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Fire Sales in a Model of Complexity

RICARDO J. CABALLERO and ALP SIMSEK∗

ABSTRACT

We present a model of financial crises that stem from endogenous complexity. We
conceptualize complexity as banks’ uncertainty about the financial network of cross
exposures. As conditions deteriorate, cross exposures generate the possibility of a
domino effect of bankruptcies. As this happens, banks face an increasingly complex
environment since they need to understand a greater fraction of the financial network
to assess their own financial health. Complexity dramatically amplifies banks’ per-
ceived counterparty risk, and makes relatively healthy banks reluctant to buy risky
assets. The model also features a novel complexity externality.

ONE OF THE MOST damaging aspects of financial crises is the enormous uncer-
tainty they generate, and a central factor behind this uncertainty is the com-
plexity of the linkages among modern financial institutions (banks, for short).
The concern for the uncertainty and complexity combination, and the perverse
fire sales that accompany it, influences private and public choices alike. Federal
Reserve Chairman Ben Bernanke, in his testimony to the Senate on April 3,
2008 following the Fed’s Bear Stearns intervention, captures this concern as
follows:

Our financial system is extremely complex and interconnected, and Bear
Stearns participated extensively in a range of critical markets. The sud-
den failure of Bear Stearns likely would have led to a chaotic unwinding
of positions in those markets and could have severely shaken confidence.
The company’s failure could also have cast doubt on the financial posi-
tions of some of Bear Stearns’ thousands of counterparties and perhaps of
companies with similar businesses . . . . Moreover, the adverse impact of a
default would not have been confined to the financial system but would
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have been felt broadly in the real economy through its effects on asset
values and credit availability.1

Unfortunately, Chairman Bernanke’s testimony would prove prescient only
a few months later during the Lehman episode, when the demise of the invest-
ment bank wrecked havoc around the world. Moreover, the concern for a repeat
of such turmoil is the central reason behind the multiple recent attempts to
insulate the rest of Europe from the sovereign debt problems of its periphery.

In this paper, we present a model of crises that builds upon the idea that
complexity, a dormant factor during normal times, becomes acutely relevant
and self-reinforcing during crises. Complexity matters in our model not di-
rectly (and in this sense this is not a “networks” paper) but through the un-
certainty it generates and through the reactions of the economic agents to this
uncertainty.

The basic structure of our model is a network of cross exposures between
financial institutions that is susceptible to a domino effect of bankruptcies.
However, we make assumptions such that domino effects are of limited size
in the absence of our informational mechanism. In this context, we concep-
tualize complexity by banks’ uncertainty about cross exposures. In particular,
banks have only local knowledge of cross exposures: they understand their own
exposures, but they are increasingly uncertain about cross exposures of banks
that are farther away (in the network) from themselves.2 During normal times,
banks only need to understand the financial health of their direct counterpar-
ties. In contrast, when a surprise liquidity shock hits parts of the network, a
domino effect of bankruptcies becomes possible, and banks become concerned
that they might be indirectly hit. Banks’ uncertainty about cross exposures,
a dormant factor in normal times, suddenly becomes relevant. In particular,
banks now need to understand the financial health of the counterparties of
their counterparties (and their counterparties). Since banks only have local
knowledge of the exposures, they cannot rule out an indirect hit. They now per-
ceive significant counterparty risk that leads them to retrench into a liquidity
conservation mode.

This structure exhibits strong interactions with secondary markets for banks’
assets. Banks in distress can sell their legacy assets to meet the surprise
liquidity shock. The natural buyers of the legacy assets are other banks in the
financial network, which may also receive an indirect hit. When the surprise
shock is small, the domino effect is small and buyers can rule out an indirect
hit. In this case, buyers purchase the distressed banks’ legacy assets at their
“fair” prices (which reflect the fundamental value of the assets). In contrast,
when the surprise shock is large, larger domino effects become possible and
buyers cannot rule out an indirect hit. As a precautionary measure, they hoard
liquidity and turn into sellers. The price of legacy assets plummets to fire

1 Available at http://www.federalreserve.gov/newsevents/testimony/bernanke20080y03a.htm.
2 In practice, banks also face many other sources of complexity (e.g., asset payoffs). Our modest

goal in this paper is to focus on one source of complexity (about the structure of cross exposures),
and to understand the role that this type of complexity plays during crises.
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sale levels (i.e., below fundamentals), which in turn exacerbates the domino
effect.

This feedback mechanism can generate multiple equilibria for intermediate
levels of the surprise shock. When legacy assets garner a fair price in the
secondary market, the banks in distress have access to more liquidity, and
the surprise shock is contained after fewer bankruptcies. When the domino
effect is smaller, the natural buyers rule out an indirect hit and demand legacy
assets, which ensures that these assets trade at their fair prices. Set against
this benign scenario is the possibility of a fire sale equilibrium, where the price
of legacy assets collapses to fire sale levels. This leads to a greater number
of bankruptcies and a larger domino effect. With a larger domino effect, the
natural buyers become worried about an indirect hit and they sell their own
legacy assets, which reinforces the collapse of asset prices.

Our model features a distinct complexity externality, which stems from the
dependence of banks’ counterparty risk on the endogenous size of the domino
effect. In particular, any action that increases the size of the domino effect in-
creases the counterparty risk perceived by banks that are uncertain about the
financial network, and banks dislike this effect. Our model features two vari-
ants of this complexity externality (one nonpecuniary, one pecuniary), each of
which supports different government policies. First, a bailout of the distressed
banks financed by small lump-sum taxes on all banks may lead to a Pareto
improvement. The market equilibrium is unable to replicate this allocation
because each bank fails to take into account that its contribution to a bailout
will reduce the counterparty risk faced by all other banks. Second, in the range
of multiple equilibria, policies that increase asset prices may lead to a Pareto
improvement by coordinating the banks on the fair price equilibrium. In this
range, the fire sale equilibrium is Pareto inefficient because a bank that sells
assets does not take into account the effect of its decision on other banks’ coun-
terparty risk. In particular, this bank generates a (small) reduction in asset
prices, which in turn leads to a larger domino effect and greater counterparty
risk, real and perceived, for all other banks.

Our paper is related to several strands of the literature. An extensive liter-
ature highlights the possibility of network failures and contagion in financial
markets. An incomplete list includes Rochet and Tirole (1996), Kiyotaki and
Moore (1997a), Allen and Gale (2000), Freixas, Parigi, and Rochet (2000), Eisen-
berg and Noe (2001), Lagunoff and Schreft (2001), Dasgupta (2004), Leitner
(2005), Cifuentes, Ferrucci, and Shin (2005), Rotemberg (2008), Allen, Babus,
and Carletti (2010), Acemoglu et al. (2012), and Zawadowski (2013) (see Allen
and Babus (2009) for a survey). Many of these papers focus on the mechanisms
through which solvency and liquidity shocks may generate a domino effect in
the financial network. In contrast, we take these phenomena as the reason for
the rise in banks’ uncertainty and we focus on the effect of this uncertainty
on banks’ prudential actions. It is also worth pointing out that the uncertainty
mechanism we emphasize in this paper is operational even for a relatively small
amount of network contagion. The contagion literature is sometimes criticized
because it appears unlikely that many financial institutions would be caught
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up in a domino effect of bankruptcies.3 But as this paper illustrates, even par-
tial domino effects can have large aggregate effects since they greatly increase
counterparty risk and trigger widespread prudential actions.4 A caveat is that
our model applies for shocks that are either unanticipated or difficult to insure
ex ante (see Section V.A for details).

Our paper is most directly related to the literature on flight to quality
and Knightian uncertainty in financial markets, as in Caballero and Krish-
namurthy (2008), Easley and O’Hara (2009), Routledge and Zin (2009), and
Hansen and Sargent (2010). Our contribution relative to this literature is in
generating the uncertainty from the complexity of the financial network itself.
Our work complements a number of recent papers that focus on other sources
of uncertainty during crises. Brunnermeier and Sannikov (2012) show that
exogenous uncertainty is amplified in a fire sale episode, because price uncer-
tainty increases natural buyers’ balance sheet uncertainty (which in turn feeds
back into price uncertainty). Dang, Gorton, and Holmstrom (2010) show that
uncertainty (and asymmetric information) in credit markets increases during
crises because debt contracts become information sensitive.

In the canonical model of fire sales, fire sales happen because the natural
buyers of the assets experience financial distress simultaneously with sell-
ers (see Shleifer and Vishny (1992, 1997) and Kiyotaki and Moore (1997b)).
More recently, Brunnermeier and Pedersen (2005) show that, when there are
few players, unconstrained potential buyers may choose not to arbitrage fire
sales in the short run because they anticipate a better deal in the future. Our
model lies somewhere in between these two views: most potential buyers are
unconstrained, as in Brunnermeier and Pedersen (2005), but they are fearful
of going about their normal arbitrage role because of uncertainty (and in this
sense they are distressed as in Shleifer and Vishny (1992)). It is the complex-
ity of the environment that sidelines potential buyers and exacerbates the fire
sales. Importantly, this mechanism works even when the number of market
participants is large.5

The organization of this paper is as follows. In Section I we describe the
environment for a benchmark case with no uncertainty about cross exposures.
Section II characterizes the equilibrium for this benchmark and illustrates the

3 See Upper (2007) for a survey of the empirical literature that uses counterfactual simulations
to assess the danger of contagion. Regarding this literature, Brunnermeier et al. (2009) note that
“it is only with implausibly large shocks that the simulations generate any meaningful contagion.”

4 The role of domino effects in elevating complexity and uncertainty was also highlighted by
Haldane (2009), who nicely captures the mechanism when he wrote that at times of stress “knowing
your ultimate counterparty’s risk becomes like solving a high-dimension Sudoku puzzle.”

5 Other papers that investigate the mechanisms for fire sales and asset price dislocations in
financial markets include Allen and Gale (1994), Gromb and Vayanos (2002), Geanakoplos (2003,
2009), Lorenzoni (2008), Brunnermeier and Pedersen (2009), Acharya, Gale, and Yorulmazer
(2011), Garleanu and Pedersen (2011), Stein (2012), and Diamond and Rajan (2011) (see Shleifer
and Vishny (2011) for a recent survey). More broadly, this paper belongs to an extensive literature
on financial crises that highlights the connection between panics and a decline in the financial
system’s ability to channel resources to the real economy (see, for example, Caballero and Kurlat
(2008) for a survey).
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mechanics of (partial) domino effects in our setting. Section III contains our
main results. There, banks have only local knowledge about cross exposures,
and a sufficiently large shock increases banks’ counterparty risk and leads to
fire sales in secondary markets. This section also highlights the interaction
between counterparty risk and fire sales, and demonstrates the possibility
of multiple equilibria. In Section IV we describe the complexity externality
and its policy implications. Section V discusses the role of a number of key
assumptions. The paper concludes with final remarks in Section VI and several
appendices.

I. Basic Environment and Equilibrium

We consider an economy with three dates {0, 1, 2} and a single consumption
good (a dollar). The economy has n continuums of financial intermediaries
denoted by {bj}n−1

j=0. Each of these continuums consists of identical banks. For
simplicity, we refer to each continuum bj as bank bj , which is our unit of
analysis.6 Banks start with a given balance sheet at date 0 (which will be
described shortly), but they only consume at date 2. Banks can transfer their
date 0 dollars to date 2 by investing in one of two ways. First, banks can keep
their dollars in cash, which yields one dollar at the next date per dollar invested.
Second, banks can invest in an asset. Each unit of the asset yields R > 1 dollars
at date 2 (and no dollars at date 1). The asset is supplied elastically at date 0
at a normalized price of one.

