
Project 3: Candy Kids CMPT 300

Created by Brian Fraser, modified by Mohamed Hefeeda Page 1/6

Project 3: Candy Kids

1. Overview

In this assignment, you will use the producer-consumer solution we discussed in class to manage access

to a bounded buffer storing candy. One group of threads will model candy factories which generate candy

one at a time and insert the candy into the bounded buffer. Another group of threads will model kids

which eat candy one a time from the bounded buffer. Your program, called candykids, will accept three

arguments:

./candykids <#factories> <#kids> <#seconds>

Example: ./candykids 3 1 10

Factories: Number of candy-factory threads to spawn.

Kids: Number of kid threads to spawn.

Seconds: Number of seconds to allow the factory threads to run for.

2. Produce/Consumer Operation

Main

Your main() function will start and control the application. Its steps are as follows:

1. Extract Arguments

Process the arguments passed on the command line. All arguments must be greater than 0. If

any argument is 0 or less, display an error and exit the program.

2. Initialize Modules

Do any module initialization. You will have at least two modules: bounded buffer, and statistics.

If no initialization is required by your implementation, you may skip this step.

3. Launch factory threads

Spawn the requested number of candy-factory threads. To each thread, pass it its factory

number: 0 to (number of factories - 1).

- Hint: Store the thread IDs in an array because you'll need to join on them later.

- Hint: Don't pass each thread a reference to the same variable because as you change the

variable's value for the next thread, there's no guaranty the previous thread will have read the

previous value yet. You can use an array to have a different variable for each thread.

4. Launch kid threads

Spawn the requested number of kid threads.

main() {
 // 1. Extract arguments
 // 2. Initialize modules
 // 3. Launch candy-factory threads
 // 4. Launch kid threads
 // 5. Wait for requested time
 // 6. Stop candy-factory threads
 // 7. Wait until no more candy
 // 8. Stop kid threads
 // 9. Print statistics
 // 10. Cleanup any allocated memory
}

Project 3: Candy Kids CMPT 300

Created by Brian Fraser, modified by Mohamed Hefeeda Page 2/6

5. Wait for requested time

In a loop, call sleep(1). Loop as many times as the “# Seconds” command line argument. Print

the number of seconds running each time, such as “Time 3s” after the 3rd sleep. This shows time

ticking away as your program executes.

6. Stop factory threads

Indicate to the factory threads that they are to finish, and then call join for each factory thread.

See section on candy-factory threads (below) for more.

7. Wait until no more candy

While there is still candy in the bounded buffer (check by calling a method in your bounded

buffer module), print “Waiting for all candy to be consumed” and sleep for 1 second.

8. Stop kid threads

For each kid thread, cancel the thread and then join the thread. For example, if a thread ID is

stored in daThreadID, you would run:
 pthread_cancel(daThreadId);
 pthread_join(daThreadId, NULL);

9. Print statistics

Call the statistics module to display the statistics. See statistics section below.

10. Cleanup any allocated memory

Free any dynamically allocated memory. You may need to call cleanup functions in your

statistics and bounded buffer modules if they need to free any memory.

File Structure

You must split your code up into modules by using multiple .h and .c files.

Suggestion is to have the following files:

• candykids.c: Main application holding factory thread, kid thread, and main() function. Plus

some other helper functions, and some #defined constants.

• bbuff.h/.c: Bounded buffer module (see below).

• stats.h/stats.c: Statistics module (see later section).

• Makefile: Must compile all the .c files and link together the .o files.

Coding Suggestions

• The factory creates candy and the kids consume it. The candy will be stored in a bounded buffer.

To do this, you need a data type to represent the candy. The following struct is convenient:

• factory_number tracks which factory thread produced the candy item.

• time_stamp_in_ms tracks when the item was created. You can get the current number of

milliseconds using the following function. This code must be linked with the -lrt flag. Add it

to CFLAGS in your Makefile1.

