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ig data has the potential of offering valuable insights into the way organizations function, and it is changing

the way organizations make decisions. Nine invited essays provide a wide range of perspectives on the role of
big data in customer-driven supply chains, healthcare operations, retail operations, demand planning and manufactur-
ing, environmental and social issues, humanitarian operations, agriculture supply chains, and service operations.
Decision makers should have clean, valid, and reliable data, and they should have a thorough understanding of
the contexts of applications. Big data shorten virtual distance to customers, and thus facilitate personalization of prod-
ucts and services. Successful implementation of big data applications requires sharing the data with appropriate
stakeholders.

Key words: big data; data analytics; healthcare operations; operations management; service operations; supply-chain
management

With these developments in mind, we invited some
leading scholars in our field to share their thoughts on
Big data and associated technological developments how big data is affecting research in POM. We have
(e.g., internet of things, industrial internet of things, collected nine essays in this special issue. Each of
cyber-physical systems) are dramatically changing these essays offers interesting views on how big data

1. Introduction

the landscape of operations and supply-chain man- is reshaping the research across various domains. The
agement. Researchers in our field, as in many others, authors provide examples of new business models
are increasingly devoting significant effort to under-  enabled by big data.

stand the emerging business models and changing
business principles. Given many new phenomena,
many unknowns have yet to be discovered,

2. Nine Essays

unknowns that will affect how the associated applica- ® An evolutionary view: Hau Lee adapts a three-
tions may evolve and how the related research should stage framework for technology innovation to
be shaped. We don’t know whether big data is funda- envision how big data may evolve and change
mentally changing the ways we conduct research, or the way we manage the supply chain. He
whether we can just hit the new nails with the old highlights the shift toward managing the “long
hammers. tail” and customer-driven supply chains.
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® Healthcare operations: Wallace Hopp, Jun Li,
and Guihua Wang explain the use of observa-
tional data from nontraditional sources to sup-
plement the traditional experimental data from
clinical studies and thus to transform the one-
size-fit-all approach to precision medicine.

e Retail operations: Marshall Fisher and Ananth
Raman share their knowledge of how data
analytics lead to service innovations. They
focus on the transformation from data to
improved decisions concerning assortment,
online dynamic pricing, online order fulfill-
ment, and store closings.

® Demand planning and manufacturing: Qi Feng
and George Shanthikumar focus on how big data
is changing operational planning. They demon-
strate how one should use prototype models in
operations and production management.

o An environmental and social perspective: Charles
Corbett describes examples of smart ways of
using data to reduce the environmental foot-
print, to manage energy efficiency, and to plan
weather-based service and production. He also
stresses the challenges in using big data analy-
sis, such as creating undesired social and ethi-
cal consequences.

® Humanitarian operations: Jayashankar Swami-
nathan discusses how descriptive, prescriptive
and predictive analysis can enable rapid,
impactful, sustained and efficient humanitarian
decision making. He offers insights on how
decision makers can use data to improve their
identification of needy populations, optimize
supplier bases and resolve production bottle-
necks in the distribution of humanitarian relief
products and services.

o Agriculture supply chains: Sripad Devalkar, Srid-
har Seshadri, Chitrabhanu Ghosh, and Allen
Mathias recommend innovative data collection
applications and information dissemination
applications. Using market price analytics as
an example, they explain how algorithmic data
analysis and decision making can help to
improve the productivity of farmers.

® Service operations: Maxime Cohen highlights how
the emergence of big data has led to the transfor-
mation from intuition-based decision making to
evidence-based decision making. He also empha-
sizes the role of the marketplace in producing
innovative offerings in financial services, trans-
portation, hospitality, and online platforms.

® An overview: Samayita Guha and Subodha
Kumar summarize existing research on various
issues that arise with big data in research on
information systems, operations, and healthcare.

3. Transformation from Data to
Efficient Decisions

As a common theme, the essays in this issue iden-
tify opportunities and challenges in research using
big data. Their authors emphasize the need for
research and the value of research that enables the
transformation from data to efficient decisions. For
example, Devalkar, Seshadri, Ghosh, and Mathias
write that while data access is provided to farm-
ers, they lack ways of using the data to guide
their planning. Guha and Kumar point to the need
for research to evaluate the benefit of adopting
technologies or systems that collect, process and
analyze big data. Corbett argues that more data
can lead to worse decisions if not aggregated and
structured properly. Hopp, Li, and Wang point
out that a pure machine learning approach, while
shown to be effective for predicting medical out-
comes, is not directly helpful to guide decisions
for individual patients.

The authors particularly emphasized two aspects
to ensure quality decision making processes. The
first is the risk associated with the data itself. The
veracity of big data requires careful design of
data-acquisition and calibration strategies and of
feature-extraction and selection strategies so that
decision makers have clean, valid, and reliable
inputs to use in making decisions. The second
aspect lies in appropriate ways of using data,
which requires a thorough understanding of the
application contexts and a clever integration of data
with structural knowledge.

