Itemj is the score for

item j on the scale of X or Y , λj is the coefficient of the true score T , or the factor loading under the

confirmatory factor analysis framework (Bollen, 1989), ej is the measurement error for item j, and J is the

number of items on the scale. Typically, it is assumed that T is independent of ej . Then, the scale score,
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such as the sum of item scores, is also linearly associated with the true scores:

J∑
j=1

Itemj = T
J∑
j=1

λj +
J∑
j=1

ej . (2)

The sum of measurement errors across items
∑J

j=1 ej is also independent of T . When T and
∑J

j=1 Itemj

(the scale score) are linearly associated and
∑J

j=1 ej is independent of T , the correction for attenuation

formula presented by Spearman (1904) holds.

Nevertheless, when items are ordinal, it is not legitimate to assume that the association between an

item and the corresponding latent variable is linear. Instead, as is shown by ample relevant research in the

latent variable modeling framework (e.g., Finney & DiStefano 2013; Flora & Curran 2004), a nonlinear

structural equation model should be used for depicting the relationship between each ordinal item and the

latent variable. Specifically, an underlying unobserved continuous variable Item∗
j together with C − 1

thresholds produce an observed ordinal item Itemj with C categories. For example, when a score of

Item∗
j is between τc−1 and τc, Itemj = c. In this case, it is legitimate to assume that Item∗

j instead of

Itemj is linearly associated with T , and thus the scale score
∑J

j=1 Itemj should not be linearly associated

with T , the true latent score. The correlation obtained using the scale scores with ordinal items (Itemj) is

usually smaller than that using the underlying continuous items (Item∗
j ) due to the loss of information by

categorizing Item∗
j .

When researchers are presented with a complete data set of ordinal item scores, approaches have

been provided to estimate the correlation between two latent variables of X and Y (e.g., for an excellent

comparison of the existing estimation methods, see Rhemtulla, Brosseau-Liard, & Savalei, 2012). For

researchers conducting meta-analysis, however, they probably do not have access to the original data. In

this latter case, if one wishes to correct for unreliability before synthesizing correlation coefficients, they

often refer to the disattenuation formula (Equation 1) presented earlier, which technically does not hold for

ordinal scales given the nonlinear relationship between the observed scale scores and the true scores. The

nonlinear relationship between each ordinal item and the latent construct also contributes to the next caveat

about the reliability estimate used for correcting measurement error.
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Caveat 3: Primary studies often report coefficient alpha as the estimated reliability without checking its

assumptions, which can make the corrected correlation inaccurate when some assumptions about alpha

are violated.

Reliability of the scale based on Equation 2 is

rel =
(
∑J

j=1 λj)
2var(T )

(
∑J

j=1 λj)
2var(T ) + var(

∑J
j=1 ej)

=
(
∑J

j=1 λj)
2var(T )

(
∑J

j=1 λj)
2var(T ) +

∑J
j=1 var(ej)

, (3)

where var(·) denotes variance. Equation 3 is also coefficient omega (McDonald, 1999).

It is worth emphasizing the assumptions about the scale for appropriately obtaining coefficient

omega: (1) items on the scale measure a single latent construct of interest (uni-dimensionality); (2) the

latent construct is the only common cause of the inter-item correlation, and thus error scores ej are

independent across items; and (3) as stated earlier, item scores are continuous and are linearly related with

the latent construct. When these assumptions are met for the scales of X and Y , we can replace relX and

relY with coefficient omega estimated under the confirmatory factor analysis framework (e.g., using R

package MBESS) in the correction for attenuation formula.

However, coefficient alpha (Cronbach, 1951) instead is still the most often reported measure of

reliability in social science studies. coefficient alpha is

α =
J2σ̄jj′

σ2
, (4)

where σ̄jj′ is the average covariance between item j and j
′

(j 6= j
′
), and σ2 is the variance of the scale

scores. One main reason why coefficient alpha is so popular is probably because its calculation is built in

almost all statistical software (e.g., SAS, SPSS, Stata, R, etc.).

To examine the current practice of meta-analyzing correlations, we did a literature review in five

major psychological journals between 2009 and 2019: the Journal of Personality and Social Psychology,

the Journal of Applied Psychology, the Journal of Consulting and Clinical Psychology, Health Psychology,
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and Developmental Psychology. In total 70 studies about meta-analysis of correlations were found. When

synthesizing individual correlations, 35 (50%) studies did not correct measurement error, and 9 (12.9%)

studies claimed that they corrected for measurement error but were not clear about how the correction was

done. Among the other studies that clearly stated reliability measures, more than 2/3 used coefficient alpha

for correcting measurement error.

Despite the popularity of coefficient alpha, many studies have commented on its limitations as a

measure of reliability (e.g., Graham, 2006; Green & Yang, 2009; Sijtsma, 2009). These limitations stem

from the potential violation of assumptions when alpha is used as a reliability estimate. The assumptions

for coefficient omega also apply for alpha. For example, common to both coefficient omega and alpha, with

ordinal scales, items cannot be assumed to be linearly related to the latent construct. Despite this, alpha is

still frequently reported as the reliability estimate with ordinal scales. Using it for correcting measurement

error is problematic due to the nonlinear relationship between items and the latent variable. In this case, the

reported alpha coefficient using Itemj (j = 1, ...J) is typically smaller than the reliability estimate using

Item∗
j .

3

Furthermore, coefficient alpha also requires that all items have the same linear relationship with the

latent construct, or tau-equivalence. This means that all λj’s are the same in Equation 2. By replacing λj

with λ (a constant) in Equation 3, coefficient omega reduces to coefficient alpha:

rel =
J2λ2var(T )

σ2
=
J2σ̄jj′

σ2
.

As demonstrated in Yang (2018), alpha is the lower bound of coefficient omega, provided that errors are

uncorrelated. Though appearing simpler, the tau-equivalence assumption is restrictive and likely to be

violated in practice. Thus, often times reliability is underestimated with continuous items. With ordinal

scales, reliability is also underestimated with the violation of tau-equivalence assumption. Furthermore,

variances and covariances of categorical item scores depend on the thresholds for discretization as well as

the underlying distribution of continuous item scores. For example, even when the variances and

covariances of the underlying continuous item scores are the same under normal and non-normal

distributions (thus alpha is the same), discretizing continuous items may change relative frequencies of
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item scores and/or ranks of participants in different ways with underlying normal and non-normal items.

Therefore, variances and covariances of categorical items and thus coefficient alpha are likely to differ as

well under different underlying item distributions. In turn, individual correlations corrected by alpha and

the meta-analyzed correlation would also be influenced.

For scales that are appropriately designed to measure a single construct, ideally the assumptions of

unidimensionality and uncorrelated errors are met. Individual correlation coefficient corrected for

attenuation may be influenced by non-normality of true scores, the nonlinear relationship between an

ordinal item and the latent construct, and violation of tau-equivalence when coefficient alpha is used as the

reliability estimate. Consequently the meta-analysis results should also be influenced. Therefore, in the

study, we aim to consider each of these caveats and their combined influence on meta-analysis of

correlations.

In the next section, we introduce two approaches to meta-analysis of correlations with correcting

measurement error. A series of simulation studies are then conducted to evaluate performance of the two

approaches. We end the article with discussion of the findings, recommendations, limitations, and future

directions.

Meta-Analysis of Correlations with the Correction of Measurement Error

When synthesizing correlations across a total of NS studies, two methods are commonly used. One

method uses raw correlations directly (Hunter & Schmidt, 2004), and the other method uses Fisher’s z

transformed scores (L. V. Hedges & Olkin, 1985; L. V. Hedges & Vevea, 1998). Two types of models can

be used for meta-analyzing correlations using either the raw or z transformed correlations: fixed-effects

models and random-effects models. Fixed-effects models assume the same true effects across studies,

whereas random-effects models assume that the true effect sizes differ across studies or a nonzero

between-studies variance. When the between-studies heterogeneity exists, ignoring it and fitting a

fixed-effects model can lead to inflated type I error rate of testing the mean effect size (e.g., Field, 2003;

Hunter & Schmidt, 2000). On the other hand, studies have shown that fitting a random-effects model when

effects are the same can still yield accurate mean effect estimates and inferences (e.g., Baird & Maxwell,

2016; Ke, Zhang, & Tong, 2019; Zhang, Wang, & Bergeman, 2018). In fact, the fixed-effects model is a
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special case of the random-effects model when the between-studies variance is zero. We focus on the mean

effect estimates and therefore adopt random-effects models throughout the study.

