

A Fast Spreadsheet Implementation of the Critical Path Method

Ron Davis

Department of Marketing and Decision Sciences
College of Business

San José State University
One Washington Square

San José, CA 95193-0069
Tel: 408 924 3547
Fax: 408 924 3445

E-mail: davis_r@cob.sjsu.edu

April 2006

Keywords:

Ref #: I-06-003

A FAST SPREADSHEET IMPLEMENTATION
 of the CRITICAL PATH METHOD

By Dr. Ron Davis, San Jose State University

College of Business, One Washington Square, San Jose, California 95192
davis_r@cob.sjsu.edu; ron@mathproservices.com;

ABSTRACT

This is the first of two companion papers by the present author appearing in these
transactions. This first paper deals with two efficiency enhancements to the spreadsheet
critical path implementations of Kala C Seal (Seal, 2001) and Cliff T Ragsdale
(Ragsdale, 2003) that are motivated by the need to simulate a project and re-compute the
duration of its critical path many thousands of times to ascertain an accurate histogram of
total project duration. The second paper deals with use of the beta distribution to carry
out stochastic project duration and stochastic project crashing analyses.

Since project network structure is constant throughout the simulation process, efficiency
considerations in this context beget a desire to compactly represent the precedence
network structure in a form that can be conveniently used during a simulation without
repeated re-computation. By judicious computation of pointer lists to compactly
represent the predecessor and successor sets for each activity node prior to the simulation,
and by use of the OFFSET function to gather relevant sets of early finish and late start
times into compact arrays during the simulation, unnecessary re-computation of structural
results and unnecessary circular references can be avoided.

In fact, the very same logic that generates the pointer lists can be used instead to compute
the argument lists for the MAX and MIN function evaluations required during the
forward and backward passes. This enables use of the pointer lists and OFFSET function
calls to be omitted altogether, further speeding run times.

1 INTRODUCTION

Formal project management techniques were developed in the late 1950s and early 60s
as part of the early missile and space exploration programs. Actually there were two
parallel developments, one called the Critical Path Method (CPM, spearheaded by
Dow Chemical Corporation) that featured a simple deterministic analysis, and the
other called Program Evaluation and Review Technique (PERT, spearheaded by
Lockheed Missiles and Space Corporation) that made a simplistic attempt to
incorporate uncertainty into the project duration analysis. These methods were based
on two closely related network diagramming conventions, called activity-on-node
(AON) and activity-on-arc (AOA). Most textbook authors favored the AOA
convention, whereas most programs were written using the AON convention. Since
the diagramming logic is much simpler for AON in comparison with AOA, the AON
approach is now rapidly becoming the standard convention in industrial and

government use of the methodology, and it is seen more frequently in newer textbooks
as well.

The US government in general, and the Defense Department in particular, rapidly
adopted the cpm/pert methodologies as a required part of their contracting procedures,
since it enabled better comparative analysis of competing bids for contract assignments
that they were funding. Consequently Operations Research Departments and MBA
business curriculums at all major Anglo-American universities taught the
methodologies because of their growing use and acceptance as a necessary part of
doing business. As graduates of these universities became employees in government,
industry and the world of nonprofits as well, the method has been diffused into all
aspects of our society. Insight into the breadth of application of these techniques can
be gained by a quick perusal of the Special Interest Groups (SIGs) listing of the Project
Management Institute (see http://www.pmi.org/info/default.asp). The following table
is a partial listing of the currently operating PMI SIGs that are devoted to the special
aspects of CPM/PERT that applies in these diverse areas.

It is clear from the above listing that these techniques are today used in every area of
society, from government agencies to non-profits, and from engineering companies to
service industries.

