
Working with the SUMMARY Procedure: An Introduction

John S. Boyden
Viking Freight System, Inc.

Abstract

The PROC SUMMARY procedure allows the user
to obtain statistical analyses on data obtained from
a permanent, or working storage, SAS data set.
This tutorial presents the basic concepts of using
the procedure through examples. Using sample
code followed by output produced through the
procedure (printed using PROC PRINT), the reader
may use the examples to see the cause and effect
of most options of the procedure.

Introduction

PROC SUMMARY is one of the procedures that
should be included in every SAS programmer's
toolset. It offers many features for obtaining and
manipulating simple statistical output for both the
neophyte and experienced programmer. The
purpose of the procedure may be summarized as
follows:

* To compute summary statistics for
specified levels of subgrouped
observations. The resulting statistics
will be assigned to new variables, while
the old variables are dropped.

* To produce a SAS data set for use with
subsequent data steps or procedures.

The power of the statistics is in the packaged
options SAS gives the procedure. The statistics
available are listed in Figure 11.

Of the many options which the SAS Institute, Inc.
makes available with the procedure, aside from the
statistical gathering capabilities, PROC SUMMARY
has the option of allowing the output to be sent to a
working or permanent SAS data set. This allows
the programmer to apply the output in many ways.
The following is a list of the uses often used:

• Data steps following PROC SUMMARY

'PROCPRINT

• PROC TABULATE

The PROC SUMMARY examples that follow are
based on sample data as might be used in the
transportation industry. The listing of the measured
data, although not listed in the paper, may be
obtained from the author. The program code used
to create the original SAS data set used as a basis
for the example may also be obtained from the
author.

169

The following variables are used by this paper in
demonstrating the manipulative powers of the
procedure:

SAS Variable

REVENUE

WEIGHT

CITY

ST

PIECES

DATE

FACTORl

Description

A billed dollar amount
(A numeric in dollars & cents)

Weight of a shipment
(A numeric in pounds)

Originating City of shipment
(A character value)

Originating City's State
(A character variable)

The number of boxes, pallets,
or cartons in a single shipment
(A numeric variable)

The date of delivery
(A character variable)

Weighting factor
(A numeric variable = .1)

Case 1: The 'Slightly Simple Summary' example:

Syntax:

PROC SUMMARY;
VAR REVENUE;
OUTPUT;

The output may be seen in Figure 1.

OBS

Figure 1

Comments:

• The V AR statement lists the numeric variables
for which summary statistics are desired. This is
a required statement for PROC SUMMARY.

• The output statement is required. Specifying
OUTPUT without options will create a new data
set specified as _DATA_. The _DATA_ data set
may then be used as if the programmer had used
the OUT = option.

* The DATA = option is not used in this example,
as it is not required. When this option is not used,
SAS uses the data set created last, prior to the
procedure.

The SAS variable T Y P E is created
containing the level of subgroup specified. In this
example _ TYPE_ = 0, specifying the 'total' of
the summary levels available.

The SAS variable _FREQ_ is created by the
procedure and contains the number of
observations in the subgroup defined. All
observations, including missing observations
within the subgroup are included.

Case 2: The 'Let's get 0 U T and have fun'
example:

Syntax:

PROC SUMMARY DATA = DSN1 ;
VAR REVENUE WEIGHT;
OUTPUT OUT = DSN2 SUM = ;

The output may be seen in Figure 2.

OBS _TYPE_ JREQ_

o 68

Figure 2

Comments:

REVENUE

47536.3

WEIGHT

353826

The DATA = option is specified for clarity of
coding. As mentioned above, this option is not
required.

The V AR statement lists the numeric variables
possibly of interest for summary statistics. Extra
variables may be listed here (eg. for testing), but
are not recommended.

* The V AR statement ~ precede the OUTPUT
statement.

* Listing more variables than are listed in the VAR
statement will result in a warning that the SUM
variable listing will be truncated to match the
V AR listi ng.

* The OUTPUT statement has two parts:

1) OUT = data set name

This options creates a SAS data set which
may be used in later data steps or PROC's.

A two level data set name may be specified
here to send output to a permanent SAS
data set.

170

2) SUM = summary variable name

SUM is only one of many statistics that may
be used against variables listed in the VAR
statement. See Figure 10 for other statistics
available.