While the asset yields a higher date 2 return than cash, it is completely
illiquid at date 1. In particular, it is not possible to sell or borrow against the
asset at date 1. (Thus, a bank cannot convert the asset to dollars at date 1.)
This assumption captures the standard liquidity and return trade-off, which is
prevalent in financial markets. The microfoundations that lead to this trade-
off are well known (e.g., Holmstrom and Tirole (1998)). One can think of the
cash in this model as the liquid securities, such as U.S. Treasuries, that yield a
lower return but retain their market value at times of distress. In contrast, the
asset can be thought of as illiquid securities, such as asset-backed securities,
which potentially yield a higher return but lose their market value at times of
distress.

Each bank initially has y dollars and 1 − y units of legacy assets. At date
0, which is the only meaningful decision date in our model, banks can trade
legacy assets in a secondary market at an endogenous price p. This price cannot
exceed one because legacy assets and new assets are identical (and the price
of the latter is one). We also assume that the natural buyers of legacy assets
are the other banks in the model. In particular, outside agents (lower valuation
users) demand asset elastically at a discounted price pscrap < 1. Thus, if legacy
assets are sold to outside agents, they garner a price p = pscrap. We refer to this
situation as a fire sale of legacy assets.

6 The only reason for the continuum is for banks to take other banks’ decisions as given.
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Figure 1. The initial balance sheet of a generic bank.

The basic premise of our model can now be informally described. An unex-
pected liquidity shock generates the possibility that banks might need dollars
at date 1. This in turn shifts banks’ investments at date 0 from the asset to
cash (flight to quality), which has two effects. First, as banks stop buying new
assets, there is a credit crunch. Second, as banks stop buying legacy assets
(and as they try to sell their own legacy assets to raise dollars), there is a fire
sale of legacy assets in the secondary market. The contribution of our paper is
to describe the role of complexity associated with counterparty risk in generat-
ing this flight-to-quality episode. To this end, we gradually introduce the main
ingredients of our model.

A. Cross Exposures and the Financial Network

At date 0, each bank has short-term debt claims worth z dollars on one other
bank, which we call the forward neighbor bank. We assume that short-term
debt cannot be rolled over and it must be paid back at date 1, which will be
without loss of generality.7 On the liability side, the bank also has z dollars
of short-term debt claims held by another bank, which we call the backward
neighbor bank. Figure 1 illustrates the initial balance sheet of a bank.

The role of these cross-debt claims is to capture various types of unsecured
cross exposures that are common in the financial system, and the counterparty
risk that they bring about. One source of cross exposures is interbank loans. Up-
per (2007) documents that interbank loans constitute a large fraction of banks’
balance sheets in many European countries.8 A second and potentially much
larger source of cross exposures is OTC derivative contracts (such as interest
rate swaps or credit default swaps (CDSs)) traded between financial institu-
tions. The Bank for International Settlements (BIS) reports that gross credit
exposures in over-the-counter (OTC) derivative markets in G10 countries and

7 Appendix A considers an extension of the model in which banks have the option to roll over
and shows that the equilibrium is unchanged.

8 To give two examples, Upper (2007) notes that “at the end of June 2005 interbank credits
accounted for 29% of total assets of Swiss banks and 25% of total assets of German banks.”
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b2

b0

b1 bn−1

Figure 2. Financial Network. The left panel illustrates a circle network. The right panel illus-
trates the template network in which slots are to be filled by banks.

Switzerland had exceeded $5 trillion by the end of 2008.9 The cross-debt claims
of this model can be viewed as capturing the uncollateralized portion of these
exposures (although the Lehman crisis revealed that even fully collateralized
repo loans can be frozen by bankruptcy courts).

In Caballero and Simsek (2009), we provide one rationale (out of many) for
cross exposures from their role in facilitating bilateral liquidity insurance, as
in Allen and Gale (2000). In this paper, we take the exposures as given and
analyze their role in generating flight-to-quality episodes.

Banks’ cross exposures form a financial network. For simplicity, we assume
that the network takes the form of a circle. The left panel of Figure 2 illustrates
a circle network. The notation, bj ←− bj+1, illustrates that bank bj+1 has debt
claims on bank bj . Note that banks are ordered around a circle, with bank b0

having debt claims on bank bn−1.
We conceptualize complexity about counterparty risk with banks’ uncertainty

about the financial network. In particular, banks have only local knowledge of
cross exposures: they understand their own exposures, but they are increasingly
uncertain about cross exposures of banks that are farther away (in the network)
from themselves. We capture this notion by assuming that banks have only
local knowledge about the financial network: they know the identity of their
forward neighbor bank (on which they have debt claims), but they do not know
how the rest of the banks are ordered around the circle (i.e., which banks are
exposed to which other banks).

To formalize this ingredient, we need to consider a larger set of networks
than the above example. To this end, consider the template network illustrated
in the right panel of Figure 2, which is described in terms of financial slots to
be filled by banks. Next consider a permutation σ : {0, 1, .., n − 1} → {0, 1, .., n −
1}, which assigns bank j to slot i = σ ( j). Note that the bank assigned to slot i
has debt claims on the bank that is assigned to slot i − 1. However, the identities
of these banks depend on the permutation, σ , which introduces uncertainty
about the financial network. In particular, we let

N = {σ |σ : {0, 1, .., n − 1} → {0, 1, .., n − 1} is a permutation}
9 Source: BIS semiannual OTC derivatives statistics. Gross credit exposures take into account

bilateral netting between the same pair of counterparties. Gross market values of exposures,
which do not take into account this netting, are much larger (more than $20 trillion in interest
rate derivatives and more than $5 trillion in credit derivatives by the end of 2008).
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denote the set of all possible financial networks. The earlier example corre-
sponds to the particular realization in which each bank is assigned to the same
slot as its identity.

We capture banks’ uncertainty over the network by assuming that banks
do not know the realization, σ . In particular, let N j(σ ) ⊂ N denote the set of
financial networks that bank bj finds possible given the actual realization, σ .
We refer to the collection {N j(σ )} j,σ as an uncertainty model for banks.10

B. Surprise Shock and Banks’ Response

At date 0, the banks learn that a rare event (which they had not anticipated at
the unmodeled date −1) has happened and one bank, b0, will become distressed.
To remain solvent, this bank needs to make θ dollars of payment (to an outsider)
at date 1.

This outside debt is senior to the short-term debt to the neighbor bank (it
can be equivalently interpreted as a shock to the value of the bank’s assets in
a version of the model in which banks have heterogeneous assets).11 Conse-
quently, these losses might spill over to other banks via the financial network
and may bring them into financial distress at date 1. To prepare for date 1, at
date 0 the banks take one of the actions Aj

0 ∈ {S, B}, which are restricted to a
binary choice set for simplicity.12 As a precautionary measure, the bank may
choose Aj

0 = S to invest all of its y dollars in cash and sell all of its legacy as-
sets 1 − y in the secondary market, keeping a completely liquid balance sheet.
Alternatively, the bank may choose Aj

0 = B to be a potential buyer of assets. In
this case, the bank retains its own legacy assets on its balance sheet and uses
its dollars to buy either new or legacy assets (whichever is more profitable).

The bank chooses Aj
0 to maximize its equity value at date 2, subject to meeting

its debt payment at date 1. Given the rare event, a bank may not be able to pay
back its debt in full (despite the precautionary measures it might take), but
instead ends up paying q j

1 ≤ z. Similarly, the value of the bank’s date 2 equity
may be q j

2 ≤ R. Note that the bank is either solvent, pays q j
1 = z, and observes

date 2 equity value q j
2 ≥ 0, or is insolvent, pays q j

1 < z, and observes date 2
equity value q j

2 = 0.
The bank makes its decision at date 0 while facing Knightian uncertainty

about the network and the counterparty risk that it might bring about. In

10 A simpler alternative to the permutations is to have banks ordered in the circle in the same
order as the locations (i.e., bank 1 in location 1, bank 2 in location 2, etc.) and have the uncertainty
be about the identity of the bank in distress rather than about the linkages between the banks. We
chose the slightly more cumbersome route of permutations because it better aligns with the idea
of complexity that we want to capture here. But mechanically, the results would be very similar to
the alternative formulation.

11 In practice, banks are also highly leveraged, which implies that even small reductions in the
value of assets could lead to large losses of capital. Thus, the empirical counterpart of θ is the
leveraged losses suffered by the bank because of a shock to its assets.

12 This assumption does not affect any of the qualitative conclusions of the model, as demon-
strated by an earlier version of this paper, Caballero and Simsek (2009).
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particular, the bank considers the range of possible financial networks,
N j(σ ), and chooses an action that is robust to this uncertainty. Formally, let
(q j

1 (σ ), q j
2 (σ )) denote the bank’s debt and equity payment in equilibrium given

the financial network, σ . We follow Gilboa and Schmeidler’s 1989 Maximin
expected utility representation and write the bank’s optimization problem as13

max
Aj

0(σ )∈{S,B}
min

σ̃∈N j (σ )
q j

2 (σ̃ ). (1)

As we discuss in Section V, Knightian uncertainty is not necessary for our
main results (risk-aversion suffices), but it is both realistic in this context and
technically convenient.

C. Secondary Market and Equilibrium

Legacy assets are traded in a centralized exchange that opens (just) at date
0. Given the legacy asset price p, the banks that choose Aj

0 = S sell all of their
legacy assets (1 − y units for each bank) while the banks that choose Aj

0 = B
are potential buyers of legacy assets and may spend up to y (their dollars). If
p < 1, potential buyers spend all of their y dollars on legacy assets, while if
p = 1, they are indifferent between buying legacy or new assets. Recall that
pscrap < 1 denotes the valuation of outside agents. Thus, the market-clearing
condition for legacy assets can be written as

(1 − y)
∑

j

1
{

Aj
0 = S

} − y
p

∑
j

1
{

Aj
0 = B

}
⎧⎪⎪⎨
⎪⎪⎩

≤ 0, if p = 1

= 0, if p ∈ (pscrap, 1)

≥ 0, if p = pscrap

. (2)

The first term on the left-hand side of the equation denotes the total supply of
legacy assets while the second term denotes the maximum potential demand. If
the left-hand side of equation (2) is negative for each p ∈ [pscrap, 1], then legacy
assets trade at their fair value one, potential buyers are indifferent between
buying legacy and new assets, and they buy just enough legacy assets to clear
the market. If the left-hand side of equation (2) is zero for some p ∈ [pscrap, 1],
then p is the equilibrium price. If the left-hand side is positive for each p ∈
[pscrap, 1], then there is excess supply of legacy assets and their price is given
by pscrap.