Another organization/site that facilitates interaction between and collaboration
amongst members of the Project Management community is the Project Management
Forum (see http://www.pmforum.org/warindex.htm). On the home page it states that
“The PMFORUM is a resource for information on international project management
affairs. The PMFORUM supports the development, international cooperation,

• Aerospace & Defense
• Automation Systems
• Automotive
• Configuration Management
• Consulting
• Design-Procurement-Construction
• Diversity
• eBusiness
• Education & Training
• Environmental Management
• Financial Services
• Government
• Hospitality Management
• Information Systems
• Information Technology &

Telecommunications
• International Development

• Manufacturing
• Marketing & Sales
• Metrics
• New Product Development
• Oil, Gas & Petrochemical
• Pharmaceutical
• Program Management Office
• Quality in Project Management
• Retail
• Risk Management
• Service & Outsourcing
• Students of PM
• Troubled Projects
• Utility
• Women in Project

Management

promotion and advancement of a professional and worldwide project management
discipline.” A perusal of the site reveals not only information on professional
standards, an archive of recent journal publications, and a directory of PM
organizations around the world, but also provides a global marketplace of expert
resources where vendors of software and related products and services have listings
that benefit the product and service providers as well as the individuals and
organizations that use them. Within this last area there are subheadings for
information on Consulting Services, Information Technology, Careers, Services and
Support, Software Applications, and Training and Development. A Vendors Search
Engine makes it easy to search a Expert Resources Global Market Place Directory for
just the type of help that may be needed. For keeping abreast of the latest
developments in this field, the PM Forum maintains an online periodical called PM
World Today that “contains the latest notices, reports, news and information related to
project management from around the world. “

With the widespread acceptance of spreadsheets for quantitative analysis in business
and government alike, it is quite natural, therefore, that spreadsheet implementations
of the Critical Path Method and PERT would be forthcoming. The two methods upon
which the present implementation is based appeared recently in this journal. They
were presented by Kala C Seal (Seal, 2001) and Cliff T Ragsdale (Ragsdale, 2003).
The implementation presented here incorporates elements from both of these
approaches and, through the use of VBA procedures, forms a synthesis that is intended
to be neater and cleaner (and faster in the simulation context) than the two preceding
implementations. Scalability and portability are also thereby enhanced.

2 A NETWORK MODELING CONVENTION

We will use the example presented in Ragsdale’s paper (Ragsdale, 2003) for the
discussion here. The first difference in our treatment occurs immediately in the
diagramming of the project network. For pedagogical reasons, whenever there are
multiple beginning nodes in a project (A and B in this case) a BOP “Beginning of
Project” milestone node is inserted before them to provide a unique starting node for
the project. Likewise, when there are multiple ending nodes in a project (I and J in this
case) an EOP “End of Project” milestone node is inserted at the end to provide a
unique ending node for the project. It is understood that such milestone nodes have
zero duration. By so doing there is no ambiguity about where the project begins or
ends. The resulting network diagram for the example is shown below in Figure 1.

Figure 1: Project Network Diagram

For the spreadsheet implementation we shall discuss, it turns out that it is not
necessary to actually insert a row in the project table for the BOP node. On the other
hand, it is desirable to put in a row for the EOP at the end of the table. The reason for
this is that the project is not done until all of the “dangling loose ends” at the end are
completed. Hence there is a maximum value computation that must be done at the
EOP in order to find out just how long the project is taking. Moreover, this time is a
boundary condition at the end of the Late Finish column that starts the backward pass
computations. Hence it MUST be known in order to do the backward pass, and
therefore our position is that it MUST be shown in both the project network diagram
as well as added as a final row in the project table. Of course there is sometimes no
need for an EOP milestone addition, when there is already a unique final activity that
is at the end of every path through the network, such as in the example in Seal’s paper.
But when there are “multiple loose ends” as in Ragsdale’s example, we take the
position that the EOP MUST be added, both to the network diagram and to the
spreadsheet table for the project.

3. SOLUTION TABLE LAYOUT

In order to provide a frame of reference for the pointer list discussion it is convenient
to jump ahead to the solved table layout at this point. This is shown in Table 1 below.
The first four columns of this table are given data, the last six are computed columns.
Formulas for the computed columns (all except one auto fill formulas) will be given
shortly, however the present focus is on several structural differences from the table
given by Ragsdale. The principal difference is the inclusion of the EOP row at the end
where a maximum value is computed to determine the duration of the project. The
formula is of the same form as the one just above it, but the forward pass is not
complete until the maximum value computation in the EOP row is done. This value is

BOP

A:3

B:5

C:3

D:4

F:2

E:8

G:4

H:2

I:5

J:3

EOP

then used as the boundary condition of the backwards pass by means of a simple value
replication formula at the end of the LF column. The minor difference is the addition
of another column at the end which converts the slack values into the names of the
critical activities using IF functions, with the full name of the critical path computed
using the CONCATENATE function in the lower right corner of the table.