Using SUM = without specifying any new
variable names will result in SAS re-using
the names listed on the V AR statement in
the output data set as the summary
variables.

DO NOT use multiple keyword's syntax:

Statistic1 = Statistic2 =

without specifying the output variable
names. Doing so for more than one statistic
will cause the PROC to attempt to create the
output data set with duplicated names.

Case 3; The 'C LAS S, may I have your
attention?' example;

Syntax:

PROC SUMMARY DATA = DSN1 MISSING;
CLASS CITY ;
VAR REVENUE WEIGHT:
OUTPUT OUT = DSN2 SUM = REVENUE

MEAN(SHIP _WT)=MEAN_WT:

The output may be seen in Figure 3.

OBS CITY _TYPE_ JREQ_ REVENUE MEAN_WT

1 0 68 47536.3 5203.3
2 Anchorage 1 15 12948.9 2892.2
3 Juneau 1 2 1075.0 4235.0
4 Memphis 1 7 4143.7 3802.6
5 Miami 1 4 2812.3 8583.8
6 Nashville 1 13 8978.6 4711.3
7 Orlando 1 17 9001.6 3985.1
8 San Jose 10 8576.2 11202.7

Figure 3

Comments:

The CLASS statement allows for subgrouping
of summary observation variables based upon
the change of value of the variables listed.

* The maximum number of CLASS variables is 24.

USing the CLASS statement limits the
combination of CLASS levels to 32767.

The MISSING option is specified to allow for
any CLASS variable's observation to be
included in the statistics, if the variable has a
missing value.

The TYPE variable now identifies
subgrouping of observation as specified. In this
example _ TYPE_ = 0, specifies the 'total' of all
summary levels available, with each subgroup
level increasing the value of _TYPE_ by one.

FR EQ now takes on added meaning. At
=TYPE_ -= 0, the _FREQ_ of a given subgroup
will total all observations. At each separate
subgroup level, _FREQ_ will total the number of
observations at that level.

The new variable names given to summary
statistics may be specified as shown in the
example. The variable name listed first following
the first statistic will match the corresponding
variable as ordered on the VAR statement; the
variable name listed next corresponds to the
variable as ordered next on the VAR statement;
etc .

• The ordering defaults of the procedure's variable
to statistics correspondence (in the statistic's
specification of the OUTPUT statement) may be
eliminated by enclosing the VAR statement
variable in parentheses prior to assigning the
new summary variable name.

• The original VAR statement variables will be
dropped from the output data set once the
summary variables have been created.

Case 4: The 'DESCENDING into the abyss' example:

Syntax:

PROC SUMMARY DATA. DSN1 DESCENDING;
CLASS CITY ;
VAR REVENUE WEIGHT;
OUTPUT OUT. DSN2 SUM. REVENUE

MEAN(WEIGHT).MEAN_WT;

The output may be seen in Figure 4.

OBS CITY _TYPE_ JREQ_ REVENUE MEAN_WT

1 Anchorage 1 15 12948.9 2892.2
2 Juneau 1 2 1075.0 4235.0
3 Memphis 1 7 4143.7 3802.6
4 Miami 1 4 2812.3 8583.8
5 Nashville 1 13 8978.6 4711.3
6 Orlando 1 17 9001.6 3985.1
7 San Jose 1 10 8576.2 11202.7
8 0 68 47536.3 5203.3

Figure 4

Comments:

• Everything stays the same in this example with
the exception of using the DESCENDING option.

171

The DESCENDING option merely reverses the
order of the _ TYPE_ observations in the output
data set. Note that the order of the observations
within a subgroup do not change.

This option may be useful to some presentations.

Case 5: The 'How much does an N WAY?'
example:

Syntax:

PROCSUMMARY DATA. DSN1 NWAY;
CLASS CITY ;
VAR REVENUE WEIGHT;
OUTPUT OUT. DSN2 SUM. REVENUE

MIN(WEIGHT) • MIN_WT ;

The output may be seen in Figure 5.

OBS CITY _ TYPE __ FREQ_ REVENUE MEAN_WT

1 Anchorage 1 15 12948.9 2892.2
2 Juneau 1 2 1075.0 4235.0
3 Memphis 1 7 4143.7 3802.6
4 Miami 1 4 2812.3 8583.8
5 Nashville 1 13 8978.6 4711.3
6 Orlando 1 17 9001.6 3985.1
7 San Jose 1 10 8576.2 11202.7

Figure 5

Comments:

• Everything stays the same in this example with
the exception of using the NWAY option.