DEFINITION 1: An equilibrium is a collection of bank actions, debt payments,
and equity values, [{Aj

0(σ ), q j
1 (σ ), q j

2 (σ )} j]σ∈N , and a price level p ∈ [pscrap, 1]
for legacy assets such that, given the realization of the financial network σ ,
each bank bj chooses its actions according to the worst-case financial network

13 The preferences captured by (1) are a special case of Gilboa and Schmeidler (1989) in which
the set of priors consists of the convex hull of the Dirac delta measures corresponding to the
networks, σ̃ ∈ N j (σ ).
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that it finds possible (see problem (1)) and the legacy asset market clears (see
equation (2)).

To characterize the equilibrium, it is useful to define the notion of a bank’s
distance from the original distressed bank. The latter bank, b0, has distance
d = 0 from itself. The backward neighbor of the original distressed bank has
distance d = 1. Similarly, the backward neighbor of the backward neighbor
has distance d = 2. In this way, each bank can be assigned a unique distance
for each realization of the network. The distance is the only payoff-relevant
variable in this economy. In particular, as we formally show in Appendix V.B,
the banks’ equilibrium payoffs and actions can be written as a function of their
distance. That is, there exist functions A0[·], Q1[·], and Q2[·] such that(

Aj
0(σ ), q j

1 (σ ), q j
2 (σ )

) = (A0[d], Q1[d], Q2[d]),

where d denotes the distance of bank bj given the network σ .
In the next section, we demonstrate that a bank is insolvent, Q1[d] < z, if

and only if it is sufficiently close to the original distressed bank. Similarly,
a bank chooses a precautionary action, A0[d] = S, if and only if d is suffi-
ciently small. In view of these observations, we define the following notions of
a domino effect and a flight to quality, which facilitate the characterization of
equilibrium.

DEFINITION 2: Consider a collection of bank actions and payoffs {Aj
0, q j

1 , q j
2} j .

(i) There is a domino effect of size D if banks with distance d ≤ D − 1 are
insolvent (i.e., they pay q j

1 < z) while banks with distance d ≥ D are solvent (i.e.,
they pay q j

1 = z).
(ii) There is a flight to quality of size F if banks with distance d ≤ F − 1 choose

Aj
0 = S while banks with distance d ≥ F choose Aj

0 = B.

Note that D also corresponds to the number of banks that are insolvent, and
F corresponds to the number of banks that choose the precautionary action. In
subsequent sections, D and F will be useful to summarize the equilibrium in
this economy.

II. Equilibrium in the Certainty Benchmark

In this section, we characterize the equilibrium with no uncertainty, which
provides a benchmark for our main results with complexity (in terms of the
information structure, it essentially corresponds to the Allen and Gale (2000)
environment). We show that, if the number of banks is sufficiently large, then
there can only be a partial domino effect and a partial flight to quality, that is,
D < n and F < n. Moreover, D and F are “proportional” to the size of the initial
shock, θ . That is, when banks have perfect knowledge of the financial network,
a sufficiently deep financial system is resilient to perturbations. These benign
results contrast with those we obtain in the next section once we introduce
complexity.
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Formally, consider the (no) uncertainty model, N j(σ ) = {σ } for each j, so that
each bank knows the realization of the financial network. In this benchmark,
we characterize the equilibrium under the following parametric conditions:

ny > 
θ� and z + y + (1 − y)pscrap ≥ θ. (3)

Here, 
x� denotes the ceiling function, that is, the unique integer such that

x� − 1 < x ≤ 
x�. The first condition in (3) says that the financial system has
sufficient aggregate liquidity to meet the unexpected liquidity shock, θ . The
second condition simplifies the notation but does not play an essential role.

Our characterization consists of three steps. First, we characterize a generic
bank’s optimal action (and solvency) taking the payoffs and actions of other
banks as given. Second, we take the asset price, p, as given and we characterize
the partial equilibrium corresponding to banks’ actions and payoffs. Third, we
characterize the general equilibrium price and allocations.

A bank’s optimal action depends on its liquidity need at date 1. The liquidity
need of a bank with distance d is

z − Q1[d − 1] + θ [d = 0], (4)

where θ [·] denotes the product of θ and the indicator function. The first term
captures the payment the bank needs to make on its short-term debt. The sec-
ond term captures the equilibrium payment the bank receives from its forward
neighbor. The last term captures the additional payment that the original dis-
tressed bank needs to make. A bank with a liquidity need of zero optimally
chooses the aggressive action, Aj

0 = B, to maximize its equity value at date 2.
In contrast, a bank with a strictly positive liquidity need would be insolvent
(and liquidated at date 1) if it chose the aggressive action. Thus, it is optimal
for this bank to choose the precautionary action, Aj

0 = S (see Appendix B). By
taking the precautionary action, the bank keeps its y dollars in cash and sells
1 − y units of legacy assets in the secondary market, obtaining an available
liquidity of

l(p) = y + (1 − y)p. (5)

If l(p) is greater than the bank’s liquidity need in (4), then the bank will be able
to avoid insolvency by choosing the precautionary action. Otherwise, the bank
will be insolvent despite taking the precautionary action.

It follows that the bank chooses the precautionary action, Aj
0 = S, if its liq-

uidity need is strictly positive, and it is insolvent if its liquidity need is strictly
greater than l(p). We next use this characterization to solve for the partial
equilibrium, that is, the optimal actions and payoffs of all banks taking the
price, p, as given.

PROPOSITION 1: (Partial equilibrium in the certainty benchmark.) Suppose the
price of legacy assets is fixed at p ∈ [pscrap, 1] and condition (3) holds. Then there



2560 The Journal of Finance R©

Figure 3. The partial domino effect and flight to quality in the certainty benchmark.

is a domino effect of size

D(p) =
⌈

θ

l(p)

⌉
− 1, (6)

and a flight to quality of size F = D(p) + 1 (see Definition 2). Both the domino
effect and the flight to quality are contained, that is, D(p) < n and F < n.

Figure 3 illustrates this result, the proof of which is relegated to Appendix B.
Intuitively, a number of banks that have the shortest distance to the original
distressed bank have a positive liquidity need. Thus, these banks choose the
precautionary action, Aj

0 = S. By doing so, each of these banks uses its available
liquidity, l(p), to meet its liquidity need to some extent. In particular, as the
shock propagates from one bank to another, the liquidity need decreases by
l(p). The initial liquidity need, θ , is fully met only by combining the available
liquidities of 
 θ

l(p)� = D(p) + 1 banks. It follows that banks with distance d ≤
D(p) choose the precautionary action. Moreover, all but the last one of these
banks are insolvent. The last bank with distance d = D(p) avoids insolvency
because it is able to meet its liquidity need fully. This bank pays its backward
neighbor bank in full. Consequently, the banks with distance d > D(p) have
zero liquidity need. These banks choose the aggressive action, Aj

0 = B. It follows
that there is a domino effect of size D(p) and a flight to quality of size D(p) + 1.

Equation (6) shows that the size of the domino effect is “proportional” to
the ratio of the size of the shock to the banks’ available liquidity, θ/l(p). A
larger shock naturally leads to a larger domino effect. A reduction in available
liquidity for banks also leads to a larger domino effect. Intuitively, this is
because, when l(p) is lower, banks that choose the precautionary action are
less able to fight the shock. We next state the main result of this section, which
characterizes the general equilibrium price and allocations.
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PROPOSITION 2: (General equilibrium in the certainty benchmark.) Consider the
certainty benchmark and suppose the conditions in (3) hold. Then,

(i) The unique equilibrium price is p = 1 (no fire sales).
(ii) There is a domino effect of size 
θ� − 1 and a flight to quality of size 
θ�.
(iii) The aggregate amount of new asset purchases is Y = ny − 
θ�.

This result follows by combining Proposition 1 with the secondary market-
clearing condition (2). Note that the banks with distance d ≤ D(p) choose Aj

0 =
S and sell all of their existing assets. The remaining banks choose Aj

0 = B,
that is, they are potential buyers of assets. Condition (3) ensures that, for any
price p ∈ [pscrap, 1], the demand from potential buyers exceeds the supply from
distressed banks. This implies that the unique equilibrium price is p = 1. Given
this price, the size of the domino effect is characterized by Proposition 1. The
aggregate new asset purchases is calculated by considering the asset demand
by potential buyers net of the legacy asset supply by distressed banks (see the
proof in Appendix B).

Intuitively, if the domino effect is only partial and banks know the financial
network, then there exist safe banks that will not realize losses from cross
exposures and know that much. These banks do not sell assets and are ready to
use their dollars to purchase assets from distressed banks. When the aggregate
liquidity of the financial system is sufficiently large (see condition (3)), the
demand from these potential buyers ensures that legacy assets trade at their
fair price one.

Figure 4 illustrates this result by plotting the equilibrium variables as a
function of the initial shock, θ . Note that the price is fixed at one, the size of
the domino effect is increasing in θ , and the aggregate new asset purchases is
decreasing in θ . Intuitively, as θ increases, there are more losses to be contained,
which further spreads the insolvency. As the insolvency spreads, more banks
keep their dollars in cash, which lowers Y. Note, however, that Y decreases
“smoothly” with θ . These results offer a benchmark for the next section, where
we show that, once auditing becomes costly, both D and Y may experience large
changes with small increases in θ .

III. Equilibrium with Complexity

We next introduce our key ingredient, complexity, which we model as banks’
uncertainty about cross exposures. As we will see, in this context when
the shock is small, the system behaves exactly as in the benchmark. But
when the shock is large, banks’ uncertainty about cross exposures becomes
relevant since they need to understand distant linkages. Their inability to fig-
ure out these linkages leads to a complex environment and increases banks’
perceived counterparty risk. This increase in complexity (and associated coun-
terparty risk) overturns the relatively benign implications of the benchmark
environment.
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Figure 4. Equilibrium in the certainty benchmark. The top, middle, and bottom panels, re-
spectively, plot the size of the domino effect, the asset price, and the aggregate new asset purchases
as a function of the losses in the originating bank.

Formally, we consider the uncertainty model

N j(σ ) =
{
σ̃

∣∣∣∣ such that bj is in slot i and bforward neighbor is in slot i − 1,

where i = σ ( j).

}
.

(7)
Note that the bank knows its slot and its forward neighbor’s slot, and thus,
it also knows the identity of its forward neighbor bank. However, the bank is
unsure about how the rest of the banks are ordered in the rest of the circle.14

We next characterize the equilibrium by repeating the analysis of Section II for
this uncertainty model. The characterization similarly consists of three steps:
(i) banks’ optimal actions, (ii) partial equilibrium for a given p, and (iii) general
equilibrium price and allocations.

Recall from Section I that in the certainty benchmark a bank (with distance
d) chooses the precautionary action, Aj

0 = S, if and only if its liquidity need
is strictly positive. With uncertainty, the bank does not necessarily know its

14 In an earlier version, we assumed that each bank also knows the identity of its backward
neighbor (which has claims on it). This assumption does not change any of the results. Intu-
itively, this information would only be relevant if the bank faced uncertainty about whether its
backward neighbor will withdraw its debt claims early. Appendix A shows that in this model all
banks withdraw their debt claims early. Thus, the identity of the backward neighbor is not useful
information.
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exact liquidity need in (4). This is because the bank does not necessarily know
the amount, Q1[d − 1], it will receive from its forward neighbor. Nonetheless,
Appendix C shows that the characterization of the bank’s optimal action is
equally simple in this case: it chooses its action, Aj

0, as if it will receive with
certainty the lowest possible payment from its forward neighbor.