A B C D E F G H I J

Activity Description
Immediate
Predecessor Days

ES
T

EF
T

LS
T

LF
T SLACK CRITICAL

A Select Site 3 0 3 5 8 5

B
Create building
plan 5 0 5 0 5 0 B

C
Determine labor
needs B 3 5 8 5 8 0 C

D Design facility A, C 4 8 12 8 12 0 D
E Construct facility D 8 12 20 12 20 0 E

F
Select personnel
to move C 2 8 10 14 16 6

G
Hire new
personnel F 4 10 14 16 20 6

H Move records F 2 10 12 18 20 8
I Arrange financing B 5 5 10 18 23 13

J
Train new
personnel E, G, H 3 20 23 20 23 0 J

K End Of Project I, J 0 23 23 23 23 BCDEJ
TABLE 1: CPM SOLUTION TABLE

4. CONSTRUCTION OF THE POINTER LISTS

From inspection of the project network diagram, it is clear that each node (other than
the BOP) has a set of predecessors and each (other than the EOP) has a set of
successors. By tabulating the pointers to predecessors in one list, and the pointers to
successors in another list, we compactly identify and represent the precedence
structure of the network that is needed during the forward and backward passes of the
CPM. These lists are determined once and for all prior to any simulation studies that
may be done based on the variation of activity times.

Ragsdale indicates an aversion to the binary precedence matrix presented by Seal,
however the embedded functions that he proposes very neatly yield the very same
binary table, as follows. Let “Precedence” be the name of column C in the above table
(rows 2 through 12) that contains the information defining the structure of the project
network. Then the array formula {=IF(ISERR(FIND(“A”,Precedence)),0,1)} yields a
column vector of (11) zeros and ones where a 1 shows that activity A precedes the
activity associated with the row in which the 1 occurs. Hence it shows the set of
successors of activity A as a binary vector (this is the first column of what Seal calls
the Precendence Matrix). By noting the number of 1s in this column, and where they

occur, we obtain the first row of the successor pointer list for the network, namely [1;
4] where 1 is the number of immediate successors of A, and 4 is the index associated
with activity D, the activity immediately following A.

Moving forward now to activity B we find that the array formula
{=IF(ISERR(FIND(“B”,Precedence)),0,1)} yields the binary column vector showing
the immediate successors of activity B. It has two 1s in it, in index position 3 and in
index position 9, so the second row of the successor pointer list table is [2; 3, 9].
Repeating this process for each activity in turn yields the entire Immediate Successors
Matrix and the Immediate Successors Pointer list, as shown below.

TABLE 2: SUCCESSORS MATRIX

TABLE 3: SUCCESSORS POINTER LIST

The first column of the pointer list shows the number of successors for the activities,
and the remaining numbers in each row give the index numbers for the succeeding
activities. We have constructed the pointer list from the Successors Matrix by hand in
this example, but in general this could be automated with a straightforward VBA
macro. The label cell in the upper left corner is named NumSucc so that elements of

Successors
Matrix
A B C D E F G H I J EOP

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 1 0

NumSucc Pointer List
1 4
2 3 9
2 4 6
1 5
1 10
2 7 8
1 10
1 10
1 11
1 11
0

this Successors Pointer List can be referenced by offset from this cell during the
backwards pass computations.

It turns out that the binary Predecessors Matrix is just the transpose of the binary
Successors matrix (if activity “j” follows activity “i” then activity “i” precedes activity
“j”). The Predecessors Pointer List is then formed by summarizing the number and
location of the 1s in each column of the Predecessors Matrix. The results for this
example are shown below.