4. Personalization

Many of the authors of the essays also recognize
new research issues with the trend of personaliza-
tion. Lee points out the shortened virtual distance to
consumers and transformation toward customer-dri-
ven planning. Cohen discusses the mechanisms of
real-time personalization and targeted promotions,
and Feng and Shanthikumar devise prototype mod-
els to demonstrate data integration for personalized
demand planning. Devalkar, Seshadri, Ghosh, and
Mathias describe algorithmic analysis based on the
diversity of individual farms. Fisher and Raman
highlight the value of tracking the behaviors of indi-
vidual retail customers, and Guha and Kumar point
out its value for healthcare patients. Hopp, Li and
Wang suggest that combination of data on patients’
heterogeneous responses to treatment alternatives
and data on individual patient preferences can
enable medical decisions customized at the level of
individual patients. Several authors also point out
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the potential challenges of personalization that one
should not ignore in one’s research. These include
security and privacy of personal data (Cohen; Guha
and Kumar; Hopp, Li and Wang), ethical use of data
(Corbett), and fairness and discrimination (Cohen;
Swaminathan).

5. Data Sharing and Benefit
Distribution

Another potential research avenue identified is
related to data sharing and benefit distribution. Suc-
cessful implementation of data analytics requires
sharing the right data with appropriate stakeholders
(Corbett). Feng and Shanthikumar discuss the need
for data exchange and for a coordination mechanism
in a manufacturing network to enhance overall capa-
bility, while avoiding a learning race. Devalkar,
Seshadri, Ghosh, and Mathias stress the importance

of sharing the right data with the right entity to
ensure fair distribution of the benefit generated by big
data without creating unbalanced power structures.

6. System Thinking

Finally, operations management scholars have long
advocated system thinking in our research. The emer-
gence of big data requires us to enlarge the scope of
the system when we perform analyses and develop
models. In the process, we also generate new research
questions about the system. Data analysis without a
system view, however, can lead to pitfalls. Cohen
elaborates on how analysis of big data without a thor-
ough understanding of the system can lead to “ma-
chine bias” and “spurious correlations.” Corbett also
points out the danger of “letting data availability
drive priority” and advocates careful consideration of
underlying phenomena.
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ig data and the related methodologies could have great impacts on operations and supply chain management. Such
impacts could be realized through innovations leveraging big data. The innovations can be described as first improv-

ing existing processes in operations through better tools and methods; second expanding the value propositions through
expansive usage or incorporating data not available in the past; and third allowing companies to create new processes or
business models to serve customers in new ways. This study describes this framework of the innovation cycle.
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1. Introduction

Big data and the related methodologies to make use
of it: data analytics and machine learning have been
viewed as digital technologies that could revolution-
alize operations and supply chain management in
business and society at large. In the 2016 survey of
over 1000 chief supply chain officers or similar senior
executives, the SCM World found big data analytics
at the top of the list of what these executives viewed
as most disruptive to their supply chains (O’'Marah
and Chen 2016) (Figure 1).

Big data has great promises, and researchers have
identified the research potentials (e.g., see Jin et al.
2015). At the same time, there have been skeptics who
expressed the need to have proper steps to unleash
such potentials. Otherwise, Blake-Plock (2017) indi-
cated that big data could also be defined by its “small-
ness,” that is, limitations to getting its values. In a
way, this seems to have some resemblance to the
RFID saga in the early 2000s, when RFID was touted
by the Economists (2003) as “The Best Thing Since the
Bar-Code.” There were a lot of hypes, and Lee and
Ozer (2007) used the term credibility gap to describe
the problems that industry reports had regarding the
value of RFID, that is, there seemed to be values given
without much substantiation.

I like to offer some perspectives on how big data
could provide great values in operations and supply
chain management, and stimulate research in this
area.

Will we have hypes again with big data? We have
to be realistic and recognize that the use of big data
and the associated development of tools to make use
of it is a journey. This journey is a cycle that techno-
logical innovations often have to go through, and at
every stage of the cycle, there are values and benefits,
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as well as investments that we have to make in order
to unleash the power and values. Understanding such
a cycle could help to see how big data would not be a
hype, and great impacts could be realized.

2. The 3-S Model of the Innovation
Cycle

In Lee (2007), I described the 3-S5 model of technology
evolution as a framework to see how RFID could be
diffused. The model was based on the work of
Malone and Rockart (1991). Such a model is equally
applicable to think about the evolution of big data.
Malone and Rockart (1991) used the introduction of
automobile as a technological innovation to illustrate
the cycle. Automobiles initially could replace horses
or wagons as a means of transport. Increasing use of
automobiles allowed people to travel more frequently
and each trip could now cover more distance. With
the subsequent development of highway systems,
suburbs and shopping malls have been created, lead-
ing to a fundamental change in the structure of cities
and people’s work patterns. Malone and Rockart
described another interesting evolution that occurred
in the 12th century, when Dutch and Florence traders
started using professional, traveling tradesmen to
conduct trade, replacing the old means of barter
trades. As this means of trade progressed, it was pos-
sible for regions that were geographically apart to
engage in trades, and goods there were previously
inaccessible became tradeable. Eventually, extensive
trades required tradesmen providing insurance and
loan services, and ultimately, whole new industries—
insurance and financial services—were born.