Using the fact that banks have only local knowledge of the network, we
can further characterize their optimal actions. First, consider a bank with
distance d ≤ 1. Given the uncertainty model in (7), this bank knows its distance.
Consequently, it knows the payment, Q1[d − 1], it will receive from its forward
neighbor. Thus, the optimal action of this bank is characterized exactly as in
the certainty benchmark.

Next consider the optimal action of a bank with distance d ≥ 2. This bank is
uncertain about its distance, and it finds possible all distances d̃ ∈ {2, 3, .., n −
1}. Consequently, it does not necessarily know the payment, Q1[d̃ − 1], it will
receive from its forward neighbor. The worst-case scenario obtains when the
bank is at the closest possible distance, d̃ = 2. It follows that this bank chooses
its optimal action as if it is at distance d̃ = 2. Put differently, the banks that are
uncertain about their distance to the distressed bank choose their precautionary
action as if they are closer to the distressed bank than they actually are.

The following proposition, which is the analogue of Proposition 1 for this
setting, characterizes the partial equilibrium.

PROPOSITION 3: (Partial equilibrium with complexity.) Consider the economy
with network uncertainty. Suppose the price of legacy assets is fixed at p ∈
[pscrap, 1] and condition (3) holds. Recall that D(p) = 
 θ

l(p)� − 1 denotes the size
of the domino effect in the certainty benchmark (see equation (6)).

(i) If θ ≤ 2l(p) (so that D(p) ≤ 1), then there is a domino effect of size D(p) and
a flight to quality of size F = D(p) + 1.

(ii) If θ > 2l(p) (so that D(p) ≥ 2), then there is a domino effect of size D(p)
and a flight to quality of size F = n.

Figure 5 illustrates this result by plotting the equilibrium actions (and sol-
vencies) corresponding to the two cases. The first case concerns a liquidity
shock, θ , that is smaller than the available liquidity of two banks (i.e., the
original distressed bank and its backward neighbor). In this case, part (i) of the
proposition (and the top panel of Figure 5) shows that the partial equilibrium
is the same as in the certainty benchmark. To see this, recall that banks at
distance d ≥ 2 act as if they are at distance 2. In this case, the liquidity shock
is sufficiently small that the bank at distance 2 does not suffer any losses from
cross exposures. Consequently, banks with distance d ≥ 2 optimally choose the
aggressive action. This leads to the same partial equilibrium as in the certainty
benchmark. The proof in Appendix C formalizes this argument.

The second case concerns a liquidity shock, θ , which is greater than the
available liquidity of two banks. In this case, part (ii) of the proposition (and
the bottom panel of Figure 5) shows that the equilibrium features a much larger
flight to quality than the certainty benchmark. In particular, all banks in the
financial system choose the precautionary action, Aj

0 = S. To see this, note that
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Figure 5. The partial domino effect and the precautionary actions with network un-
certainty. The top panel illustrates the first case of Proposition 3, θ ≤ 2l(p). The bottom panel
displays the second case, θ > 2l(p).

the liquidity shock in this case is sufficiently large to generate a domino effect
of at least size 2. Thus, it is optimal for a bank at distance 2 to choose the
precautionary action, Aj

0 = S. Consequently, banks with distance d ≥ 2 also
choose the precautionary action. This leads to a flight to quality of size n.

Intuitively, if the domino effect (generated by the initial shock) is sufficiently
small, the environment is simple in the sense that banks’ uncertainty about
the financial network does not generate counterparty risk. In particular, banks
that are uncertain about their distance d̃ can rule out an indirect hit. Hence,
these banks continue to act as in the certainty benchmark despite being un-
certainty averse. In contrast, if the domino effect is sufficiently large, then the
environment is complex in the sense that banks’ network uncertainty gener-
ates counterparty risk. That is, banks that are uncertain about their distance
cannot rule out an indirect hit. Since they are uncertainty averse, they respond
by choosing the precautionary action.
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The following proposition jointly characterizes the equilibrium price and
allocations.

PROPOSITION 4: (General equilibrium with complexity.) Consider the economy
with network uncertainty and suppose the conditions in (3) hold.

(i) Unique fair price equilibrium: If θ ≤ 2l(pscrap), then there is a unique
equilibrium with price p = 1 (no fire sales). There is a domino effect of size
D(1) = 
θ� − 1 and a flight to quality of size F = 
θ�. The aggregate amount of
new asset purchases is Y = ny − 
θ�.

(ii) Unique fire sale equilibrium: If θ > 2, then there is a unique equilibrium
with price p = pscrap (fire sales). There is a domino effect of size D(pscrap) =

 θ

l(pscrap)� − 1 and a flight to quality of size F = n. The aggregate amount of new
asset purchases is Y = 0.

(iii) Multiple equilibria: If θ ∈ (2l(pscrap), 2], then there is a fair price equilib-
rium as in part (i) and a fire sale equilibrium as in part (ii).

Figure 6 illustrates this result. There is a unique equilibrium for sufficiently
small and large levels of θ , but there are multiple equilibria for intermedi-
ate levels of θ . Note also that the fair price equilibrium is the same as the
equilibrium in the certainty benchmark (see Proposition 2), while the fire sale
equilibrium is very different. In particular, the fire sale equilibrium features
a greater flight to quality than the certainty benchmark (F = n vs. F = 
θ�).
This large precautionary reaction generates a fire sale in the secondary asset
market (p = pscrap). It also leads to a larger credit crunch than the certainty
benchmark (Y = 0 vs. Y = ny − 
θ�).

Proposition 4 is our main result and it shows that, as the initial losses
(measured by θ ) increase, the equilibrium makes a very large and discontinuous
jump compared to the certainty benchmark. This jump could be realized either
in the region of multiple equilibria if banks coordinate on the precautionary
action, or in the region of a single equilibrium if initial losses are sufficiently
large. The resulting equilibrium features a flight-to-quality episode that is
disproportionate to the size of the initial shock. The central ingredient for this
result is complexity, that is, banks’ uncertainty about the financial network.

The proof of Proposition 4 is relegated to Appendix C. Intuitively, when θ is
sufficiently small, the size of the domino effect is manageable (i.e., below the
critical threshold of two) regardless of the price of legacy assets. In this case,
the environment is simple (i.e., banks’ network uncertainty does not generate
counterparty risk). In contrast, when θ is sufficiently large, the size of the
domino effect is unmanageable and the environment is complex (i.e., banks’
network uncertainty generates counterparty risk) regardless of the price.

For intermediate levels of θ , the interaction between the asset price and
complexity of the environment generates multiple equilibria. If legacy assets
trade at their fair price, then there is more market liquidity to counter the
initial liquidity shock. This leads to a smaller domino effect and a simple
environment. Since the environment is simple, banks that are uncertain about
their distance are potential buyers in the secondary market, which ensures
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Figure 6. Equilibria with network uncertainty. The panels plot various equilibrium variables
as a function of the shock, θ . The top panel plots the size of the domino effect in partial equilibrium,
D(p), for price level p = pscrap (dashed line) and price level p = 1 (solid line). The second panel
plots the general equilibrium price, p. The last panel plots the aggregate new asset purchases, Y.

that legacy assets trade at their fair price. Set against this benign scenario
is the possibility of a fire sale equilibrium, in which the price of legacy assets
collapses. This reduces market liquidity available to distressed banks, which
leads to a larger domino effect and a complex environment. Facing a complex
environment, banks that are uncertain about their distance panic and sell their
legacy assets, which reinforces the collapse of asset prices.

Note also that, whenever there are multiple equilibria, the fair price equilib-
rium Pareto dominates the fire sale equilibrium for all banks. This observation
suggests that there are externalities in our setting, which we analyze next.

IV. Complexity Externality and Policy Implications

Our model features a complexity externality, which stems from the depen-
dence of banks’ counterparty risk on the endogenous size of the domino effect. In
particular, any action that exacerbates the domino effect increases the counter-
party risk perceived by banks that are uncertain about the financial network,
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and they dislike this effect. Our model features two variants of this complexity
externality (one nonpecuniary, one pecuniary), each of which supports different
types of policies. The rest of this section discusses the two variants and their
policy implications.

A. Nonprice Complexity Externality and Bank Bailouts

To illustrate this externality, it is useful to start with a simple example.
Consider an alternative economy with a continuum of (measure one) agents,
i ∈ I, with utility functions

u(xi) − cai.

Here, xi denotes agent i’s endowment, ai ∈ {0, 1} denotes a costly action taken
by agent i, and u(·) denotes a standard and strictly concave utility function.
Suppose also that each xi is a random variable with mean one and variance

1 −
∫

I
aidi.

In particular, each agent can take a costly action that can (slightly) reduce the
variance of endowments of all agents in this economy.

In this example, consider, respectively, the equilibrium and the planner’s al-
locations. In equilibrium, no agent takes the costly action because she incurs
a positive cost while having only a negligible effect on the variance of its own
consumption. On the other hand, for sufficiently small c > 0, a social planner
would have all agents choose ai = 1. This allocation gives each agent a con-
stant consumption at a relatively small cost (by assumption), which is a Pareto
improvement over the equilibrium allocation.

In this example, the competitive equilibrium is Pareto inefficient because of
a nonpecuniary externality that operates through the production technology.
In particular, an agent i does not internalize the fact that her action affects the
endowment variance of all other agents. By choosing ai = 0, this agent exerts
a negative externality on all other agents, which leads to a Pareto inefficiency.

We next describe the nonprice complexity externality of our model, which is
reminiscent of the externality in this example. To this end, consider the setup
of Proposition 3, that is, suppose there is network uncertainty and prices are
exogenously fixed (which shuts down any pecuniary channels). Suppose also
that

θ ∈ (2l(p), 3l(p)),

which ensures that there is a domino effect of size two and a flight to quality
of size n (see Proposition 3). In particular, all banks choose the precautionary
action, Aj

0 = S. Banks’ Minimax utility at date 0 (see equation (1)) is given by{
0 if d < 2,

3l(p) − θ ∈ (0, l(p)) if d ≥ 2.
(8)
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In this setting, consider a modification of equilibrium by introducing the pos-
sibility of a “bailout” of the distressed bank, b0, by other banks. In particular,
each bank j can choose to contribute some of her date 0 dollars, y, to a bailout
fund. Without loss of generality, suppose banks’ actions are restricted to a bi-
nary set, {0, θ

n}, that is a bank either contributes zero dollars or θ
n dollars to

the bailout fund. Note that contributing θ
n dollars is feasible because the banks

have sufficient aggregate liquidity by condition (3). Once all contributions are
made, the total amount in the fund is used to pay some (possibly all) of the
liquidity need, θ , of bank b0. The equilibrium is then characterized as before
with a potentially lower level of the shock for the original distressed bank and
a lower level of date 0 dollars for the contributing banks.

In this modified equilibrium, banks optimally choose to contribute zero dol-
lars to the bailout fund (and thus, the equilibrium remains unchanged). To
see this, consider a bank with distance d ≥ 2. By contributing to the bailout
fund, this bank incurs a positive cost while receiving no benefits. This is be-
cause this bank alone is not able to change the size of the domino effect (since
it is infinitesimal by assumption). On the other hand, consider a social plan-
ner that requires all banks to contribute θ

n dollars. With this bailout policy,
the original distressed bank remains solvent and the domino effect disappears.
In particular, banks’ counterparty risk also disappears. Consequently, banks
choose the aggressive action, that is, they keep their legacy assets and they
spend their remaining, y − θ

n, dollars to acquire new assets. Their Minimax
utility at date 0 is given by

(1 − y)R +
(

y − θ

n

)
R =

(
1 − θ

n

)
R.