1If -lrt gives you build problems, try placing the option after the $(OBJS) (object files).

typedef struct {
 int factory_number;
 double time_stamp_in_ms;
} candy_t;

Project 3: Candy Kids CMPT 300

Created by Brian Fraser, modified by Mohamed Hefeeda Page 3/6

Bounded Buffer

Create a bounded buffer module which encapsulates access to the bounded buffer. Your bounded buffer

must be implemented using the producer-consumer technique we discussed in clas.

Suggested public interface (the complete bbuff.h file) is shown below. Note that it operates on void*

pointers instead of directly with candy_t structures. This is done so that the buffer need not know

anything about the type of information it is storing. In this case, make the buffer array (declared in the

.c file) of type void* such as: void* da_data[DA_SIZE];

For example, an item can be inserted into the buffer with the following code which will dynamically

allocate one candy element (pointer stored in candy), set the fields of the candy, and then call the

bounded buffer function to insert it into the bounded buffer.

The bbuff_init() function is used to initialize the bounded buffer module if anything needs to be

initialized. Think of it like the constructor for your module: if this were object-oriented C++ then the

constructor would do any needed initialization. But, in C there are no constructors, so init() functions

are often used. If you do not need to initialize anything in your module, you can omit the

bbuff_init() function entirely.

double current_time_in_ms(void)
{
 struct timespec now;
 clock_gettime(CLOCK_REALTIME, &now);
 return now.tv_sec * 1000.0 + now.tv_nsec/1000000.0;
}

#ifndef BBUFF_H
#define BBUFF_H

#define BUFFER_SIZE 10

void bbuff_init(void);
void bbuff_blocking_insert(void* item);
void* bbuff_blocking_extract(void);
_Bool bbuff_is_empty(void);

#endif

void foo() {
 candy_t *candy = malloc(...);
 candy->factory_number = …;
 candy->time_stamp_in_ms = …;
 bbuff_blocking_insert(candy);
}

Project 3: Candy Kids CMPT 300

Created by Brian Fraser, modified by Mohamed Hefeeda Page 4/6

Candy-Factory Thread

Each candy-factory thread should:

1. Loop until main() signals to exit (see below)

1. Pick a number of seconds which it will (later) wait. Number randomly selected between 0

and 3 inclusive.

2. Print a message such as: “\tFactory 0 ships candy & waits 2s”

3. Dynamically allocate a new candy item and populate its fields.

4. Add the candy item to the bounded buffer.

5. Sleep for number of seconds identified in #1.

2. When the thread finishes, print the message such as the following (for thread 0):
“Candy-factory 0 done”

Thread Signaling

The thread will end when signaled to do so by main(). This is not using Linux signals but rather just a

_Bool global variable which is set to true when it's time to end the thread. For example, name it

stop_thread and have it be false to start. Then have main(), when it wants to end the thread, set this

variable to true. Have your thread continually check this _Bool variable (often called a flag) to see if it

should end. Here is some pseudo-code that may help:

_Bool stop_thread = false;
void* dathread_function(void* arg) {
 while (!stop_thread) {
 // Do the work of the thread
 }
 printf(“Done!”);
}

void main() {
 // Spawn thread
 pthread_id daThreadId;
 pthread_create(&daThreadId, …)

 // Wait
 sleep(...)

 // Tell thread to stop itself, and then wait until it's done.
 stop_thread = true;
 pthread_join(daThreadID, NULL)
}

Project 3: Candy Kids CMPT 300

Created by Brian Fraser, modified by Mohamed Hefeeda Page 5/6

Kid Thread

Each kid thread should do the following:

1. Loop forever

1. Extract a candy item from the bounded buffer.

▪ This will block until there is a candy item to extract.

2. Process the item. Initially you may just want to printf() it to the screen; in the next

section, you must add a statistics module that will track what candies have been eaten.

3. Sleep for either 0 or 1 seconds (randomly selected).

The kid threads are canceled from main() using pthread_cancel(). When this occurs, it is likely that

the kid thread will be waiting on the semaphore in the bounded buffer. This should not cause problems.