The above examples illustrated that new technolo-
gies often evolve in three stages. The first one, which I
called “Substitution,” is one when the new technology
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Figure 1 Disruptive Technologies in Supply Chain [Color figure can be
viewed at wileyonlinelibrary.com]
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is used in place of an existing one, to conduct a busi-
ness activity. The second one, which I called “Scale,”
is one when more items and more activities are used
with the technology more frequently and extensively.
The third is the “Structural Transformation” stage,
when a new set of re-engineered activities can emerge
with the new technology.

Electronic business has impacted supply chain
management initially by improving the efficiency of
very specific business processes. For example, digital
sales channel has displaced some of the physical retail
channel. Orders, invoices, and payments could be
sent electronically instead of paper, phone, and fax.
The value to the supply chain on digital communica-
tion and channels was clearcut. With millions and
millions of people and businesses using the Internet
as buyers and sellers, e-markets and the associated
auctions, as well as P2P platforms such as Uber and
AirBnB, have emerged. The deep impact of electronic
business is fully realized when new products, new
services, and ultimately new business models are
created.

Let me illustrate the 3-S Model as an innovation
cycle for big data, with some specific examples that I
have come across.

3. The Substitution Stage of Big Data

The availability of big data can immediately allow
new methods or processes to be developed to substi-
tute existing ones for specific business activities. An
obvious one is forecasting. Much deeper data analyt-
ics can now be used to replace previous forecasting
methods, making full use of the availability of data.
Such data were previously not easily accessible. For
example, manufacturers and retailers used to not
have their point-of-sales and inventory data in granu-
lar forms (time and geography), or that the data at
other parts of the supply chain were not available.

Operations management researchers have long noted
the value of information sharing in supply chains,
and big data can certainly contribute to such shar-
ing. Using more data can allow for more optimized
inventory management, avoiding stockouts. Indeed,
Economist (2017) reported on how Otto, a German
e-commerce merchant, made use of big data and arti-
ficial intelligence (Al, which required extensive data
for machine learning) to predict within 90% accuracy
the 30-day demands for 200,000 of its items.

I observed another example of using big data to
improve life cycle forecasting of new product
demands that resembled the “accurate response”
developed by Fisher and Raman (1996). An electronic
game retailer had a hard time forecasting the very
short life-time products of new computer games. It
often had to guess what the life cycle demands could
be, by picking among the life cycle sales of previous
products, the one that perhaps resembled the closest
product characteristics of the new product. The error
rates were huge. The retailer created a database by
collecting data of presales and reservations by poten-
tial customers prior to the launch of previous prod-
ucts, and then correlating such data with the actual
subsequent life cycle sales. Such a database could then
be used for a new forecasting method—making use of
presales activities of the new product and the correla-
tions to predict the subsequent life cycle sales. The fol-
lowing figure gave an example of how such a
correlation has been able to produce an accurate fore-
cast. This process is exactly what Fisher and Raman
has dubbed “accurate response.” I think there are
many such opportunities for using big data (Figure 2).

4. The Scale Stage of Big Data

Back in 2011, Gartner has identified the three Vs of
big data: Volume, Velocity, and Variety (Sicular
2013). Rozados and Tjahjono (2014) gave a detailed
account of the types of data that constituted the 3Vs.
There, they described that most of the current usage
of big data had been centered on core transactional
data such as simple transactions, demand forecasts,
and logistics activities. Certainly, as machine-gener-
ated data, Internet-of-things sensing, and social media
data become readily available, there is an opportunity
for us to use extensive data collected from outside of
your business or even your industry. In Figure 3, I
reproduce the 3V figure of Rozados and Tjahjono
(2014).

Of the three V’s, Sicular (2013) claimed that the
most interesting was variety, that is, data of different
natures. Tableau (2017) wrote: “while all three Vs are
growing, variety is becoming the single biggest driver
of big data investments, as seen in the results of a
recent survey by New Vantage Partners. This trend
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Figure 2 Forecasting Improvement [Color figure can be viewed at wileyonlinelibrary.com]
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will continue to grow as firms seek to integrate more
sources and focus on the “long tail” of big data.”

The potential of using more data from sources not
directly related to the product under focus, or even
your own business, can be huge. DemandTec, a pub-
lic price optimization software company which later
has been acquired by IBM, had encountered a situa-
tion that serves as a simple illustration. They were
analyzing data for D’Agostino, a New York-based
supermarket chain. The bread department had been

Semi-structured Data

Variety

= |nternal Systems Data

Unstructured Data

Other Data

using product sales data of all bread-related SKUs to
make pricing and inventory decisions, while the
meat department did the same with all meat
products. By pooling data from the two seemingly
unrelated product categories together, one could
identify how pricing and inventory decisions of buns
(from the bread department) and hot-dogs (from
the meat department) should be made jointly, given
the tight correlations in the demand elasticities of the
two products.
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Figure 4 Zara’s Supply Chain Model [Color figure can be viewed at
wileyonlinelibrary.com]
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Source: Zara.

