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The Name Tag Problem

Christian Carley

1 Introduction
A group of n people sit around a table, according to an assignment of name tags
in which only one person is paired with the correct name tag. Curious to see if it
will improve the number of correct pairings, everybody passes their name tag to the
person on their left. Oddly, a new person, and only that person, receives the correct
name tag. Indeed, every rotation provides the correct name tag to exactly one new
person, until the nth rotation, whereby every person has received the correct name
tag one at a time. Given any group of people, how can we assign them name tags
so that this situation is reproduced? That is the name tag problem, or the NTP for
short.

This paper develops a mathematical description of the NTP and walks through
the construction of linear solutions, highlighting unique features with theorems and
diagrams. While it was motivated as an exercise based on a fun problem, we found
that the results were interesting in their own right and had connections to several
areas of mathematics, including number theory, combinatorics and a particular type
of group permutations called orthomorphisms, which in turn have applications in
various other areas of mathematics. Section 1.1 offers a preliminary, qualitative de-
scription of the mathematics involved, detailing some of the conceptual difficulties
that accompanied its formulation. Section 1.2 proceeds to work out the correspond-
ing mathematical notation of the description from section 1.1. Once supported with
a mathematical theory, section 2 constructs linear solutions to the NTP and high-
lights their number-theoretic properties with examples and diagrams. Section 3 is
dedicated to counting linear solutions to the NTP for any given n. Finally, section
4 offers a brief introduction to the definition and applications of orthomorphic func-
tions, establishes the equivalence of the orthomorphisms of Z/nZ and solutions to
the NTP, and provides resources for further reading.
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1.1 Qualitative description

Naively, we may speak of a function f that assigns name tags to people, and say
that f satisfies the NTP when it assigns name tags as described above. In an
effort to establish a description of the uniqueness of the name tag assignment that
will translate easily into mathematical notation, we can confidently assert that every
rotation assigns exactly one correct name tag. Upon consideration though, we realize
that this condition is insufficient, as we must account for the fact that each correct
assignment is unique with respect to the previous ones (within a set of n rotations).
One remedy, also the original second criterion that the research for this paper began
with, is that f must be bijective. Bijectivity ensures that it would take n rotations
until any one name tag is correctly assigned for a second time since the initial
configuration. Thus, since a correct name tag is assigned once per rotation, it follows
that in n rotations, n different name tags are assigned. While this certainly covers
the right bases, it more so implies satisfaction of the property in question, rather
than serves as an explicit statement of the property itself. In an effort to provide
uniqueness criteria that are both direct and concise, the following rather symmetrical
propositions were settled on: (1) under every rotation exactly one person receives
the correct name tag and, (2) for every person there is exactly one rotation under
which they receive the correct name tag. Thus, (2) guarantees everybody gets the
correct name tag at some point, while (1) guarantees that this happens one at a
time.

Before moving on to the notation, we comment that, based on the evolution of
criterion (2), we should expect that the bijectivity of f and criterion (2) should be
equivalent. First of all, f must be bijective. If not, then somebody will not receive
a name tag. Second, if criterion (1) and f being bijective is sufficient to satisfy the
the thought experiment, but so are criteria (1) and (2), it must be that criterion (2)

is equivalent to f being bijective. This is addressed in detail in example 2 of section
2.

1.2 Notation

Because there are n people, it is natural to label each person and name tag as
0, . . . , n − 1 respectively. Then, if we take people to be the domain and name tags
to be the codomain, we have a name tag assignment function f that acts on Z/nZ.
Thus, the image f(Z/nZ) of f under Z/nZ provides us with the initial configuration
of name tags. If we orient the elements of the domain and codomain concentrically
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as clocks, as in figure 1, we may represent the passing of name tags by shifting the
image of the function to the right, which produces a clockwise rotation of the image
in the clock diagrams. Based on this description, “f(x) = x” would read, “person
x is assigned name tag x”, and therefore “f(x − y) = x” is the expression for a
correctly assigned name tag under a particular rotation y. Of course, this means
that, if f(x − y) ̸= x, then person x does not receive the correct name tag under
rotation y.

We are now ready to make our first formal definition.

Definition 1. Let a and n be integers with n ≥ 1, and let f : Z/nZ → Z/nZ be a
linear function defined as f(x) = ax (mod n). We say that f is a linear solution to
the NTP provided the following two properties hold:

1. for all y ∈ Z/nZ there is exactly one x ∈ Z/nZ such that f(x− y) = x.

