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Abstract

Managing the incoming deluge of new bug reports re-
ceived in bug repository of a large open source project is a
challenging task. Handling these reports manually by de-
velopers, consume time and resources which results in de-
laying the resolution of crucial (important) bugs which need
to be identified and resolved earlier to prevent major losses
in a software project. In this paper, we present a machine
learning approach to develop a bug priority recommender
which automatically assigns an appropriate priority level
to newly arrived bugs, so that they are resolved in order of
importance and an important bug is not left untreated for
a long time. Our approach is based on the classification
technique, for which we use Support Vector Machines. Ex-
perimental evaluation of our recommender using precision
and recall measures reveals the feasibility of our approach
for automatic bug priority assignment.

1. Introduction

During the software development and maintenance pro-
cess, errors (bugs) in a software system are reported by de-
velopers and users. In open source projects, usually an open
bug repository is maintained to collect the bug reports from
users and developers. Use of open bug repositories is par-
ticularly important in open source software (OSS) develop-
ment environment, where the developers are distributed all
over the world [14]. Bugzilla' is an example of an open bug
repository which was introduced during the development of
Mozilla? but now is widely used for many open source soft-
ware systems

Open bug repositories are used for collecting the bug
reports and also for allowing bugs to be identified and re-
solved at an appropriate time. These bug reports need to be
analyzed carefully to determine, for example, whether the
bugs are duplicate or unique, important or unimportant, and
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who will resolve them. This process is called bug triaging.
The person who analyses the bug reports is called a triager.
The task of triaging becomes very important for an open
source project because the responsiveness of a project is
usually measured by the number of outstanding bug reports
in the repository and how quickly a bug report is addressed
[2].

Managing the number of new bug reports received in a
day in large open source projects is a challenging task be-
cause the number of reports is usually more than the avail-
able time and resources to triage them [1]. For example in
Mozilla project, on an average 300 bug reports are received
in a day. Thus Triagers can be overwhelmed by the number
of reports that need to be triaged. Moreover, bug triaging is
time consuming task because to triage a bug report, triager
needs a lot of information about that bug [3]. If a triager
starts reading all the reports one by one without prioritiza-
tion of bug reports, it is possible that some important bugs
are left untreated for a long time, negatively affecting the
project.

Hence there is a need to prioritize the newly arrived bug
reports by their order of importance [2], so that most im-
portant bugs are handled first and are allocated time and
resources appropriately [8]. Although the bug report struc-
ture contains a field where the person who reports the bug
may assign priority, but sometimes this field is left blank.
Moreover, the reporter may not correctly assign the priority
level as his opinion about the importance of a bug may be
different from that of a triager, who has more information
about the software as a whole.

In recent years, mining of software repositories such
as source code repositories, bug repositories and email
archives is on the increase. Mining techniques find hidden
patterns from the data stored in these repositories and turn
it into useful information and knowledge. Given the large
number of new bug reports that a triager needs to handle,
it would be useful to explore mining techniques to facil-
itate in triaging e.g. assigning priorities to newly arrived
bug reports automatically. Machine learning classification
techniques, which build models to categorize data into dif-
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ferent classes based on attributes, may be used to develop
such a recommender by mining the bug data present in a
bug repository.

In this paper, we propose the use of classification tech-
niques to automate the process of assigning priorities to new
bug reports by mining the bug data present in a bug repos-
itory. Support Vector Machines (SVMs) are used for clas-
sifying the new bugs according to priority by training the
SVM using the bug data. Recommended priority can fur-
ther be analyzed by the triager to confirm or refine the auto-
matically assigned priority.

Thus our main contributions in this paper are:

e Proposing the machine learning based approach for au-
tomatic assignment of bug priority to new bug reports
in open source bug repository.

e Exploring the bug report attributes that contribute more
towards determining the priority of a bug.

e Evaluating the affect of training dataset size on the ac-
curacy of bug priority recommender.

This paper is organized as follows. Section
sec:RelatedReasearchWork presents the related research
work for bug prioritization and automatic bug triage.
Section 3 gives an overview of bug repository, bug life
cycle and bug triage process. Section 4 presents our
proposed classification framework. Section 5 describes
the experimental setup. Section 6 details the results of our
experiments. In Section 7, we conclude the paper with a
discussion of results.