Lazer et al. (2014) described the interesting chal-
lenge of predicting the arrival of the flu season, in
which the Center of Disease Control usually used
their scientific and statistically based method. Using
big data, Google could also make use of how people
searched for an extensive variety of words to make
predictions. By combining the two methods, the pre-
diction power could be improved even further.

Manenti (2017) gave the example of Transvoyant,
which made use of one trillion events each day from
sensors, satellites, radar, video cameras, and smart
phones, coupled with machine learning, to produce
highly accurate estimates of shipment arrival times.
Such accurate estimates can help both shippers and
shipping companies to be proactive with their opera-
tions, instead of being caught by surprise with either
early or late arrivals of shipments. Similarly, Manenti
(2017) reported the IBM Watson Supply Chain that
used external data such as social media, newsfeeds,
weather forecasts, and historical data to track and pre-
dict disruption and supplier evaluations.

5. The Structural Transformation Stage
of Big Data

Ultimately, companies can make use of big data to re-
engineer the business processes, leading to different
paths of creating new products and serving cus-
tomers, and eventually, potentially creating new busi-
ness models.

One example is how the US Customs office could
use big data to re-engineer its screening and border
control process to improve supply chain security.
Containers shipped from all over the world are cur-
rently undergoing sampling inspection by Customs
at US ports for fear of illegal smuggling and terror-
ists” use of the container to carry weapons of mass

destruction. Inspection can lead to excessive delay
and uncertainties in the lead time for shippers
receiving such goods. When RFID was introduced,
it was possible to create smart containers (containers
armed with RFID-enabled electronic seals and possi-
ble sensors), and monitor a container after it was
loaded and inspected at the port of origin, as well
as in transit. The data captured during the journey
could be used to determine if tightened or lessened
inspection should be applied when going through
customs. Thus, a new customs clearance process
could be created. Pilots have shown that huge busi-
ness values could be created (see Lee and Whang
2005). Today, the US Customs and Border Protec-
tion makes use of extensive data to change the cus-
toms clearance process—containers that pose a risk of
terrorism are prescreened at the port of departure
instead of arrival (US Customs and Border Protection
Report 2011).

In 2008, a group of supply chain academics visited
Zara in A Coruna, and I was struck by one of the pic-
tures that the Zara executive showed us, reproduced
here in Figure 4.

Zara’'s supply chain model has basically restruc-
tured the supply chain process, and many case writ-
ers have described this in detail. The key is that
customer information at the store formed the basis of
input to their design, instead of professional design-
ers using their sense of fashion trends and creativity.
Such demand-sensing capability, coupled with quick
response in production and distribution, form the
foundation of Zara's fast fashion success.

Here is an example of a company trying to develop
the big data version of Zara. Li and Fung, the giant
apparel sourcing and trading company, is building its
digital supply chain, so that the new product genera-
tion process is no longer confined to the traditional
one (Sourcing Journal, 2017). The company has
tapped on-line platforms like Pinterest and a cus-
tomized digital platform developed for its fashion

Figure 5 The 3-S Model of Big Data [Color figure can be viewed at
wileyonlinelibrary.com]
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business called WeDesign, to link designers across all
of its verticals to create virtual samples for customers.
Product designers will leverage data on fabric types,
plastics, sensors, and most importantly, connectivity
with customers. Real and direct customer needs are
used to generate new products, identify winners, and
then work with partners to produce the winners at
scale.

Making use of data on items on web pages browsed
by e-commerce shoppers, Sentient Technologies also
created machine learning algorithms to do visual cor-
relations of items, and delivered purchasing recom-
mendations (Manenti 2017). Again, a new product
generation process has been developed.

I believe there will be many more opportunities for
big data to make similar disruptions to the supply
chain processes of many industries.

6. Concluding Remarks

As indicated, I think the 3-S model of innovation can
be a good framework for us to examine the impact of
big data on operations and supply chain management.
A summary of such impacts is shown in Figure 5.

Although I have described this model as a cycle, it
does not mean that the innovations have to follow
such a strict sequence. In fact, as we have seen, all
three effects can happen at the same time. However, it
is often the case that a new innovation requires many
small-scale pilots to allow early users to gain familiar-
ity as well as confidence, ascertaining the values that
one can gain from the innovation. Such early usage
had often been based on one particular business activ-
ity or one process of the supply chain. As time goes
on, the scale and structural effects could make a much
bigger impact. Hence, we must not forget the other
two stages, and declare victory from just successful
implementations at the substitution stage.

