
1

User Experience Direct
(UX Direct)

FAQ: How to conduct Heuristic Evaluation

Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be

incorporated into any contract. It is not a commitment to deliver any material, code, functionality, or service and should not be relied

upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s

products remains at the sole discretion of Oracle. This document contains preliminary images.

2

FAQ: How to conduct Heuristic Evaluation

User Experience Direct (UX Direct) is an Oracle Applications User Experience (UX) program that provides user experience

expertise to Oracle customers and partners for their implementations, customizations, and usage of Oracle enterprise applications.

The goal of this program is to enhance end user experiences during and after customer implementations and improve user

adoption of Oracle’s enterprise applications.

Overview

A heuristic evaluation is a systematic inspection of a user

interface to uncover as many of the problems users might have

as time allows. The people doing the inspection perform

typical tasks that users would want to do with the product and

record the problems that they expect users will have. The

problems are violations of the 10 or so heuristics that form the

basis of the inspection. This document describes how to

perform a heuristic evaluation.

1. What are the heuristics and where do they come from?

The 10 heuristics that are most commonly used in user

interface inspections were developed from research conducted

in the 1990s. They are:

1. Visibility of feedback

2. Complexity of the application

3. Task navigation and user controls

4. Consistency and standards

5. Error prevention and correction

6. Recognition rather than memory overload

7. Efficient to use

8. Simplicity and appeal

9. Be tolerant and reduce cost of errors

10. Help Support

A complete description of these heuristics, with examples, can

be found in Appendix A and in the User Experience Direct:

User Interface Heuristics Checklist collateral.

2. Who conducts a heuristic evaluation?

Ideally, a user experience (UX) professional conducts the

evaluation because he or she has been trained in the method.

Research has shown that UX professionals find the most

problems.

If no UX professional is available, people from other

professions can use the method. One way to enhance the

reliability of the method is to have several people, say three to

five, conduct the evaluation independently and then get

together to consolidate their lists of problems into one common

list.

3. Can the method be used for an implementation?

Yes. This method is used both during the initial development

of an application and during the configuration and

customization of an application.

4. What are the advantages of a heuristic evaluation?

There are two primary advantages. First, it can be conducted

quickly. The whole process can be completed in a couple of

days. Second, it is efficient. It is sometimes called a “discount”

method because it requires fewer resources than other

methods.

5. What are the disadvantages?

The primary disadvantage is that the method does not involve

end users. Consequently, some of the problems that are

identified may be dismissed by stakeholders because they are

“just the opinion” of the people who conducted the inspection.

One of the ways to deal with this dismissal is to make the

process of the evaluation explicit. It is not based on opinion

but on a systematic inspection of steps that users follow to

complete tasks. Show how the method works and explain the

problems with screen shots that illustrate them.

6. How do I prepare for a heuristic evaluation?

Follow these steps to prepare:

• Decide on the scope of the inspection. Will it be applied to

the whole product? To the sections that have been

customized?

• Identify the roles and characteristics of the users who will

be using the product.

• Make a list of the tasks that users will perform frequently

with the product.

3

• Create a form that evaluators will use to record the

problems they see, showing on which page of the software

it occurred. (See Appendix B for a sample form.)

• Make the product or screen shots of it available to those

who will inspect it.

7. How do I conduct the heuristic evaluation?

The method described here assumes that a UX professional is

not available to the design team and that more than one

evaluator will conduct the inspection.

• The evaluators are briefed on the scope of the inspection

and the characteristics of the users who will be using the

product. They review the list of 10 heuristics and

examples to ensure that they understand them.

• The evaluators then independently work through the tasks

selected for the inspection. Evaluators take the point of

view of the intended users of the product. When

evaluators uncover a problem that they believe users will

have, they record it on the form along with the task

attempted, the page or dialog that is displayed at the time,

and the heuristic that it violates. For example, a field

requiring the typing of a date does not show the valid

format for the date. The evaluator records the problem, the

page, and field on which it occurs and the heuristic: Error

Prevention and Correction. In another example, after the

user clicks on a Submit button, there is a long (5-second)

pause before the page refreshes. The evaluator records the

problem, the page on which it occurs, and the heuristic:

Visibility of Feedback. (See Appendix B for a sample

form.)

• After the evaluators complete the tasks selected for the

inspection, they should explore the product in other ways.