2. for all x ∈ Z/nZ there is exactly one y ∈ Z/nZ such that f(x− y) = x.
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Figure 1: The first clock, also the initial configuration f(x), sees that only Lee has
the correct name tag. The second clock, also the first rotation f(x − 1), sees that
only Kel receives the correct name tag. The pattern continues until Lee receives the
correct name tag upon rotation number 5.
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2 Number-theoretic properties of linear solutions
to the NTP

Unpacking definition 1, we see that to understand satisfaction of the NTP is to
understand the equality

f(x− y) = x (1)

with respect to the appropriate quantifiers over x and y. Because equation (1) is
equivalent to the linear congruence

a(x− y) ≡ x (mod n) (2)

the problem of determining whether f satisfies the NTP is transformed into the
problem of finding solutions to linear congruence (2), with respect to the appropriate
quantifiers. It is therefore evident that in order to determine whether a function f

satisfies the NTP, we must be familiar with the general conditions under which an
arbitrary linear congruence has solutions. We therefore offer proposition 1 with a
proof sketch, as a reminder and frame of reference for further developments. A
detailed proof is omitted due to the ubiquity of this result in number theory.

Proposition 1. Let a, b and n be integers with n ≥ 1, and let g = gcd(a, n).

(a) If g ∤ b, then the congruence ax ≡ b (mod n) has no solutions.

(b) If g|b, then the congruence ax ≡ b (mod n) has exactly g incongruent solutions.

Proof Sketch. Let (u0, v0) be a solution to the linear equation

au+ nv = g

then, x0 =
bu0

g
is a solution to the linear congruence

ax ≡ b (mod n)

and the complete set of incongruent solutions is given by

x ≡ x0 + k
n

g
; k = 0, 1, 2, . . . , g − 1

In particular, we see that there is a unique solution if and only if gcd(a, n) = 1.

Drawing on linear congruence (2) when needed, proposition 1 provides us with
all of the information we need, given a value of n and corresponding linear function
f , to determine the conditions under which f is a linear solution to the NTP.
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Theorem 1. Let a and n be integers with n ≥ 1, and let f : Z/nZ → Z/nZ be a
linear function defined as f(x) = ax (mod n).

(a) f satisfies the first property of the NTP if and only if gcd(a− 1, n) = 1.

(b) f satisfies the second property of the NTP if and only if gcd(a, n) = 1.

Thus, f is a linear solution the NTP if and only if gcd(a, n) = gcd(a− 1, n) = 1.

Proof. (a) First, we restate that, by definition 1, f satisfies property 1 if and only
if for each y ∈ Z/nZ there is a unique solution to linear congruence (2). So,
Let y ∈ Z/nZ be given and manipulate linear congruence (2) to read

(a− 1)x ≡ ay (mod n)

By proposition 1, there is a unique solution if and only if gcd(a− 1, n) = 1.

(b) Similarly, rewriting linear congruence (2) as

ay ≡ (a− 1)x (mod n)

we note that for any x ∈ Z/nZ, by proposition 1, there is a unique solution if
and only if gcd(a, n) = 1.

Suppose f does not satisfy the NTP, either by failing one property or both.
proposition 1 also allows us to identify distinguishing features of such functions.

Example 1. n = 15 and a = 4. gcd(a − 1, n) = gcd(3, 15) = 3 and gcd(a, n) =

gcd(4, 15) = 1. So, f fails property 1 and satisfies property 2.
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Figure 2: n = 15, a = 4
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Looking at figure 2, we notice that the initial configuration assigns 3 correct name
tags while the first rotation assigns no correct name tags. If we were to diagram
out all 15 rotations, we would see that every 3rd rotation assigns 3 correct name
tags while all other rotations assign no correct name tags. While this is notable
and interesting, it should not come as too much of a surprise. Looking at the linear
congruence from theorem 1,(a) in the context of this example,

3x ≡ 4y (mod 15)

we see that if y is a multiple of 3, then so is 4y, and theorem 1 therefore implies that
there exist 3 solutions to the linear congruence. Thus, every 3rd rotation makes 3

correct assignemnts. Conversely, because 3 and 4 are coprime, 4y is a multiple of
3 only if y is a multiple of 3, and therefore the linear congruence has no solutions
if y is not a multiple of 3. We note, more generally, that a and a − 1 are always
going to be coprime, and therefore failure of property 1 will always result in every
gth rotation making g correct assignments, while all other rotations make no correct
assignments, where g = gcd(a− 1, n).

