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Focus of this talk

e String theory amplitudes for closed oriented strings
* given by a topological expansion in the string coupling g

[y
—2 0 2
N,

* For genus h integrate over points z; for incoming or outgoing strings
* Integrate over the moduli space M, of compact Riemann surfaces

e Modular graph function for a Riemann surface of genus one
*x maps a graph to an SL(2, Z)-invariant function on half-plane ;4
* generalizes real-analytic Eisenstein series
* related to single-valued elliptic polylogarithms (see Zerbini's talk)

e Generalization to Riemann surfaces of higher genus
* maps a graph to a function on M,
* generalizes invariants of Kawazumi and Zhang (2008)
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Genus zero

e Genus-zero amplitudes are given by integrals of the type

N-3 N-3
2 —28; N— —2—2s8; N_ — S,
11 /d sl — 1725081y 2252 T ey — 2]
i=1 7C i
x kinematic variables 4s;; = o/(k; + k;)* for massless momenta k;
x Meromorphic in s;; with simple poles at non-negative integers

x The four-graviton amplitude is proportional to the invariant R*

1 F(l — 812) F(l — 813) F(l — 814)
$12513 814 L'(1 4 s12) I'(1 + s13) T'(1 + s14)

e Low energy expansion for |s,;| < 1 and 0, = s{, + sis + s7, with o, =0

3 2 1
AL (s15) ~ — +20(3) + 920(5) + 5C(3)°05 — 503C(T) + -
* For all NV the coefficients are “single-valued” multiple-zeta values.
(conjectured in Schlotterer, Stieberger 2012; Stieberger 2013; Stieberger, Taylor 2014)

(proofs in Schlotterer, Schnetz; Brown, Dupont; Vanhove, Zerbini 2018)
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Genus-one

e Torus > = C/(Z + 77) with modulus 7 = 7 + 115 € Hy, 71,72 € R, 75 >0
* Integral over N points z; € X

N
d?z
1 k
BEV)<SU"7') p— H /Z - exp{ Z Sz‘j g(Zz —ZJ‘T)}
k=1

1<i<j<N

* Scalar Green function (in terms of z = u + v7 with u, v € R/Z)

/
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* Bﬁ)(sijh) is invariant under the modular group SL(2,7)
* has simple and double poles at s;; € N; holomorphic in s;; for |s;;| <1

e String amplitude for V = 4 is proportional to (Green, Schwarz, 1982)

d27' 1

/ — B (s;7) My = PSL(2,Z)\H;
My 79

x Analytic continuation in s;; was proven to exist (ED & Phong 1994)

x N > 4 involves factors of 0,g(z|T) (Green, Mafra, Schlotterer 2013)
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Graphical Representation of Taylor series of B](\})(s@-jh)

e Absolute convergence of Bg\})(sijh) for |s;;| < 1 and fixed 7
x allows for Taylor expansion in the variables s;;
= physically corresponds to the “low energy expansion”

e Represented by Feynman graphs (Green, Russo, Vanhove 2008)
* Each marked point z; on X is represented by a vertex e
x Each Green function by an edge between vertices z; and z;

o — = — 24
z Z g(zi — zj|T)

* Each vertex is integrated over X
* To a graph with w edges we assign weight w

e Reducibility : A graph which becomes disconnected
* upon cutting one edge vanishes by [ g =0
* upon removing one vertex factorizes into the product of its components
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Modular graph functions

e To each graph is associated a real-analytic modular function

* since Bﬁ)(sijh) is a modular function, so are its Taylor coefficients in s;;
* Organize by the number of loops = depth of the graph

Supy:
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One-loop modular graph functions

e One-loop weight w graph
* has w vertices and w edges

d? zZ T
[T [ 5ot i) = - e = o)

peN

*with A =Z+77Z and A’ = A\ {0} with p = m + mn, (m,n) € Z°

e coincides with a real-analytic Eisenstein series F,,
* invariant under the modular group SL(2,7Z) acting on T
* Eigenfunction of the Laplace-Beltrami operator on H;

AFE, =w(w —1)E, A = 4730,0;

* Laurent polynomial in 75 at cusp 7 — 700

2((210)7_50 N 2T (w — 1)¢ (2w — 1) v o2y

B, =
T ['(w) 2
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Two-loop modular graph functions

e Two-loop graphs evaluate to a multiple Kronecker-Eisenstein series

Caranas(T) = Y 5(§:pr)ﬁ( B )

