
Structured Design

Using Flowcharts

C Code Implementation

Revision 2.0
December 2001

Andrew J. Blauch
Paul D. Johnson

Padnos School of Engineering

BACKGROUND
Simple programming exercises can often be solved by just sitting down and writing code
to implement the desired problem. Complex problems, however, can be difficult to write
and impossible to debug if not implemented using a structured design process. There are
many structured design methodologies that can be used to implement programs and solve
other types of engineering problems. Using a structured design process leads to the
following benefits:

• Early detection of design flaws
• Programs that can be easily modified
• Clear and complete documentation
• Modular design to improve testing
• Modular design to break up problem into smaller sections

The application of a structure design methodology greatly increases the probability of
completing a successful design with a minimum amount of time and expense. By using a
structured design methodology, the likelihood of finding design flaws early improves
considerably. Finding design flaws early in the design process greatly reduces the cost of
fixing those flaws. A programming problem that might be fixable for a few dollars early
in the design process might cost many thousands of dollars to repair when the flaw is not
detected until the project is near completion. Structured design methods also improve the
ability to modify programs at a later date since the techniques make the production of
clear and complete documentation much easier. Structured designs can also be more
easily broken up into modules to improve testing and to allow development by multiple
design teams with a reasonable assurance that the resulting products will be compatible
with each other.

STRUCTURED FLOWCHARTS
There are many complex design methodologies for implementing large hardware and
software projects such as a new corporate database or operating system. Projects
implemented in embedded control, however, usually require much less code and thus
need an appropriate design level. The technique discussed in this document is a top down,
structured flowchart methodology.

Basic Blocks
The basic elements of a flowchart are shown in Figure 1. The START block represents
the beginning of a process. It always has exactly one output. The START block is labeled
with a brief description of the process carried out by the proceeding flowchart. The END
block represents the end of a process. It always has exactly one input and generally
contains either END or RETURN depending on its function in the overall process of the
flowchart.

START block END block PROCESS block DECISION block

A PROCESS block represents some operation carried out on an element of data. It
contains a brief descriptive label describing the process being carried out on the data. It
may itself be further broken down into simpler steps by another complete flowchart
representing that process. If it is broken down further, the flowchart that represents the
process will have the same label in the start block as the description in the process block
at the higher level. A process always has exactly one input and one output.

A DECISION block always makes a binary choice. The label in a decision block should
be a question that clearly has only two possible answers. The decision block will have
exactly one input and two outputs. The two outputs will be labeled with the two answers
to the question in order to show the direction of the logic flow depending upon the
decision made.

On-page and off-page CONNECTORS may also appear in some flowcharts. For this
document we will restrict ourselves to flowcharts that can be represented on a single
page.

Figure 1: Basic Flowchart Blocks

Basic Structures
A structured flowchart is one in which all of the processes and decisions must fit into one
of a few basic structured elements. The basic elements of a structured flowchart are
shown in Figure 2. It should be possible to take any structured flowchart and enclose all
of the blocks within one of the following process structures. Note that each of the
structures shown below has exactly one input and one output. Thus the structure itself can
be represented by a single process block.

WHILE structure SEQUENCE structure IF-THEN-ELSE structure

The SEQUENCE process is just a series of processes carried out one after the other. Most
programs are represented at the highest level by a SEQUENCE, possible with a loop
from the end back to the beginning.

The IF-THEN-ELSE process logically completes the binary decision block by providing
two separate processes. One of the processes will be carried out in the each path from the
binary decision.

The WHILE process allows for the representation of a conditional loop structure within a
program. The decision to execute the process in the loop is made prior to the first
execution of the process.

Figure 2: Basic Flowchart Structures

Derived Structures
Although all flowcharts can be represented by the above basic structures, it is sometimes
useful to employ some additional structures, each of which can themselves be constructed
from the above structures. These derived structures are shown in Figure 3.