As researchers, we can also create methodologies
to support, and conduct empirical validation for all
three stages of the innovations. The good news is that
data should be much more readily available for our
research, with the advancement of big data.
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he big data revolution is making vast amounts of information available in all sectors of the economy including health
T care. One important type of data that is particularly relevant to medicine is observational data from actual practice.
In comparison to experimental data from clinical studies, observational data offers much larger sample sizes and much
broader coverage of patient variables. Properly combining observational data with experimental data can facilitate preci-
sion medicine by enabling detection of heterogeneity in patient responses to treatments and tailoring of health care to the
specific needs of individuals. However, because it is high-dimensional and uncontrolled, observational data presents
unique methodological challenges. The modeling and analysis tools of the production and operations management field
are well-suited to these challenges and hence POM scholars are critical to the realization of precision medicine with its
many benefits to society.
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much larger sample sizes and addresses a much

1. Introduction wider range of variables. For example, less than 5% of

Two parallel revolutions are about to transform the  adult cancer patients are part of a clinical trial (Unger
health care industry in profound ways. The first is in et al. 2016). Furthermore, since only patients meeting
the practice of medicine, where imprecise one-size- certain criteria can enroll in trials, patients with
fits-all medicine is being replaced by individually tai- uncommon tumor types, older patients, and patients
lored precision medicine. The second is the analysis with a poor performance status or comorbidities are
of data, where big data techniques are making it pos- frequently underrepresented. As a result, researchers
sible to extract patterns from vast amounts of digital are increasingly looking to observational data to
information to guide decision making in a wide range study cancer treatments and to identify side effects
of sectors and applications. Together these revolu- not apparent in randomized clinical trials (Spigel
tions will fundamentally alter the clinical practice of ~ 2010). By making virtually every act of health mainte-
medicine, by changing the way patients are diag- nance and patient treatment available for study, big
nosed, treatments are selected, and care is delivered. data approaches are opening the possibility of true
But they will also have ramifications for the health precision medicine that enables patients to receive
care industry far beyond the practice of medicine, care best matched to their specific health condition,
including the way patients choose and interact with individual characteristics and personal preferences.
providers, the way providers make strategic and tacti- However, although observational data has enor-
cal decisions, and the way payers reimburse and  mous potential, it presents problems not present with
incentivize both patients and providers. experimental data. In clinical experiments, subjects
The link between these two revolutions is data. The are selected to minimize bias and are organized into
big data revolution is producing new ways to gener- treatment and control groups, which make for crisp
ate and analyze data and the precision medicine revo- statistical conclusions. In contrast, observational data
lution is creating new ways to leverage it (see Kruse comes from actual patient experiences and can there-
et al. 2016 for a broad review of the medical literature fore suffer from bias, censoring, insufficient sample
on using data in health care). In particular, big data size and other problems. Therefore, in order to use
methods are making it possible to go beyond experi- observational data to guide health care decisions we
mental data generated by clinical studies and take must find ways to correct for the inherent flaws in the
advantage of observational data about patients in data. This is where the emerging tools of analytics
uncontrolled settings. Observational data can come  and machine learning come in, and where the POM

from medical records, online reviews, mobile devices field can play an important role in bringing about the
and many other sources. In contrast to experimental merger of big data and precision medicine to revolu-
data, observational data is cheaper to obtain, has tionize health care.
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In the following, we describe the path to precision
medicine, the roles new types of data will play, the
methodological challenges of collecting and using
these data, and the stakeholder impacts and benefits
that will ensue. We pay particular attention to
research streams and opportunities where POM
scholars are having, and can continue to have, a
major impact on the big data/precision medicine
revolution.

2. Precision Medicine

In stark contrast with one-size-fits-all medicine, in
which disease treatment and prevention strategies are
applied to everyone without regard to individual dif-
ferences, precision medicine involves “the tailoring of
medical treatment to the individual characteristics of
each patient” (National Research Council 2011). The
Federal Drug Administration (2018) elaborated on
this distinction with the following description: “Most
medical treatments are designed for the “average
patient” as a “one-size-fits-all-approach,” which may
be successful for some patients but not for others. Pre-
cision medicine, sometimes known as “personalized
medicine,” is an innovative approach to tailoring dis-
ease prevention and treatment by taking into account
differences in people’s characteristics, environments,
and lifestyles. The goal of precision medicine is to tar-
get the right treatments to the right patients at the
right time.”

Precision medicine, like all health care, involves
two basic elements—decision making and execution.
We must decide what to do, and then do it properly.
Of course, execution of the wvarious health care

activities (tests, procedures, medications, etc.) is
essential. But precision medicine is concerned primar-
ily with selecting the right activities for a given
patient, that is, the decision-making facet of health
care. Most discussions of precision medicine focus
specifically on decisions made by a clinician regard-
ing treatment (e.g., what drug/dosage to prescribe).

But health care decisions involve much more than
medical treatment and clinicians. As we depict in Fig-
ure 1, the health care process is usually initiated by a
patient selecting a type of care. This could range from
consulting a website for self-treatment information to
deciding to see a medical specialist. Then the patient,
possibly with assistance from a health care profes-
sional or influence from an insurance company,
selects a provider. Again, there is a wide range of
options, from engaging a fitness coach to selecting a
surgeon. Finally, the provider, hopefully with strong
input from the patient and probably with awareness
of payer policies, implements some kind of care path.
This could involve tests, medications, therapies or
any number of other measures to address the
patient’s needs. Frequently, because current health
care is far from precision medicine, iteration is
required. The patient may try multiple types of health
care and engage multiple providers. The locus of deci-
sion making may shift between the patient, provider
and payer, with the patient dominating type of health
care decisions, providers dominating care path deci-
sions and the payer influencing decisions across the
spectrum. Whether or not the patient winds up satis-
fied with his/her health outcome depends on the
combined impact of all these decisions, as well as the
quality of execution within the care paths.