When using random-effects models, the between-studies variance needs to be estimated. Many

estimators of the between-studies variance have been proposed (e.g., the DerSimonian and Laird estimator,

the Hedges estimator, the Hunter and Schmidt estimator, and the maximum likelihood estimator;

DerSimonian & Laird 1986; Hunter & Schmidt 2004; L. V. Hedges 1983; Viechtbauer 2005). We choose

restricted maximum likelihood (REML) estimator, for it yields unbiased variance estimates when the

number of studies is large enough (Viechtbauer, 2005). Furthermore, REML is the default estimator in

some popular statistical software for meta-analysis (e.g., the package ’metafor’ in R; Viechtbauer,

2010). In each iteration when finding the REML estimate of the between-studies variance, a negative

estimate is set equal to zero (Veroniki et al., 2015). With the between-studies variance estimate, the

within-study sampling error variance estimate, and individual correlations across studies, the mean

correlation can be estimated. Details are to be shown using the raw and z transformed correlations

respectively.

Meta-analysis using raw correlations

When raw correlations are used in meta-analysis, denote the observed correlation from study i as roi

(i = 1, ...,NS). A meta-analysis model at the level of observed correlations is (Hunter & Schmidt, 2000)

roi = ρoi + eoi, (5)

where ρoi is the attenuated population correlation; eoi is the corresponding within-study sampling error for

study i with a mean of zero and a variance of σ2
ro,i. According to Hunter and Schmidt (2004), σ2

ro,i is

σ2
ro,i =

(1− ρ2
oi)

2

Ni − 1
, (6)

where Ni is the sample size in study i. In estimating σ2
ro,i, researchers recommended replacing ρoi with the

simple (unweighted) mean correlation averaged across studies: r̄o =
∑NS

i=1 roi/NS (Becker & Fahrbach,

1994; Furlow & Beretvas, 2005; Hafdahl, 2008). Thus, an estimated sampling error variance estimate
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without correction for measurement error is

σ̂2
ro,i =

(1− r̄2
o)

2

Ni − 1
. (7)

The correlation corrected for measurement error using Equation 1 is rci = roi/
√
relXirelY i,where relXi

and relY i are reliabilities for the scales of X and Y in study i. Therefore, the meta-analysis model at the

level of the corrected sample correlation rci is

rci = ρci + eci, (8)

where ρci = ρoi/
√
relXirelY i is the corrected population correlation and eci = eoi/

√
relXirelY i is the

corrected within-study sampling error for study i. The within-study sampling error variance eci is

σ2
rc,i =

σ2
ro,i

relXirelY i
. (9)

The estimated sampling error variance with the correction of measurement error is (Hunter & Schmidt,

2004)

σ̂2
rc,i =

σ̂2
ro,i

r̂elXir̂elY i
, (10)

where r̂elXi and r̂elY i are the estimated reliabilities of the scales for X and Y respectively in study i.

The between-studies model of the corrected population correlations is

ρci = ρ̄c + uci, (11)

where ρ̄c is the mean corrected population correlation and is the parameter of interest in this study. uci is

the deviation between ρci and ρ̄c. Let τ2
c be the between-studies variance of ρci, or the variance of uci.

When τ2
c = 0 or > 0, ρci across studies are fixed (and equal to ρ̄c) or random across studies, respectively.

When raw correlations are used in meta-analysis, estimation of ρ̄c takes two steps (Raudenbush,

2009). In the first step, the between-studies variance is estimated using REML. REML aims to obtain an
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unbiased estimate of τ2
c by defining the likelihood on residuals. Specifically, it is assumed that the residuals

eci and uci from Equations 8 and 11 follow normal distributions with means of zero and variances of σ2
rc,i

and τ2
c respectively. σ2

rc,i is estimated by σ̂2
rc,i, and therefore τ2

c is the only parameter to be estimated under

REML (see e.g., Raudenbush, 2009 for details). In practice, the normality assumption of residuals might be

violated, for example when ρ̄c is relatively large. In the study, we will examine the performance of

meta-analysis of raw correlations using REML for estimating τ2
c when ρ̄c ranges from null to large such

that the normality assumption is potentially violated under certain conditions.

In the second step, the Weighted Least Squares (WLS) estimate 4 for ρ̄c (denoted by ˆ̄ρc) is obtained

(e.g., under the R package metafor; Viechtbauer, 2010):

ˆ̄ρc =

∑NS
i=1(σ̂2

rc,i + τ̂2
c )−1rci∑NS

i=1(σ̂2
rc,i + τ̂2

c )−1
. (12)

One commonly used standard error estimate of ˆ̄ρc is (L. V. Hedges & Vevea, 1998)

se(ˆ̄ρc) =

√
1∑NS

i=1(σ̂2
rc,i + τ̂2

c )−1
. (13)

Therefore, a 95% confidence interval of ρ̄c is: ˆ̄ρc − 1.96se(ˆ̄ρc) ≤ ρ̄c ≤ ˆ̄ρc + 1.96se(ˆ̄ρc),which can be used

for statistically inferring the mean effect size.5

We term meta-analysis using the raw correlations as an “r-based” approach.

Meta-analysis using Fisher’s z transformed scores

Alternatively, each individually corrected correlation rci is transformed into a Fisher’s z score using

zrc,i =
1

2
ln(

1 + rci
1− rci

) = tanh−1(rci). (14)

A meta-analysis model with Fisher’s z transformed correlations is

zrc,i = zρc,i + ezrc,i,

zρc,i = z̄ρc + uzρc,i. (15)



Meta-Analysis of Correlation Coefficients 13

With bi-variate normally distributed X and Y scores, zrc,i is approximately normally distributed with a

mean of zρc,i = tanh−1(ρci), where ρci is the population correlation coefficient, and a within-study

sampling error variance σ2
zc,i. When there is no measurement error in either the X or Y scales, the

asymptotic within-study sampling error variance for the Fisher’s z transformed correlation in study i is

σ2
z,i = (

1√
Ni − 3

)2. (16)

In comparison to the r-based approach, σ2
z,i enjoys the property that it is invariant over population effect

sizes. When using the disattenuated raw correlations for obtaining the Fisher’s z transformed correlations,

however, asymptotically Equation 16 is no longer the sampling error variance. To the best of my

knowledge, however, correcting sampling error variance with z transformed disattenuated correlations has

not been thoroughly examined.6 Therefore, in order to provide cautions when conducting meta-analysis

using the Fisher’s z transformed corrected raw correlations, we will first examine whether using σ2
z,i could

be problematic; then we will discuss a proposed approach to correcting sampling error variance with the z

transformed disattenuated correlations in the Discussion section. Using either Equation 16 or the proposed

approach, we denote in general the estimated within-study error variance of zrc,i as σ̂2
zc,i.

Let τ2
zc be the between-studies variance of zρc,i, or the variance of uzρc,i. When τ2

zc = 0 or > 0, zρc,i

(or ρci) are fixed or random across studies respectively. Similar to the r-based approach, the

between-studies variance needs to be estimated in order to estimate the mean effect size. REML is used

again with assuming residuals ezrc,i and uzρc,i are normal. With REML estimate of τ2
zc (denoted by τ̂2

zc),

the estimated within-study error variance σ̂2
zc,i, and zrc,i, the WLS estimate of z̄ρc (denoted by ˆ̄zρc) is

ˆ̄zρc =

∑NS
i=1(σ̂2

zc,i + τ̂2
zc)

−1zrc,i∑NS
i=1(σ̂2

zc,i + τ̂2
zc)

−1
. (17)

A commonly used standard error of ˆ̄zρc is (L. V. Hedges & Vevea, 1998)

se(ˆ̄zρc) =

√
1∑NS

i=1(σ̂2
zc,i + τ̂2

zc)
−1
. (18)
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Therefore, a 95% confidence interval of z̄ρc is ˆ̄zρc − 1.96se(ˆ̄zρc) ≤ z̄ρc ≤ ˆ̄zρc + 1.96se(ˆ̄zρc). Denote the

lower and upper limits as ˆ̄zρcL and ˆ̄zρcU respectively.

To transform the synthesized z score (ˆ̄zρc) back to the raw correlation metric, first we have

rTc = (e2ˆ̄zρc − 1)/(e2ˆ̄zρc + 1) = tanh(ˆ̄zρc), the inverse of Fisher’s z transformation of ˆ̄zρc. Similarly, we

have rTcL=tanh(ˆ̄zρcL) and rTcU=tanh(ˆ̄zρcU ), the inverse of Fisher’s z transformation for the lower and

upper limits of the 95% confidence interval of z̄ρc. rTc and the confidence interval [rTcL, rTcU ] have been

found to yield a biased estimate and a relatively low coverage rate of the mean effect size, particularly

when the population mean effect size and/or the between-studies variance are large (Hafdahl, 2010).

