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Focus of this talk

• String theory amplitudes for closed oriented strings

⋆ given by a topological expansion in the string coupling gs

g−2
s

• •
• •

z1

z2

z4

z3

+ g0s
• •
• • + g2s + · · ·• •

• •

⋆ For genus h integrate over points zi for incoming or outgoing strings
⋆ Integrate over the moduli space Mh of compact Riemann surfaces

• Modular graph function for a Riemann surface of genus one

⋆ maps a graph to an SL(2,Z)-invariant function on half-plane H1

⋆ generalizes real-analytic Eisenstein series
⋆ related to single-valued elliptic polylogarithms (see Zerbini’s talk)

• Generalization to Riemann surfaces of higher genus

⋆ maps a graph to a function on Mh

⋆ generalizes invariants of Kawazumi and Zhang (2008)
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Genus zero

• Genus-zero amplitudes are given by integrals of the type

N−3
∏

i=1

∫

C

d2zi|zi − 1|−2si N−1|zi|−2−2siN−2

N−3
∏

j 6=i

|zi − zj|−sij

⋆ kinematic variables 4sij = α′(ki + kj)
2 for massless momenta ki

⋆ Meromorphic in sij with simple poles at non-negative integers
⋆ The four-graviton amplitude is proportional to the invariant R4

1

s12 s13 s14

Γ(1− s12) Γ(1− s13) Γ(1− s14)

Γ(1 + s12) Γ(1 + s13) Γ(1 + s14)

• Low energy expansion for |sij| ≪ 1 and σn = sn12 + sn13 + sn14 with σ1 = 0

A(0)
4 (sij) ∼

3

σ3
+ 2ζ(3) + σ2ζ(5) +

2

3
ζ(3)2σ3 −

1

2
σ2
2ζ(7) + · · ·

⋆ For all N the coefficients are “single-valued” multiple-zeta values.
(conjectured in Schlotterer, Stieberger 2012; Stieberger 2013; Stieberger, Taylor 2014)

(proofs in Schlotterer, Schnetz; Brown, Dupont; Vanhove, Zerbini 2018)
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Genus-one

• Torus Σ = C/(Z+ τZ) with modulus τ = τ1 + iτ2 ∈ H1, τ1, τ2 ∈ R, τ2 > 0
⋆ Integral over N points zi ∈ Σ

B(1)
N (sij|τ) =

N
∏

k=1

∫

Σ

d2zk
τ2

exp

{

∑

1≤i<j≤N

sij g(zi − zj|τ)
}

⋆ Scalar Green function (in terms of z = u+ vτ with u, v ∈ R/Z)

g(z|τ) =
′
∑

m,n∈Z

τ2
π|mτ + n|2 e

2πi(mu−nv)

⋆ B(1)
N (sij|τ) is invariant under the modular group SL(2,Z)

⋆ has simple and double poles at sij ∈ N; holomorphic in sij for |sij| < 1

• String amplitude for N = 4 is proportional to (Green, Schwarz, 1982)
∫

M1

d2τ

τ22
B(1)
4 (sij|τ) M1 = PSL(2,Z)\H1

⋆ Analytic continuation in sij was proven to exist (ED & Phong 1994)

⋆ N > 4 involves factors of ∂zg(z|τ) (Green, Mafra, Schlotterer 2013)
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Graphical Representation of Taylor series of B(1)
N (sij|τ)

• Absolute convergence of B(1)
N (sij|τ) for |sij| < 1 and fixed τ

⋆ allows for Taylor expansion in the variables sij
= physically corresponds to the “low energy expansion”

• Represented by Feynman graphs (Green, Russo, Vanhove 2008)

⋆ Each marked point zi on Σ is represented by a vertex •
⋆ Each Green function by an edge between vertices zi and zj

• • = g(zi − zj|τ)zi zj

⋆ Each vertex is integrated over Σ
⋆ To a graph with w edges we assign weight w

• Reducibility : A graph which becomes disconnected
⋆ upon cutting one edge vanishes by

∫

Σ
g = 0

⋆ upon removing one vertex factorizes into the product of its components
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Modular graph functions

• To each graph is associated a real-analytic modular function

⋆ since B(1)
N (sij|τ) is a modular function, so are its Taylor coefficients in sij

⋆ Organize by the number of loops = depth of the graph

w = 2 • •

w = 3 •
•
• • •

w = 4
•

•

•

•
•
•
• • •

w = 5
•

•
•
•

•

•

•

•

•
•
•
• • •

•

•

•

•
•
•
•

one-loop two-loops three-loops
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One-loop modular graph functions