2
p1,p2,p3€N r=1 r=1 7T|p7“‘

* weight w = a1 + as + as
x invariant under SL(2,7Z) and under permutations of a1, as, as
x Laurent polynomial of degree (w,1 — w) in 75 at cusp 7 — @00

e Satisfy “inhomogeneous eigenvalue equations” (ED, Green, Vanhove 2015)
* with eigenvalues of the form s(s — 1) and s € N
* the inhomogeneous terms are linear or bilinear in Eisenstein series

e.g. Ci11= «—» (A—0)Cy 11 =06F;
C2,1,1 — é (A — 2)02,1 1 = 9E4 — E%
Cs11= & o (A —6)C311 =3Co01 + 16E5 — 4E,Fs
C221 = @ (A —0)Cs21 =8E5
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Modular graph functions at higher loop order

e Expansion near the cusp 7 — 00
* Laurent polynomial in 75 of degree (w,1 —w) +O(e whose coefficients
* are single-valued multiple zeta-values (conjectured ED, Green, Giirdogan, Vanhove 2015)
* include “irreducible” multiple zeta-values (Zerbini 2015)

—27T7'2)

e Modular graph functions satisfy algebraic identities of uniform weight
e.g. «—» =24C5 1, + 3E5 — 18E,

e = 60C5 11 + 10E,Cy 1 1 — 48F5 + 16¢(5)
L\, = 851, + 3,5 — 9Es + 1((5)

A =2C311 — %E5 -+ %C(5)

e Laplace-Beltrami operator for 3 loops and higher
* generically no longer maps the space of modular graph forms into itself
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Arbitrary number of loops and exponents

e Modular graph forms (ED & Green 2016)
A decorated graph (I', A, B) with V' vertices and R edges consists of
* connectivity matrix with components ', ., v=1,--- . V. r=1,--- | R
* decoration of the edges by “exponents” a,,b. € N forr =1,--- | R
A=lay, - - ,agr] and B = |by, - ,bR]
To the decorated graph (I', A, B) we associate a function on H;

cp[jg] (=Y <H 72/” bT>H5<Zprr>

pl)"'apREA, T:]'

e Transformation under SL(2,7)

Cr lg] (j:i?) — (7 + ) Cr [g] () (2‘ ?) e SL(2,7)

x modular weight (0, 1) with o = > (b, — a,): “modular graph form”
* for 1 # 0, there is no canonical normalization of 7»-factors
* A = B = u = 0 recover modular graph functions for Green function g
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Algebraic and differential identities

e Momentum conservation at vertex v implies algebraic identities

R R
A_ Srr . A .
;:1 FUrCF |: B :| — TE:1 FUTCF |:B o Sr:| =0
where A = [CLl T CLR], B = [bl T bR] and Sr = [Or—l 1 OR—’I“]

e The Maass operator V = 2i750. implies differential identities

aft]-Seality

e Algorithm for identities on modular graph functions and forms
* to prove an identity ' = 0, solve the weaker condition VY F = 0
* using holomorphic subgraph reduction (ED & Green 2016; ED & Kaidi 2016)
— All algebraic identities between modular functions of weight w < 6
(MATHEMATICA program Gerken 2020; see also Basu 2015; Kleinschmidt, Verschinin 2017)

¢ ldentities from generating functions and iterated integrals
(Gerken, Kleinschmidt, Schlotterer 2019-20; Broedel, Schlotterer, Zerbini 2018)



Single-valued elliptic multiple polylogarithms

e Severing a vertex of a modular graph function
* produces a real-valued (single-valued) elliptic function on X

SN\ s

0 z :
@. — <>—o o = un-integrated vertex

e Linear chain graphs are single-valued elliptic polylogarithms
* generalizing the Bloch-Wigner dilogarithm

oW

e Higher loop graphs produce single-valued elliptic multiple polylogarithms
* Modular graph functions may be viewed as special value at z =0
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Higher genus

e How to generalize the genus-one formula to higher genus ?
* recall the genus-one generating function

N
d?z;
1 )
BEV)(Sijh') p— HL 7_—2 exp { Z Sij g(ZZ — ZJ)}
1=1 1

1<i<j<N

e Compact Riemann surface > of genus / > 2 without boundary
x we need a scalar Green function G(z;, ;)
x and a measure duy on 2V