Researchers have recommended alternative ways to obtain more accurate mean effect size and its

confidence interval estimates when transforming back to the r metric (e.g., integral of z-to-r

transformation, Taylor series methods; Hafdahl, 2009, 2010; Law, 1995). In the study, we use the mean

effect size estimate developed based on Taylor series approximation of the tanh function (see Equations

12-14 and Appendix of Law, 1995 for technical details):

m̂ρc = rTc[1 + (r2
Tc − 1)τ̂2

zc]. (19)

The 95% confidence interval of ρ̄c is obtained as [m̂ρcL, m̂ρcU ], where m̂ρcL = rTcL[1 + (r2
TcL − 1)τ̂2

zc]

and m̂ρcU = rTcU [1 + (r2
TcU − 1)τ̂2

zc]. We term meta-analysis using Fisher’s z transformed scores as a

“z-based” approach.

It is worth emphasizing that the two approaches assume that (1) X and Y scores are bi-variate

normally distributed for each study; (2) the true scores and observed scores of X and Y are linearly

associated so that the disattenuation formula is justifiable (Equation 1); and (3) the reliability estimate used

for correcting measurement error is accurate. The estimated mean effect size, however, can be influenced

with potential violation of the normality assumption for the true scores of X or Y , use of ordinal items so

that the association of the true and observed scores may no longer be linear, and/or the use of coefficient

alpha as the reliability estimate with potential violation of its assumptions. Based on our knowledge, no

studies have examined performance of meta-analysis approaches using the raw and Fisher’s z transformed

correlations considering together these potential violations of assumptions.
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Furthermore, one can also examine whether individual correlations across studies are homogeneous.

A traditional test of homogeneity is to use Cochran’s Q-test (L. V. Hedges & Olkin, 1985) based on either

the raw or z transformed correlations. The Q statistic asymptotically follows a chi-square distribution with

NS-1 degrees of freedom (L. V. Hedges & Olkin, 1985; L. V. Hedges & Vevea, 1998; Rosenthal, 1991). Q

statistics have been criticized in general of being too conservative when the sample sizes across studies

and/or the total number of studies NS are small, and conversely too liberal when the sample sizes across

studies and/or the total number of studies NS are large (Higgins, Thompson, Deeks, & Altman, 2003). In a

study comparing performance of different approaches to testing homogeneity among various effect sizes,

however, Viechtbauer (2007) found that when Fisher’s z transformed correlations are used, the Q statistic

is not sensitive to the sample sizes across studies or the number of studies and could well control the type I

error rates. Note that this finding is based on correlations with no measurement error, and no studies have

been done regarding homogeneity test considering the above-mentioned caveats. To fill the research gap,

we conduct a series of Monte Carlo simulation studies.

Simulation Studies

Three simulation studies were conducted in sequence to explore potential influence from the

aforementioned caveats. For these simulation studies, we evaluated the two meta-analysis approaches in

terms of estimation accuracy of the mean correlation estimate using raw bias, empirical coverage

probability of the mean effect size (proportion of confidence intervals covering the true average effect size

across replications), and homogeneity test result.

Simulation study 1: Investigating influence of the true score distribution only on mean correlation estimate

and inference

In simulation study 1, we first examined whether the distribution of true scores for X and Y can

influence mean effect size estimate and inference. Therefore, both normal and non-normal true scores

underlying items of a scale were considered together with factors including effect size, number of studies,

and average sample size. In this simulation study, the influence of measurement error or discretization of

continuous items was not considered yet.
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Distribution of the true scores. For generating true scores in study i, we used the following approach:

xti = ω1i, and

yti = ρiω1i +
√

1− ρ2
iω2i,

where xti and yti are the true scores of X and Y in study i, and ω1i and ω2i are independent standardized

random variables. The true correlation between X and Y is therefore ρi. For generating normal true scores,

ω1i and ω2i followed a standard normal distribution. For generating non-normal true scores, data were first

generated from a chi-square distribution with one degree of freedom and then standardized to obtain ω1i

and ω2i with a skewness of 2.8 and an excess kurtosis of 12.7

Effect size and between-studies variability. Based on Cohen (1988), four levels of average

population correlation (ρ̄) were included: 0, .1, .3, .5, ranging from zero to large effect sizes. When

correlations were fixed in the population, generated sample correlations contain sampling variability only.

In contrast, when correlations were random in the population, in addition to sampling variability, sample

correlations also contained between-studies variability.

When correlations were heterogeneous, we generated a random super-population as a normal

distribution of z scores with an average Fisher’s z transformed correlation z̄ρ, and a standard deviation (τz).

We fixed τz at .16, a frequently reported and relatively large between-studies variability of correlations

based on a review in Field (2005). In obtaining the population z̄ρ, the Taylor series method discussed in

Hafdahl (2010) and Law (1995) was again used. Specifically, at the population level, the Taylor series

method of transforming from z̄ρ to the mean correlation is ρ̄ .
= ρT [1 + (ρ2

T − 1)τ2
z ], where ρT = tanh(z̄ρ).

Given this relationship as well as population values of ρ̄ and τz , we can find solutions for z̄ρ numerically. In

particular, when ρ̄ = 0, .1, .3, .5, the corresponding z̄ρ= 0, .103, .317, and .562 respectively. Each generated

individual score zi was transformed to the raw correlation metric using ρi= tanh(zi) as the population

correlation for study i.

Number of studies. The number of studies NS had the following three values: 5, 20, and 50, from

small to relatively large.
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Average sample size across studies. The sample sizes in individual studies of a meta-analysis are

usually different. Positively skewed distributions of sample sizes were generated because in the literature

of meta-analyzing correlations there can be a few studies with large sample sizes. Therefore, the same as

Hafdahl (2010), we set Ni (i = 1, ...,NS) to the nearest integer of [(χ2
3,i − 3)/

√
2× 3](N̄/2) + N̄ , where

χ2
3,i is a random number generated from a chi-square distribution with three degrees of freedom. Generated

Ni’s are positively skewed with an average of N̄ and a variance of (N̄/2)2. Four levels of N̄ were

considered: 30, 50, 100, and 200. These average sample sizes were selected to be close to the sizes in a

single study for detecting large, medium, and small correlations with a power of .8 (Cohen, 1988),

following the same reason as Field (2001) and Field (2005). Furthermore, in each replicated data set under

a certain condition the same set of sample sizes were used. This is consistent with the frequentist inference

in meta-analysis of correlations (see also e.g., Bonett, 2008; Hafdahl, 2010). In each condition, whenever

the generated sample size was less than 3 (very rarely happened even given the smallest N̄ = 30), it was

discarded until a total of NS sample sizes were generated.

We would like to emphasize that when correlations differ across studies in the population, the

proportion of between-studies variance (the ratio of the between-studies variance to the sum of the

between-studies variance and the actual within-study sampling error variance, which is similar to the I2

index of heterogeneity; Higgins et al., 2003) under the r-based approach and the z-based approach can be

different. Specifically, for the r-based approach, the actual within-study sampling error variance is

dependent on both the population effect size and the sample size in a study (Hunter & Schmidt, 2004,

Equation 3.4). Furthermore, when using the true scores of X and Y that are normally distributed, based on

Equation 14 in Law (1995), the between-studies variance for the raw correlations is approximately .026,

.025, 0.021, and .014 with population mean correlations of 0, .1, .3, and .5 respectively and τz = .16; in

contrast, for the z-based approach, the within-study sampling error variance is solely dependent on Ni, and

the between-studies variance is .162. Therefore, it seems necessary to examine the typical proportion of

between-studies variance for both the r-based and z-based approaches.

Based on normally distributed true scores of X and Y , given τz = .16 and various levels of NS, N̄

and ρ̄, each cell in table 1 shows the mean percentage of the between-studies variance averaged across
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studies and over 1000 replications considering variation in generating ρi. As can be seen from the table, as

N̄ increased, the proportion of between-studies variance increased for both approaches; moreover, the

proportion tends to be slightly smaller under the z-based approach than for the r-based approach given a

certain NS and N̄ .

—Insert table 1 here—

Number of items per scale and corresponding reliability. Levels of the number of items per scale

included 4 and 12. This allows us to examine influence of the length of the scale on meta-analysis of

correlations. Observed continuous item scores were generated using a two-factor confirmatory factor

analysis model, each factor with J items. For each study i, the factor scores were the true scores xti and

yti, and the correlation between the two factors was the true correlation ρi. We used a fixed factor loading

of .6 and measurement error variance of .55 for each item of scales measuring X and Y (standardized

factor loading is .63).8 Therefore, based on Equation 3, the true reliability when J = 4 and 12 was .72 and

.89 respectively.