DO-WHILE structure

CASE structure

The DO-WHILE structure differs from the WHILE structure in that the process contained
within the loop is always executed at least one time. This is equivalent to performing the
process once before going into a WHILE loop. In the WHILE structure the process may
never be executed. Although the WHILE structure is preferred, the DO-WHILE structure
is sometimes more intuitive.

Similarly, the CASE structure is useful in representing a series of IF-THEN-ELSE
statements where there are more than two choices to be made. Hence the DECISION
blocks are identical except for the choice being compared. For example, the DECISION
could be ‘is the color of the sock …’ Each DECISION block would then have a different
color as the choice. The true result always flows to the right, with the false result flowing
into the next DECISION block. There will always be one less DECISION block than the
number of choices.

Figure 3: Derived Flowchart Structures

Examples of Good and Bad Structured Flowcharts
Figure 4 shows an example of a properly and improperly structured flowchart. The
unstructured flowchart is an example of what can happen if a program is written first and
then a flowchart is created to represent the program. This type of unstructured flow is
often called 'spaghetti' programming and normally has elements of its structure
impossibly intertwined around other elements. A program of this sort is very difficult to
understand, implement, debug, and maintain.

 Unstructured Structured

Figure 4: Structured and Unstructured Flowchart Examples

FLOWCHART IMPLEMENTATION USING C
Writing C code from a structured flowchart is very straightforward. Each type of process
structure described previously has a corresponding C code program flow statement.
Figures 5 and 6 illustrate the C code implementation of the three basic and two derived
process structures. Note that the single process blocks can be implemented with a single
line of code, multiple lines of code, a function call, or another group of structured process
blocks.

 WHILE structure SEQUENCE structure IF-THEN-ELSE structure

x = 10;

y = 9*x/5+32;

DispTemp(x,y);

if (x > 5)
{

x = 5;
}
else
{

x = 0;
}

while (x < 10)
{

x = 2*x;
}

Initialize
Celsius

temperature

Convert to
Fahrenheit

Display
temperatures

Limit voltage
to 5 volts

Turn voltage
off

Is voltage
greater than

5?

Double result

Is result
less than

10?

No

Yes

Yes

No

Figure 5: C Code Implementation for Basic Flowchart Structures

DO-WHILE structure

CASE structure

switch (mode) {
case 1:
 /* Display process */
 break;
case 2:
 /* Control process */
 break;
case 3:
 red_light = 0;

blue_light = 0;
 break;
default:
 mode = mode + 1;

break;
}

Execute
display
process

Execute
control
process

Turn off
lights

Increment
mode

Double result

Is result
less than

10?

mode
equal 1?

mode
equal 2?

mode
equal 3?

Yes

No

Yes

No

Yes

No

Yes

No

do
{

x = 2*x;
}
while (x < 10);

Figure 6: C Code Implementation for Derived Flowchart Structures

TOP-DOWN DESIGN
Structured design using flowcharts generally involves a top-down analysis of the problem
to be solved. This begins with a carefully structured textual description of the problem to
be solved. This phase often involves talking with the customer to determine just exactly
what will be needed in the design implementation. At this point external inputs and
outputs are defined. From the text description, a top-level flowchart is created. This
describes the processes to be carried at a high level with a minimum of detail. Often this
highest-level flowchart is a sequence of processes. In an embedded application where
most programs never end, the END block may be replaced by a loop back to the
beginning or some other point in the program.

Each process block in this high level flowchart is then broken down into greater detail
through another flowchart that describes how the higher-level process is to be
implemented. In a complex design, many levels may be required before reaching a
sufficiently detailed level of description to write the code. If carried out properly, the
each block in the lowest level flowchart will represent no more than one, or a few,
assembly language instructions.

Properly executed, the analysis and flowcharting stages of the design process will
probably consume 80% or more of the total program design. The actual code generation
should be very simple after the flowcharts have been completed. The labels in the blocks
on the flowcharts will become an outline of the comments to be provided within the
program itself.