Figure 1 Health Care Decisions [Color figure can be viewed at wileyonlinelibrary.com]
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To achieve its full potential, precision medicine
must address all of these levels of heath care deci-
sions. It should help patients make good decisions
about what type of care to seek. For example, a dia-
betic patient should be able to get information about
what symptoms indicate he/she should seek diet
advice on Dlife.com and what symptoms indicate a
need for prompt medical intervention. Precision med-
icine should also help patients (and providers) choose
the right provider for a particular patient. For exam-
ple, a patient in need of heart surgery, should have
access to rankings or outcome data to help him/her
(perhaps with help from his/her cardiologist) choose
a surgeon. Finally, precision medicine should help all
of the actors involved in implementing a care path
make the best decisions about tests, procedures,
dosages, and other aspects of the health care process.

Although “precision medicine” has emerged as the
most popular term for individually tailored health
care, there are other terms in use. The older “person-
alized medicine” is regarded by many as interchange-
able with personalized medicine, but by some as a
literal call for individualized medicine (see National
Research Council 2011). Since, in some cases, the most
effective treatment may not be individually tailored,
these people argue (without excuse for the pun) that
“precision medicine” is the more precise term. “Phar-
macogenomics” is a specific instance of precision
medicine, which makes use of genetic information to
tailor pharmacological treatments to patients. Finally,
an overlapping term is “evidence-based medicine”
which refers to the use of relevant data to guide medi-
cal decisions. However, while precision medicine is
always evidence-based, not all evidence-based medi-
cine is personalized. As we describe in Wang et al.
(2018), many research studies focus on the response
of an average patient to a particular treatment, and
therefore imply “one-size-fits-all” protocols.

3. The Role of Big Data in
Precision Medicine

Neither one-size-fits-all medicine, nor precision medi-
cine, nor the stages in between them, are uniquely
defined entities. Instead they represent a continuum of
practices whose outcomes improve with the amount
and type of data they leverage to guide decisions.

The continuum of one-size-fits-all medicine ranges
from a pure trial-and-error process, in which the
patient (or physician) selects randomly from a set of
treatments in hopes of achieving an improvement, to
evidence-based priority rules, in which the patient
(physician) tries alternatives in decreasing order of
their probability of success. By using success rate data
to rank order the alternatives, we can increase the
likelihood and speed of achieving a good outcome.

More accurate success rate data will produce a more
efficient search process. However, regardless of
whether success rates are raw or risk adjusted,’ this
type of data will lead to the same rank ordering of
alternatives for all patients, and hence one-size-fits-all
medicine. That is, all patients will start with the top-
ranked option and work their way down the list in
the same order. When patient responses to the various
treatments are heterogeneous, this ensures ineffi-
ciency in the process, no matter how refined the
success rate data.

Precision medicine can also involve trial-and-error,
but the treatment alternatives and/or likelihoods of
success are tailored to the individual patient. The
most basic form of precision medicine would be a
treatment that is determined by a single individual
characteristic (e.g.,, a dosage based on the precise
weight of the patient). As precision medicine takes
into account more patient descriptors, such as comor-
bidities, genetic markers, preferences, lifestyle attri-
butes, etc., the alternative set and outcome likelihoods
can be refined. One reason pharmacogenomics has
received so much attention within the precision medi-
cine literature is that scientists expect many new indi-
cators of patient responses to drugs to be discovered
at the genetic level.

Between one-size-fits-all and precision medicine
is stratified medicine, which divides patients into
groups according to their response to a therapy. Since
there may be other differences between patients in the
same group, treatments will be rank ordered accord-
ing to in-group success rates. Hence, we can think of
this as “one-size-fits-some” medicine. An example of
stratification is the classification of breast cancers into
estrogen receptor (ER) positive and negative cate-
gories. ER positive cancers respond to hormone thera-
pies, while ER negative cancers do not. Therefore,
women in the two categories receive different
chemotherapy protocols. Stratified medicine is also a
continuum of practices because additional character-
istics can be used to refine patient groupings. For
example, breast cancers can also be classified as pro-
gesterone receptor (PR) positive or negative and as
human epidermal growth factor receptor 2 (HER2)
positive or negative. Because patients in these cate-
gories respond differently to drugs, chemotherapy
protocols can be better targeted by using the PR and
HER2 biomarkers. When indicators get specific
enough to divide patients into groups of one, strati-
fied medicine becomes precision medicine.