For the r-based approach, the model in Equation 5 was used and the sampling error variance was

estimated using Equation 7. For the z-based approach, z transformed uncorrected correlations replaced

zrc,i in Equation 15 and the sampling error variance was obtained using Equation 16. All other steps were

essentially the same as those described under the two approaches in the previous section except that

uncorrected instead of corrected raw or z-transformed correlations were used. For examining influence of

the true score distributions, the obtained mean correlation estimates and coverage probabilities were

compared to ρ̄o = ρ̄
√
relXrelY , where relX and relY are the true reliabilities for X and Y and ρ̄ is the

nominal population mean effect size specified earlier.

The above-mentioned factors were cross-tabulated to generate 384 conditions in total. For each

condition, 1000 data sets were generated. To evaluate estimation accuracy, we used raw bias which is

defined as (
∑1000

k=1 r̄ok)/1000− ρ̄o, where r̄ok is the estimated ρ̄o in replication k. In addition, the 95%

coverage probability (CP) of ρ̄o was computed as the proportion of replications with estimated intervals

covering the true value. Reasonable empirical CPs should be between .925 and .975 (Bradley, 1978).
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Simulation study 1 results. Table 2 contains results about raw bias and CPs when the number of

items per scale was 4. We selected the conditions when ρ̄ = 0 and .5 (ρ̄o = 0 and .445) for discussion. For

the generated 1000 data sets in every condition, the convergence rates for REML under both the r-based

and z-based approaches were greater than 99% and only the converged results were used for result

summary. When correlations were homogeneous across studies, coverage rates of ρ̄ were in general close

to the acceptable range of [.925, .975] for both zero and nonzero effect sizes. A few exceptions occurred

with small NS and large N̄ or large NS and small N̄ for the r-based approach. When correlations were

heterogeneous across studies, coverage rates lower than .925 were mostly found when NS=5 for both the

r-based and z-based approaches and under the r-based approach when the true scores were skewed with

large NS and small N̄ .

Comparing the r-based and z-based approaches, the former had less accurate estimates of ρ̄ and

lower coverage rates when ρ̄ was large, NS was large and N̄ was small (e.g., ρ̄ = .5, NS=50, and N̄ = 30).

The difference of bias and coverage rates between the two approaches decreased a bit when the number of

items per scale increased to 12 (A table of results can be found in the supplemental materials). Patterns of

results when ρ̄ = .1 and .3 were similar to the condition when ρ̄ = 0 and therefore were not presented.

—Insert table 2 here—

Simulation study 2: Investigating consequences of using coefficient alpha for correcting measurement error

when the tau-equivalence assumption is violated

Following simulation study 1, in simulation study 2, we mainly examined the influence of

tau-equivalence violation when coefficient alpha was used for correcting measurement error. All conditions

from simulation study 1 were still used in simulation study 2. In addition, in parallel to the condition that

factor loadings were the same, or tau-equivalence was satisfied, we also considered the situation that factor

loadings were not the same, or the tau-equivalence assumption was violated. Specifically, for a scale

measuring X or Y , half of the items had a loading of .3 and a measurement error variance of .91, and the

other half had a loading of .9 and a measurement error variance of .19. This results in standardized factor

loadings of .3 and .9 respectively, corresponding to relatively small and large sizes. The two sets of factor

loadings and measurement error variances described in simulation studies 1 and 2 were selected such that
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reliabilities remained the same. It is expected that when the tau-equivalence assumption is violated, a

relatively short scale tends to result in relatively large bias of reliability estimated by coefficient alpha

(Graham, 2006; Yang, 2018).

The number of conditions in study 2 increased to be 768. For each replicated data set, an observed

correlation for X and Y was computed based on the scale scores of X and Y . A corrected correlation

coefficient was obtained using Equation 1 with coefficient alpha as the reliability estimate for both scales of

X and Y . In a replicated data set, for each given Ni, when the computed coefficient alpha was outside the

range of (0, 1), standard deviations of the scale scores were zero, and/or the corrected correlation

coefficient was outside the range of (-1, 1), the corresponding data set was discarded and a new one was

generated until NS studies were reached.9 Estimates and coverage probabilities were compared to the true

nominal ρ̄. For the generated 1000 data sets in every condition, the convergence rates for REML under

both the r-based and z-based approaches were greater than 99% and only the converged results were used

for result summary.

Estimation accuracy of ρ̄ and coverage probability when the tau-equivalence assumption is met.

When tau-equivalence was satisfied and the number of items per scale J = 4, under the homogeneous case

for the r-based approach (table 3), bias was close to zero across all conditions; CPs were generally in the

reasonable range. Under the heterogeneous case for the r-based approach, the conditions when ρ̄ was large

with skewed true scores or when NS=5 tended to yield coverage rates under 92.5%; when increasing the

number of items per scale, coverage rates slightly improved under these situations (see supplemental

materials).

For the z-based approach, bias was generally comparable to that under the r-based approach and was

slightly greater when NS=5 and N̄ = 30 for large ρ̄. In comparison to the r-based approach, CPs tended to

be smaller than 92.5% under both the homogeneous and heterogeneous cases when NS=5. When J = 12,

CPs mostly increased to be within the range of [92.5%, 97.5%] with ρ̄ ≤ .3 under the homogeneous case;

however, CPs were still mostly lower than 92.5% for the heterogeneous case (see supplemental materials).

Therefore, with the correction of measurement error using coefficient alpha, when the

tau-equivalence assumption was met, the two approaches did not have substantial bias. CPs of the r-based
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approach were relatively low when the number of items was small, ρ̄ was large, true scores were skewed

and NS was small; CPs of the z-based approach tended to be low when NS was small. The z-based

approach using Equation 16 as the estimated within-study sampling variance did not have substantial

impact on the estimates and inferences of the mean effect size provided large enough NS.

—Insert table 3 here—

—Insert table 4 here—

Estimation accuracy of ρ̄ and coverage probability when the tau-equivalence assumption is not met.

When tau-equivalence was not satisfied, both the r-based and z-based approaches deteriorated from the

conditions with meeting the tau-equivalence assumption. Specifically, both approaches generally yielded

positive bias when ρ̄ 6= 0. In terms of CPs, there are several common findings for the two approaches: (1)

CPs were lower than those with meeting the tau-equivalence assumption; (2) as ρ̄ increased, CPs tended to

decrease; (3) as NS and N̄ increased, CPs tended to decrease for medium to large ρ̄. For example, CPs

were close to zero when tau-equivalence was violated, effect sizes were homogeneous, J = 4, ρ̄ = .5,

N̄ = 200, and NS=50 (table 5). Findings (2) and (3) were probably because ρ̄ was biased when it was

nonzero. Bias decreased and CPs increased when the number of items increased. CPs when ρ̄ was medium

to large and/or NS = 5, however, can still be below .925 in many conditions. Furthermore, for the r-based

approach, under the homogeneous case bias tended to be larger and CPs tended to be lower when true

scores were skewed than when they were normal with medium to large ρ̄; this pattern is clearer when

J = 12 than when J = 4. Detailed results about the r-based approach can be found in tables 5 and 6.

Details about the z-based approach can be found in the supplemental materials.

—Insert table 5 here—

—Insert table 6 here—

Type I error rate of the homogeneity test. We focus on reporting the type I error rate instead of power

for the homogeneity test of effect sizes (i.e., when they were fixed in the population). This is because the

statistical power of the homogeneity test depends on the size of heterogeneity, which was not manipulated

in this study as we focus primarily on estimating the mean effect size.

Type I error rate in the range of [.025, .075] is deemed reasonable (Bradley, 1978). For the r-based
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approach, when true scores were normal, results showed that the type I error rates were in general

reasonable when NS=5; type I error rates tended to be smaller when NS increased to 50. When the true

scores were skewed, type I error rates were dependent on ρ̄, J , NS and N̄ . In particular, when ρ̄, J , NS

and/or N̄ increased, type I error rates tended to increase. For example, when ρ̄ = .5, J = 12, NS=50 and

N̄ = 200, the type I error rate was .905 (table 7). Meeting or violating tau-equivalence seemed not to have

as much influence on type I error rates of the homogeneity test.