TABLE 4: PREDECESSORS MATRIX

TABLE 5: PREDECESSORS POINTER LIST

The label cell in the upper left corner of this table is named NumPred so that the elements
of the Predecessors Pointer List may be referenced by offset from this cell. Taken
together, the two pointer lists effectively and compactly specify the project network
structure based on the precedence relations indicated in column C of the data table. They
are computed only one time, prior to any CPM computations and prior to any PERT
simulations. We therefore turn to the question of how to use these lists in the context of
the MAX and MIN functions associated with the forward and backward passes of the
CPM.

Predecessors
Matrix
A B C D E F G H I J EOP

0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0

NumPred Pointer List
0
0
1 2
2 1 3
1 4
1 3
1 6
1 6
1 2
3 5 7 8
2 9 10

5. USE OF THE OFFSET FUNCTION FOR THE ES & LF COMPUTATIONS

The ES times are based on the MAX of a set of preceding EF times, and hence make use
of the Predecessors Pointer List. We name the upper left corner of this pointer list table
NumPred so that elements of the table can be referred to by offsets from the cell
containing the label NumPred. When there are no predecessors, we must return the value
0, and when there are predecessors, we must return the maximum of the indicated EF
times. We want to be able to copy this formula down column E to obtain all of the ES
times using the same functional form, so we create an index number column in column K
that runs from 1 for activity A to 11 for “activity” EOP. By referring to this index
number for each activity we are able to construct the ES formula for A as

 {=IF(OFFSET(NumPred,K2,0)>0,
MAX(OFFSET(F1,OFFSET(NumPred,K2,1,1,OFFSET(NumPred,K2,0)),0)),
0)}

We have formatted this for three lines in order to clarify the IF structure of the statement.
First note that this formula is an array formula even though it returns only a single value.
This is required since some of the intermediate computations are stated in terms of arrays,
notably the argument of the MAX function. The logical expression
OFFSET(NumPred,K2,0)>0 checks to see whether or not there are any predecessors for
the activity associated with the index number showing in column K. If not, then the IF
function returns the value 0, as desired. If the number of predecessors is positive,
however, then the IF statement returns the MAX of set of EF values stipulated in the
argument of the MAX function call.

The argument of the MAX function call is admittedly a bit “tricky” but on reflection one
sees that it does exactly what is needed AND NOTHING MORE. The length of this
argument vector is equal to the number of predecessors of the activity, not the total
number of activities. Hence for this example, it never involves more than three elements,
and usually the count is one or two. The syntax is a bit forbidding because of the nested
OFFSET function calls, so to understand it better consider the following rewrite that does
not actually run in Excel but clarifies the intent of the expression:

 MAX(OFFSET(F1,Array_of_predecessor_pointers,0))

The F1 reference is made because the EF times are in the cells from F2 to F12 and we
want to use the offset function to refer to them by means of an offset from F1. Then
Array_of_predecessor_pointers is just the predecessor pointer list for the present activity.
It is specified by the term

OFFSET(NumPred,K2,1,1,OFFSET(NumPred,K2,0))

The first three arguments of this outer OFFSET call tell it to come down to the indicated
row of the predecessors pointer list and move to the right one column to locate the first
pointer for the indicated activity. The last two arguments give the dimensions of the

pointer list being referred to, which is 1 row by OFFSET(NumPred,K2,0) columns.
Hence the MAX of the EF times for immediate predecessors of each activity is the result.
Note that the MAX function is actually evaluated only when OFFSET(NumPred,Ki,0) is
positive, so in this case it would not be evaluated when the argument is K2 or K3. But
for K4 and above, the number of predecessors is positive so the array IF statement would
return the results of the array MAX computation.

The formulas in column F are trivial, since they just sum the corresponding values in
columns D and E. Hence, by selecting E2:F2 one can then drag the handle down to auto
fill the two formulas down to E12:F12. Again, since the results in row 12 will be used to
initialize the backwards pass in column G, we regard the inclusion of the EOP row as an
essential feature of this implementation. The formulas for ES and EF of the EOP are of
the same form as for the activities up to that point, one just takes the duration of the EOP
to be zero.