2. Related Reasearch Work

Bug finding tools find bugs from source code and prior-
itize them, but this prioritization is often faulty. Thus re-
searchers have proposed ways to improve the prioritization.
Sunghun et al. [12] analyzed the bug life time and the pri-
ority level assigned by a bug finding tool and reprioritized
the bug categories (e.g. ’overflow’ category) according to
their life time. Life time of each bug was computed using
software change history data. This work was further refined
by reprioritizing the bug categories (found by bug finding
tools) on the basis of bug category weight [13].

Kremenek et al. [11] also prioritized the bugs found by
bug finding tools on the basis of frequency count of success-
ful and failed checks. Tool’s analysis decisions are used for
classifying the checks into successful and failed checks. Z-
ranking scheme is used for ranking the most important bugs
first.

Anvik et al. [3] applied machine learning algorithms on
bug report data to classify bug reports by developer name.
Support vector machines, Nave Bayes algorithm and deci-
sion trees were used on Eclipse, Firefox and GCC bug re-
port data, and SVM achieved high precision. In subsequent
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work, Anvik et al. [4] evaluated their approach by extract-
ing the developer expertise from bug repositories and source
repositories. Canfora et al. [5] also developed an approach
to assign a developer to a new bug report, using historic in-
formation stored in bug and source code repositories.

Different machine learning approaches have been ap-
plied on bug repository data for automating bug triage
[1, 4, 5], detection of duplicate bug reports [14], effort esti-
mation for resolving a bug [15] and predicting the number
of bugs for next versions [6, 16].

3. An overview of bug repositories

Most open source software projects have open bug repos-
itories to collect bug reports from distributed users. Bug
repositories are used to manage the bug reports so that they
are assigned to appropriate developer or maintenance team
[1]. As the developers and users of an open source project
are distributed all over the world, a bug repository provides
a forum for discussion to developers to communicate about
the project development and enhancement and keep its users
aware of the status of the reported bugs and enhancement
features.

3.1. Bug report detail

Bug repositories collect detailed bug reports from users
and developers. Structure of a bug report is more or less
same across bug repositories; we describe the detail of
Bugzilla as it is widely used by many OSS projects. A bug
report contains a number of attributes some fields are cate-
gorical such as bug-id, date of submission, component (the
software product and component in which bug appears),
product, resolution, status, severity (how serious bug is),
priority (how important bug is, represented normally as lev-
els P1-P5 with P1 being most important), platform, oper-
ating system, reporter, assignee, cc-list, and some are text
fields such as summary and long description. Some of the
categorical fields are fixed at the time of report submis-
sion, e.g. bug id, report submission time and reporter name.
Some fields such as product, component, severity, priority,
version, platform and operating system are entered by the
reporter but may be changed by the triager or developer if
needed [3]. Other fields such as developer who resolves
the bug, list of people who are interested in bug resolution,
bug-status, and resolution, change throughout bug life time.

Bug-status and resolution fields track the life cycle of
a bug. For example, when a bug report is placed in the
repository its status is NEW. When a bug is fixed by devel-
oper its status is set to RESOLVED. After resolution, bug
status is set to CLOSED or CONFIRMED (it is confirmed
that appropriate resolution has been taken). Resolution type
is recorded in the resolution field. For example, if a bug
is resolved by the developer, resolution type is marked as
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Figure 1. Proposed priority recommender

FIXED. If it is already fixed for another report it is marked
as DUPLICATE. Text fields consist of summary and long
description. Summary is the title of a bug report or short
description of bug in one line written by reporter. In long
description, problem is described in detail. User writes the
problem he/she faced while using the software. Triager or
developer also writes about the problem in detail after ana-
lyzing it.

3.2. Bug report triage

In a bug repository, bug triage is a process in which a
triager takes a decision about the bugs entered in the bug
repository by examining them in different ways. First of
all, a triager makes sure that the reported bug is not a dupli-
cate bug [14], and then it is checked for validity, i.e. is it a
real bug or not. These two decisions are called repository-
oriented decisions. The purpose of these decisions is to re-
move the bug reports that do not need to be resolved.