BY (s4,]%) :/

ZN

dun exp{ Z SijG(Zi,Zj)}

1<i<j<N
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Compact Riemann surfaces X of genus h

e Homology and cohomology
x One-cycles H,(X,7Z) ~ Z" with intersection pairing J(-,-) — Z
* Canonical basis J(;, ;) = J(Br,B,;) =0, A, B;) =6, for1 <I1,J<h
* Canonical dual basis of holomorphic one-forms w; in H(19(%)

7{ Wy =017 jg wy = Q17
A7 B

x Period matrix Q2 obeys Riemann relations Q' = Q, Im (Q2) > 0

e Modular group Sp(2h,7Z) : H{(>3,7) — H{(>,7) leaves J(-,-) invariant

(A B b B B
w=len) = (Q) o (y)

* action on 1-forms w and period matrix {2 given by

w — w(CQ+ D) !
Q — (AQ+B)(CQ+ D) !
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Modular graph functions for arbitrary genus

e Canonical metric on > = pull-back of flat metric on Jacobian J(¥)
* modular invariant and smooth canonical volume form on X

K:ﬁZYI}lw[/\w_J Y =ImQ /K;:1
1,0 2

e The Arakelov Green function G(w, z) is defined by

050,G(w, 2) = —md(w, 2) + k(W) / kG =0
5

e “Natural” generating function for higher genus modular graph functions

Cy (si51%) —LNf[l%(zi) eXP{ D s G(Zuzj)}

1<i<j<N

* Integrals absolutely convergent for |s;;| < 1; analytic near s;; = 0
* Depend only on %I, not on specific {2 chosen to represent X
* Taylor coeffs in s;; give modular graph functions (ED, Green, Pioline 2017)
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Genus-two string amplitude

e Actually genus 2 string amplitude does NOT correspond to Cf)(sij\Z)
* volume form k is unique on X
x but "V is not unique on & for N > 2

e Genus-two four-graviton string amplitude given by (ED & Phong 2005)

2, sy [ IAY Gl s
B, (Sz]|§])—/24 [detV)? exp{ Z st(zz,zj)}

1<i<j<4

e Measure given by a holomorphic (1,0)%* form ) on >*

y = (814 — Slg)A(Zh 2’2) A\ A(Zg,, 24) -+ 2 CyC| perms Of (2, 3, 4)

x where A is a holomorphic (1,0)®? form on X?
A(zi, z5) = wi(zi) A wa(z;) — wa(z) Awi(z;)

* Volume form Y A Y /(det Y)? and Bf)(sij\Z) are Sp(4, Z)-invariant.
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Taylor expansion of genus two amplitude

e Low energy expansion of the genus-two four graviton Bf)
B (5i5]%) = 3209 + 64030(%) + 32040(3) + O(s2)
x recall o,, = sty + 873 + 814

e (X)) is the Kawazumi-Zhang invariant for genus two (ED & Green 2013)

()= [ ey ey =Y e@m)

* Introduced as a spectral invariant (Kawazumi 2008; Zhang 2008)
* related to the Faltings invariant (Faltings 1984; De Jong 2010)

e New genus-two modular graph functions at every order in s;;, e.g.

_ [ 1A0,2)A(3,4)° ?
B(2) = /24 ey (G(1,4) + G(2,3) = G(1,3) - G(2,4))
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Modular geometry and differential equation

e Siegel half space #, = (Q c C"', Q' = Q, v = Im (Q) > 0} = Sp(2h, R) /U (h)
* with Sp(2h, R) invariant Kahler metric
d82 = Z YI_Jl dQJK Y[;;J dQL[
I,J,K,L
* and Sp(2h,R) invariant Laplace-Beltrami operator on Hy,

) 1
A= 3" 4Yig Y 9" okt o' = S0+ 5'7)

1,J,K,L o821,

* Genus-two moduli space Mo = Hy/Sp(4,7Z) (minus diagonal €2)

e ©(Y) satisfies inhomogeneous eigenvalue equation on M,
(A - 5)g0 — —27‘(‘551\[

* 0gn has support on separating node (into two genus-one surfaces)
* proven by methods from complex structure deformations theory