• One-loop weight w graph

⋆ has w vertices and w edges

w
∏

i=1

∫

Σ

d2zi
τ2

g(zi − zi+1|τ) =
∑

p∈Λ′

τw2
πw|p|2w = Ew(τ)

⋆ with Λ = Z+ τZ and Λ′ = Λ \ {0} with p = m+ τn, (m,n) ∈ Z2

• coincides with a real-analytic Eisenstein series Ew
⋆ invariant under the modular group SL(2,Z) acting on τ
⋆ Eigenfunction of the Laplace-Beltrami operator on H1

∆Ew = w(w − 1)Ew ∆ = 4τ22∂τ∂τ̄

⋆ Laurent polynomial in τ2 at cusp τ → i∞

Ew =
2ζ(2w)

πw
τw2 +

2Γ(w − 1
2)ζ(2w − 1)

Γ(w)πw−1
2

τ1−w2 +O(e−2πτ2)
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Two-loop modular graph functions

• Two-loop graphs evaluate to a multiple Kronecker-Eisenstein series

Ca1,a2,a3(τ) =
∑

p1,p2,p3∈Λ′

δ
(

3
∑

r=1

pr

)

3
∏

r=1

(

τ2
π|pr|2

)ar

⋆ weight w = a1 + a2 + a3
⋆ invariant under SL(2,Z) and under permutations of a1, a2, a3
⋆ Laurent polynomial of degree (w, 1− w) in τ2 at cusp τ → i∞

• Satisfy “inhomogeneous eigenvalue equations” (ED, Green, Vanhove 2015)

⋆ with eigenvalues of the form s(s− 1) and s ∈ N

⋆ the inhomogeneous terms are linear or bilinear in Eisenstein series

e.g. C1,1,1 = • • (∆− 0)C1,1,1 = 6E3

C2,1,1 = • •
•

(∆− 2)C2,1,1 = 9E4 − E2
2

C3,1,1 = • •
• •

(∆− 6)C3,1,1 = 3C2,2,1 + 16E5 − 4E2E3

C2,2,1 = • ••• (∆− 0)C2,2,1 = 8E5
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Modular graph functions at higher loop order

• Expansion near the cusp τ → i∞
⋆ Laurent polynomial in τ2 of degree (w, 1− w) +O(e−2πτ2) whose coefficients
⋆ are single-valued multiple zeta-values (conjectured ED, Green, Gürdogan, Vanhove 2015)

⋆ include “irreducible” multiple zeta-values (Zerbini 2015)

• Modular graph functions satisfy algebraic identities of uniform weight

e.g. • • = 24C2,1,1 + 3E2
2 − 18E4

• • = 60C3,1,1 + 10E2C1,1,1 − 48E5 + 16ζ(5)

• •
•

= 15
2 C3,1,1 + 3E2E3 − 69

10E5 +
7
40ζ(5)

•
•
• = 2C3,1,1 − 2

5E5 +
3
10ζ(5)

• Laplace-Beltrami operator for 3 loops and higher

⋆ generically no longer maps the space of modular graph forms into itself
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Arbitrary number of loops and exponents

• Modular graph forms (ED & Green 2016)

A decorated graph (Γ, A,B) with V vertices and R edges consists of

⋆ connectivity matrix with components Γv r, v = 1, · · · , V, r = 1, · · · , R

⋆ decoration of the edges by “exponents” ar, br ∈ N for r = 1, · · · , R

A = [a1, · · · , aR] and B = [b1, · · · , bR]
To the decorated graph (Γ, A,B) we associate a function on H1

CΓ
[

A
B

]

(τ) =
∑

p1,··· ,pR∈Λ′

(

R
∏

r=1

(τ2/π)
ar

(pr)ar (p̄r)br

)

V
∏

v=1

δ

(

R
∑

r=1

Γv rpr

)

• Transformation under SL(2,Z)

CΓ
[

A
B

](

ατ + β

γτ + δ

)

= (γτ̄ + δ)µ CΓ
[

A
B

]

(τ)

(

α β
γ δ

)

∈ SL(2,Z)

⋆ modular weight (0, µ) with µ =
∑

r(br − ar): “modular graph form”
⋆ for µ 6= 0, there is no canonical normalization of τ2-factors
⋆ A = B ⇒ µ = 0 recover modular graph functions for Green function g
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Algebraic and differential identities