Comparing this expression with the utility in (8) shows that this bailout policy
leads to a Pareto improvement as long as n or R is sufficiently large. The fact
that banks with distance d < 2 are better off is not remarkable because these
banks are (either directly or indirectly) bailed out. However, it is remarkable
that all other banks at distance d ≥ 2 are also better off.

The equilibrium is Pareto inefficient for the same reason as in the earlier
example. Each bank with distance d ≥ 2 does not internalize that its contribu-
tion, θ

n, would mitigate the domino effect and thus reduce the counterparty risk
faced by other banks. By not contributing, this bank exerts a negative exter-
nality on other banks, which we refer to as the nonprice complexity externality.
A bank bailout policy generates a Pareto improvement by internalizing this
externality. Viewed differently, network stability (and similarly, endowment
stability in the earlier example) is a public good. Each bank would like to enjoy
this good because it reduces its counterparty risk. However, each bank would
rather not incur the costs and free ride on other banks. The bailout could be
viewed as the provision of the public good of stability, which solves the free
rider problem.

We stress that the nonprice complexity externality is different from the fire
sale externality that is common in the literature. In particular, in the above
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setting there cannot be a fire sale externality because the asset price is fixed. We
next consider the setting with endogenous asset price to illustrate the second
variant of the complexity externality.

B. Price Complexity Externality and Government Asset Purchases

This externality operates through the interaction of legacy asset prices and
the size of the domino effect. In particular, a bank that decides to sell assets
(i.e., chooses the precautionary action, Aj

0 = S) has a (small) negative impact
on asset prices. This in turn has a (small) positive impact on the size of the
domino effect. In particular, with a lower asset price, the available liquidity,
l(p), of each bank is lower. Thus, the crisis is contained after a greater number
of insolvencies (see equation (6)). The increase in the size of the domino effect
increases the counterparty risk faced by other banks and lowers their welfare,
demonstrating the price complexity externality.

The price complexity externality is what leads to multiple Pareto-ranked
equilibria in our setup, as we have already seen in Proposition 4. In particular,
an increase in counterparty risk due to a reduction in the legacy asset price not
only lowers the welfare of many banks, but also induces these banks to take
extreme precautionary measures, which includes further asset sales. The sale
of assets by banks in panic mode reduces asset prices further, which leads to a
vicious cycle culminating in the fire sale equilibrium. In contrast, an increase in
asset prices reduces the counterparty risk, which may mitigate precautionary
measures and turn more sellers into buyers, leading to a virtuous spiral toward
the fair price equilibrium. In particular, a social planner that puts a floor on
asset prices (e.g., through an asset purchase policy) can generate a Pareto
improvement by coordinating banks on the fair price equilibrium.

We stress that the price complexity externality is also different from the
usual fire sale externality (e.g., in Kiyotaki and Moore (1997b) or in Lorenzoni
(2008)). It is true that both externalities operate through asset prices. How-
ever, the commonalities end there because the particular channels for the two
externalities are different. In a fire sale externality, the decrease in asset prices
erodes the net worth of financial institutions that are natural buyers of this
asset. This in turn tightens these institutions’ borrowing constraints, which
lowers their welfare and puts further downward pressure on asset prices. In-
stead, in the price complexity externality, the decrease in asset prices increases
the counterparty risk perceived by financial institutions that are uncertain
about the network. The increase in counterparty risk (as opposed to binding
constraints) is what lowers the welfare of these institutions. Moreover, their
precautionary reaction (as opposed to binding constraints) is what puts further
downward pressure on asset prices.

This comparison also suggests that the price complexity externality could be
much more potent than the fire sale externality. To see this concretely, consider
a drop in the price of subprime mortgage-backed securities. From the lens
of the conventional fire sale externality, this shock should mostly affect the
natural buyers of these securities. In particular, it should not greatly affect
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the institutions that specialize in other businesses or other asset classes (or
natural buyers that happen not to hold the securities at the time of the shock).
In contrast, from the lens of the price complexity externality, this shock could
have a much bigger impact. In particular, suppose the shock is sufficiently
large that it leads to the failure of some natural buyers and generates the
possibility of domino effects. This in turn increases the counterparty risk faced
by all financial institutions that are uncertain about the financial network. In
practice, this includes virtually all financial institutions, illustrating the much
greater scope of the price complexity externality.15

Finally, it is also worth noting that the price complexity externality amplifies
the standard overleverage result, for example, in Lorenzoni (2008). The previ-
ous literature notes that banks tend to leverage and invest too much ex ante
because they do not internalize the fire sale externalities that their deleverag-
ing generates during crises. Our model suggests that banks might choose to
overleverage and overinvest for an additional reason: because they do not take
into account the increase in counterparty risk that their asset sales generate
when domino effects become possible.

V. Discussion of Key Assumptions

The previous sections establish that small shocks can dramatically increase
banks’ counterparty risk in view of banks’ uncertainty about the financial net-
work of cross exposures. To illustrate the main mechanism, we make a number
of strong assumptions. In particular, we assume that the shock is unantici-
pated, that the network has a particularly simple form, and that banks face
Knightian uncertainty about the financial network. In this section, we discuss
and support these assumptions.

A. The Role of the Unanticipated Shock

In our model, banks do not anticipate the surprise shock (at date −1). If banks
assigned a sufficiently large probability to the shock, they would also naturally
seek insurance against it at the unmodeled date −1, and the financial system
would become more resilient to the shock. However, the kind of shocks that we
are trying to capture are by their very nature either impossible or very costly to
insure against. One could imagine two versions of this insurance: (i) a specific
insurance contract, such as “bank bj receives some dollars if bank b0 loses
θ dollars” or (ii) a blanket insurance contract, such as “bank bj receives some
dollars if its forward neighbor is insolvent (i.e., a CDS on the forward neighbor).”
We next argue that the first type of (specific) insurance is implausible, while
the second type of (blanket) insurance is likely to be very costly and possibly
ineffective during severe systemic events.

15 In our model, we assume for simplicity that the natural buyers of the asset are the same
as banks that face network uncertainty. Instead, this discussion suggests that natural buyers are
likely to be a subset of the banks that face network uncertainty. Our model could be easily modified
to incorporate this feature.
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Specific insurance contracts are not plausible due to the complexity of banks’
balance sheets. This complexity, which is the reason for network uncertainty
in our model, also naturally makes the event very difficult to describe ex ante.
Arguably, banks would be unable to tell if the shock would hit bank b0, another
bank, or a combination of banks. In addition, they would be unable to tell
the size of the shock, and thus the size of the domino effect that it would
bring about. These observations resonate well with the run-up to the recent
crisis. Even though the possibility of the subprime losses was discovered in
the summer of 2007, the exact form and magnitude of these losses remained
not well understood until 2008. Empirical evidence in support of this point
can be gleaned from the BIS Quarterly Review for December 2007 (Fender
and Hordahl (2007)). Graph 4 of this review illustrates that the 5-year CDS
spreads increased for banks on average between June 2007 and December 2007.
However, the same graph also shows that the dispersion in large banks’ spreads
actually decreased over the same period, that is, banks’ CDS spreads became
closer to one another. The BIS Review interprets this lack of differentiation
as “possibly reflecting a continuing lack of transparency about their (banks’)
exposures” (p. 7)

Even if specific insurance was not possible, banks could still purchase blan-
ket insurance against all possible shocks that could hit the financial system.
For example, a bank could buy a CDS on its forward neighbor, which would
effectively reduce its exposure, z, and immunize it against any shock to the
network. However, this type of insurance is very costly because it comes as a
bundle. In particular, while it insures banks against systemic shocks that could
generate domino effects, it also insures them against garden variety shocks that
lead to the failure of their counterparty without a systemic component. Banks
might prefer not to buy insurance against the latter types of shocks, which are
always present in the financial system. If this is the case, then banks might
find it optimal not to buy CDS insurance (or other types of blanket insurance)
even though they recognize the benefits that this would bring about during a
systemic crisis.

A separate restriction on both specific and blanket insurance concerns the
counterparty risk in CDS contracts. During a systemic event, the sellers of these
contracts might themselves become distressed, and thus might be unable to de-
liver on their promises. This point is supported by the Financial Crisis Inquiry
Commission’s (FCIC) January 2011 report on the causes of the financial crisis,
which quotes the managing director at AIG Financial Products as saying: “And
we’re one of the few guys who can do that (sell disaster insurance). Because
if you think about it, no one wants to buy disaster protection from someone
who is not going to be around . . . That was AIGFP’s sales pitch to the Street
or to banks.”16 Ironically, when the disaster struck AIGFP was one of the first
institutions to collapse. In particular, AIGFP would be unable to deliver on its

16 Available at http://fcic-static.law.stanford.edu/edn media/fcic reports/fcic final report full.pdf.
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insurance promises absent an intervention by the Fed, which illustrates further
the practical difficulty of obtaining insurance against systemic events.17

Finally, one might imagine that banks could mitigate the counterparty risk
in CDS contracts by requiring sellers to post sufficient collateral. Appendix D
incorporates collateralized insurance contracts into our model and shows that
the results are robust to this extension. There, we consider the possibility that
banks could purchase CDS insurance on their counterparties at date 0, once the
nature of the shock is understood (which is the main difference from blanket
insurance). We also require each CDS contract to be individually and fully
collateralized. In this setting, while banks demand counterparty insurance at
date 0, the supply of this insurance is restricted because of sellers’ collateral
constraints. In particular, sellers within the financial network choose not to
pledge their collateral in an insurance contract in view of their own payoff
uncertainty (in fact, they would rather demand insurance for their own cross
exposures). Thus, the only insurance supply comes from sellers that are outside
the network. When the collateral of these sellers is small relative to the size of
the network, allowing for collateralized counterparty insurance does not change
our qualitative results. This analysis is consistent with the behavior of the CDS
markets during the recent Bear Sterns and Lehman debacles. As described by
Duffie (2011), the demand for counterparty insurance in both episodes spiked,
but this demand could not be met by insurance sellers.

B. The Role of the Network Structure

For simplicity, we assumed that the network structure takes the form of
a circle. This is an example of a highly incomplete network, which tends to
increase the likelihood of contagion (see, for example, Allen and Gale (2000)).
To illustrate the point, consider a more complete network in which each bank
has exposures (of z/2 each) to two other banks. In this case, a shock θ that leads
to the insolvency of bank b0 would lead to a smaller liquidity need for each of
the backward neighbor banks [ θ−l(p)

2 instead of θ − l(p)]. Consequently, it would
take a larger shock, θ , to generate a domino effect.