They might try to create error conditions and explore

pages not encountered during the tasks.

• After the inspection of the product is completed, each

evaluator goes back to the forms and records any obvious

solutions to the problems they uncovered. For example, an

evaluator might suggest providing a prompt that shows the

format of a date or displaying a processing indicator when

there is more than a two-second pause. Research has

shown that it is better to think about solutions after the

problems are recorded rather than at the same time they

are encountered.

• Finally, the evaluators get together and go over their

problem sheets and solutions, combining their problems

and eliminating duplicate problems.

8. Are all usability problems treated equally?

No. Some problems are more important than others. There are

at least two ways in which problems differ. Problems may

impact users differently. For example, will the problem cause

users to fail to complete a task, or does the task take much

longer to complete that users expected? On the other end of

severity, the problem may be a minor misunderstanding that

only shows up the first time the product is used. Also, some

problems are likely to affect every user, while others affect

only a small subset of users.

The second aspect to consider is the scope of the problem.

Does it affect only one screen, or does it have a wider impact?

For example, structural issues such as the organization of tabs

or menus that do not match the users’ work flow may affect

more than one page. However, a single misunderstood term is

likely to affect just one step within a task.

A simple but effective way to categorize the severity of

problems is to use a three-level scheme: high, medium, and

low severity. A person who has inspected the product can

make this judgment, and it will not be much different from the

categories of a UX expert.

It may also be helpful to identify problems that have solutions

that are easy to accomplish. For example, you can say: “Here

is a list of problems that can be fixed with little expenditure of

resources.”

9. How do I present the results of a heuristic evaluation?

Because the problem lists that result from an inspection are

based on professional judgment rather than from the

performance or opinions of users, it is important to make the

results credible. If you are presenting the results to managers

who have to make decisions about what to fix, keep in mind

that they were not present to watch the evaluation process.

They may have no idea that the problems were identified by a

systematic process. Consequently, it is important to describe

the heuristic evaluation process, show the heuristics, and show

the forms used to record them.

A second strategy when presenting the results is to avoid

overwhelming the audience with a very long list of problems.

Many of the problems may be minor, low-priority issues. This

is especially true if the product has not been subjected to a

quality assurance check. One way to deal with this is to

separate the top 10 problems from the rest and to focus on

them. In most cases, if you can get the organization to fix only

those top 10 issues, the product’s usability will be significantly

enhanced.

4

Appendix A: User Interface Heuristics

Checklist

Overview

Usability heuristics are general principles that help guide user

interface design. The list below describes the principles Oracle

uses to create strong, usable designs that offer a best-in-class

user experience. The heuristics also can be used to guide an

organization’s configuration and customization of Oracle

applications.

1. Visibility of system feedback:

Does the application keep users informed about what is
going on through visible, clear, and concise feedback? The
application should provide indicators to answer the
question, "Where am I?"

Design Perspective:

The interaction of a user with an application is, in many ways,

like the interaction of two people talking on the phone. The

two people can’t see each other, so use verbal cues and sounds

to aid the communication. Here is an example:

He: Wait, I will get a pencil. (Statement of action.)

She: OK, I’ll wait. (Feedback that she heard the request.)

(Note: if the pause on the phone is more than a few

seconds, she will likely say, “Are you still there?” because

there is no indication that the line is still active and that he

is OK.)

He: OK. Go ahead. (Feedback that he is back and passing

control of the conversation.)

She: The name is JANE DOE. (Passing information.)

He: JANEDOE. (Quietly mimicking her as she says the

letters – feedback that he is hearing the letters correctly

but not taking control of the conversation.)

He: OK. (Indicating that he has the name and inviting her

to keep control.)

She: 17 ABBEY. (Passing information.)

He: Wait! Was that EY? (Error message that takes control

of the conversation and asks for confirmation.)

She: Yes. (Verification and taking back control of the

conversation.)

She: In Watertown…did you get that? (Passing

information and asking for confirmation.)

He: Yes, give me the zip. (Confirmation and request for

information; passing control back.)

She: I am looking it up …let’s see… here it is … 09873.

(Statement of action, verbal feedback indicating both that

she is working at the task and still in control of the

conversation. Then passing information.)