• Momentum conservation at vertex v implies algebraic identities

R
∑

r=1

Γv r CΓ

[

A− Sr
B

]

=
R

∑

r=1

Γv r CΓ

[

A

B − Sr

]

= 0

where A = [a1 · · · aR], B = [b1 · · · bR] and Sr = [0r−1 1 0R−r]

• The Maass operator ∇ = 2iτ22∂τ implies differential identities

∇CΓ

[

A

B

]

=
R

∑

r=1

ar CΓ

[

A+ Sr
B − Sr

]

• Algorithm for identities on modular graph functions and forms

⋆ to prove an identity F = 0, solve the weaker condition ∇wF = 0
⋆ using holomorphic subgraph reduction (ED & Green 2016; ED & Kaidi 2016)

=⇒ All algebraic identities between modular functions of weight w ≤ 6
(MATHEMATICA program Gerken 2020; see also Basu 2015; Kleinschmidt, Verschinin 2017)

• Identities from generating functions and iterated integrals

(Gerken, Kleinschmidt, Schlotterer 2019-20; Broedel, Schlotterer, Zerbini 2018)
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Single-valued elliptic multiple polylogarithms

• Severing a vertex of a modular graph function (ED, Green, Gürdogan, Vanhove)

⋆ produces a real-valued (single-valued) elliptic function on Σ

• •

•
−→ • •0 z

• • −→ •0 z
= un-integrated vertex

• Linear chain graphs are single-valued elliptic polylogarithms (Zagier 1990)

⋆ generalizing the Bloch-Wigner dilogarithm

• Higher loop graphs produce single-valued elliptic multiple polylogarithms

⋆ Modular graph functions may be viewed as special value at z = 0
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Higher genus

• How to generalize the genus-one formula to higher genus ?

⋆ recall the genus-one generating function

B(1)
N (sij|τ) =

N
∏

i=1

∫

Σ1

d2zi
τ2

exp

{

∑

1≤i<j≤N

sij g(zi − zj)

}

• Compact Riemann surface Σ of genus h ≥ 2 without boundary

⋆ we need a scalar Green function G(zi, zj)
⋆ and a measure dµN on ΣN

B(h)
N (sij|Σ) =

∫

ΣN
dµN exp

{

∑

1≤i<j≤N

sijG(zi, zj)

}
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Compact Riemann surfaces Σ of genus h

• Homology and cohomology

⋆ One-cycles H1(Σ,Z) ≈ Z2h with intersection pairing J(·, ·) → Z

⋆ Canonical basis J(AI,AJ) = J(BI,BJ) = 0, J(AI,BJ) = δIJ for 1 ≤ I, J ≤ h

⋆ Canonical dual basis of holomorphic one-forms ωI in H(1,0)(Σ)
∮

AI

ωJ = δIJ

∮

BI

ωJ = ΩIJ

⋆ Period matrix Ω obeys Riemann relations Ωt = Ω, Im (Ω) > 0

• Modular group Sp(2h,Z) : H1(Σ,Z) → H1(Σ,Z) leaves J(·, ·) invariant

M =

(

A B

C D

)

M t
JM = J

(

B

A

)

→ M

(

B

A

)

⋆ action on 1-forms ω and period matrix Ω given by

ω → ω (CΩ+D)−1

Ω → (AΩ+ B) (CΩ+D)−1
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Modular graph functions for arbitrary genus

• Canonical metric on Σ = pull-back of flat metric on Jacobian J(Σ)
⋆ modular invariant and smooth canonical volume form on Σ

κ =
i

2h

∑

I,J

Y −1
IJ ωI ∧ ωJ Y = ImΩ

∫

Σ

κ = 1

• The Arakelov Green function G(w, z) is defined by

∂w̄∂wG(w, z) = −πδ(w, z) + πκ(w)

∫

Σ

κG = 0

• “Natural” generating function for higher genus modular graph functions

C(h)
N (sij|Σ) =

∫

ΣN

N
∏

i=1

κ(zi) exp

{

∑

1≤i<j≤N

sijG(zi, zj)

}

⋆ Integrals absolutely convergent for |sij| < 1; analytic near sij = 0
⋆ Depend only on Σ, not on specific Ω chosen to represent Σ
⋆ Taylor coeffs in sij give modular graph functions (ED, Green, Pioline 2017)