The NWAY option allows only observations with
the highest value of the _TYPE_ variable to be
output to the procedure's resulting data set.

Case 6: The 'Let's have some ORDER here!'
example:

Syntax:
PROC SUMMARY DATA. DSN1 ORDER.FAEQ;
CLASS CITY;
VAR REVENUE WEIGHT;
OUTPUT OUT. DSN2 SUM. REVENUE

MIN(WEIGHT). MIN_WT;

The output may be seen in Figure 6.

Comments:

The ORDER = option allows the programmer to
sort the values of the CLASS variables.

ORDER = FREQ orders the output
observations in descending order of frequency.

ORDER = DATA o~e~ the summary
observations as found in the input data set.

OBS CI1Y _1YPE __ FREO_ REVENUE MEAN_WT

1 0 68 47536.3 5203.3
2 Orlando 1 17 9001.6 3985.1
3 Anchorage 1 15 12948.9 2892.2
4 Nashville 1 13 8978.6 4711.3
5 San Jose 1 10 8576.2 11202.7
6 Memphis 1 7 4143.7 3802.6
7 Miami 1 4 2812.3 8583.8
8 Juneau 1 2 1075.0 4235.0

Figure 6

ORDER = EXTERNAL orders the summary
observations in their external format.

The default order scheme is ORDER =
INTERNAL, or internal representation sorted
order.

Case 7: The 'Are you BYing all this ?' example

Syntax:

PROG SUMMARY DATA 0 DSN1 ;
BY STATE;
CLASSCI1Y ;
VAR REVENUE WEIGHT;
OUTPUT OUT 0 DSN2 SUM 0 REVENUE

MEAN(WEIGHT)o MEAN_WT;

The output may be seen in Figure 7.

ST CI1Y _1YPE_ _FREO_ REVENUE MEAN_WT

AK 0 17 14023.9 3050.2
AK Anchorage 1 15 12948.9 2892.2
AK Juneau 1 2 1075.0 4235.0
CA 0 10 8576.2 11202.7
CA San Jose 1 10 8576.2 11202.7
FL 0 21 11813.9 4861.0
FL Miami 1 4 2812.3 8583.8
FL Or1ando 1 17 9001.6 3985.1
TN 0 20 13122.3 4393.3
TN Memphis 1 7 4143.7 3802.6
TN Nashville 1 13 8978.6 4711.3

Figure 7

Comments:

The BY statement is used to derive separate
analyses on subgroups defined by the BY
variable(s).

The SUMMARY procedure requires that the input
data set be previously sorted in the order
specified with the BY.

172

Using the BY statement may be considered as
an expanded CLASS statement. Separate
TYPE analyses LTYPE_ = 0, 1, etc.) will be
created.

* Using the BY statement will increase the length
of CPU time taken, but the memory requirements
will be less than when using the CLASS
statement. The BY statement releases memory
resources each time the BY group changes.

This example's output was printed with PROe
PRINT, using the ID option of the procedure, thus
eliminating the OBS variable in the printout.

Case 8: The 'Is this some kind of F R EQ ?'
example:

Syntax:

PROC SUMMARY DATA 0 DSN1 NWAY;
CLASS ORIGIN;
VAR REVENUE WEIGHT;
FREQ PIECES;
OUTPUT OUT 0 DSN2 SUM 0 REVENUE

MEAN(WEIGHT)o MEAN_WT;

The output may be seen in Figure 8.

2 Anchorage 1
3 Juneau 1
4 Memphis 1
5 Miami 1
6 Nashville 1
7 Orlando 1
8 San Jose 1

Figure 8

Comments:

899 1417734.0
169 90838.1
576 406961.6
280 227515.4
992 492003.4
378 157807.2
222 206291.3

4611.3
4235.1
3865.1
6219.3
3197.7
2802.7

13089.1

The FREQ statement is used to specify that each
observation is representing n observations of the
input data set. The value n is the value of the
variable listed. closes. derive separate analyses
on subgroups defined by the BY variable(s).

Only llll.e. variable is allowed with the FREQ
statement. Attempting to use more than one will
result in an Error 1: Syntax Error: Expecting
Semicolon.