You can see that throughout this conversation, there is a

constant passing of control, continuous feedback, and

verification about the status of the conversation and the

information being passed. Long pauses cause either party to

question whether the conversation is still active, and

sometimes subtle cues are used to keep control of the

conversation or to indicate that the other party should continue.

In human-computer interactions, there are visual analogs to the

verbal cues used in conversation. The user can only see what is

on the current screen. So the user needs indications about

where this screen is and what it is about. Titles and headers on

a screen are essential to knowing what it contains.

Breadcrumbs help by indicating where the screen is in the

structure of the application. In screen sequences, such as

wizards and trains, messages like “Step 2 of 4” provide status

feedback.

With enterprise applications, the core functionality is provided

by the core software, which ideally has been reviewed and

tested with users to ensure it provided the proper feedback.

Just as important is the design of the additions to the core

functions made by the customer’s implementation team.

Configurations and customizations also need to follow the

same good practices about feedback.

When users have taken some action, such as clicking on a

button, they need feedback about the actions the application is

taking in response. Sometimes moving to a new page is

enough. But often the user needs more, such as a status

message saying that the database has been updated. This

verifies to the user that the action he or she performed had the

desired result. The message can be a simple pop-up message

that requires no action, which is analogous to providing

feedback without taking control of the conversation.

5

In human-computer interaction, it often happens that the

computer drops out of the conversation unexpectedly. It

happens enough that most users begin to suspect it has

happened after only a few seconds, unless the application

provides feedback in the form of progress indicators. For

short pauses, a simple symbol such as an hourglass cursor

is enough. But for pauses of more than about 5 seconds, a

progress bar can keep users from trying to see if the

application is active by pressing the enter key several

times.

Examples of good practices:

1. Indicate where the user is with a title or header on every page.

2. In multi-page processes, indicate progress. For example: “Step 2 of 4.”

3. Indicate that the application is working normally with an icon that appears when the application is processing, to

prevent the user from performing any action.

For longer operations, use a progress indicator to show how much of the process is left to complete.

4. Indicate when a task is successfully completed.

5. Indicate the path through an application showing “breadcrumbs" at the top of the page. For example: “Suppliers:

Address Book>Create Address>Confirm Details.”

6

2. Complexity of the application:

Does the application match the user’s real world and
language, and reflect the user’s primary goals and tasks?
The application should speak the user’s language, with
familiar words and phrases, and organize information in a
natural and logical order.

Design Perspective:

One of the biggest challenges for an application designer is

understanding the users’ world -- their language, the tasks they

perform, and the way they structure their work. Users of

enterprise software are experts at their jobs. They have

specialized degrees, training, and varied experience. Ideally,

the core application has been designed around users and their

work. But in the process of implementing an application at a

company, the users’ characteristics must also be considered.

Configurations and customizations need to speak a user’s

language and be organized around a user’s work practices,

which can only happen when users are involved in the design

of these additions as part of the design team or as evaluators

during usability tests.

Most applications are organized through tabs, sub-tabs, and

pull-down menus. Designers often think of partitioning an

application into the functions it performs. But these menus and

tabs work best when the terminology and organization of the

design fits a user’s mental model of work. Conducting

interviews with users and observing them is essential to getting

the task flow right. One of the important challenges to user-

centered design comes when new functions are implemented or

when a new application or version changes the way work is

done. In those cases, designers can’t look backward to see how

work was done but must look forward by working with users

to evaluate a design that introduces change. In these cases, it is

not sufficient to ask users what they expect. Users need to see

the screens and use the evolving design to ensure its usability.

Card sorting has proven to be a useful way to organize lists,

menus, and tabs. One way this method is used is to ask

potential users to review the names of options that the

designers suggest and to propose their own terms. Then they

are asked to sort the options into piles and name the piles. The

results of this sorting can be used as suggested ways to

organize the application.

Examples of good practices:

1. Make buttons look as if they have been pushed when the user clicks on them.

2. Organize menu choices in the most logical way for the user, the item names, and the task.

7

3. Place related and inter-dependent fields on the same page or section of a page.

4. Use prompts in data-entry fields, such as “MM/DD/YYYY.”

5. Create buttons and links that employ user jargon but avoid computer or technical jargon.

3. Task navigation and user controls:

Does the application allow users to complete tasks and
goals without hindrance? The application should allow
users to undo actions.