Eric D’Hoker Modular graph functions, genus-one and beyond

Genus-two string amplitude

• Actually genus 2 string amplitude does NOT correspond to C(2)
4 (sij|Σ)

⋆ volume form κ is unique on Σ
⋆ but κN is not unique on ΣN for N ≥ 2

• Genus-two four-graviton string amplitude given by (ED & Phong 2005)

B(2)
4 (sij|Σ) =

∫

Σ4

Y ∧ Ȳ
(detY )2

exp

{

∑

1≤i<j≤4

sijG(zi, zj)

}

• Measure given by a holomorphic (1, 0)⊗4 form Y on Σ4

Y = (s14 − s13)∆(z1, z2) ∧∆(z3, z4) + 2 cycl perms of (2, 3, 4)

⋆ where ∆ is a holomorphic (1, 0)⊗2 form on Σ2

∆(zi, zj) = ω1(zi) ∧ ω2(zj)− ω2(zi) ∧ ω1(zj)

⋆ Volume form Y ∧ Ȳ/(detY )2 and B(2)
4 (sij|Σ) are Sp(4,Z)-invariant.
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Taylor expansion of genus two amplitude

• Low energy expansion of the genus-two four graviton B(2)
4

B(2)
4 (sij|Σ) = 32σ2 + 64σ3ϕ(Σ) + 32σ4ψ(Σ) +O(s5ij)

⋆ recall σn = sn12 + sn13 + sn14

• ϕ(Σ) is the Kawazumi-Zhang invariant for genus two (ED & Green 2013)

ϕ(Σ) =

∫

Σ2
|ν(x, y)|2G(x, y) ν(x, y) =

i

2
Y IJωI(x)ωJ(y)

⋆ introduced as a spectral invariant (Kawazumi 2008; Zhang 2008)

⋆ related to the Faltings invariant (Faltings 1984; De Jong 2010)

• New genus-two modular graph functions at every order in sij, e.g.

ψ(Σ) =

∫

Σ4

|∆(1, 2)∆(3, 4)|2

(detY )2

(

G(1, 4) +G(2, 3) −G(1, 3) −G(2, 4)
)2
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Modular geometry and differential equation

• Siegel half space Hh = {Ω ∈ Ch
2
, Ωt = Ω, Y = Im (Ω) > 0} = Sp(2h,R)/U(h)

⋆ with Sp(2h,R) invariant Kähler metric

ds
2
=

∑

I,J,K,L

Y
−1
IJ dΩ̄JK Y

−1
KL dΩLI

⋆ and Sp(2h,R) invariant Laplace-Beltrami operator on Hh

∆ =
∑

I,J,K,L

4YIK YJL ∂̄
IJ
∂
KL

∂
IJ

=
1

2
(1 + δ

IJ
)
∂

∂ΩIJ

⋆ Genus-two moduli space M2 = H2/Sp(4,Z) (minus diagonal Ω)

• ϕ(Σ) satisfies inhomogeneous eigenvalue equation on M2

(∆− 5)ϕ = −2πδSN

⋆ δSN has support on separating node (into two genus-one surfaces)
⋆ proven by methods from complex structure deformations theory
⋆ allows one to integrate 5

∫

M2
ϕ =

∫

M2
(∆ϕ+ 2πδSN) = 2π3/9√

check with D6R4 prediction from SL(2,Z) duality of Type IIB
(ED, Green, Pioline, Russo 2014; see also Kawazumi 2008)
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Degenerations of genus-two Riemann surfaces

• Locally parametrize M2 = H2/Sp(4,Z) by the period matrix

Ω =

(

τ v
v σ

)

τ, σ, v ∈ C det (ImΩ) > 0

⋆ Separating degeneration v → 0

A1
A2

B1 B2

⋆ Non-separating degeneration σ → i∞

A1
A2

B1 B2

⋆ Tropical limit ImΩ → ∞ keeping ratios fixed = field theory limit
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Non-separating degeneration

• Σ degenerates to torus Σ1 of modulus τ with punctures pa, pb
⋆ keep the cycles A1,B1,A2 fixed, and let B2 → ∞ as Im (σ) → ∞

• Modular group Sp(4,Z) reduces to SL(2,Z)⋉ Z3 Fourier-Jacobi group

= the subgroup that leaves B2 invariant
⋆ The degeneration parameter σ is not invariant under SL(2,Z)
⋆ e.g. Siegel modular forms decompose into Jacobi forms (Eichler & Zagier 1985)

• There exists a real-valued SL(2,Z)⋉ Z3-invariant parameter t > 0

t ≡
det (Im Ω)