In contrast, for the z-based approach, type I error rates were in general inflated across conditions. As

NS increased, inflation of type I error rate became more serious. We use the situation when ρ̄ = 0 and

NS=5 and 50 for illustration (figure 2). For instance, when ρ̄ = 0 and NS=50, the type I error rates of

homogeneity test were all 1 when the true scores were skewed across all other conditions. Type I error rates

using the z-based approach under other conditions were not better. This indicates that using Equation 16 as

the estimated within-study sampling error variance for the z-based approach seems to be problematic for

the homogeneity test.

—Insert figure 1 here—

—Insert table 7 here—

—Insert figure 2 here—

Simulation study 3: Investigating the influence of coarse categorization on mean correlation estimates

when coefficient alpha is used for correcting measurement error

In simulation study 3, we examined the influence of coarse categorization. In order to highlight its

impact, we selected the most ideal situation among those used in the former two studies in terms of J , N̄ ,

and NS. In particular, J = 12, N̄ = 200, and NS=50. Two item categories were used: 2 and 5.

Furthermore, we considered both symmetric and asymmetric ordinal items scores. For generating

symmetric items, with 2 categories, the cutoff was the 50th percentile (skewness = 0, excess kurtosis =

-2);10 with 5 categories, the cutoffs were the 10th, 30th, 70th, and 90th percentiles (skewness = 0, excess

kurtosis = -.5). For generating asymmetric items, with 2 categories, the cutoff was the 80th percentile

(skewness = 1.50, excess kurtosis = .25); with 5 categories, the cutoffs were the 40th, 65th, 85th, and 95th

percentiles (skewness = .76, excess kurtosis = -.41). Item distributions under 2 and 5 categories are shown
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in Figure 3.

—Insert figure 3 here—

In practice, items on the same scale can have similar or different distributions. Therefore, four

scenarios were included: (1) All the items were symmetric as in Figure 3a; (2) All the items were right

skewed as in Figure 3b; (3) Half of the items were symmetric as in Figure 3a and the other half were right

skewed as in Figure 3b; (4) Half of the items were right skewed as in Figure 3b, and the other half were

mirror symmetric to the distributions in Figure 3b (right skewed becoming left skewed with the same

kurtosis yet opposite skewness). The last scenario mimicked the case that the distribution of scale scores is

symmetric although the item scores are not. Distributions of the scale scores under the four scenarios are

shown in Figure 4 with 2-category items and Figure 5 with 5-category items.

—Insert figure 4 here—

—Insert figure 5 here—

Therefore, there were 2 types of item categories and 4 types of distribution combinations for the

categorical items. Other conditions included ρ̄= 0, .1, .3, and .5, two levels of between-studies variance and

tau-equivalence status, which were specified in the same way as in simulation study 2 to generate the

underlying continuous items. All these conditions were cross-tabulated for generating data. In total, there

are 64 conditions. Under a certain condition, the cutoff values mentioned above were applied to the

generated continuous item scores in each primary study of a replicated data set. Estimates and coverage

probabilities were compared to the true nominal ρ̄.

Estimation accuracy of ρ̄ and coverage probability. With 2-category items, even when

tau-equivalence was met, coverage rates can be very low. For example, even under the condition that all the

items were symmetric, having a skewed true score distribution can yield coverage probabilities of less than

5% under both the r-based and z-based approaches (e.g., ρ̄ = .3 and effect sizes were homogeneous; table

8). When tau-equivalence was not met, in general bias increased in magnitude comparing to those under

tau-equivalence holding constant other factors. It is worth mentioning that under the situation when the

scale scores were symmetric (when all the items were symmetric or a half were left skewed and the other

half were right skewed), a situation that many researchers believe to be relatively better than having
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asymmetrically distributed scale scores (Micceri, 1989), the mean correlation can be much overestimated

and the coverage probability can be close to or equal to zero. For example, with the correction of

measurement error using coefficient alpha, when ρ̄ = .3 and the true scores were skewed, the bias was .078

and .116 and the coverage probabilities were .001 and 0 when all the items were symmetric and when a

half were left skewed and the other half were right skewed respectively.

When the true scores were normal, increasing the number of categories to 5 helped improve

estimation accuracy and coverage probabilities a lot with or without tau-equivalence. When the true scores

were skewed, however, most of the CPs were still not in the acceptable range with 5 categories with or

without meeting tau-equivalence (table 9).

—Insert table 8 here—

—Insert table 9 here—

Type I error rate of the homogeneity test. Type I error rates using the r-based approach were

presented (table 10). For the z-based approach, with coarsely categorized items, type I error rates were still

seriously inflated and not better than those with continuous items (see figure 2). When tau-equivalence was

met and the true scores were normal, type I error rates were in general reasonable with 5-category items;

with 2-category items, type I error rates were inflated when these items were right skewed and ρ̄ 6= 0.

When tau-equivalence was met, inflation of type I error rates occurred more frequently when the true

scores were skewed than when they were normal.

When true scores were normal, comparing the condition when tau-equivalence was not met to that

when tau-equivalence was met, type I error rates generally increased. When the true scores were skewed,

type I error rates tended to be inflated when ρ̄ was medium to large.

Thus, with categorical items, performance of type I error rates depended on the number of categories

of an item, the distribution of observed data, the distribution of true scores and whether tau-equivalence

was met.

—Insert table 10 here—
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Discussion

The paper examined meta-analysis approaches using raw correlations and Fisher’s z transformed

correlations (r- and z-based approaches) when individual correlations were obtained using scale scores.

The focal parameter of interest in the study is the mean correlation. Random-effects models were adopted

for both approaches. Restricted maximum likelihood (REML) estimation was used for estimating the

between-studies variance, followed by weighted least squares (WLS) estimation of the mean effect size.

Three simulation studies were conducted. The first study concerns the impact of true score distribution

only, the second study investigates the impact of violating the tau-equivalence assumption when using

coefficient alpha for correcting measurement error, and the third one examines the influence of

discretization of continuous items and how it interacts with the distribution of true scores and violation of

tau-equivalence. In the first simulation study, mean effect size estimate obtained using uncorrected

correlations was compared to the true attenuated population mean correlation; in the second and third

simulation studies, mean effect size estimate obtained using correlations corrected by coefficient alpha was

compared to the population mean effect size under perfect measurement. R code for data generation can be

found at https://github.com/qzhang4/metacorr.

Summary of findings

Based on the simulation study results, there are several findings. First, considering the distribution of

true scores only, skewed scores made the mean effect size estimate and inference less accurate especially

when ρ̄ was large. Second, although researchers often use coefficient alpha as the reliability estimate to

correct measurement error, violation of tau-equivalence can result in low coverage and upward bias.

Coverage probabilities tended to be lower and bias tended to be greater in magnitude as the population

mean effect size increased. Third, when observed correlations were corrected using coefficient alpha, the

r-based approach and the z-based approach had less accurate estimates and lower coverage probabilities

when tau-equivalence was not satisfied than when it was satisfied. The homogeneity test result depends on

true score distribution. In addition, the r-based approach had better controlled type I error rate than the

z-based approach under each of the considered conditions. Fourth, discretization of continuous items
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interacted with the distribution of the true scores to influence mean effect size estimates and coverage

probabilities. Specifically, when the true scores were normal, results can improve a lot with increasing the

number of categories with tau-equivalence met or not; in contrast, when the true scores were skewed,

increasing the number of categories did not improve results much with violation of tau-equivalence.

Coverage probability of the true mean effect size can be very close to or equal to zero with skewed true

scores, even when ordinal scale scores were symmetric.

We would like to emphasize that the conclusions above were made under specific estimation

approaches. For example, Equation 16 was used for estimating the sampling error variance of the Fisher’s z

transformed corrected and uncorrected raw correlations; REML is used for estimating the between-studies

variance. When one or more of the estimation approaches are changed, we expect to see some differences

in the results. However, the negative impact of using coefficient alpha with violation of tau-equivalency

and of discretizing continuous items should still hold.

Recommendations based on the findings

Based on the findings, several recommendations are made with respect to factors considered in the

simulation studies. These recommendations are made for researchers of primary studies and meta-analysts.