Figure 2 depicts the continuum from one-size-fits-
all to precision medicine. For our purposes of linking
the precision medicine revolution to the big data revo-
lution, the most important aspect of this figure is the
nature of the data analysis required to facilitate each
type of medicine.
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Figure 2 Progression toward Precision Medicine
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One-size-fits-all medicine requires population
average effect analysis. The simplest form of such
analysis is the frequentist approach, which uses
outcomes to calculate the fraction of the popula-
tion for which each alternative is effective. But
when health outcomes cannot be measured in bin-
ary success/failure terms (e.g., liver transplant
patients are evaluated in graft survival time, a
continuous metric), a more sophisticated approach
is required. In these circumstances, a risk-adjusted
outcome analysis can be used to rank alternatives.
For example, to compare the effectiveness of dif-
ferent hospitals in treating a particular cardiovas-
cular disease, we can evaluate each hospital by
dividing the outcome (e.g., 5-year survival rate)
by the expected outcome (i.e., the average 5-year
survival rate that would be achieved by the full
population of hospitals if they treated the same
mix of patients as the individual hospital). The
expected outcome requires a regression across all
patients and hospitals to compute (see Glance
et al. 2006). The resulting observed-to-expected, or
O/E, ratio provides a single number metric with
which to rank providers. However, a single rank
ordering based on O/E ratio is only appropriate
when the relative effectiveness of the providers
does not depend on patient characteristics. When
it does, rank order may be incorrect for some, or
even all, patients.

Stratified medicine uses heterogeneous effect analysis
to correct for the failure of average effect analysis to
account for patient differences. This requires patient
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characteristics along with outcomes. The more charac-
teristics we can observe (e.g., age, gender, comorbidi-
ties, biomarkers, readings from wearable devices,
etc.), the more likely we are to find characteristics that
differentiate patients with regard to their responses.
However, the more finely we stratify patients, the
smaller our sample sizes become. In clinical studies,
where data collection is expensive and difficult, it is
often impossible to achieve large enough samples to
permit subgroup analyses needed to detect heteroge-
neous patient responses.” As we discuss below, find-
ing the right balance between difference distinction
and statistical significance is a key analytical chal-
lenge in implementing stratified medicine.

Precision medicine uses personalized effect analysis,
which often requires personalized data. Genome
sequencing data is one form of personalized data. But
so are preference (e.g., risk aversion) and lifestyle
(e.g., diet and sleep) data. One could argue that all
medicine makes use of at least some personalized
data in the form of patient responses to provider
inquiries (e.g., “How do you feel about the proposed
course of action?). But precision medicine is aimed at
a much more objective, evidence-based incorporation
of personalized data than these traditional subjective
assessments. Some of these data are being collected
through traditional channels (e.g., doctor appoint-
ments) and compiled in electronic medical records
(EMRs) or electronic health records (EHRs). But
more detailed personalized data will require new
approaches, such as mining social media or using
handheld devices.
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A characteristic common to the data used for above
analyses is multidimensionality. Because treatment
alternatives are generally evaluated along multiple
criteria, such as expected clinical outcome, risk of side
effects, comfort and convenience of care, cost, and
others, we need data with multiple dependent vari-
ables, as well as multiple independent variables, to
support decision making. We can use big data to esti-
mate the heterogeneity of patient responses along
each dimension. But this will not be enough to facili-
tate patient treatment choices. We will also need some
way to combine the results for the various dimen-
sions. To do this at the personalized level, we will
need individual preference data (in the form of linear
weights or parameters for a nonlinear utility func-
tion). Furthermore, preferences on non-medical
dimensions, such as travel distance, expense, familiar-
ity, support services for family members, and many
others, may be relevant to individual decisions. By
combining heterogeneous outcome data and individ-
ual patient preference data we can achieve true preci-
sion medicine, in which choices are customized to the
level of the individual patient.

Ultimately, the progression from one-size-fits-all to
precision medicine will be driven by more and better
sources of data, and the analytics techniques needed
to use them to guide health care decisions. But collect-
ing and analyzing these data present a wide array of
challenges, as we describe below.

4. Challenges in Collecting and
Analyzing Big Data

Precision medicine can make use of both experimen-
tal and observational data. But, although challenges
remain in the collection and use of experimental
data to support health care decisions, these are
familiar problems clinical researchers have been
dealing with for years. The new challenges pre-
sented by the incorporation of big data into health
care decision making, and the ones most amenable
to the skills of the POM community, are those associ-
ated with observational data. In this section, we first
describe collection issues associated with this
increasingly large-scale and personalized type of
data. We then discuss estimation issues related to
high dimensionality, bias, censoring and sample size
issues that are common in uncontrolled observa-
tional data. Next, we highlight some modeling and
optimization challenges that must be addressed to
translate observational data into decision aids.
Finally, because the ultimate goal is to enable all
stakeholders in the health care system to make better
decisions, we describe implementation challenges
involved in presenting and disseminating informa-
tion derived from big data analyses.

4.1. Data Collection

Health care observational data comes from many
sources and in many formats. In this subsection, we
describe common challenges that arise in the process
of collecting large-scale observational data. These
include technological barriers, incomplete or inaccu-
rate data, privacy concerns and scientific challenges.