Design Perspective:

In addition to terminology and structure, navigation is the third

leg of a usable design. Applications provide users with a

limited number of paths to achieve their goals. In a Web-based

design, there is a tension between simplicity and flexibility.

The more paths that are possible, the more flexible the design.

But flexibility comes at a cost because it increases complexity.

The ultimate in flexibility can be achieved by providing no

structure, allowing users to do whatever they want. But such a

design is nearly impossible to learn to use. The key to an

effective design is to balance flexibility and simplicity.

A design principle that speaks to this issue is to keep the user

in the context of his or her work as much as possible. Doing so

requires an intimate knowledge of the work process. Work is

broken down into steps. Within a step, the design should keep

users in context as much as possible by not sending them off to

new pages and then bringing them back later. In the early

history of HTML interfaces, the server did not know what the

user was doing until an action triggered a hit to the server, and

it was impossible to refresh only the part of the page the user

was on. Those restrictions have changed. For example, when

the user takes an action that brings up a table of data, the table

can be inserted into the current page, leaving the context intact.

In addition, tables can have controls on them that allow users

to move to the next step without leaving the table or the page.

Pop-up dialogs can sit on top of the page so that they only

cover part of it, allowing users to make decisions or add new

data while staying in the context of their work.

One of the characteristics of people is that we make mistakes.

We click without thinking. And we change our minds. One of

the most frustrating aspects of using an application is not being

able to recover from an action we didn’t intend or not being

able to reconsider and go back a step. When designing a

configuration or customization of a core application, it is

important to add “Undo” and “Redo” options whenever

possible. It takes extra work, but is enhances usability. Also, in

sequential processes, users should be able to move back and

forth through the steps until they are finished. Sequential

processes are usually designed to guide inexperienced users

through the steps in a process, which makes free movement

8

even more necessary as they are likely to make missteps or

change their minds.

Traditionally, navigation buttons performed a single function,

such as “Save” or “Submit,” which usually then brought users

to a new page. But navigation buttons can have multiple

functions when those functions frequently occur together, such

as “Save” and “Add Another” or “Edit and Submit.” These

types of buttons reduce the number of jumps to new pages and

keep users in the context of their work longer.

Examples of good practices:

1. Match the flow of pages to the flow of user tasks.

2. Allow users to confirm actions that have drastic or destructive consequences, for example:

You have unsaved changes. Save changes before continuing? Yes/No

3. Allow users to reduce data-entry time by copying and modifying existing data.

4. Allow users to easily undo actions, for example: "Remove from cart."

5. In multi-page tasks, allow users to move backward and forward among all the pages in the set.

4. Consistency and standards:

Does the application follow Web-based or product-based
standards and conventions consistently? Users should not
have to wonder whether different words, situations, or
actions mean the same thing.

Design Perspective:

Creating a usable application is a group process. Different

people work on different parts of the user interface. In order to

ensure the application’s usability, all of these people need to be

following the same conventions. In addition, when an

application is being configured and customized, the people

working on the user interface need to following the same

conventions as the core application. For example, all Save

buttons should perform the same action: saving the data on the

page and moving to the next page. Users will be confused if

the button sometimes moves them to a new page, but not

always.

Standards apply to all aspects of the user interface: page and

form layouts; color palates; headers and labels; placement and

terms used on tabs, sub-tabs, buttons, and links; table layouts;

calendars; keyboard shortcuts; abbreviations; etc.

User interfaces present a consistent set of conventions to users

when the design team has a style guide of conventions to

follow. In addition to following a guide, there needs to be style

guide review for all screens. The review’s purpose is to verify

that the page is consistent with the guide. Violations are noted

and assignments are made for fixing any violations.

Examples of good practices:

1. Match the descriptions of titles and headers with the links that point to them.

2. Use a familiar page layout. For example: Put navigation on the left, links to special site tools such as “Preferences” on the

upper right, and put featured items on the right side.

3. Only use attention-getting techniques for exceptional conditions or for time-dependent information.

4. Be consistent in naming and grammatical style for menu options, both within each menu and across the application.

5. Follow industry or company standards for buttons and links, for example:

9

Correct
Term

Component Usage Incorrect Term for
this Usage

Confirming Changes

Apply Action/Navigation
button

Confirms changes made in current page without
navigating to another page.