Im τ
= Imσ −

(Im v)2

Im τ
Ω =

(

τ v

v σ

)

⋆ the non-separating node is characterized by t→ ∞
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Non-separating degeneration cont’d

• Theorem Expansion near the separating node of (ED, Green, Pioline 2018)

⋆ Expand B in powers of sij = weight

B(sij|Σ) =
∞
∑

w=0

1

w!
Bw(sij|Σ)

Bw(sij|Σ) =

∫

Σ4

Y ∧ Y

(detY )2

(

∑

i<j

sijG(zi, zj)

)w

⋆ then Bw is given by a Laurent polynomial of degree (w,−w) in t

Bw(sij|Ω) =

w
∑

k=−w

B
(k)
w (sij|v, τ) t

k
+ O(e

−2πt
)

⋆ where the coefficients are invariant under SL(2, Z) ⋉ Z2 ⊂ Sp(4, Z)

B(k)
w

(

sij

∣

∣

∣

∣

v +mτ + n

cτ + d
,
aτ + b

cτ + d

)

= B(k)
w (sij|v, ρ)

⋆ and are elliptic modular graph functions ∼ single-valued elliptic polylogs
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Ingredients in the proof

• Funnel construction of the non-separating degeneration (see Fay 1973)

⋆ start from genus-one surface with two punctures pa, pb
⋆ identify cycles Ca ≈ Cb, C

′
a ≈ C′

b and C′′
a ≈ C′′

b all homologous to A2

⋆ the cycle B2 is a curve connecting za to zb.

C′
a Ca

f = −t

C′′
a C′

b Cb

f = +t

C′′
b

• •pa pb

• •za zb
B1

A1

⋆ Key is the existence of a Morse function f(z) = g(z − pb|τ)− g(z − pa|τ)

⋆ For large enough t: cycles prescribed by f(Ca) = −t and f(Cb) = +t
⋆ The cycles Ca,Cb have exponentially vanishing coordinate radius

so that z ∈ Ca satisfies |z − pa|2 ≈ e−2πt

⋆ Power dependence in t arises from singular behavior of f near pa, pb
⋆ Allows to extract t-derivative (cfr RG methods in quantum field theory)
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Genus-two five-string amplitude

• Genus-two amplitude for five external massless states

⋆ constructed by chiral splitting and pure spinors (ED, Mafra, Pioline, Schlotterer 2020)

⋆ for external NS states constructed in RNS (ED, Schlotterer, in progress)

⋆ several independent kinematical invariants
⋆ D2R5 ∼ D4R4 given by constant integrand on M2

⋆ D4R5 ∼ D6R4 given by Kawazumi-Zhang invariant
⋆ D6R5 ∼ D8R4 given by weight-two modular graph functions

Z1 = 8

∫

Σ2
κ(1)κ(2)G(1, 2)2 Z2 = 4

∫

Σ3
|ν(1, 2)|2κ(3)G(1, 3)G(2, 3)

Z4 = 2

∫

Σ2
|ν(1, 2)|

2
G(1, 2)

2
Z3 = 2

∫

Σ4
|ν(1, 3)ν(2, 4)|

2
G(1, 2)G(3, 4)

• Satisfy a remarkably simple algebraic identity (ED, Mafra, Pioline, Schlotterer 2020)

Z1 + Z2 + Z3 + Z4 = ϕ2

⋆ implies Basu’s differential identity (Basu 2018)

• Further new modular graph function for (D6R5)′ not related to D8R4
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Integrating over genus-one moduli – transcendentality

• Tree-level Type II amplitude has uniform transcendent weight

A
(0)
4 (sij) =

3

σ3

exp

{

−

∞
∑

n=1

2ζ(2n + 1)

2n + 1
σ2n+1

}

⋆ σm = sm12 + sm13 + sm14
⋆ assigning weight w[ζ(n)] = n and w[sij] = −1 implies w[A(0)

4 (sij)] = 3

• Genus-one amplitude obtained by integration on moduli space

A(1)(sij) =

∫

M1

d2τ

τ2
2

B(1)(sij|τ)

⋆ Inherits the OPE pole singularities of B(1)(sij|τ) at sij ∈ N.
⋆ Further singularities from non-uniform behavior of G at cusp τ → i∞;

produce poles and branch cuts in sij as expected from unitarity.