In contrast, the incompleteness of the network does not play an important
role for our main result (panics driven by complexity) as long as we control
for banks’ information appropriately. To see this, consider the two networks
illustrated in Figure 7. The left panel concerns the circle network we have
analyzed, with the additional assumption that banks know the identities of
their two forward neighbors (as opposed to just their immediate neighbor). It
is easy to see that all banks choose the precautionary action, Aj

0 = S, if there

17 The unreliability of CDS insurance in the run-up to the crisis is also emphasized by Vause
(2010), in the BIS Quarterly Review for December 2010, as follows: “Market participants responded
to increased concern about counterparty risk by buying protection on CDS dealers . . . But none of
these trading responses represented a comprehensive solution to the problem. Buying protection
on one dealer from another dealer is of limited value if there are systemic concerns about the
robustness of counterparties in the market” (p. 61).
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Figure 7. Role of network completeness. The two panels illustrate flight-to-quality episodes
in two networks that differ in their completeness, but not in banks’ information about the network
(measured as the number of other banks whose locations each bank knows).

is a domino effect of length at least three, which in turn happens if the initial
losses satisfy θ > 3l(p).

The right panel illustrates an alternative network with three tiers, in which
each bank in the bottom two tiers has exposures to two other banks (and the
initially distressed bank is in the top tier). For this network, we assume that
the banks know the identities of their immediate neighbors only. With this
assumption, the banks have the same amount of information as in the first
case in the sense that they know the locations of exactly two other banks. In
this case, the two backward neighbors of the initially distressed bank each have
a liquidity need of θ−l(p)

2 . If this is greater than their available liquidity, that is,
θ−l(p)

2 > l(p), then a number of the banks in the bottom row also have a positive
liquidity need. Moreover, none of the banks in the bottom row can rule out an
indirect hit because they only know the identities of their immediate neighbors.
It follows that all of the banks in the bottom row choose the precautionary action
if θ > 3l(p), which is the same condition as in the first case. Put differently, even
though the second network is more complete, it takes a shock of the same size
to generate a flight-to-quality episode in both networks.18

18 It is also instructive to show a more general version of this result. Consider the network on
the right panel of Figure 7 with a large number of tiers (as opposed to three). Suppose banks know
their neighbors up to distance k, so that they know the locations of K ≡ 2 + .. + k other banks. It is
easy to see that a sufficient condition for a flight-to-quality episode is θ > (K + 1)l(p). This is the
same condition that generates a flight-to-quality episode in the circle network when banks know
their forward neighbors up to distance K. Thus, the key determinants of a flight-to-quality episode
is the size of the shock, θ , the banks’ information, K (measured by the number of other bank
locations a bank understands), and the available liquidity of each bank, l(p). In particular, the
completeness of the network is not an important determinant. Note, however, that this argument
takes banks’ information, K, as a constant independent of the network structure. There are at least
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Intuitively, while a more complete network features a shorter domino effect,
it also generates a greater informational burden for banks. The more neighbors
a bank has, the more balance sheets it needs to inspect to assess its financial
health (and the financial health of its neighbors, and their neighbors, etc.).
Consequently, controlling for the bank’s information, it takes a smaller domino
effect to trigger a flight-to-quality episode in a more complete network. Figure 7
illustrates that, under appropriate assumptions (related to the symmetry of the
network), the two forces exactly cancel and the completeness of the network
does not affect the incidence of panics.

It is also worth noting that in practice banking networks appear to be highly
incomplete and specialized. Direct evidence for this point can be gleaned from
the Bank of England’s Financial Stability Report for June 2009. Chart 3.8 of
this report plots the network of large exposures between U.K. banks. While
the U.K. banking network does not exactly take the form of a circle (it looks
more like a hub-and-spoke network), it shares the key characteristic of being
highly incomplete. Similarly, the U.S. financial network is highly incomplete
and concentrated, as evidenced by the recent regulatory attempts (in particular,
the Dodd–Frank Act) to curb large and systemic banks’ exposures to a single
counterparty.19

two caveats to this approach. First, one could imagine that forming connections provides banks with
information about their neighbors as a byproduct, so that banks in the more complete network
naturally have a greater K. While this effect might be important for banks’ information about
their immediate neighbors, it is less relevant for their information about indirect links (neighbors’
neighbors and so on). Consequently, when banks need to know the network at some depth to rule
out a hit (i.e., when θ is large), the additional information provided by the more complete network
becomes negligible. Second, one could also wonder whether the result (that network structure does
not matter) would continue to hold if the information, K, was endogenously chosen by banks at
some audit cost. This is in fact the case under appropriate assumptions. In particular, suppose the
(nonpecuniary) audit costs are captured by the same function, c(K), in both networks. Suppose also
that R < c(
 θ

l(pscrap) �) − c(0), that is, the maximum benefit from obtaining sufficient information to
rule out a hit is lower than the cost of acquiring that information. It then follows that banks
in either network choose not to acquire information, which in turn leads to a flight-to-quality
episode.

19 An important reason for the incompleteness of the network in practice is the heterogene-
ity in the benefits and costs of forming links. To see this, consider the example of a bank that
enters an interest rate swap agreement in the OTC derivative markets. Depending on the move-
ments of the yield curve, this contract might generate exposures to banks’ counterparties. In
this setting, a more complete network would correspond to the case in which the bank buys a
small amount of swaps from a large number of counterparties, thereby spreading its exposures
across the network. However, this is unlikely to be optimal for several reasons. First, some in-
termediaries might lack the necessary expertise to value this swap, especially if the terms of
the contract are complex. If this is the case, the bank would have to enter the agreement with
a few specialized intermediaries. Second, even the specialists’ valuations often differ from one
another, depending on their portfolio risks and beliefs. If this is the case, the bank would find it
optimal to enter the agreement with the specialists that offer the best price, leading to a highly
incomplete network. More generally, heterogeneity in financial institutions’ valuations of deriva-
tive contracts would naturally lead to an incomplete network of exposures in the OTC derivative
markets.
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C. The Role of Knightian Uncertainty about the Network

The Knightian uncertainty, and the corresponding Maximin representation
in (1), is not essential for our results. In particular, our qualitative results also
apply in a standard expected utility framework as long as banks are risk averse
(or as long as they are averse to bankruptcy in view of potential fixed costs).
To see this, suppose instead that the bank chooses Aj

0 ∈ {S, B} to maximize
E j[u(q j

2 (σ̃ ))], where u(·) denotes a concave utility function and E j[·] denotes the
bank’s expectation over the random network σ̃ . Suppose also that the bank
assigns each network in N j(σ ) equal probability (i.e., it applies the principle
of insufficient reason). Suppose θ > 2l(p), so that the version of the model
with Knightian uncertainty features a flight-to-quality episode. We claim that,
under appropriate assumptions, this version also generates flight to quality.
To see this, consider a bank that is at distance d ≥ 2, which can be in one of
three distinct states. First, with probability 1

n−2 , the bank is exactly at distance
D(p). In this case, the bank obtains the utility level u(0) if it chooses Aj

0 = B,
but a greater utility level u((1 + D(p))l(p) − θ ) if it chooses the precautionary
action Aj

0 = S. Second, with probability D(p)−2
n−2 , the bank’s distance satisfies 2 ≤

d ≤ D(p) − 1. In this case, the bank obtains the utility level u(0) regardless of
its choice. Third, with the remaining probability 1 − D(p)−1

n−2 , the bank’s distance
satisfies d ≥ D(p) + 1. In this case, the bank obtains the utility level u(R) if it
chooses Aj

0 = B, but a lower utility level u(1) if it chooses Aj
0 = S. Collecting the

three cases, the bank chooses Aj
0 = S if

1
n − 2

(u((1 + D(p))l(p) − θ ) − u(0)) ≥
(

1 − D(p) − 1
n − 2

)
(u(R) − u(1)).

As this expression illustrates, the bank chooses the precautionary action as
long as u(0) is sufficiently low, for example if u(0) → −∞, which in turn leads to
a flight-to-quality episode. Intuitively, the left side of the expression captures
the precautionary benefit of avoiding bankruptcy, while the right side captures
the opportunity cost of holding liquid assets. When the bank is sufficiently
averse to risk (or bankruptcy), it optimally chooses the precautionary action
Aj

0 = S even if it maximizes subjective expected utility.
In the main analysis, we consider Knightian uncertainty instead of expected

utility for two reasons. First, it provides analytical tractability by enabling
us to focus on the worst-case scenario, instead of specifying a distribution
over N j(σ ) and taking expectations. Second, and more importantly, Knigh-
tian uncertainty seems more appropriate for our context than quantifiable
risk. Given the complexity of the network of cross exposures in real finan-
cial markets, banks are unlikely to have a unique belief distribution over
various possible networks. Microeconomic studies (both empirical and the-
oretical) have argued that economic agents are more averse to this type of
uncertainty compared to quantifiable risks. The Maximin representation en-
ables us to capture this feature in a tractable way. That said, the Maximin
representation corresponds to an extreme form of ambiguity aversion that
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provides quantitative amplification for our results. We could have instead
used the smooth ambiguity model of Klibanoff, Marinacci, and Mukerji (2005),
which would lead to similar qualitative conclusions but milder quantitative
effects.

VI. Conclusion

In this paper, we provide a model that illustrates how fire sales can arise even
when financial markets are deep and the shock is small relative to the wealth in
the financial network. The key ingredient for this outcome is complexity, which
we have captured as banks’ uncertainty about the network of cross exposures.
This feature, which is a dormant factor in normal times, generates counterparty
risk when banks are unable to figure out their exposures to an indirect hit.

We also show that there is a powerful feedback between fire sales and com-
plexity. More severe fire sales amplify the potential domino effects and increase
banks’ counterparty risk. This triggers a precautionary reaction from potential
asset buyers, which pull back and exacerbate the fire sale. In extreme scenarios
these potential buyers can turn into sellers, leading to a complete collapse in
secondary markets.

We only partially explore policy questions, but it is apparent that our en-
vironment creates many policy opportunities. In particular, the complexity
externality supports government actions during crises that are aimed at miti-
gating domino effects (e.g., bailing out distressed banks or asset purchases), as
well as those that are aimed at reducing network uncertainty (e.g., stress test-
ing, and widespread guarantees to banking liabilities or assets). In addition,
the complexity externality also supports preemptive measures that are aimed
at simplifying (and increasing the transparency of) the financial network, for
example, moving OTC transactions to exchanges.

A question that emerges in our environment is whether banks can aggre-
gate their (local) information about the financial network. In our model, banks
cannot credibly share their information if we assume that distressed banks
suffer losses resulting from revealing that they are distressed (which is likely
to be the case in reality). This is because banks that are close to the original
distressed bank have an incentive to misreport their distance, which prevents
the aggregation of information. More broadly, one could imagine many other
reasons why information production and sharing during a crisis is inefficient,
which emphasizes the importance of policies that provide information (e.g.,
stress testing, collecting data on OTC transactions, living wills, etc.).

As a parting thought, we note that the particular insolvency motive we con-
sider raises the question of what would happen if the distressed institutions
chose to gamble for resurrection by not selling their assets, which would im-
prove their outcome in good states at the cost of greater bankruptcy risk. Our
model suggests that gambling for resurrection may be a mixed blessing in ag-
gregate. Gambling by potential buyers, that is, institutions that are far from
the domino effect but that do not know this, would limit fire sales and the
downward spiral of prices. On the other hand, gambling by institutions near
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the domino effect would exacerbate contagion and trigger the complexity mech-
anism. This issue also points to important policy trade-offs for the decision as
to which institutions to guarantee during a systemic event.