* allows one to integrate 5 [, v = [, (Ap + 2mdsn) = 27°/9
/ check with DR* prediction from SL(2,7Z) duality of Type IIB
(ED, Green, Pioline, Russo 2014; see also Kawazumi 2008)
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Degenerations of genus-two Riemann surfaces
e Locally parametrize M, = H,/Sp(4,7) by the period matrix

Q:(T U) T,0,v € C det (Im2) > 0

vV O

* Separating degeneration v — 0

* Tropical limit Im ) — oo keeping ratios fixed = field theory limit
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Non-separating degeneration

e > degenerates to torus >.; of modulus 7 with punctures p,, p;
* keep the cycles 21,81, fixed, and let B, — 0o as Im (o) — oo

e Modular group Sp(4,7) reduces to SL(2,7) x 7> Fourier-Jacobi group
= the subgroup that leaves 55 invariant
x The degeneration parameter ¢ is not invariant under SL(2,7Z)
*x e.g. Siegel modular forms decompose into Jacobi forms (Eichler & Zagier 1985)

e There exists a real-valued SL(2,7) x Z*-invariant parameter ¢ > (
det (Im Q) T (Imv)? O — (7‘ ’U)

(Y o

t

Im 7 Im

* the non-separating node is characterized by t — o0
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Non-separating degeneration contd

e Theorem Expansion near the separating node of (ED, Green, Pioline 2018)
* Expand B in powers of s;; = weight

> 1
B(sy|X) = Zan(szle)
w=0 '
YAY v
Bu(sij| %) = /4w<zséa‘@(zi,za’)>
= i<j

* then B, is given by a Laurent polynomial of degree (w, —w) in ¢

Buw(si;i|2) = Z B,Eum(sij\v, T) £+ O(e*™)

k=—w

x where the coefficients are invariant under SL(2,Z) x Z*> C Sp(4,7Z)
b
Bgﬂ (SZJ v+ mT+n at + ) _ Bgﬂ)(szﬂv, p)

ctr+d T er+d
* and are elliptic modular graph functions ~ single-valued elliptic polylogs
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Ingredients in the proof

e Funnel construction of the non-separating degeneration (sce Fay 1973)
* start from genus-one surface with two punctures p,, py
* identify cycles €, =~ €, €/ ~ €} and ¢ ~ &, all homologous to 2
* the cycle B, is a curve connecting z, to zp.

f=ot f =+t

',' Za ,', """"""""""""""""""""" I', ,,' Zb :"
) : L~ > By . 9 |
k{p ‘\\ ........ :.- "'. ....... ]_ \\\ “‘pb \\\

Q:; Q:a Q:Z Q:;) Q:b Q:g

x Key is the existence of a Morse function f(z) = g(z — pp|T) — g(2 — Pa|T)

x For large enough t: cycles prescribed by f(€,) = —t and f(&;) = +t
* The cycles &,, &, have exponentially vanishing coordinate radius

so that z € €, satisfies |z — p,|* ~ e~ 2™
* Power dependence in t arises from singular behavior of f near p,, ps
* Allows to extract t-derivative (cfr RG methods in quantum field theory)
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Genus-two five-string amplitude

e Genus-two amplitude for five external massless states
* constructed by chiral splitting and pure spinors (ED, Mafra, Pioline, Schlotterer 2020)
* for external NS states constructed in RNS (ED, Schiotterer, in progress)
* several independent kinematical invariants
x D?R> ~ D*R* given by constant integrand on M
x DAR® ~ DOR* given by Kawazumi-Zhang invariant
x DOR® ~ D®R* given by weight-two modular graph functions

Z = 8/22 r(1)&(2)G(1, 2) Zy = 4/23 (1, 2)|*(3)G(1, 3)G(2, 3)

Z, =2 /22 v (1,2)°6(1, 2)° Zy =2 /24 v (1,3)1(2,4)]°G(1,2)G(3, 4)
e Satisfy a remarkably simple algebraic identity (D, Mafra, Pioline, Schlotterer 2020)
Zy+ Zo+ 23+ Z4= ¢
* implies Basu's differential identity (Basu 2018)

e Further new modular graph function for (D°R°)" not related to D°R"
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Integrating over genus-one moduli — transcendentality

e Tree-level Type Il amplitude has uniform transcendent weight

3 =~ 2¢(2n + 1)
AA(LO)(Sz‘j) — U—SGXP{ - E on + 1 02n+1}
n=1

* O = 815 + 815 + 874
* assigning weight w([((n)] = n and w[s;;] = —1 implies w[.AELO)(SZ-j)] =3

e Genus-one amplitude obtained by integration on moduli space

d2
AW (s35) :/ — B (sy517)
My To
* Inherits the OPE pole singularities of B (s;;|7) at s;; € N.
* Further singularities from non-uniform behavior of G at cusp 7 — 700;

produce poles and branch cuts in s;; as expected from unitarity.