Go, Set, Submit,
Update, Save

Save Action button Saves changes without navigating to another page,
so that the user can continue modifying page
contents.

Apply, Go, Set,
Submit, Update

5. Error prevention and correction:

Does the application prevent error situations from
occurring in the first place, and provide users with
meaningful error messages?

Design Perspective:

One of the important principles of user-centered design is to

prevent errors from happening or, when that may not be

possible, to catch them immediately. There are a number of

good practices that are known to reduce errors

• Whenever possible, have the application fill in

data so that the user doesn’t have to type it. This

practice reduces the number of typographical

errors.

• Use “Favorites” and “Recent Activity” lists to

simplify navigation.

• Make the format of data-entry fields clear,

especially dates, phone numbers, partial numbers,

etc.

• Automatically validate data-entry values. When

values are invalid, tell the user and indicate the

correct range or format.

• Warn users about data value actions that could

cause problems later.

Examples of good practices:

1. Reduce input errors by automatically filling, or auto-filling, fields that require repetitious data.

10

2. Make obvious validation checks. Examples of validation checks:

Range

check

This checks that the data lies

within a specified range of

values.

Example: The month of a

person's date of birth should

lie between 1 and 12.

Presence

check

This checks that important

data is actually there.

Example: Users may be

required to enter telephone

numbers.

Type

check

This checks that data is of the

right type.

Example: A number, text, etc.

Length

check

This checks that fields have

the correct number of

characters.

Example: A bank account

number must be 10 digits.

3. Place function keys that can cause serious consequences in hard-to-reach positions.

4. Provide warnings about data that could cause a problem later.

11

6. Recognition rather than memory overload:

Does the application make users remember
information, causing memory overload, or does the
application make options visible?

Design Perspective:

People are notoriously poor at recalling detailed

information, but are remarkably good at recognizing it.

Our limited ability for recall makes using software

applications particularly difficult. Users see one page at a

time and must build up a mental model of the software.

Many of the good practices described in the other

heuristics in this document work because they reduce the

need for recall; for example, consistency in the use of

terminology and navigation provide feedback about where

the user is, laying out screens so that similar items are

grouped and auto-filling entries that the users has

previously entered elsewhere help fill in memory gaps.

The pull-down list is a good example of a widget that

allows users to select by recognition rather than type an

option from memory. Better still is the pull-down menu in

which frequently used items gravitate to the top of the list

over time.

One frustrating aspect of many applications is the need to

perform searches. In most cases, users must type an entry

from memory and click on a search button or icon. This

process induces many errors. People are not good at

recalling details such as the correct spelling or whether it’s

better to search by last or first name. When the search

function returns an empty list, or a huge one, users have to

rethink their strategy. There are several ways to design a

search function that reduces errors. The best strategy is to

reduce the need for searching. A good practice is to

display a list, perhaps of favorite items that users have

searched for in the past, and allow users to choose from it.

Finally, as mentioned before, retaining a user’s work on

one page keeps it in context of the task. Using pop-up

dialogs and mouse-over tool tips avoids sending users to a

separate page, where they may forget that they were

doing.

Examples of good practices:

1. Make labels and controls of currently inactive functions gray.

2. Use borders to separate meaningful groupings.

12

3. Whenever possible, allow users to choose from a list of options rather than type an entry.

4. Use mouse-over tool tips to explain functions that are used infrequently.

13

5. For complex applications, provide a site map that users can access easily.

7. Efficient to use:

Does the application allow both novice and expert
users to get their work done quickly and efficiently?
The application should allow users to tailor frequent
actions.

Design Perspective:

Most of the focus on usability is on first-time or early use

of applications, which is important because that strategy

can provide barriers to later use. Over time, users want to

be able to take advantage of their experience. For

example, if they know the format of dates, they may want

to just type the date rather than using a date picker.

Function key accelerators help experienced users without

hindering new users as to shortcuts put into pop-up menus

accessed by a right-click on the mouse.

The use of the Shift key for contiguous selection of items

and the CTRL key for non-contiguous selection should be

enabled on tables and lists. Type-ahead capability allows

users to keep working when the application is not quite

ready for input. Recent actions and “Favorites” lists often

help experienced users more than new ones.