Initial submission: April 2, 2011; Final version received: May 15, 2013
Editor: Campbell Harvey

Appendix A: Banks’ Debt Rollover Decision

In the main text, we simplify the model by assuming that all short-term debt
claims must be settled at date 1. In this appendix, we consider the extension
of the model with banks’ rollover actions, and we show that the equilibrium is
unchanged as all banks choose to withdraw their debt claims immediately.

To see this, consider an extension in which each bank bj has an additional
action at date 1, Aj

1 = W(z̃), for some z̃ ∈ [0, z]. A bank that chooses Aj
1 = W(z̃)

withdraws z̃ dollars of its debt claims on its forward neighbor bank at date
1, and rolls over the remaining z − z̃ dollars of its debt claims to date 2. In
this setting, consider a distressed bank with a positive liquidity need at date
1 (e.g., the original distressed bank b0). This bank could try to obtain the
required liquidity by withdrawing its debt claims at date 1 (i.e., by choosing
Aj

1 = W(z̃) for some z̃ > 0) and/or by taking the precautionary action at date 0
(i.e., by choosing Aj

0 = S). Taking the precautionary action is strictly costly for
the bank because it sacrifices equity value at date 2. However, withdrawing
debt claims is not costly. In fact, either the forward neighbor bank is insolvent,
in which case withdrawing is strictly better than rolling over (recall that each
bank is small and takes the debt payment of the forward neighbor bank as
given), or the forward bank is solvent, in which case withdrawing and rolling
over generate the same amount of equity value. Hence, the bank always prefers
ex post withdrawal to the ex ante precautionary actions. In other words, the
liquidity pecking order is such that a bank that will need liquidity at date 1 first
chooses Aj

1 = W(z̃), and then (if there is need) resorts to ex ante precautionary
measures.

Next consider the original distressed bank, b0, that needs at least θ dollars
of liquidity. This bank withdraws a positive amount of its debt claims from its
forward neighbor, that is, A0

1 = W(z̃) for some z̃ > 0. This puts the neighbor
bank also in need of z̃ dollars of liquidity. Consequently, the neighbor bank also
withdraws z̃ units of its debt claims on the forward neighbor. As in Allen and
Gale (2000), this triggers further withdrawals until, in equilibrium, Aj

1 = W(z̃)
for all j. Hence, the original distressed bank tries, but cannot obtain, any net
liquidity through cross-debt withdrawals. In particular, this bank still needs
at least θ dollars of liquidity after cross-debt withdrawals. This further implies
that, in equilibrium, the bank withdraws all of its debt claims, that is, z̃ = z.
Thus, no bank rolls over its debt and all debt claims are settled at date 1.
It follows that the equilibria analyzed in the main text continue to be the
equilibria in this setting with a more general action space at date 1.
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Appendix B: Equilibrium with Certainty

This appendix presents the analysis and proofs omitted from Section II.
Characterizing banks’ optimal actions: Consider a bank with distance d.

This bank’s optimal action can be characterized by comparing its liquidity
need in (4) and the available liquidity in (5). There are three cases to consider.
First, if the bank’s liquidity need is zero, then it is not distressed. Since this
bank does not need dollars at date 1, it chooses the aggressive action, Aj

0 = B,
to maximize its equity value. Second, if the bank’s liquidity need lies in the
interval, (0, l(p)], then its available liquidity is sufficient to meet its liquidity
need. This bank chooses the precautionary action, Aj

0 = S, to avert insolvency at
date 1 (which maximizes its equity value at date 2). Third, if the bank’s liquidity
need is greater than l(p), then its available liquidity is not sufficient to meet
its liquidity need. This bank is indifferent between choosing Aj

0 = S or Aj
0 = B,

because it will be insolvent regardless of the action. Nonetheless, choosing the
precautionary action increases the liquidation outcome because it enables the
bank to liquidate with time: more specifically, the bank’s assets yield l(p) dollars
with the precautionary action and zero dollars with the aggressive action. Thus,
the precautionary action increases the payoff to debt holders. Given that equity
holders are indifferent, we restrict attention to equilibria in which the bank
(with liquidity need > l(p)) chooses the precautionary action, Aj

0 = S.
Combining the three cases, note that the bank chooses the precautionary

action, Aj
0 = S, if and only if its liquidity need is strictly positive. Moreover, the

bank is insolvent at date 1 if and only if its liquidity need is strictly greater
than l(p). We next use this characterization to solve for the partial equilibrium,
that is, banks’ actions and payments for a given price p.

Proof of Proposition 1

Under the claim in the proposition, the original distressed bank (with dis-
tance 0) receives full payment from its debt claims on its forward neighbor, that
is, Q1[n − 1] = z. Hence, the liquidity need of the bank with distance 0 is θ > 0.
According to the earlier characterization, this bank chooses the precautionary
action, A0[0] = S. If θ ≤ l(p), then this bank avoids insolvency and the size of
the domino effect is D(p) = 0, which is consistent with (6).

Suppose instead θ > l(p). In this case, the bank with distance 0 is insolvent
and pays

Q1[0] = z + l(p) − θ < z, (B1)

where Q1[0] ≥ 0 in view of the second condition in (3).20 Note that the bank
receives z dollars from its claims on its forward neighbor, has l(p) units of
liquidity at date 1, and has to make a payment of θ dollars. Thus, its backward

20 Note that Q1[0] = 0 when the second condition in (3) is violated. That is, the original distressed
bank pays zero on its debt claims because it is unable to make the outside payment. To accommodate
this case, equation (B1) could be modified to Q1[0] = max(0, z + l(p) − θ ). The rest of the analysis
would be identical at the expense of additional notation.
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neighbor bank (which has distance 1) receives Q1[0] < z from its debt claims,
and it has liquidity need of

z − Q1[0] = θ − l(p). (B2)

Here, the second expression comes from using (B1) to substitute for Q1[0]. Since
we are considering the case θ > l(p), the neighbor bank also has a positive
liquidity need, and thus it chooses A0[1] = S. If θ ≤ 2l(p), then the neighbor
bank’s available liquidity, l(p), is greater than its liquidity need. In this case,
this bank is able to avoid insolvency and there is a domino effect of size D(p) = 1.
Otherwise, the neighbor bank is also insolvent, and it pays

Q1[1] = l(p) + Q1[0].

From this point onwards, a pattern emerges. The payment by an insolvent
bank with distance d − 1 is

Q1[d − 1] = l(p) + Q1[d − 2] = l(p)(d − 1) + Q1[0].

Here, the first equality shows that banks’ payments are linearly increasing
in their distance, and the second equality uses this property to solve for the
payment of the bank with distance d − 1 in closed form. Using this expression
along with equation (B2), the bank with distance d has the liquidity need

z − Q1[d − 1] = θ − l(p)d.

That is, banks’ liquidity needs are linearly decreasing in their distance, d. If
θ > l(p)d, then the bank with distance d has a positive liquidity need, and
thus chooses the precautionary action, A0[d] = S. If θ ≤ l(p)(d + 1), this bank
is able to avoid insolvency. Otherwise, it is also insolvent despite taking the
precautionary action.

Next note that D(p) defined in equation (6) is the first nonnegative integer
such that θ ≤ l(p)(D(p) + 1). Consequently, all banks with distance d ≤ D(p) −
1 are insolvent since their liquidity needs are greater than their available liq-
uidity, l(p). These banks choose A0[d] = S to improve their liquidation outcome.
In contrast, a bank with distance D(p) is solvent since it can meet its losses by
choosing the precautionary action, A0[D(p)] = S. Since this bank is solvent, all
banks with distance d ≥ D(p) + 1 are also solvent as they do not incur losses
in cross-debt claims. These banks choose the aggressive action, A0[d] = B, to
optimize their equity value. It follows that there is a domino effect of size D(p)
and a flight to quality of size F = D(p) + 1. The first condition in (3) also implies
that D(p) < n and F < n, completing the proof of the proposition. Q.E.D.

Proof of Proposition 2

We complete the sketch proof provided in the paragraph following Proposi-
tion 2. Suppose p ∈ [pscrap, 1] and consider banks’ asset supply and demand.
There are D(p) + 1 banks that choose Aj

0 = S. The supply of assets from these
banks is given by (1 − y)(D(p) + 1). The remaining n − D(p) − 1 banks choose
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Aj
0 = B. The demand for assets from these banks is given by y(n−D(p)−1)

p . We
claim that the demand exceeds the supply regardless of the price, that is

y(n − D(p) − 1)
p

> (1 − y)(D(p) + 1) for each p ∈ [pscrap, 1]. (B3)

By the secondary market-clearing condition (2), this claim ensures that the
equilibrium price is p = 1, proving part (i). Given price p = 1, D and F are
characterized by Proposition 1, proving part (ii). Finally, the aggregate amount
of new asset purchases is equal to banks’ demand for assets net of the supply
of legacy assets. Taking the difference of the left-hand side and right-hand side
of the inequality in (B3) and using p = 1, we have

Y = ny − (D(1) + 1) = ny − 
θ�,
proving part (iii).

The remaining step is to show the claim in (B3). Recall that D(p) + 1 = 
 θ
l(p)�.

Using this expression, the claim in (B3) can be written as

ny >

⌈
θ

l(p)

⌉
(y + p(1 − y)) =

⌈
θ

l(p)

⌉
l(p),

where the equality follows from the definition of l(p) in equation (5). To show
this inequality, note that

ny > 
θ� ≥
⌈

θ

l(p)

⌉
l(p),

where the first inequality follows from condition (3) and the second inequal-
ity follows since l(p) ≤ 1. This implies the claim in (B3), completing the
proof. Q.E.D.

Appendix C: Equilibrium with Complexity

This appendix presents the analyses and proofs omitted from Section III.
We first present the characterization of the banks’ optimal actions. We then
present proofs of Propositions 3 and 4.

Consider banks’ optimal actions, taking the cross-debt payments, {q j
1} j , as

given. Note that a sufficient statistic for bank bj with distance d to choose
action Aj

0 ∈ {S, B} is the amount it will receive in equilibrium from its forward
neighbor. In particular, to decide the level of its precautionary measure, this
bank only needs to know its liquidity need in (4), which only depends on the
debt payment of its forward neighbor. Formally, if the bank chooses Aj

0 at date
0 and its forward neighbor pays x at date 1, then this bank’s debt payment
and equity value can be written as a function (q1[Aj

0, x], q2[Aj
0, x]). However,

the bank chooses Aj
0 while facing uncertainty about the financial network, and

consequently about x = q j
1 (σ ). More specifically, the bank knows that x lies in
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some interval [
xworst = min

σ̃∈N j (σ )
q j

1 (σ̃ ), xbest = max
σ̃∈N j (σ )

q j
1 (σ̃ )

]
,

but it is uncertain about the exact location of x in this interval. Note also that
q1[Aj

0, x] and q2[Aj
0, x] are weakly increasing in x for any choice of action. That

is, the bank’s debt and equity payments are increasing in the amount it receives
from its forward neighbor regardless of the ex ante precautionary measure it
takes. In view of the Minimax optimization (see problem (1)), it follows that the
bank will choose its action as if it will receive with certainty the lowest possible
payment, xworst. This completes the characterization of banks’ optimal actions.

Proof of Proposition 3

Case (i): θ ≤ 2l(p). We prove the statement by showing that banks’ payoffs
(and thus solvencies) and actions are the same as in the certainty benchmark
(which is characterized in Proposition 1).