Advice to researchers of primary studies to facilitate meta-analysis of correlations. Extending from

former research on meta-analyzing correlations with normal true scores (e.g., Field, 2001, 2005; Hafdahl,

2010; Hall & Brannick, 2002), the study found that the distribution of the true scores played a key role in

accuracy of the average correlation when ordinal scales are used for measuring X and Y . Therefore, for

researchers of primary studies, we suggest careful examination of the theoretical distribution of the

underlying constructs when meta-analyzing correlations obtained from ordinal scales. For example,

Micceri (1989) showed based on 440 achievement/ability, criterion/mastery, and psychometric measures

with sufficiently large samples (most of them were greater than 450) that more than 80% of the measures

deviated from normality and were asymmetric. Therefore, it is critical not to ignore the influence of

underlying distributions of X and Y on individual correlation estimates across primary studies, in

particular when ordinal scales are used. Information about the theoretical distribution of psychological
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constructs can be based on substantive theory or findings from prior studies in the same field. Moreover, a

tutorial of using statistical software (e.g., SAS, SPSS, R) and a web application to compute skewness and

kurtosis can be found in Cain, Zhang, and Yuan (2016). With these statistical tools, we encourage

researchers of primary studies to report skewness and kurtosis in addition to other descriptive statistics

such as means and variances to have a clear description about the distribution of interested variables.

We would like to also emphasize that all the conclusions in this study rests on validity, which is not

less important than the issue of reliability in psychological and educational measurement. By employing a

modern test theory model (e.g., confirmatory factor analysis, or CFA model), one can examine the structure

of constructs and validity provided large enough sample sizes (Borsboom & Mellenbergh, 2002).

Specifically, only when it is found that unidimensional models fit the scales of X and Y can one use a

single correlation to depict their linear association. Meanwhile, employing the CFA model also allows

examination of tau-equivalence. With a large enough sample size (e.g., ≥ 100; Rhemtulla et al., 2012), we

strongly encourage researchers of primary studies to evaluate tau-equivalence (e.g., using a CFA model,

loadings should be equal or approximately equal) especially when the number of categories per item is

small (e.g., 2), number of items per scale is small and/or the theoretical true scores are asymmetric.

Selection of approaches of fitting CFA models with symmetric/asymmetric categorical item scores and true

scores are discussed in Rhemtulla et al. (2012) in detail. Reporting of model fit and model parameters (e.g.,

factor loadings and error variances) under CFA models would be helpful for meta-analysis researchers to

evaluate the quality of measurement of the scales and to accurately correct measurement error. For

example, with provided factor loading and error variance estimates meta-analysts can use coefficient

omega that relaxes the tau-equivalence assumption as an alternative to coefficient alpha for estimating

reliability (McDonald, 1999).

Recommendations to meta-analysis researchers. For meta-analysts, we give the following

cautions/recommendations when meta-analyzing correlations. The tau-equivalence assumption is

important when using coefficient alpha as the reliability estimate. When tau-equivalence is violated,

reliability estimated using coefficient alpha and thus the corrected individual correlations are influenced.

With a relatively small number of continuous items (e.g., 4) per scale, violation of tau-equivalence alone
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typically resulted in an overestimated mean correlation and a low coverage probability when the mean

population correlation is nonzero; when the number of items is large enough (e.g., ≥12), the estimated

mean correlation becomes more accurate and coverage rate would increase. For the latter case, however,

coverage probability with large effect sizes on average still tended to be lower than 90%. Therefore, no

matter tau-equivalence is met or not, when the primary studies have continuous items and large enough

numbers of items per scale (e.g., >12), meta-analyzing correlations that are corrected by coefficient alpha

typically results in reasonably accurate mean effect size estimates and inferences when the mean effect

sizes range from zero to medium and scores are close to normality. With ordinal scales, we found that the

situation with a null to medium mean effect size, a relatively large number of categories per item (e.g., 5),

large enough number of items (e.g., 12) and normal true scores generally yielded estimated mean effect

size with bias close to zero and relatively stable coverage probabilities in the nominal range with all kinds

of item distributions considered. This conclusion regarding ordinal scales holds no matter tau-equivalence

is met or not. Therefore, meta-analysts using ordinal scales need not worry too much about violation of

tau-equivalence in this situation.

A proposed approach to correcting sampling error variance using Fisher’s z transformed correlations

In the paper, we used the z-based approach with Equation (16) as the sampling error variance. It has

been found in the study, however, that this z-based approach had inflated type I error rate of the

homogeneity test. There are some discussions regarding correcting measurement error with Fisher’s z

transformed correlations (e.g., Hall & Brannick, 2002; L. Hedges, 1988), yet little about correcting the

sampling error variance. In light of the study by Bonett (2008), we derived a formula to correct the

sampling error variance of zrc,i in each study by using the delta method (Casella & Berger, 2002) based on

the relation zrc,i = tanh−1(rci) and the estimated sampling error variance of rci:

σ̆2
zc,i =

1

(1− r2
ci)

2
σ̂2
rc,i, (20)

where rci is the raw correlation in study i corrected for measurement error and σ̂2
rc,i is from Equation 10. In

practice, however, when rci is close to 1 or -1, σ̆2
zc,i corresponding to this rci can be huge. This may result
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in unstable estimation. Therefore, another formula to correct the sampling error variance is proposed as:

σ̃2
zc,i =

1

(1− r̄2
c )

2
σ̂2
rc,i, (21)

where r̄c =
∑NS

i=1 rci/NS is the simple mean of the corrected correlations across studies. A small

simulation was conducted to examine performance of the z-based approach using Equations 20 and 21 to

obtain sampling error variance estimates with measurement error. We considered the scenario when NS =

50, number of items per scale J = 12, and true scores were normal. Continuous items were simulated

without discretization. Other factors were the same as those used in simulation study 2.

In each replication, results in which the ratio of the the largest to the smallest corrected sampling

error variance across primary studies that was greater than 1000 were discarded. Across conditions, the

largest rate of having such data was 11.6% and 0.5% using Equations 20 and 21, respectively. In terms of

estimation accuracy and coverage probability, the z-based approach using Equation 21 had more accurate

mean effect size estimates and reasonable coverage probabilities than that using Equation 20 in general

with or without meeting tau-equivalence; this approach had results close to the r-based approach for most

conditions yet slightly worse when ρ̄ ≥ .3 and tau-equivalence was violated (see table 6).

In terms of the homogeneity test, it was found that the z-based approach using Equation 20 tended to

be very conservative (type I error rates close to or equal to 0); in contrast, the z-based approach using

Equation 21 tended to be liberal when the average sample sizes were small, and had in general

well-controlled type I error rates when N̄ ≥ 100. Comparing to the z-based approach with Equation 16 as

the sampling error variance estimate, the type I error rates were reduced substantially and became much

more reasonable. Both the proposed formulas are expected to yield reasonable homogeneity test results

when N̄ becomes large enough (e.g., >200). Considering both parameter estimation and the homogeneity

test, it seems that the approach using Equation 21 is more promising. This approach needs to be examined

more and can be compared to the sampling error variance formula proposed by L. Hedges (1988).
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Limitations and future directions

As is true for any simulation study, the current study examined a limited number of factors and

levels. In the future, other conditions may be considered regarding other issues of using coefficient alpha as

the reliability estimate (e.g., multi-dimensionality; Sijtsma, 2009). Also, it is worthwhile to consider using

coefficient omega (Equation 3) for correcting measurement error. Factor loadings may be obtained using

CFA with the provided correlations matrices in primary studies (Ahn, 2008). Furthermore, we studied

correcting measurement error for meta-analyzing correlations between one pair of variables. More

generally, it would be helpful to study how to correct measurement error for each element in a correlation

matrix that are obtained with scale scores, and other potential issues with meta-analysis of correlation

matrices (e.g., missing elements in a correlation matrix) for examining multivariate relations (e.g., Becker,

1992; M. W.-L. Cheung & Chan, 2005; Ke et al., 2019). In addition, artifacts besides measurement error

are often present in meta-analysis; how to accurately correct these artifacts together can be of future

interest.
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Footnotes

1In practice, reliability estimates may not be available and/or other artifacts (e.g., range restriction) in

addition to measurement error exist. We encourage readers to refer to relevant studies that comprehensively

consider various artifacts and/or missing information on these artifacts when meta-analyzing correlations

(e.g., Cheung, Chan, & Sun, 2018; Hunter & Schmidt, 2004; Hall & Brannick, 2002; Raju, Burke,

Normand, & Langlois, 1991).

2The conclusion under Caveat 2 can be generalized to multi-dimensional scales. We focus on

uni-dimensional scales in the study.

3To handle this issue, polychoric covariance/correlation matrices can be used for estimating the

covariances/correlations among the underlying continuous items Item∗
j that are assumed to be normally

distributed. Gadermann, Guhn, and Zumbo (2012) showed the use of polychoric covariance matrices for

obtaining reliability for the underlying items Item∗
j to correct for underestimation of reliability due to

ordinal items.

4It is also the REML estimate when the normality of residuals eci and uci is assumed.