Remaining bug reports are analyzed for development ori-
ented decisions. An important task that the triager performs
is to examine severity and priority levels of the bugs, which
are changed by him if inappropriate, so that important bugs
will be given time and resources [10]. As pointed out in
Section 1, assigning correct priority level is important to re-
solve more important bugs first. After this, triager writes
comments for the bug and assigns this bug report to the ap-
propriate developer to resolve the bug.

4. Proposed approach for priority recom-
mender

In this section, we describe our classification-based ap-
proach for developing a priority recommender. Figure 1 il-
lustrates our proposed priority recommender.

4.1. Classification-based recommender

Classification is the process of building a model by learn-
ing from a dataset that consists of training instances with
associated class labels [7]. Each training instance consists
of a set of features (attributes) that help in defining the char-
acteristics of the class. A classification algorithm such as
SVM finds the characteristics from the training instances
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for each class. This model is then used for predicting the
class label of new instances.

Our approach is to build a classification model (bug pri-
ority recommender) from the information present in bug re-
ports. Table 1 presents a sample bug report, features and
class. Each bug report forms a training instance. The vari-
ous fields within a bug report are its features. Priority repre-
sents the class label, with values P1-P5 forming the priority
levels.

Existing bug reports are used to train the classification
algorithm (recommender), which is then used for assign-
ing a class label (priority level) to new bug reports. Bug
reports that are marked as RESOLVED, CLOSED or CON-
FIRMED by the developers are selected for training because
the priorities of such reports are set by the triager or devel-
oper after resolution of bug. The bug reports having status
value NEW, UNCONFIRMED, ASSIGNED etc. are ex-
cluded from our training and testing dataset because pri-
orities of these bug reports may not be authentic (until the
triager analyzes the bug and developer fixes it, it is expected
that priority may change). Features of a bug report available
at report submission time are categorized into different fea-
ture categories. Different models can be built by varying the
training features of the classifier.

4.2. Support Vector Machines

As the text data of a bug report is taken as training
feature for classifier we selected SVM for classification.
SVMs have shown promising results for text classification
[9]. They have also been used for classification of software
repositories in [1, 5].

Support vector machines build non-linear classification
models from training data for each class. These models
are then used for predicting the class of new instances [2].
SVMs transform the original data into higher dimension-
ality and find a separating hyperplane in the new mapped
data. A hyperplane is found by using the support vectors
and margins. If our data consists of two attributes then we
can draw it in two-dimensional space as shown in Figure 2
[7]. This two dimensional data can be separated by various
lines but SVM finds a line with maximum margin [7]. Sim-
ilarly, for n dimensional data a separating n-1 dimensional
hyperplane is found.

A separating hyperplane can be written as
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Figure 2. PSVM hyperplane with (a) Small margin and (b) large

w.xr+b=0 (D

where x represent the training instances (in our case bug
report features) that lie on the hyperplane, w is a weight
vector which determines the characteristics of the class, b
is a scalar and “.” represents the dot product. These are
determined by the SVM from the training data set.

Classification of bug reports according to priority level
is a single label multi-class problem. Internally SVM di-
vides the bug reports into two classes so that one class is
P1 and all other classes are treated as second class (bug re-
ports having P2, P3, P4 and P5 priority levels). Bug reports
of this class is again divided into two classes, one with bug
reports of priority P2 and second class contains bug reports
having P3, P4 and PS5 priorities. Same process continues till
the bug reports of all priority levels are separated.

5. Experimental setup

In this section we describe the test system used for our
experiments, and the evaluation criteria.

5.1. Dataset and pre-processing

The Eclipse® project bug reports were used for our exper-
iments. Eclipse is an open development platform with many
users and developers. It was launched in 2001 by the IBM
Corporation. Its projects are focused on building an open
development Platform with platforms and tools for building
and managing software through its lifetime. Eclipse bug re-
ports we used for our experiments are from 2001 to 2006
for many products and components. Bug data is stored in
two main versions: version 2 and version 3 and subver-
sions. This dataset has been used for various experiments
e.g. in [1] for automating bug triage, and in [15] for pre-
diction of number of bugs. The Eclipse project data con-
sists of 48 products. We used the Platform product for our
experiments as this product contain a larger number of pri-
ority level-wise bug reports as compared to other products.
Statistics of the dataset are presented in Table 2.