To this end, it suffices to show that the payments and actions of the certainty
benchmark also constitute a partial equilibrium in this case. To show this, first
consider the actions of banks with distance d ≤ 1. Recall that these banks’ opti-
mal actions are characterized exactly as in the certainty benchmark. Moreover,
in the conjectured equilibrium, they receive the same payment from their for-
ward neighbors, x = Q1[d − 1], as in the certainty benchmark. Consequently,
they optimally choose the same actions. Next consider the actions of banks
with distance d ≥ 2. Given θ ≤ 2l(p) and the size of the domino effect D(p) ≤ 1,
these banks choose the aggressive action, Aj

0 = B, in the certainty benchmark.
In particular, the bank at distance d = 2 chooses the aggressive action since
it does not make any losses from cross claims. With uncertainty, recall that
banks with distance d ≥ 2 act as if they are at distance 2. Thus, these banks
optimally choose the aggressive action also with uncertainty. It follows that the
partial equilibrium without uncertainty continues to be a partial equilibrium
with uncertainty.

This analysis also verifies for this case that banks’ actions and payments
can be written as a function of their distance. Moreover, the function Q1[d] is
weakly increasing because it is the same as in the certainty benchmark.

Case (ii): θ > 2l(p) .To prove this claim, first consider the banks with distance
d ≤ 1. It can be seen that these banks’ optimal actions and payments are the
same as in the certainty benchmark. Since θ > 2l(p), the size of the domino
effect satisfies D(p) ≥ 2. Consequently, banks with distance d ≤ 1 are insolvent
and they choose Aj

0 = S, proving the claim for these banks.
Next consider the banks with distance d ≥ 2. Recall that these banks act

as if they are at distance d̃ = 2. Given the characterization for banks with
distance d ≤ 1, the bank at distance d̃ = 2 receives the payment Q1[1], which is
the same as in the certainty benchmark. Consequently, these banks choose the
action that the bank at distance d̃ = 2 would choose in the certainty benchmark.
Since D(p) ≥ 2, all of these banks optimally choose the precautionary action,
Aj

0 = S. It follows that the banks with distance d ≤ D(p) − 1 are insolvent and
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their debt payments and equity values are the same as in the certainty economy.
The transition bank with distance D(p) is solvent and its debt payment and
equity value is also the same as in the certainty economy. The banks with
distance d ≥ D(p) + 1 are also solvent and they pay Q1[d] = z on their debt.
However, the equity values of these banks are different from the certainty
economy. In particular, the equity value of a bank with distance d ≥ D(p) + 1
is given by

Q2[d] = y + (1 − y)p < R.

This discussion proves the claim also for banks with distance d ≥ 2, and com-
pletes the proof of the proposition.

This analysis also verifies for this case that the banks’ actions and payments
can be written as a function of their distance. Moreover, the function Q1[d] is
weakly increasing because it is the same as in the certainty benchmark. Q.E.D.

Proof of Proposition 4

There are three cases to consider. The first case concerns a shock, θ , that is
weakly smaller than the available liquidity of two banks even when the price of
legacy assets is at its lowest level. In this case, part (i) of Proposition 3 applies
regardless of the price. Consequently, the banks’ payoffs and actions are the
same as the certainty benchmark. In particular, all banks with distance d ≥ 2
choose the aggressive action, Aj

0 = B. In view of condition (3), the asset demand
from these banks exceeds the asset supply from distressed banks. This leads
to an equilibrium price p = 1 and a domino effect of size D(1). Furthermore,
aggregate purchase of new assets is the same as in Proposition 2.

The second case concerns a liquidity shock, θ , which is greater than the
available liquidity of two banks even when the price of legacy assets is at its
highest level. In this case, part (ii) of Proposition 3 applies regardless of the
price. Consequently, there is a flight to quality of size n. In particular, all banks
choose the precautionary action, Aj

0 = S, which has two effects. First, since
all banks are sellers in the secondary market (and there are no buyers), the
market-clearing condition (2) implies that p = pscrap. Second, since all banks
choose to keep their dollars in cash, no new assets are purchased, that is, Y = 0.

The third case concerns a liquidity shock, θ , which is weakly smaller than
the available liquidity of two banks when the price is at its highest level,
but not when the price is at its lowest level. In this case, there are multiple
equilibria. To see this, first suppose legacy assets trade at their fair price, p = 1.
With this price, the available liquidity, l(1), is sufficiently large that part (i) of
Proposition 3 applies. In particular, banks with distance d ≥ 2 are potential
buyers of the asset. This ensures that the fair price, p = 1, corresponds to an
equilibrium. Suppose, instead, that legacy assets’ price is at the fire sale level,
p = pscrap. With this price, the available liquidity, l(pscrap), is sufficiently small
that part (ii) of Proposition 3 applies. In particular, all banks (including banks
with distance d ≥ 2) are sellers in the secondary market. This ensures that the
fire sale price, p = pscrap, also corresponds to an equilibrium. Q.E.D.
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Appendix D: Collateralized Credit Default Swap (CDS) Contracts

In our setting, partial domino effects lead to aggregate effects because
they increase banks’ idiosyncratic counterparty risk from cross exposures. A
natural question is to what extent this risk could be insured at date 0 (once
banks learn about the shock). In practice, banks could obtain some insurance
by purchasing CDSs on their counterparties. However, as discussed in the main
text, the CDS contracts that pay in systemic events need to be collateralized
to protect insurance buyers against a potential default of the insurance seller.
This appendix allows for collateralized CDS contracts at date 0 and shows that
our results are robust to this extension. The key insight is that, while banks
demand CDS insurance on their counterparties, the supply of insurance is also
restricted because of sellers’ collateral constraints.

Consider the setting of Proposition 3 with network uncertainty and fixed
asset price (for simplicity). Consider also parameters such that D(p) ≥ 2, so
that banks are trying to maximize their available liquidity at date 1 (in their
worst-case scenario). In this setting, banks have a demand for insurance con-
tracts that pay when they are distressed at date 1. To capture this aspect,
suppose banks can invest at date 0 in insurance contracts on the insolvencies
of their forward neighbor banks. In particular, for each bank j, there is a con-
tract, I j , that pays one dollar if bank j is insolvent at date 1 (i.e., if it pays
q j

1 < 1). Suppose also that insurance contracts, {I j} j , must be individually and
fully collateralized. In particular, the insurance seller must pledge one unit of
cash as collateral for each unit of insurance contract she sells at date 0. Each
contract, I j , is traded at date 0 in a competitive market at price f j ∈ (0, 1),
which will be endogenously determined.

The collateral constraint implies that banks within the network choose not to
sell insurance contracts. To see this, note that selling the contract, I j , requires
the bank to pledge 1 − f j dollars of cash (in addition to f j dollars, which she
raises from the sale). In particular, selling insurance reduces banks’ available
liquidity at date 1 (even though it may increase their return at date 2). Given
that banks are trying to maximize their available liquidity, they choose not to
sell insurance. Put differently, network uncertainty not only increases banks’
demand for insurance, but also naturally decreases their supply of insurance.

It follows that insurance contracts must be sold by an agent outside the
financial network. Suppose the outside agent has yout dollars at date 0 and
consumes only at the end of date 1. Suppose the outside agent does not know
the financial network. In addition, suppose also that the outside agent does not
know the identity of the original distressed bank, b0.21 Importantly, the outside
agent knows that the size of the domino effect will be exactly D (i.e., not all
of the banking system can go under). This is the main feature that facilitates
insurance.

Let x j denote the amount of contract I j sold by the outside agent. We conjec-
ture an equilibrium for the insurance market in which f j ≡ f ∈ (0, 1) for each

21 This assumption is only made for simplicity. The results do not change if we assume that the
outside agent knows b0 (i.e., she knows as much as the inside banks).
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j and x j ≡ x for each j. That is, all banks’ insurance contracts trade at the
same price and the outside agent sells an equal number of contracts.

To characterize this equilibrium, first consider the supply of insurance by the
outside agent. This agent’s portfolio choice problem can be written as

max
x̃≥0

yout + x̃ f n − x̃D, (D1)

s.t. nx̃(1 − f ) ≤ yout.

The first line is the outside agent’s expected profit: for each contract she sells,
she collects f n dollars in premiums and she expects to pay D dollars. Note
that, even though the outside agent does not know the network, it knows that
exactly D banks will fail. The second line of (D1) is the outside agent’s budget
constraint. For each contract she sells, she raises f dollars. However, she needs
to put an additional, 1 − f , dollars as collateral. The total amount of collateral
she pledges cannot exceed her available collateral, yout.

Problem (D1) implies that, as long as f n > D, which we will verify in equi-
librium, the outside bank sells as much insurance as possible. That is

x = yout

n(1 − f )
. (D2)

Next consider the demand for insurance by banks. To maximize their avail-
able liquidity at date 1, banks, {bj}n−1

j=1, spend all of their date 0 resources to
buy insurance on their respective forward neighbor banks. This is because they
buy insurance at price f < 1 (which is fully collateralized), which gives them
one dollar at date 1 in their worst-case scenario (when their forward neighbor
is insolvent). Thus, these banks’ demand for insurance is given by

x = l(p)
f

. (D3)

With these insurance purchases, their available liquidity at date 1 (when their
forward neighbor is insolvent) becomes

l(p, f ) = x = l(p)
f

. (D4)

Next consider the original distressed bank, b0. This bank cannot increase its
available liquidity by buying insurance on its forward neighbor, because its
forward neighbor will always be solvent. On the other hand, this bank is indif-
ferent between any level of insurance (because it will be insolvent regardless
of its action). To keep the analysis and the notation simple, consider equilibria
in which this bank’s insurance demand is also given by (D3), which leads to an
available liquidity of zero dollars at date 1.

Given this characterization of insurance purchases and available liquidities,
the size of the domino effect can be calculated as before. In particular, the
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analogue of equation (6) in this setting is given by

D(p, f ) =
⌈

θ

l(p, f )

⌉
.

Note that, when f is lower, more liquidity is available to banks in distress,
which leads to a smaller domino effect.

The equilibrium price of insurance is characterized by equating the supply
of insurance in (D2) with the demand for insurance in (D3). This leads to the
closed-form solution

f = l(p)
yout

n + l(p)
and x = yout

n
+ l(p).

Note that insurance is expensive when the aggregate collateral of the insurance
sellers, yout, is small relative to the number of banks that demand insurance, n.
When yout

n is sufficiently small, f is close one, which has two implications. First,
the condition f n > D (which leads to equation (D2)) is verified because n > D.
Second, banks’ available liquidity in (D4) is close to l(p). Consequently, the
equilibrium is qualitatively similar to the earlier setting without insurance.

This analysis illustrates that, as long as the collateral of insurance sellers
outside the financial network is scarce, the CDS market does not overturn our
results. The behavior of the CDS market during the recent Bear Sterns and
Lehman debacles is broadly consistent with this analysis. Duffie (2011) states
that the demand for insurance spiked in both episodes (measured by novation
requests), and that this demand could not be met by insurance sellers (dealers).
These observations suggest that collateralized insurance contracts might fail to
fully eliminate the counterparty risk in systemic episodes, because the supply
of this type of insurance is also limited.
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