Only numeric variables are allowed in the FREQ
statement. If the value of the FREQ variable is not
an integer, the value will be truncated to its
integer position.

• If the value of the specified variable is missing or
less than one, the procedure will skip that
observation. This is the case, even if the
MISSING option is included in the PROC
SUMMARY statement.

Case 9: The 'WEIGHT'y issue isn't it ?" example

Syntax:

PROC SUMMARY DATA = DSNl NWAY;
CLASS CITY ;
VAR REVENUE WEIGHT;
WEIGHT FACTOR1;
OUTPUT OUT = DSN2 SUM = REVENUE

MEAN(WEIGHTJ= MEAN_WT;

The output may be seen in Figure 9.

OBS ORIGIN _TYPE_]REO_ REVENUE MEAN_WT

2 Anchorage 1 15 1294.89 2892.2
3 Juneau 1 2 107.50 4235.0
4 Memphis 1 7 414.37 3802.6
5 Miami 1 4 281.23 8583.8
6 Nashville 1 13 897.86 4711.3
7 Orlando 1 17 900.16 3985.1
8 San Jose 1 10 857.62 11202.7

Figure 9

Comments:

The WEIGHT statement is used to assign a
variable to be used in weighting each
observation.

• Only.Q.D.Jl. variable is allowed with the WEIGHT
statement. Attempting to use more than one will
result in an Error 1: Syntax Error: Expecting
Semicolon.

Only a numeric variable is allowed in the
WEIGHT statement. The variable's value may
be a non-integer and will be used in the
calculation.

• If the value of the specified variable is missing or
less than one, the procedure will give the
weighted variable a value of zero.

Case 10: The 'May I see to your ID ?" example

Syntax:

PROC SUMMARY DATA = DSNl NWAY;
CLASS CITY ;
VAR REVENUE WEIGHT;
IODATE;
OUTPUT OUT = DSN2 SUM = REVENUE

MEAN(WEIGHT)= MEAN_WT;

173

The output may be seen in Figure 10.

DATE ORIGIN TYPE FREO REVENUE MEAN_WT
2892.2
4235.0
3802.6
8583.8
4711.3
3985.1

11202.7

03/19 Anchorage- - -15 - 12948.9
03/22 Juneau 2 1075.0
03/09 Memphis 7 4143.7
03/11 Miami 4 2812.3
03/26 Nashville 13 8978.6
03/18 Orlando 17 9001.6
03/14 San Jose 10 8576.2

Figure 10

Comments:

The 10 statement is used to include additional
variables in summary observations .

• If the 10 statement contains one variable, the
variable's value for the output summary
observation is the maximum value of the
subgrouped observations.

If the 10 statement has two or more variables,
then the maximum value is chosen as if the
variables were concatenated together, and then
the maximum value chosen. The order of listing
on the 10 statement will affect the value output.

In Conclusion

The PROC SUMMARY procedure is a versatile tool
for obtaining summary statistics. Usable at all levels
of programming, the procedure's strength lies in its
ability to create summary statistics without lengthy
coding, coupled with its ability to place the resulting
observation(s) in either a working, or permanent,
SAS data set. The re-usability of the output gives
the Base SAS product line a depth not easily
achieved by other methods.

N

NMISS

MEAN
sm
MIN
MAX
RANGE
SUM
VAR
CSS
USS
CV
smERR
T

PRT

SUMWGT

Figure 11

The number of subgroup observations,
excluding missing values.
The number of subgroup observations,
including missing values.
The mean
The standard deviation
The minimum value
The maximum value
The range of value
The sum of the observation
The variance
The corrected sum of the squares
The uncorrected sum of the squares
The coefficient of variation
The standard error of the mean
The t value used in testing whether a
population's mean c= 0
The probability of a greater absolute value for
the Student's t value above
sum of the WEIGHT variable values

Author

John Boyden
Viking Freight, Inc.
411 E. Plume ria Dr., Suite 15
San Jose, CA 95134
(408) 922-7200 x2525

References

SAS User's Guide: Basics, Version 5, SAS
Institute, Inc., Cary, N.C., USA

SAS Guide to Problem Solving and Error
Messages, Version 5, SAS Institute, Inc., Cary,
N.C., USA

SAS is a registered trademark of SAS Institute, Inc.,
Cary, N.C., USA

•

174

