
Graph Theory: version: 24 April 2007 22

7 Networks: Critical Path Method

We use the term network to mean a directed graph (V, E) and the weight function
w : E → R+. One important application of networks is as follows. Consider a project
which has a number of separate jobs which need to be carries out in a specified order.
For example, in construction work, we have ground clearance and pouring of foundations,
followed by various construction tasked, followed by finishing and decoration. The weight
function corresponds to the length of time required to do the job. The directed graph
structure is used to specify which jobs are prerequisites for other jobs. The aim is to
schedule the jobs so that the work can be completed in minimal time.

The directed graph below describes a system which has 13 jobs required to proceed from
the initial vertex s to the final vertex t. The weights on the edges represent the time
required to do the corresponding job. The critical path method is an algorithm for finding
the minimal time required subject to the constraints of the jobs being carried out in the
order specified by the directed graph.

•s

•

a

5

6

8

4

5

5

3 3
4

4

6

5
6

5

•

e

•

b

•

d

•

f

•

c

•

g

• t//

�����������

??

??
??

??
??

??
?

��

//

??
??

??
??

??
?

��

//
�����������

??

// //

//
??

??
??

??
??

?

��
�����������

??

??
??

??
??

??
?

����

(7.1)

In order to find the earliest completion time for each vertex E(y) we start with

E0(v) = 0 for all vertices and maintain Then we set En(y) := max(x,y)∈E

(

En(x)+w(x, y)
)

.

We make repeated passes through all vertices until En(v) = En−1(v) for all vertices.
If En(v) continues to increase, this indicates that the graph has a directed loop: this
indicates an error in the formulation of the graph for the project. The earliest completion
time E(x) = En(x), once En = En−1. Here is the computation for the above graph:

s a b c d e f g t

E0 0 0 0 0 0 0 0 0 0
E1 0 5 4 6 8 6 5 4 6
E2 0 5 9 14 10 6 13 12 12
E3 0 5 9 16 10 6 15 16 19
E4 0 5 9 16 10 6 15 18 22
E5 0 5 9 16 10 6 15 18 24
E6 0 5 9 16 10 6 15 18 24

Note that it takes 5 steps for En to become stable. This is the length of the longest
directed path from s to t.

Once E is computed, on can compute the latest completion time L(x) for each vertex.
This is a very similar calculation, but one works from t toward s. Initially one sets L0(x)
to equal the earliest completion time E(t) for the terminal vertex t. Then one uses the
iteration Ln(x) := min(x,y)∈E Ln−1(y) − w(x, y). After the same number of iterations
required to produce a stable En(v), Ln becomes stable. This is the function L(v). Once
E and L are computed we define the float time F (x, y) = L(y)−E(x)−w(x, y). The job



Graph Theory: version: 24 April 2007 23

corresponding to (x, y) may start at any time between L(x) and L(x)+F (x, y) while the
total project is completed within E(t). Those jobs with F (x, y) = 0 are called critical.
There is at critical path, i.e., a path from s to t consisting of edges corresponding to
critical jobs.

Here is the computation of L for the current example:

s a b c d e f g t

L0 24 24 24 24 24 24 24 24 24
L1 16 19 19 19 18 21 21 18 24
L2 10 13 14 19 13 18 15 18 24
L3 5 8 14 19 10 12 15 18 24
L4 2 5 14 19 10 12 15 18 24
L5 0 5 14 19 10 12 15 18 24

E5 0 5 9 16 10 6 15 18 24

We have included E = E5 as the final line of the array. Vertices which have E(v) = L(v)
lie on a critical path.

There are variations of the above method which use En rather than En−1 to compute E.
The best of these order the edges in such a way that whenever both (x, y) and (y, z) are
edges, then (x, y) ≺ (y, z), where ≺ denotes the order of the edges. The computation is

first to set E(v) ≡ 0. Then E(y) := max(x,y)∈E

(

E(x) + w(x, y)
)

is computed in a single
pass taking the vertices in increasing ≺ order. There can be many orderings of the
vertices which satisfy the requirement given above.

Single pass computation of earliest completion times E(x) using ordered edges (the edges
are listed in ≺ order):

se sa sd ab ad ef bc dc df dg dt fg ct gt

s a b c d e f g t

0 5 9 16 10 6 15 18 24

Once we have an order ≺ so that (x, y) ≺ (y, z) whenever both both (x, y) and (y, z)
are edges, then L may be computed in a single pass. The computation begins with
L(v) ≡ E(t). Then L(x) := min(x,y)∈E

(

L(y) − w(x, y)
)

is computed in a single pass
using decreasing ≺ order.

Single pass computation of latest completion times L(x) using ordered edges:

gt ct fg dt dg df dc bc ef ad ab sd sa se

s a b c d e f g t

0 5 14 19 10 12 15 18 24

Such an order can be found by using any weight function w(x, y) which is strictly positive
on the edges. Then E is computed by the slow method. Once E is known, then one
chooses any order ≺ which makes (u, v) ≺ (x, y) whenever E(u) < E(x). One could use
L instead of E or require (u, v) ≺ (x, y) whenever E(v) < E(y). Any of these orderings
will suffice.