* |solate a small neighborhood of the cusp 7o > L > 1
AW (s55) = AL 1 (s35) + ALL L (s15)

* by construction all L-dependence must cancel in the sum.
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The non-analytic part AT o

e To all orders in s;; the orders L' and In L may be computed exactly

AS_;LL(SZ]) A.(L;s = s12,t = s14) + 5 permutations

x To all orders in s,t the function A (L; s t) is given by (ED & Green 2019)

o0 M—i—N

Rg;m s t>+2 ROV (L s, t)

A.(L;s,t) = VN Ri234

|
N2N M,N=2

x The coefficient R 15 is given by (corresponding formula for R12.34)

0

k—1
RE =D CreS(IN, k)s" ( In(—4mwLs) + U(k — £ + 1) — 20 (k + 6))

k=1 =0
where C o € Q and S(N, k) are multiple zeta values
S 6(22, my)

jmy - my[(fmaf 4 - - lmy )"

S(N, k) =

m1,-- ,mpn#0
e In(—s) part may be obtained via factorization onto tree-level
* but the remaining analytic part cannot be determined that way.
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The analytic part AT -1

e To compute the analytic part, Taylor expand in s;;
q

0 o
BW (s45]7) = Z Bp,o) (T 2' 13 w[B(p,q)] = 2p + 3¢
.q=0 p-q-:

— Extract LY and In L dependence from integral over 7.

e Exploit algebraic and differential identities to simplify 5, ,) for weight < 6
(ED, Green, Vanhove 2015-16; ED, Kaidi 2016; Broedel, Sclotterer, Zerbini 2018)
* Expose Eisenstein series, and Laplacian of modular functions
* Exploit Stokes's theorem to integrate Laplacian
* e.g. at weight 6,

2
68(370) = A (—902,2’1,1 + 18E3 + 9E2E4 + 604’1,1 + 15603’2,1 + 4102,2’2)
+72E9Cy | | — 12E3 — 369 B — 2652Eg
2
27 8(0,2) = A (90272’171 —18E3 — 9FE9Fy — 60471’1 + 2580372’1 + 640272’2)

~36E9Cy 1 1 + 483E3 + 30((3)E(3) + 18E2Ey + 6B — 3186Eg + 3((3)°
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Transcendentality counting for D3R*

e D®R* is the lowest order at which non-analyticities appear
* All L-dependence cancels in the sum (by construction)

4¢(3)s*
15

/(4 (3 63
¢'(4) ¢ )_74__ + 2 perms of s,t,u

¢(4)  <3) 20

RULES towards conserving transcendental weight
v/ The argument —27s of the log consistently has weight 0;
\/ Assign weight 1 to In(—2ms) ;
v/ Assign weight 1 to the combination

A =

—In(—27s) +

¢4 B
o | ) )
\/ Assign weight 1 to harmonic sums which result in 53

as is familiar from QFT (Kotikov, Lipatov 2002; Beccaria, Forini 2009)

e Corresponding analysis for D''R* and D'*R* confirms that
they obey uniform transcendentality
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Summary and outlook

e Low energy expansion of string amplitudes reveals a rich structure of

* Modular graph functions for Riemann surfaces of genus-one and beyond;
* Relation with Kawazumi-Zhang and Faltings invariants;

* Systematics of algebraic and differential identities for genus one;

* The first identities between genus-two modular graph functions.

e Integration over moduli space for genus one (cfr. ED & Green 2019)
* Consistent assignment of transcendental weight possible at genus one.

e Simple, but striking, observation at order D'*R*
x recall two invariants, o3 and o2 from explicit calculation we find

#((3)%05 4+ 0-¢(3)%03

* First term can arise from “square of tree-level”, but not the second term !
* Why ? Is there a pattern ?