5In the study, we selected this simple and popular way of obtaining an interval estimate for ρ̄c. It is

worth noting that researchers have proposed alternative interval estimates of ρ̄c (e.g., the t

distribution-based confidence interval, the weighted variance confidence interval, the Bayesian credible

interval; Sánchez-Meca & Marín-Martínez, 2008; Seide, Röver, & Friede, 2019) to account for the

uncertainly in estimation of σ̂2
rc,i and τ̂2

c and/or violation of data assumptions. Choosing different interval

estimates would influence the statistical inference of ρ̄c. However, it is not our focus to compare different

approaches of obtaining interval estimates in this study. Interested readers may examine performances of

using various interval estimates for ρ̄c. Choosing interval estimates is also relevant for the meta-analysis

method using Fisher’s z transformed correlations, which is to be discussed in the next section.

6When Fisher’s z transformed correlations are used, Hall and Brannick (2002) discussed correcting

the mean effect size estimate and the between-studies variance estimate. L. Hedges (1988) discussed

correcting individual z-transformed correlation estimates and proposed to use a formula similar to

Equation 10 for estimating the corrected sampling error variance for measurement error by replacing σ̂2
ro,i



Meta-Analysis of Correlation Coefficients 39

with σ2
z,i despite the different metrics of raw and z-transformed correlations. Thus far, however, we are not

aware of any studies that have examined comprehensively the sampling error variance estimator using

Fisher’s z transformed corrected correlations.

7When generating scores of ω1i and ω2i, we used population means and standard deviations instead

of their sample means and standard deviations for standardization to avoid the dependence of standardized

scores on sample sizes.

8Here tau-equivalence is met. For the purpose of simulation study 1, however, meeting or violating

the tau-equivalence assumption was not considered as we use the true reliabilities (based on equation 3

given assumptions were met for coefficient omega) for evaluating the estimated mean correlation. This is

only one way to generate specific levels of reliabilities. In the next simulation study, the influence of

violating the tau-equivalence assumption when using coefficient alpha will be considered.

9Across conditions, issues occurred most frequently when N̄ and the number of items were small

(i.e., N̄ = 30 or 50, J = 4). Under these scenarios, the larger ρ̄ was, the more likely these issues would

occur. With N̄ ≥ 100 and J = 12, these issues barely happened. We would like to also note that discarding

data that are not applicable may have influence on meta-analysis results. For example, we compared the

results with and without discarding data based on estimates of uncorrected correlations (as in simulation

study 1) under the condition that ρ̄ = .5, N̄ = 30, NS=5, and J = 4. Results showed that discarding data

yielded larger bias in magnitude than not discarding data (the differences were .05 and .13 respectively for

normal and skewed true scores). Coverage probabilities were comparable with and without discarding data.

One alternative approach that may be investigated is to replace problematic estimates of corrected

correlations by admissible values that are very close to 1 in magnitude.

10All skewness and excess kurtosis for ordinal items were obtained under a sample size of 1,000,000.
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Table 1: The mean percentage of between-studies variance averaged across studies over 1000 replications
for the r-based and z-based approaches

NS N̄
r-based approach z-based

approachρ̄ = 0 ρ̄ = .1 ρ̄ = .3 ρ̄ = .5

5 30 45.27 45.26 45.47 45.38 42.35
50 52.41 52.46 52.39 52.47 49.92

100 68.17 68.14 68.01 67.79 66.48
200 81.14 81.12 80.98 80.86 80.17

20 30 41.09 41.10 41.18 41.30 37.96
50 54.66 54.65 54.67 54.51 52.28

100 70.19 70.15 70.06 69.80 68.64
200 79.65 79.65 79.49 79.18 78.62

50 30 40.33 40.35 40.40 40.48 37.15
50 50.14 50.14 50.12 50.16 47.49

100 69.08 69.07 68.94 68.70 67.48
200 82.54 82.52 82.41 82.11 81.65
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Table 2: Examining the influence of true score distribution with respect to mean correlation estimates and
coverage probabilities with 4 continuous items on scales of X and Y .
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Note. T-Norm: Underlying true scores for X and Y are normal; T-Skewed: underlying true scores for X and Y are skewed; CP: Coverage
probability. Coverage probability not in the range of [.925, .975] is highlighted.
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Table 3: Meta-analysis with correction of measurement errors using the r-based approach: mean correlation
estimates and coverage probabilities when the tau-equivalence assumption is met with 4 continuous items
on scales of X and Y .
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Note. T-Norm: Underlying true scores for X and Y are normal; T-Skewed: underlying true scores for X and Y are skewed; CP: Coverage
probability. Coverage probability not in the range of [.925, .975] is highlighted.
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Table 4: Meta-analysis with correction of measurement errors using the z-based approach: mean correlation
estimates and coverage probabilities when the tau-equivalence assumption is met with 4 continuous items
on scales of X and Y .
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Note. T-Norm: Underlying true scores for X and Y are normal; T-Skewed: underlying true scores for X and Y are skewed; CP: Coverage
probability. Coverage probability not in the range of [.925, .975] is highlighted.
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Table 5: Meta-analysis with correction of measurement error using the r-based approach: mean correlation
estimates and coverage probabilities when the tau-equivalence assumption is NOT met with 4 continuous
items on scales of X and Y .
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Note. T-Norm: Underlying true scores for X and Y are normal; T-Skewed: underlying true scores for X and Y are skewed; CP: Coverage
probability. Coverage probability not in the range of [.925, .975] is highlighted.
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Table 6: Meta-analysis with correction of measurement error using the r-based approach: mean correlation
estimates and coverage probabilities when the tau-equivalence assumption is NOT met with 12 continuous
items on scales of X and Y .
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Note. T-Norm: Underlying true scores for X and Y are normal; T-Skewed: underlying true scores for X and Y are skewed; CP: Coverage
probability. Coverage probability not in the range of [.925, .975] is highlighted.
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Table 7: Type I error rate of homogeneity test using the r-based approach when the true scores are skewed.
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Note. Type I error rate not in the range of [.025, .075] is highlighted. Tau: tau-equivalence is met; NTau:
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Table 8: Bias and coverage probability for the mean effect size based on scale scores of coarsely categorized
items when the number of categories is 2, J = 12, N̄ = 200 and NS = 50.
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Table 9: Bias and coverage probability for the mean effect size based on scale scores of coarsely categorized
items when the number of categories is 5, J = 12, N̄ = 200 and NS = 50.