Originally the Eclipse bug reports were in the form of
XML files. We developed an application in C# to extract our

3www.eclipse.org
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Table 2. Statistics of each bug priority class in version 2 of Plat-
form product of Eclipse

Bug | Priority class no. of instances
Pl 705
P2 1073
P3 9441
P4 536
P5 327

desired features. Extracted bug report features were prod-
uct, component, version, platform, operating system, bug
status, bug resolution, bug priority, bug severity, summary
and long description.

Text attributes extracted from bug reports are bug sum-
mary and long description which contain a number of words
that are not meaningful. So we applied a standard text cat-
egorization approach to transform the text data into mean-
ingful representation. Stop and common words (e.g. of,
the) were removed because these are unimportant and pro-
vide no information about the problem described in the bug
report. Stemming is applied to transform a word into its
ground form (e.g. testing and tests are reduced to test). Text
of a bug report was converted into a feature vector which
contains a word and its count.

5.2. Feature categorization

Bug report attributes can be divided in two main cate-
gories: categorical and text (summary and long descrip-
tion). Experiments were performed by taking different com-
binations of bug report attributes. We divided the bug re-
port attributes that are available at report submission time
into 5 categories as training features for classifiers. These
are: CF: Categorical, SF: Summary, CSF: Categorical and
Summary, TF: Summary and Long description, CSTF: Cat-
egorical, Summary and Long description.

Categorical attributes (CF) of a bug report that we used
as training features for bug priority classification are com-
ponent, platform, operating system and severity. Summary
(SF) and long description (TF) attributes have been de-
scribed briefly in Section 3.1. CSF is the combination of
CF and SF categories and CSTF is the combination of CF
and TF categories. Classifier is trained with different fea-
ture categories, to check which features contribute more to-
wards bug priority classification. Our aim is to determine
whether only categorical attributes (or only summary or text
attributes) can train the classifier to achieve appropriate ac-
curacy level for predicting bug priority of a new bug report
or the features should be combined to achieve better results.

5.3. Training and test dataset

Platform product data is in two main versions. Classifier
is trained on bug data of version 2. In our training dataset,
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number of samples for priority level P3 is very high as com-
pared to other priority levels (See Table 2) which will over
train the classifier for this class so we select equal number of
samples for each bug priority class to train classifier. Max-
imum number of equal samples available in Platform prod-
uct for each priority class is 327, making the total training
dataset size to be 1635.

Version 3 bug data of Platform product is used to evalu-
ate the classifier model (priority recommender). For version
3 bug reports we also have the actual class labels (priority
levels assigned at bug resolution time), but to evaluate our
recommender on real dataset we hid the class labels from
the classifier and compare the actual priority levels with the
predicted ones.

5.4. Evaluation criteria

We evaluate the classifiers’ performance by using the
precision and recall measures [7]. Precision of a class is the
number of instances correctly classified as class *A’ divided
by the total number of instances classified as class label A.
Precision measures the percentage of correct predictions re-
lated to the predictions made by the classifier. Recall of
a class *A’ is the number of instances correctly classified
as class A’ divided by the total number of instances in the
dataset having class label A’. Recall measures the percent-
age of correct predictions related to actual classes. The pre-
cision of P1 class is 100% if a classifier predicts P1 class
only for those instances which are actually P1 and it is O if
classifier predicts P1 priority only for those instances which
are not actually P1. Similarly recall of P1 is 100% if a clas-
sifier predicts class label P1 for all the instances which are
actually P1 and recall is% if all the instances which are actu-
ally P1 are not assigned P1 class by the classifier regardless
of whether other instances are assigned P1 class or not.

6. Experimental results and analysis

In our experiments, we varied the training features (as
described in Section 5.2 and training data size for bug pri-
ority classification using SVM. The experimental results are
detailed in this section.