Examples of good practices:

1. Use accelerators, unseen by the novice user, to speed up interactions for the expert.

2. Make frequently-used items the first choice in lists.

14

3. Provide “Bookmarks” or “Favorites” lists for frequently used choices.

4. Allow type-ahead whenever possible.

5. Auto-fill fields whenever possible.

8. Simplicity and appeal:

Does the application make tasks simple and appealing?
The application should streamline information because
every extra unit of information in a dialogue page
competes with the relevant units of information and
diminishes their relative visibility.

Design Perspective:

Effective graphic design means more than creating pages that

are pleasing to the eye. Good design makes the organization of

a visual page clear at a glance and draws users’ attention to

what it most important on the page. There are several key

components that contribute to good graphic design. One of the

most important is the use of color. The core Oracle

applications were designed to follow a color palate. That palate

purposely uses muted colors that don’t overwhelm the look of

the page. In addition, the palate was designed to make sure that

adjacent fields or areas do not have widely varying hues that

can confuse the eye. In configuring or customizing an

application, the design of new pages or windows should not

deviate from that palate.

Typically, special highlighting beyond what is used on core

application pages should not be needed. Occasionally,

underlining a key word in instruction text may be used to call

attention to it. But highlighting beyond what the core

application pages use should be avoided.

One of the tools that can simplify a design is the use of icons,

which are heavily used in modern enterprise software. Use the

same icons that the core application uses whenever possible.

Creating new icons for a customization is a challenge. It is

difficult to create effective icons for new functions. Effective

icons are recognizable, that is, more than two-thirds of users

are able to identify the function the first time. One factor that

helps recognition is the use of a visual representation that maps

to the function. For example, this icons looks like a calculator:

If clicking on this icon brought up a calculator, the connection

might be clear. But if it were used to calculate a total, its

meaning might be ambiguous. The only way to know if an

icon is recognized by users is to test it with them in the context

of a task they perform. If such testing is not feasible, it is best

to avoid using a new icon when designing a customization.

15

Examples of good practices:

1. Make sure your content is written for the application and not just repackaged from a paper source. Reading from a

screen is different from reading from a paper document.

2. Make icons visually distinct and ensure that users understand the link between the icon and the concept it represents.

Test new icons with users for recognizability.

3. Use progressive disclosure, that is, reveal information to the user in small, manageable amounts through the use of

Show Details buttons, pop-up boxes, pull-down menus, and hierarchical menus.

9. Be tolerant and reduce cost of errors:

Does the application allow users to recover and move
forward in achieving their goals without unnecessary
frustration? Error messages should be expressed in
plain language, indicate the problem precisely, and, if
possible, suggest a solution.

Design Perspective:

Poorly designed error and warning messages have plagued

software applications since they first appeared. Poor

messages vary from incomprehensible to insulting.

Effective error and warning messages tell the user what

happened and suggest solutions:

Writing them requires understanding the context in which

they appear. One of the challenges for designers who are

customizing an application is managing these messages.

Some error and warning messages will come from the core

application. When they need to be made more

comprehensible, the application designer may be able to

modify them or intercept them. If not, some other means

for helping the user may be needed, such as a tool tip.

When an application is tailored extensively, new messages

may be needed. Ideally, the implementation team has

access to a technical communicator with experience at

writing error messages. If not, then it is the designers’

responsibility to write them.

All error messages should provide some basic

information:

• What is the problem?

• What, if anything, can the user do to fix it or

recover from it?

• What, if anything, can the user do to prevent this

problem in the future?

Consider the content each message needs. The main goal

of error messages is to tell users what's wrong and then get

them back to their task as quickly as possible. Give serious

thought to how much detail your users need about each

problem. Some might benefit from seeing specific

information on a problem, such as a server timeout, but

weigh the needs of those users against the needs of people

who just want to know two things: What's the problem?

What can I do to fix it?

The tone of the message is important. Never blame the

user. You can easily diffuse blame in your error messages

16

by simply stating what the user needs to do. For example,

an error message informing the user that the password he

or she typed is too short might say: "Type a password that

is at least five characters long" instead of "You typed a

password that is too short."

Finally, the format of the messages you create should be

consistent with the format of messages from the core

application. It is best to show the user a consistent format

than to create your own. For more on user assistance

messages, see the UX Direct: Messages collateral.