Example 2. n = 15 and a = 5. gcd(a − 1, n) = gcd(4, 15) = 1 and gcd(a, n) =

gcd(5, 15) = 5. So, f satisfies property 1 and fails property 2.
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Figure 3: a = 5, n = 15: first two rotations

Looking at figure 3, we see that only multiples of 5 appear on the table, and
we have thus arrived back at the issue of the equivalence between property 2 and
f being a bijective function. We begin by addressing the issue of all the name tags
being multiples of 5. Because f is defined as a solution to the linear congruence

ax ≡ f(x) (mod n)
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it must be the case that f(x) is a multiple of gcd(a, n) for all x. Thus, every output
in this example is a multiple of 5. This general observation, however, also implies
that f is a surjective function if and only if gcd(a, n) = 1. For, letting g = gcd(a, n),
we note that proposition 1 implies there is only ever a selection of g values that f(x)
can take on for any one value of x. The equivalence between property 2 and the
bijectivity of a solution to the NTP is further highlighted in full generality (that is,
with respect to any solution, not just linear solutions) in section 4.

Example 3. n = 15 and a = 10. gcd(a, n) = gcd(10, 15) = 5 and gcd(a − 1, n) =

gcd(9, 15) = 3. So, f fails both conditions simultaneously. Figure 4 confirms that
only multiples of 5 appear on the table, with the initial configuration assigning 3

correct name tags while the first rotation assigns none.
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Figure 4: n = 15, a = 10

Example 4. n = 15 and a = 2. gcd(a − 1, n) = gcd(1, 15) = 1 and gcd(a, n) =

gcd(2, 15) = 1. f satisfies the NTP.
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Figure 5: a = 2, n = 15; first two rotations

We have so far determined, given n people at a table and a linear function
f : Z/nZ → Z/nZ that assigns name tags, the conditions under which f is a
solution the NTP. We have not yet asked whether there are particular values of n
for which no linear solutions exist. So we now ask, roughly, how many people must
be seated at the table in order to solve the name tag problem?

Definition 2. Define the subset µn ⊆ Z/nZ as {x ∈ Z/nZ| gcd(x, n) = gcd(x −
1, n) = 1}. In other words, µn is the subset of Z/nZ such that a ∈ µn implies that
f(x) = ax (mod n) is a solution to the NTP.

Theorem 2. Let n be a positive integer. Then,

(a) µn ̸= ∅ if and only if n is odd.

(b) µ1 = Z/1Z = {0}, and 0 ̸∈ µn for all n > 1.

Proof. (a) If n is even then for any a ∈ Z/nZ, gcd(a, n) ≥ 2 or gcd(a− 1, n) ≥ 2.
If n is odd, then (2 (mod n)) ∈ µn, since gcd(2, n) = gcd(1, n) = 1.

(b) This is easy to see since gcd(x, 1) = 1 and gcd(0, n) = n for all x and n, and
since Z/1Z = {0}.

Example 5. Consider n = 4. We see that there is no value of a for which f can
satisfy the NTP. a = 0 and a = 1 are omitted from figure 6, since they cannot work
for any value of n.
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Figure 6: n = 4 with a = 2 (left) and a = 3 (right)

We have already seen that the case of n = 15 and a = 2 admits a linear solution
to the NTP. In fact, µ15 = {2, 8, 14}, so there are three linear solutions for n = 15.
We now turn to the task of determining how many linear solutions exist for arbitrary
n.

3 Counting linear solutions to the NTP
A single person will trivially satisfy the NTP and an even group will fail it. For any
given n, we can find the set of linear solutions by finding all the elements of µn, but
that becomes cumbersome and inefficient very quickly. We can, however, determine
just how formidable that task will be by finding a way to count how many linear
solutions exist for any given n > 1. So, in this section, we provide a formula for
|µn|, when n > 1.

Definition 3. Let n > 1 and k be integers and define the subset Mk
n ⊆ µn to be

the elements of µn that fall in between the kth consecutive integer multiples of the
product of the unique prime factors of n.

Mk
n =

{
x ∈ µn

∣∣∣k(∏
p|n

p
)
< x < (k + 1)

(∏
p|n

p
)}

One last stop before we are on our way to developing a formula for |µn| is to
offer an alternative definition of µn where n > 1. This new definition will allow us
to create a partition on µn, which will in effect help us count its elements.

Lemma 1. Let n > 1 be an integer and let p1, . . . , pη be the unique prime factors of
n.