3. Statistics

Create a statistics module tracking:

1. Count the number of candies each factory creates. Called from the candy-factory thread.

2. Count the number of candies that were consumed from each factory.

3. For each factory, the min, max, and average delays for how long it took from the moment the

candy was produced (dynamically allocated) until consumed (eaten by the kid). This will be

done by the factory thread calling the stats code when a candy is created, and the kid thread

calling the stats code when an item is consumed.

Suggested .h file (stats.h):

Internally in stats.c, you will likely need to track a number of values for each candy-factory. It is

suggested you create a struct with all required fields, and then build an array of such structs (one

element for each candy-factory).

The stats_init() function can initialize your data storage and get it ready to process produced and

consumed events (via the respective functions). The stats_cleanup() function is used to free any

dynamically allocated memory. This function should be called just before main() terminates.

Displaying Stats Summary

When the program ends, you must display a table summarizing the statistics gathered by the program.

For example, it should resemble quite closely:

#ifndef STATS_H
#define STATS_H

void stats_init(int num_producers);
void stats_cleanup(void);
void stats_record_produced(int factory_number);
void stats_record_consumed(int factory_number, double delay_in_ms);
void stats_display(void);

#endif

Project 3: Candy Kids CMPT 300

Created by Brian Fraser, modified by Mohamed Hefeeda Page 6/6

• Factory #: Candy factory number. In this example, there were 10 factories.

• # Made: The number of candies that each factory reported making (as per the call from the

candy-factory thread).

• # Eaten: The number of candies which kids consumed (as per the call from the kid threads).

• Min Delay[ms]: Minimum time between when a candy was created and consumed over all

candies created by this factory. Measured in milliseconds.

• Avg Delay[ms]: Average delay between this factory's candy being created and consumed.

• Max Delay[ms]: Maximum delay between this factory's candy being created and consumed.

Requirements:

• The table must be nicely formatted (as above).

o Hint: For the title row, use the following idea:
printf(“%8s%10s%10s\n”, “First”, “Second”, “Third”);

o Hint: For the data rows:
printf(“%8d%10.5f%10.5f\n”, 1, 2.123456789, 3.14157932523);

• If the #Made and #Eaten columns don't match, print an error: “ERROR: Mismatch between

number made and eaten.”

4. Testing

valgrind will be used to check for memory leaks. Don't worry if valgrind reports “still accessible”

memory which was allocated from any function called from pthread_exit(); you may get a few such

warnings. But all memory that you allocate must be freed and not be“still accessible”.

You can run valgrind with the following command:
valgrind --leak-check=full --show-leak-kinds=all --num-callers=20 ./candykids 8 1 1

See online for some sample outputs.

5. Deliverables

Submit an archive (.zip) to CourSys of your code and Makefile. We will build your code using your

Makefile, and the run it using the command: ./candykids 2 2 10

Please remember that all submissions will automatically be compared for unexplainable similarities.

Statistics:
 Factory# #Made #Eaten Min Delay[ms] Avg Delay[ms] Max Delay[ms]
 0 5 5 0.60498 2602.81274 5004.28369
 1 5 5 0.40454 2202.97290 5005.06494
 2 7 7 0.60107 2287.86067 4004.16162
 3 8 8 1001.12012 2377.36115 5004.13159
 4 5 5 0.40186 2202.63008 5005.38330
 5 4 4 1003.22095 2503.94049 4006.16309
 6 5 5 1003.24487 2603.35894 4005.19873
 7 6 6 3002.30640 3836.61743 4005.16089
 8 4 4 3001.74048 3753.03259 5004.31177
 9 4 4 3002.76660 4253.44440 5005.13550

	1. Overview
	2. Produce/Consumer Operation
	Main
	File Structure
	Bounded Buffer
	Candy-Factory Thread
	Thread Signaling

	Kid Thread

	3. Statistics
	Displaying Stats Summary

	4. Testing
	5. Deliverables