Examples of good practices:

1. Write error messages constructively, avoiding overt or implied criticism of the user.

2. Suggest a solution whenever possible: "Did you mean Web site when you typed web stie?”

3. When errors are not easily diagnosed, make suggestions for a solution based on probability: "Incorrect password.

Check to see if your caps lock key is on."

4. Make error messages consistent in look and behavior.

5. Make error messages visible and highly noticeable, both in terms of the message itself and how it indicates which

dialogue element users must repair.

17

10. Help support:

Does the application provide clear instructions on how to perform steps when users are struggling to complete their tasks?
Simple and concise instructions, prompts, and cues should be embedded in the application.

Design Perspective:

Online or embedded help takes several forms. For Oracle products, the forms include:

• Help Icon: Can be configured to link to a Help system, to display a brief description in a tooltip, or both.

• Instruction Text: Static text or a note window with directions or guidelines for performing a task.

18

• Hint Text: Tooltip with field formatting and validation rules. It helps avoid user error by displaying rules for fields that

accept direct user input.

• Description Text: Tooltip with a brief explanation of a UI element. It is especially useful for elements that do not

support other forms of help, such as icons, images, and list options.

The following guidance is taken from Oracle’s Browser Look

and Feel Guidelines.

Effective help design depends on the same information as does

successful application design — detailed knowledge of the

application's users. Some applications are used by a single type

of user. However, most applications are used by different

groups of users with differing software skills, responsibilities,

and domain knowledge. Differing groups of users may spend

their time working in different parts of an application; thus,

help must be tailored to meet the audience needs for each part

of the application.

Here are several questions that help determine which groups

need help in which parts of the application.

• Do different groups of users typically use different

tabs or groups of pages in the application?

• Which high-frequency tasks do each group of users

find difficult to complete successfully?

• On which pages do users perform these tasks?

• How great is the difficulty? Can they figure out how

to do it by themselves? If so, do they remember how

the next time they perform the task?

Web applications have multiple methods of providing help,

each with a different scope (component, section, page, or

group of pages). This information should be gathered before

developing help for the page whenever possible.

• Is the problem caused by a single component, or by

the interaction of a group of components?

• Is the problem caused by a shortcoming in UI design

that cannot be fixed for some reason, or by a lack of

domain knowledge (not understanding technical

terms, or not knowing which choice to make)?

• Will a brief set of instructions suffice to address the

issue?

It is recommended to first identify individual fields requiring

help, and then determine whether more general information is

required:

• Provide tool tip Description Text for every iconic

button.

19

• If a field prompt or button label is not self-

explanatory, and this cannot reasonably be fixed by

editing the prompt or label, provide description text

with a fuller explanation.

• If an editable field has formatting or validation

constraints, use Hint Text. If additional directions or

related information are also needed, use Instruction

Text.

• If a read-only text element, such as a column header,

is not self-explanatory, use a Help Icon with

definition text and a link to the Help system for

further information if needed.

• If a list item requires additional explanation, use

description text.

• When users need directions to complete a task that

involves multiple components, use Static Instruction

Text. If additional information is needed, provide an

icon to link to the application's Help system.

• If an overview of a multi-page task or business

requirements is needed, provide static instruction text

with a help icon to link to an overview topic in the

Help system.

Examples of good practices:

1. Use tool tips that provide useful information instead of repeating what is already on the page.

2. Whenever possible, Help should be context-sensitive, such as providing a link directly into the relevant

section of Help. For example: “See Enabling International Support.”

3. Allow the user to switch easily between Help and their work.

4. Provide several access methods to the Help text: table of contents, index, search and embedded hyperlinks.

20

Appendix B: Heuristic Evaluation

Evaluator’s Form

Name: ________________

Date: ________________

Describe the usability problem:

__

__

__

__

What task and step was being attempted when the problem occurred?

__

__

__

__

Where in the product did the problem arise?

__

__

__

What solution will solve the problem?

__

__

__

__

Oracle Corporation

Worldwide Headquarters

500 Oracle Parkway

Redwood Shores, CA

94065

U.S.A.

Worldwide Inquiries

Phone

+1.650.506.7000

+1.800.ORACLE1

Fax

+1.650.506.7200

oracle.com

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only and the

contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other

warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or

fitness for a particular purpose. We specifically disclaim any liability with respect to this document and no contractual obligations are

formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any

means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective

owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel

and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are

trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open

Company, Ltd. 0110