µn = {x ∈ Z/nZ|x ̸≡ 0 (mod pi) and x ̸≡ 1 (mod pi), for i = 1, . . . , η}
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Proof. If x ∈ µn, then, because gcd(x, n) = 1, there can be no i = 1, . . . , η such
that pi divides x. Thus, x ̸≡ 0 (mod pi) for i = 1, . . . , η. By the same logic,
x − 1 ̸≡ 0 (mod pi), and therefore x ̸≡ 1 (mod pi), for i = 1, . . . , η. Conversely, if
for some i = 1, . . . , η and some x ∈ Z/nZ, pi divides x or x− 1, then gcd(x, n) > 1

or gcd(x− 1, n) > 1 and therefore x ̸∈ µn.

We now have all the machinery required to determine the cardinality of µn. We
begin by creating a partition Mn on µn. The intuition behind this maneuver is
to divide n up into integer multiples of its prime factors so that, between every
integer multiple of

∏
p|n p, there exists a unique subset of µn. That is what lemma

2 establishes. Lemma 3 then shows that each of these sets are equal in cardinality,
making the final step to the cardinality of µn seamless.

Lemma 2. Let n > 1 and k be integers, and let m =
∏

p|n p. Then, Mn = {Mk
n |0 ≤

k < n
m
} is a partition on µn.

Proof. Let l and k be integers and assume that x ∈ M l
n ∩ Mk

n . Then, km < x <

(k + 1)m and lm < x < (l + 1)m. But then l < (k + 1) and k < (l + 1), so
(k − 1) < l < (k + 1). Therefore k = l.

Next, let x ∈ µn. Since µn = ∅ when n is even, the criteria of a partition is
trivially satisfied for even values of n. We may therefore assume that n ≥ 3 and
odd. Because 2 is the smallest element of µn, there is at least one integer k such
that 0 ≤ k < n

m
and km < x. If we then let k be the largest such integer, it follows

that km < x < (k + 1)m and therefore x ∈ Mk
n for some Mk

n ∈ Mn.

Lemma 3. Let n > 1 be an integer and let p1, . . . , pη be the unique prime factors of
n. Again, let m =

∏
p|n p be their product. Then,

|Mk
n | =

∏
p|n

(p− 2)

for all 0 ≤ k < n
m

.

Proof. Consider the set T =
{
(x1, x2, . . . , xη) ∈

∏η
i=1

(
Z/piZ

)∣∣(1 < xi < pi)
}

. Also
note that M0

n = {x ∈ µn|0 < x < m} is the subset of µn for which each element x is
less than m. The Chinese Remainder theorem guarantees that the system of linear
congruences

x ≡ x1 (mod p1), . . . , x ≡ xη (mod pη)

has a unique solution with x ∈ Z/mZ. Therefore, by lemma 3, if 1 < xi < pi for
1 ≤ i ≤ η, the system of linear congruences has a unique solution in M0

n and therefore
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|T | = |M0
n|. We see then, that for an arbitrary element of T , (x1, . . . , xn) ∈ T , each

xi can take on one of pi − 2 distinct values, and therefore

|M0
n| = |T | =

∏
p|n

(p− 2)

Now that we have determined the size of M0
n, we turn to the task of establishing a

family of bijective functions hk
n : M0

n → Mk
n , that take M0

n to Mk
n for for 0 ≤ k < n

m
.

Let hk
n be defined as hk

n(x) = km+x. First, we confirm that that hk
n maps to M0

n to
Mk

n . Since x ∈ M0
n, 0 < x < m, and therefore km < hk

n(x) < (k+1)m. Additionally,
hk
n(x) ≡ x (mod pi), for i = 1, . . . , η, which by lemma 3 means that hk

n(x) ∈ µn.
Therefore, the image hk

n(x) of any x ∈ M0
n is such that km < hk

n(x) < (k+1)m and
hk
n(x) ∈ µn, meaning hk

n(x) ∈ Mk
n . Finally, being a linear function, it is clear that

hk
n is bijective. Therefore,

|Mk
n | = |M0

n| =
∏
p|n

(p− 2)

.

We have so far shown that, for a positive integer n, the set µn is the set of
coefficients that determine whether the relevant linear function is a solution to the
NTP, and we have found a way to partition µn into n

m
sets of equal cardinality, where

m =
∏

p|n p is the product of the unique prime factors of n. This puts us in an easy
position to calculate the size of µn and therefore the number of linear solutions to
the NTP for any positive integer n.

Theorem 3. Let n be a positive integer.