6.1. Affect of training features

Precision and recall of different feature categories for
each class are presented in Table 3, Table 4 and Figure 3,
Figure 4. It can be seen that on an average, both precision
and recall remain above 45%. It can also be seen that:

1. Precision and recall of P3 class are higher than other
classes for all features categories.

2. On an average, precision and recall of CSTF are better
than other feature categories.
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Table 3. Precision of each bug priority class with different training

features for Platform product

Features | Pl P2 P3 P4 | P5 | Average
CF 37 64 100 | 35 2 47.6
SF 20 32 92 31 6 36.2

CSF 30 53 100 | 37 9 45.8
TF 26 40 93 36 | 31 45.2
CSTF 33 58 100 | 47 | 32 54
Average | 29.2 | 494 | 97 | 372 | 16 45.76

Table 4. Recall of each bug priority class with different training
features for Platform product

Features P1 P2 P3 P4 P5 Average
CF 23 28 96 86 2 47
SF 39 23 65 31 14 344

CSF 37 18 94 66 19 46.8
TF 57 33 72 30 43 47
CSTF 59 33 95 53 43 56.6

Average | 4327 | 84.4 | 53.2 | 24.2 | 46.36

Bug priority classification for Platform product
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Figure 3. Precision of each priority class for different feature cate-
gories

Bug priority classifier should correctly classify the im-
portant bug reports so we need high precision and recall for
P1 class.

1. Precision of P1 is less than 40% for all feature cate-
gories. This means that many unimportant reports are
assigned P1 priority. In such a case, resolution of im-
portant bug reports may be delayed, since unimportant
bugs may be deemed important.

2. Recall of P1 for TF and CSTF is more than 55% which
shows that most of the important bugs are given P1 pri-
ority by these classifiers. Thus, relatively fewer impor-
tant bugs are being categorized as unimportant, which
is useful.

Figure 5 presents the average precision and recall for the
five different feature categories. It can be observed that in
TF category, precision and recall are 45% and 47% respec-
tively but when TF is combined with the categorical fields,
then precision and recall are increased by 9%. Similarly
precision and recall of SF are increased by 10% and 12%
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Figure 4. Recall of each priority class for different feature cate-
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Figure 5. Average precision and recall for different feature cate-

gories
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Figure 6. Average precision for varying data set size for different
feature categories
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Figure 7. Average recall of bug priority classifier for varying data
set size for different categories

respectively when combined with CF. This indicates that CF

plays important role in improving the precision and recall.
It can be seen from Figure 5 that for SF category, preci-

sion and recall are lower than other feature categories. In
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summary field, type of the reported bug is described in few
words which may have little information for priority wise
classification of bug reports. That is why classifier perfor-
mance for SF category is lower than other categories.

Figure 5 also shows that average precision and recall
of CSTF category is better than for all other categories.
This indicates that a combination of categorical and text
attributes provides the most useful information, and when
categorical attributes are combined with summary and text
features, classifier performance is improved.

6.2. Affect of training data size

To evaluate the affect of training dataset size used in
training the classifier, we trained classifier using 50, 100,
150 and 327 number of bug reports (training instances) for
each class. Figure 6 and Figure 7 show the average preci-
sion and recall for various data sizes. It can be seen that:

1. For almost all feature categories, precision of bug pri-
ority classifier increases with increase in training data
size, especially when size increases from 50 to 100
samples.

2. For size 50, average precision is lower than other sam-
ple sizes for all feature categories. For all feature cate-
gories, precision is highest for sample size 150 or 327.

3. Average recall increases with the increase in number
of samples for all categories except CF category where
recall at 150 is slightly lower than 100.

Average precision and recall are lower at sample size
50 than other sample sizes for all feature categories which
shows that sample size 50 is not enough for training. For all
feature categories average precision and recall is higher for
either sample size 150 or 327 which indicates that sample
size 150 may be enough for training bug priority classifier
and a larger training sample size may not be needed.

7. Conclusion

This paper presented a classification-based approach to
create a bug priority recommender, which assigns a prior-
ity level to new bug reports in a bug repository. Priority
assignment assists triagers in resolving the important bugs
first. The classification model is developed using SVMs,
and bug report attributes are used as features for developing
the model. Among different combinations of bug report fea-
tures, precision and recall of CSTF category is better than
all other categories. CSTF is a combination of categorical,
summary and text features and thus contains relevant infor-
mation useful for determining bug priority. The results indi-
cate the feasibility of classification techniques for automatic
priority assignment.
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Classifier performance with varying training data size
shows that precision and recall increase with the increase
in data set size but at sample size 327, precision and recall
remain almost same as for 150 samples, which indicates that
increase in sample size after 150 samples has no significant
effect on training.

In the future, we would like to extend this study to other
test systems. We would also like to refine the evaluation
criteria to obtain a better picture of the strengths and weak-
nesses of various feature categories.
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