Turning now to the backward pass, the LF at the EOP is set equal to the EF at the EOP by
definition. Hence =F12 is the formula placed in G12. And the formula in H12 is just
G12 – D12. Moving back up to row 11, the array formula for the LF in G11 is then

{=MIN(OFFSET(H1,OFFSET(NumSucc,K11,1,1,OFFSET(NumSucc,K11,0)),0))}

The IF statement is not needed in this case because prior to the EOP, EVERY activity has
at least one successor so OFFSET(NumSucc,Ki,0) will always be positive for “i” less
than 12 and greater than 1. (In fact, the IF statement could be eliminated during the
forward pass as well by including a row for the BOP in the solution table). Once again,
the reference to H1 is because the LS times are in column H, and the second argument
of the first OFFSET function is the array of pointers in the Successors Pointer List for the
activity indexed by K11. The formula in H11 is just G11 – D11, and by selecting
G11:H11 the two formulas may be copied up to G2:H2 to complete the backward pass.

The slack computation in column I is obtained by the difference LS – ES or LF – EF and
the critical activities are displayed in column J by use of the appropriate IF function
based on whether the slack is zero or not. Concatenation of the critical activity letters is
done at the bottom of column J using the CONCATENATE function.

6. A FURTHER ENHANCEMENT

To the purist, it may seem that use of OFFSET array functions in columns E and G for
the ES and LF times should be eliminated at the outset by computing the MAX and MIN
argument lists as text strings and then “setting” the appropriate formulas into those cells
once and for all. In this case, the simulation iterations would have the benefit of simple
MIN and MAX functions in columns E and G rather than the complex array formulas
involving nested OFFSET functions, and should therefore run just that much faster. This
can be done with a couple of VBA macros, as shown in the appendix to this paper. The
result of running the ForwardPass and BackwardPass procedures for the present example
is shown in the following table.

 E F G H
1 EST EFT LST LFT
2 =MAX(0) =SUM(D2:E2) =H2-D2 =MIN(G5)
3 =MAX(0) =SUM(D3:E3) =H3-D3 =MIN(G4,G10)
4 =MAX(F3) =SUM(D4:E4) =H4-D4 =MIN(G5,G7)
5 =MAX(F2,F4) =SUM(D5:E5) =H5-D5 =MIN(G6)
6 =MAX(F5) =SUM(D6:E6) =H6-D6 =MIN(G11)
7 =MAX(F4) =SUM(D7:E7) =H7-D7 =MIN(G8,G9)
8 =MAX(F7) =SUM(D8:E8) =H8-D8 =MIN(G11)
9 =MAX(F7) =SUM(D9:E9) =H9-D9 =MIN(G11)
10 =MAX(F3) =SUM(D10:E10) =H10-D10 =MIN(G12)
11 =MAX(F6,F8,F9) =SUM(D11:E11) =H11-D11 =MIN(G12)
12 =MAX(F10,F11) =SUM(D12:E12) =H12-D12 =F12

7. CONCLUSIONS

To recap, the first of two principal benefits of this implementation are that the precedence
structure is embodied in the two pointer lists determined once and for all before the CPM
or any PERT simulation trials (or in the computed MIN and MAX function calls based on
the predecessor and successor relationships). Hence during simulation trials this structure
need not be rediscovered on each and every simulation trial. Secondly, use of these
pointer lists shortens the arrays fed to the MAX and MIN functions during the forward
and backward passes since they are no longer as long as the number of activities in the
project, but are only as long as the pointer lists in the successor and predecessor pointer
lists. And if the argument lists are pre-computed using the VBA code as in the appendix,
then the OFFSET function calls can be entirely eliminated as well. Hence the work
required to carry out each CPM computation will tend to grow linearly with the number
of activities in the project rather than quadratically. This enhances the scalability of the
method.

In addition, we have avoided use of any intentional circular reference such as advocated
by Ragsdale. When the EOP is incorporated into the computation, there is no inherent
circularity in the logic of the underlying CPM formulas. Hence we regard the use of
circular references in Excel as an artificial way of compensating for an incomplete
network diagram for the project that should be avoided. Eliminating reliance on circular
references speeds run time and enhances portability of the method.