⋆ Isolate a small neighborhood of the cusp τ2 > L≫ 1

A
(1)

(sij) = A
(1)
τ2<L

(sij) + A
(1)
τ2>L

(sij)

⋆ by construction all L-dependence must cancel in the sum.
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The non-analytic part A(1)
τ2>L

• To all orders in sij the orders L0 and lnL may be computed exactly

A(1)
τ2>L

(sij) = A∗(L; s = s12, t = s14) + 5 permutations

⋆ To all orders in s, t the function A∗(L; s, t) is given by (ED & Green 2019)

A∗(L; s, t) =
∞
∑

N=2

sN

N !
R

(N)
12 (L; s, t)+

∞
∑

M,N=2

sM+N

M !N !
R

(M,N)
12;34 (L; s, t)

⋆ The coefficient R12 is given by (corresponding formula for R12;34)

R
(N)
12 =

∞
∑

k=1

k−1
∑

ℓ=0

Ck,ℓS(N, k)s
k−ℓ+1tℓ

(

ln(−4πLs) + Ψ(k − ℓ + 1) − 2Ψ(k + 6)
)

where Ck,ℓ ∈ Q and S(N, k) are multiple zeta values

S(N, k) =
∑

m1,··· ,mN 6=0

δ(
∑

rmr)

|m1 · · ·mN |(|m1| + · · · |mN |)k

• ln(−s) part may be obtained via factorization onto tree-level

⋆ but the remaining analytic part cannot be determined that way.
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The analytic part A(1)
τ2<L

• To compute the analytic part, Taylor expand in sij

B(1)(sij|τ) =
∞
∑

p,q=0

B(p,q)(τ)
σp2 σ

q
3

p! q!
w[B(p,q)] = 2p+ 3q

– Extract L0 and lnL dependence from integral over τ .

• Exploit algebraic and differential identities to simplify B(p,q) for weight ≤ 6
(ED, Green, Vanhove 2015-16; ED, Kaidi 2016; Broedel, Sclotterer, Zerbini 2018)

⋆ Expose Eisenstein series, and Laplacian of modular functions
⋆ Exploit Stokes’s theorem to integrate Laplacian
⋆ e.g. at weight 6,

6B(3,0) = ∆
(

−9C2,2,1,1 + 18E2
3 + 9E2E4 + 6C4,1,1 + 156C3,2,1 + 41C2,2,2

)

+72E2C2,1,1 − 12E
2
3 − 36E2E4 − 2652E6

27B(0,2) = ∆
(

9C2,2,1,1 − 18E2
3 − 9E2E4 − 6C4,1,1 + 258C3,2,1 + 64C2,2,2

)

−36E2C2,1,1 + 483E
2
3 + 30ζ(3)E(3) + 18E2E4 + 6E

3
2 − 3186E6 + 3ζ(3)

2
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Transcendentality counting for D8R4

• D8R4 is the lowest order at which non-analyticities appear

⋆ All L-dependence cancels in the sum (by construction)

A =
4ζ(3)s4

15

[

− ln(−2πs) +
ζ ′(4)

ζ(4)
− ζ ′(3)

ζ(3)
− γ +

63

20

]

+ 2 perms of s, t, u

RULES towards conserving transcendental weight√
The argument −2πs of the log consistently has weight 0;√
Assign weight 1 to ln(−2πs) ;√
Assign weight 1 to the combination ζ′(4)

ζ(4) −
ζ′(3)
ζ(3) − γ√

Assign weight 1 to harmonic sums which result in 63
20

as is familiar from QFT (Kotikov, Lipatov 2002; Beccaria, Forini 2009)

• Corresponding analysis for D10R4 and D12R4 confirms that

they obey uniform transcendentality
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Summary and outlook

• Low energy expansion of string amplitudes reveals a rich structure of

⋆ Modular graph functions for Riemann surfaces of genus-one and beyond;
⋆ Relation with Kawazumi-Zhang and Faltings invariants;
⋆ Systematics of algebraic and differential identities for genus one;
⋆ The first identities between genus-two modular graph functions.

• Integration over moduli space for genus one (cfr. ED & Green 2019)

⋆ Consistent assignment of transcendental weight possible at genus one.

• Simple, but striking, observation at order D12R4

⋆ recall two invariants, σ3
2 and σ2

3 from explicit calculation we find

1
18ζ(3)

2σ2
3 + 0 · ζ(3)2σ3

2

⋆ First term can arise from “square of tree-level”, but not the second term !
⋆ Why ? Is there a pattern ?