D
is

to
fI

te
m

s
ρ̄

Ta
u

eq
ui

va
le

nt
N

on
-t

au
eq

ui
va

le
nt

H
om

og
en

eo
us

ca
se

r
-b

as
ed

ap
pr

oa
ch

z
-b

as
ed

ap
pr

oa
ch

r
-b

as
ed

ap
pr

oa
ch

z
-b

as
ed

ap
pr

oa
ch

T-
N

or
m

T-
Sk

ew
ed

T-
N

or
m

T-
Sk

ew
ed

T-
N

or
m

T-
Sk

ew
ed

T-
N

or
m

T-
Sk

ew
ed

B
ia

s
C

P
B

ia
s

C
P

B
ia

s
C

P
B

ia
s

C
P

B
ia

s
C

P
B

ia
s

C
P

B
ia

s
C

P
B

ia
s

C
P

0
.0

01
.9

49
.0

00
.9

46
.0

01
.9

36
.0

00
.9

33
.0

01
.9

58
.0

00
.9

43
.0

01
.9

48
.0

00
.9

35

.1
.0

00
.9

61
.0

15
.8

23
.0

00
.9

51
.0

15
.7

76
.0

01
.9

65
.0

33
.2

29
.0

01
.9

53
.0

34
.2

03

A
ll

Sy
m

.3
-.0

01
.9

54
.0

30
.2

28
.0

00
.9

29
.0

31
.2

18
.0

05
.9

34
.0

59
.0

01
.0

06
.9

07
.0

60
.0

03

.5
-.0

01
.9

49
.0

20
.5

54
.0

01
.9

28
.0

22
.5

40
.0

09
.8

58
.0

43
.0

39
.0

11
.7

94
.0

44
.0

36

0
.0

00
.9

54
.0

00
.9

60
.0

00
.9

46
.0

00
.9

50
.0

00
.9

49
.0

01
.9

49
.0

00
.9

36
.0

01
.9

38

.1
-.0

04
.9

41
-.0

01
.9

54
-.0

04
.9

34
-.0

01
.9

44
-.0

03
.9

42
.0

14
.7

77
-.0

03
.9

34
.0

14
.7

48

A
ll

R
Sk

e
.3

-.0
09

.8
70

.0
06

.9
11

-.0
08

.8
76

.0
07

.8
99

-.0
08

.9
16

.0
35

.1
95

-.0
06

.9
21

.0
36

.1
84

.5
-.0

10
.8

24
.0

04
.9

24
-.0

09
.8

38
.0

05
.9

19
-.0

06
.9

25
.0

29
.3

07
-.0

05
.9

35
.0

30
.2

98

0
.0

00
.9

57
.0

00
.9

56
.0

00
.9

46
.0

00
.9

41
.0

00
.9

53
.0

00
.9

62
.0

00
.9

48
.0

00
.9

47

.1
-.0

01
.9

49
.0

06
.9

18
-.0

01
.9

37
.0

06
.9

04
.0

02
.9

48
.0

30
.3

10
.0

03
.9

24
.0

31
.2

75

Sy
m

+R
Sk

e
.3

-.0
02

.9
50

.0
17

.6
83

-.0
01

.9
45

.0
18

.6
55

.0
04

.9
45

.0
54

.0
10

.0
05

.9
29

.0
55

.0
13

.5
-.0

03
.9

48
.0

13
.7

91
-.0

01
.9

39
.0

14
.7

74
.0

08
.8

84
.0

39
.0

94
.0

10
.8

10
.0

41
.0

94

0
.0

00
.9

54
.0

01
.9

61
.0

00
.9

37
.0

01
.9

41
.0

00
.9

59
.0

00
.9

51
.0

00
.9

53
.0

01
.9

35

.1
.0

00
.9

59
.0

19
.6

91
.0

00
.9

46
.0

19
.6

60
-.0

02
.9

61
.0

58
.0

20
-.0

01
.9

40
.0

58
.0

22

L
Sk

e+
R

Sk
e

.3
.0

00
.9

50
.0

40
.1

19
.0

01
.9

38
.0

41
.1

03
-.0

04
.9

49
.0

92
.0

00
-.0

03
.9

39
.0

94
.0

00

.5
.0

00
.9

60
.0

28
.3

25
.0

01
.9

48
.0

30
.3

29
-.0

01
.9

54
.0

57
.0

00
.0

00
.9

39
.0

58
.0

00

H
et

er
og

en
eo

us
ca

se

0
.0

00
.9

48
-.0

01
.9

56
.0

00
.9

46
-.0

01
.9

52
.0

01
.9

53
-.0

04
.9

42
.0

01
.9

52
-.0

05
.9

42

.1
.0

00
.9

51
.0

11
.9

44
.0

01
.9

54
.0

11
.9

45
.0

02
.9

48
.0

22
.8

80
.0

03
.9

50
.0

22
.8

80

A
ll

Sy
m

.3
-.0

01
.9

38
.0

25
.7

99
.0

00
.9

40
.0

25
.7

97
.0

04
.9

33
.0

49
.4

77
.0

05
.9

28
.0

49
.4

84

.5
.0

00
.9

53
.0

18
.8

27
.0

01
.9

52
.0

19
.8

23
.0

09
.9

07
.0

38
.4

72
.0

11
.9

01
.0

39
.4

73

0
.0

01
.9

39
.0

06
.9

41
.0

01
.9

39
.0

07
.9

42
.0

01
.9

29
.0

10
.9

20
.0

01
.9

33
.0

11
.9

18

.1
-.0

03
.9

42
.0

03
.9

32
-.0

03
.9

42
.0

04
.9

32
-.0

01
.9

44
.0

16
.9

08
-.0

01
.9

46
.0

16
.9

08

A
ll

R
Sk

e
.3

-.0
09

.9
43

.0
03

.9
49

-.0
08

.9
46

.0
04

.9
50

-.0
06

.9
32

.0
29

.7
59

-.0
05

.9
30

.0
30

.7
61

.5
-.0

10
.9

25
.0

02
.9

34
-.0

09
.9

25
.0

03
.9

37
-.0

06
.9

48
.0

26
.7

12
-.0

04
.9

51
.0

28
.7

16

0
.0

00
.9

52
.0

04
.9

33
.0

00
.9

55
.0

05
.9

35
.0

00
.9

49
-.0

04
.9

45
.0

00
.9

46
-.0

04
.9

42

.1
-.0

02
.9

46
.0

06
.9

29
-.0

02
.9

48
.0

07
.9

32
.0

00
.9

47
.0

19
.8

85
.0

00
.9

46
.0

19
.8

87

Sy
m

+R
Sk

e
.3

-.0
03

.9
47

.0
14

.8
98

-.0
02

.9
46

.0
14

.9
00

.0
04

.9
31

.0
44

.5
56

.0
05

.9
32

.0
44

.5
64

.5
-.0

03
.9

46
.0

10
.8

86
-.0

02
.9

51
.0

11
.8

88
.0

07
.9

24
.0

34
.5

62
.0

08
.9

24
.0

35
.5

71

0
.0

01
.9

42
.0

00
.9

45
.0

01
.9

43
.0

00
.9

49
.0

01
.9

54
-.0

08
.9

44
.0

01
.9

55
-.0

09
.9

46

.1
.0

00
.9

39
.0

14
.9

10
.0

00
.9

38
.0

14
.9

17
-.0

01
.9

49
.0

33
.8

13
.0

00
.9

53
.0

32
.8

21

L
Sk

e+
R

Sk
e

.3
.0

00
.9

43
.0

31
.7

56
.0

01
.9

43
.0

31
.7

63
-.0

03
.9

35
.0

75
.1

69
-.0

02
.9

36
.0

75
.1

79

.5
.0

00
.9

44
.0

24
.7

39
.0

01
.9

42
.0

25
.7

39
-.0

01
.9

53
.0

51
.1

77
.0

00
.9

51
.0

52
.1

85

Note. Dist of Items: Distribution of items; All Sym: All symmetric; All RSke: All right skewed; Sym+RSke: Half of the items are symmetric, and
the other half are right skewed; LSym+RSke: Half of the items are left skewed, and the other are right skewed. T-Norm: Underlying true scores for
X and Y are normal; T-Skewed: underlying true scores for X and Y are skewed; CP: Coverage probability. Coverage probability not in the range
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Table 10: Type I error rate of homogeneity test using the r-based approach with coarsely categorized items
when J = 12, N̄ = 200 and NS=50.
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Table 11: Bias and coverage probability using the z-based approach with correction of sampling error
variance when NS = 50, J=12, and true scores are normal.
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correcting sampling error variance.
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Table 12: Type I error rate of homogeneity test using the z-based approach with correction of sampling error
variance when NS = 50, J=12, and true scores are normal.

N̄
Ta

u-
eq

ui
va

le
nc

e
N

on
Ta

u-
eq

ui
va

le
nc

e
ρ̄

=
0

ρ̄
=
.1

ρ̄
=
.3

ρ̄
=
.5

ρ̄
=

0
ρ̄

=
.1

ρ̄
=
.3

ρ̄
=
.5

C
1

30
.0

00
.0

00
.0

00
.0

04
.0

00
.0

00
.0

00
.0

00
50

.0
02

.0
00

.0
04

.0
08

.0
02

.0
00

.0
01

.0
04

10
0

.0
12

.0
20

.0
11

.0
17

.0
14

.0
14

.0
16

.0
18

20
0

.0
28

.0
24

.0
31

.0
23

.0
25

.0
17

.0
27

.0
16

C
2

30
.1

72
.1

85
.2

02
.1

64
.2

17
.2

12
.2

14
.2

00
50

.1
20

.1
02

.0
96

.0
84

.1
25

.1
18

.1
14

.0
96

10
0

.0
81

.0
82

.0
59

.0
48

.0
65

.0
71

.0
65

.0
44

20
0

.0
58

.0
62

.0
59

.0
33

.0
56

.0
61

.0
53

.0
30

Note. Type I error rate not in the range of [.025, .075] is highlighted. C1: The z-based approach using
Equation 20 for correcting sampling error variance; C2: The z-based approach using Equation 21 for
correcting sampling error variance.
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Figure Captions

Figure 1. Type I error rate with continuous items using r-based approach when true scores are normal.

Figure 2. Type I error rate with continuous items using z-based approach when NS=5.

Figure 3. Distribution of observed data

Figure (a). Symmetry

Figure (b). Asymmetry

Figure 4. Scale score distribution when the number of categories is 2

Figure (a). All the items are symmetric

Figure (b). All the items are right skewed

Figure (c). Half symmetric and half right skewed

Figure (d). Half right skewed and half left skewed

Figure 5. Scale score distribution when the number of categories is 5

Figure (a). All the items are symmetric

Figure (b). All the items are right skewed

Figure (c). Half symmetric and half right skewed

Figure (d). Half right skewed and half left skewed
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