The reader may well wonder why the discussion of pointer lists was retained after it was
discovered that in the spreadsheet they need not be explicitly developed to get the desired
results, since VBA allows formulas to be computed and saved. The reason is that
programmers for websites providing online solutions may not have the luxury of an Excel
spreadsheet running on the server. If the solution is to be obtained in some other
programming language, then the pointer lists may be developed explicitly and form the
basis for fast solutions on a server supporting a website.

BIBLIOGRAPHY

n Albright, S. Christian (2001), VBA for Modelers: Developing Decision Support

Systems with Microsoft Excel, Duxbury, Pacific Grove, CA
n Davis, Ronald E. (2005), “Stochastic Project Duration Analysis using PERT-beta

Distributions”, INFORMS Transactions on Education 5:2 (TBD)
n Ragsdale, Cliff T. (2003), “A New Approach to Implementing Project Networks

in Spreadsheets”, INFORMS Transactions on Education 3:3 (76-85).
n Roman, Steven (2002), Writing Excel Macros with VBA (2nd ed.), O’Reilly &

Assoc., Inc., Sebastopol, CA
n Seal, Kala C. (2001), “A Generalized PERT/CPM Implementation in a

Spreadsheet”, INFORMS Transactions on Education 2:1 (16-26).

APPENDIX

The two VBA macros that create the desired MAX and MIN functions (that compute
EST and LFT quantities respectively) utilize the InStr function in place of the spreadsheet
function FIND. The offset property is used throughout to facilitate moving through the
various lists involved. The user may need to edit the Set statements to be sure that they
refer to the appropriate columns, depending on the layout of the model at hand. The
coding assumes that the four time columns EST, EFT, LST, and LFT will be in
consecutive columns and in this order. The sums in the EFT column and the subtractions
in the LST column are entered manually, while the two macros fill in the formulas for the
EST and LFT columns.

Sub ForwardPass()
Dim i, k, NumRows As Integer: Dim ArgString As String
With ActiveSheet
Set ActivityList = Range("A1"): Set PredecessorList = Range("C1")
Set EarlyStartList = Range("E1")
With ActivityList
 NumRows = Range(.Offset(1, 0), .Offset(1, 0).End(xlDown)).Rows.Count
End With
For k = 1 To NumRows
 ArgString = "0"
 If Len(PredecessorList.Offset(k, 0)) > 0 Then
 For i = 1 To k - 1
 If InStr(1, PredecessorList.Offset(k, 0), ActivityList.Offset(i, 0)) > 0 Then
 ArgString = ArgString & "," & EarlyStartList.Offset(i, 1).Address
 End If
 Next
 End If
 If Len(ArgString) > 2 Then
 ArgString = Right(ArgString, Len(ArgString) - 2)
 End If
 EarlyStartList.Offset(k, 0).Formula = "=MAX(" & ArgString & ")"

Next k
End With
End Sub
==
Sub BackwardPass()
Dim i, k, n, NumRows As Integer: Dim ArgString As String
Set ActivityList = Range("A1"): Set PredecessorList = Range("C1")
Set EarlyStartList = Range("E1")
With ActiveSheet
With ActivityList
 NumRows = Range(.Offset(1, 0), .Offset(1, 0).End(xlDown)).Rows.Count
End With
EarlyStartList.Offset(NumRows, 3).Formula = "=" & EarlyStartList.Offset(NumRows,
1).Address
For n = 1 To NumRows - 1
 ArgString = ""
 k = NumRows - n
 For i = k + 1 To NumRows
 If InStr(1, PredecessorList.Offset(i, 0), ActivityList.Offset(k, 0)) > 0 Then
 ArgString = ArgString & EarlyStartList.Offset(i, 2).Address & ","
 End If
 Next i
 ArgString = Left(ArgString, Len(ArgString) - 1)
 EarlyStartList.Offset(k, 3).Formula = "=MIN(" & ArgString & ")"
Next n
End With
End Sub
==