(a)
|µ1| = 1

(b) if n > 1, then

|µn| = n
∏
p|n

(
1− 2

p

)
.

Proof. The proof of part (a) is given in theorem 2 and so we move to part (b).
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By lemma 2 we get that |µn| =
∑ n

m
−1

k=0 |Mk
n |. By lemma 3 we get that

n
m
−1∑

k=0

|Mk| =
n

m

∏
p|n

(p− 2)

= n

∏
p|n(p− 2)∏

p|n p

= n
∏
p|n

(
1− 2

p

)

4 Orthomorphisms
It turns that out that studying solutions to the NTP is equivalent to the study of
what are termed orthomorphisms of Z/nZ. Orthomorphisms are an interesting type
of permutation of a group with applications to a variety of mathematics. This section
details the relationship between orthomorphisms of Z/nZ and solutions to the name
tag problem, and gives a truncated list of the wider significance of orthomorphisms
in general, and further reading for those interested.

Definition 4. Let G be a group and θ a permutation of G. Then, θ is an ortho-
morphism of G if x−1θ(x) is also a permutation of G.

If we let G = Z/nZ and define θ : Z/nZ → Z/nZ to be θ(x) = ax (mod n),
then by example 2 above, θ is a permutation of Z/nZ if and only if gcd(a, n) = 1.
Similarly, θ(x) − x = (a − 1)x (mod n) is a permutation of Z/nZ if and only if
gcd(a − 1, n) = 1. Thus, we have that the set of linear solutions to the NTP is
equal to the set of linear orthomorphisms of Z/nZ. Of course, there are other types
orthomorphisms and solutions to the NTP besides linear ones (the interested reader
may experiment with an arbitrary value of n and a clock diagram, and come up
with a few on their own with relative ease – that is how this paper began), including
quadratic, and in fact, it can be shown that all solutions to the NTP for any given
value of n are exactly all of the orthomorphisms of Z/nZ.

Theorem 4. Let G be a group and θ a permutation of G. Then, θ is an orthomor-
phism if and only if θ−1 is an orthomorphism.

Proof. The following statements are obviously equivalent, or can be easily shown to
be equivalent.
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1. θ is an orthomorphism.

2. x−1θ(x) is a permutation of G.

3. (x−1θ(x)) ◦ θ−1 is a permutation of G.

4. x−1θ−1(x) is a permutation of G.

Theorem 5. A function f : Z/nZ → Z/nZ satisfies the NTP if and only if it is an
orthomorphism of Z/nZ.

Proof. Let f be an orthomorphism of Z/nZ. Then, by theorem 4, f−1 is too. If
we let y ∈ Z/nZ and take its inverse −y, we can find some x ∈ Z/nZ such that
f−1(x) − x = −y. Thus, for any y ∈ Z/nZ there is an x ∈ Z/nZ such that
f(x− y) = x. Next, let x ∈ Z/nZ. Because f is onto, we can find a y ∈ Z/nZ such
that f(x − y) = x. The uniqueness of x in the first case and y in the second case
follow from the fact that f is bijective.

Next, let f be a solution to the NTP. Then, for any x ∈ Z/nZ there exists a
unique y ∈ Z/nZ such that f(x− y) = x, which means that f is onto. Also, for any
y ∈ Z/nZ we can take its inverse −y and find an x ∈ Z/nZ such that f(x+ y) = x.
Thus, f−1(x)− x = y, which makes f−1(x)− x onto. And thus f−1 and therefore f

are orthomorphisms.

The interested reader is encouraged to check out a copy of “Orthomorphism
Graphs of Groups”, by Anthony B. Evans, where they will find an algorithm for
constructing non-linear orthomorphisms of Galois fields when n is prime, among
many more interesting properites and applications of orthomorphisms. Evans’ book
focuses primarily on orthomorphism graphs (graphs with orthomorphisms as nodes)
and their significance in the construction of mutually orthogonal Latin squares, nets,
affine planes, and several other mathematical objects. A particular result in Evans’
book that is relevant to this paper is theorem 1.22, which states that any finite
group of odd order admits orthomorphisms, which has been demonstrated to be
the case for solutions to the NTP. According to Evans’ book, it is also currently
an open problem in group theory as to which groups admit orthomorphisms. The
interested reader may also check out article A006717 of OEIS for the number of
orthomorphisms of Z/(2n + 1)Z, which, in this article, is given as the number of
ways of arranging 2n+1 nonattacking semi-queens on a (2n+1)× (2n+1) toroidal
board.
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