4.1.1. Technological Barriers. Advances in Infor-
mation Technology (IT) have transformed health care
data collection—from hand written notes, electronic
health records, personal wearable devices, and many
other sources. These advances also made it possible
to capture both structured (e.g., administrative and
claims data) and unstructured data (e.g., texts,
images, audios, videos). While structured data are
straightforward to analyze, and some text can be ana-
lyzed through textual analysis (see e.g.,, Wu 2016),
technology for converting medical images, audios
and videos to textual or structured data that can be
easily understood by non-medical researchers is still
lacking. As a result, for example, echocardiograms of
mitral patients are routinely interpreted by a cardiolo-
gist or surgeon but are rarely are rarely available for
use by a data analyst or policy maker.

There is a lack of coordination of health IT imple-
mentation across different organizations or even in
different departments of the same organization. Vari-
ations in data collection platforms and storage meth-
ods make it difficult to convert data from different
sources into the same format for analysis. The lack of
coordination across different organizations is a major
barrier to health information exchange when a patient
switches to a different health care provider or payer.
For example, when a patient changes insurance com-
pany, a new enrollee ID is usually created. Duplicate
IDs make it hard to link data from multiple insurance
companies to the same patient.

IT companies and researchers are continually seek-
ing ways to translate complex and unstructured
forms of information into usable data and hospitals
and their IT providers are constantly working on bet-
ter integration and interoperability. But both of these
have a great deal of room for improvement. As a
result, researchers seeking to use observational data
to refine precision medicine must work with less-
than-ideal data sets and are likely to do so for some
time. But new research opportunities will continue to
arise as these technological challenges are addressed.

4.1.2. Incomplete or Inaccurate Data. Missing val-
ues are common in observational data. These can
occur due to unavailability of information (e.g.,
because a patient refused to disclose personal infor-
mation or tests were not done), omissions by data
administrators, accidental deletion, or data loss



Hopp, Li, and Wang: Big Data and Precision Medicine

1652 Production and Operations Management 27(9), pp. 1647-1664, © 2018 Production and Operations Management Society

during merge and conversion. Missing values can be
categorized broadly into three types: missing com-
pletely at random (i.e., independent of both the out-
come variable and other independent variables),
missing at random (i.e., independent of either the out-
come variable or other independent variables), and
missing not at random (i.e., correlated with the out-
come variable even after controlling for other inde-
pendent variables). As we will discuss later, missing
at random or completely at random may not be an
important issue but missing not at random could
cause biases in estimation. Techniques for dealing
with missing value include imputation (i.e., replacing
missing values with substituted values), deletion,
interpolation and full analysis (see Little and Rubin
2014 for more details).

Worse than missing values are inaccurate values.
Inaccurate values can be the result of failure to under-
stand terminology, over-reliance on manual input,
inconsistent coding practice, or change of documenta-
tion policies. Compared with missing values, inaccu-
rate values are much more difficult to detect,
especially when they are not obviously outliers. One
approach to identifying inaccurate values is to com-
pare different data (e.g., claims, clinical and adminis-
trative data) for the same information. Another is to
verify the raw data used to calculate the values. For
example, one might check a patient’s height and
weight if the patient’s body mass index has a suspi-
cious value.

4.1.3. Privacy Concerns. Privacy is becoming an
increasingly serious concern for patients as individual
sensors have made it possible to monitor health at an
increasingly detailed level. Users may be unwilling to
share their personalized data with the providers of
these devices or their clients. This could hinder pro-
spects for collecting vast amounts of personalized
data to be used in precision medicine as well as devel-
oping new and more accurate devices for health
monitoring. Encryption and de-identification are tra-
ditional approaches to addressing privacy concerns.
Medicalchain is a recently developed blockchain
approach to protecting patient information such as
those from EMRs while sharing data across medical
providers and treatment sites (Azaria et al. 2016).

Privacy is a concern to health care providers and
payers, as well as to patients. Providers may be
unwilling to share clinical data because there are laws
and regulations that protect the privacy of patient
information. They are also concerned that sharing a
best practice with other providers may erode their
competitive advantage in attracting patients. Payers
may be unwilling to share their claims data because
the data usually contain sensitive information about
their cost structure and financial performance.

Finally, providers and payers may be unwilling to
share information with each other, because they do
not want to lose negotiating power. In theory, encryp-
tion and de-identification can be used to protect pro-
vider and payer data. But doing this while enabling
integration of data across participants and platforms
is difficult. Data science scholars (see, e.g., Li and Qin
2017, Miller and Tucker 2017) have proposed to use
encryption and other means for protecting patient pri-
vacy when medical records are shared.

4.1.4. Scientific Challenges. Pharmacogenomics
makes use of genetic information to predict patient
responses to medication. Recent advances in genetic
technology offer the prospect of being able to person-
alize medications to patients based on genetic tests.
However, while an increasing number of biomarkers
have been discovered, their influence on outcomes is
complex. As a result, few biomarkers are currently
used in clinical decision making or drug development
and their ultimate utility is still a matter of debate.

Several scientific challenges make it difficult to col-
lect useful and accurate pharmacogenomics data.
First, there are potentially many yet-to-be-identified
genes and biomarkers that affect the pharmacology of
a drug. Second, even for the identified pharmacoge-
nomics biomarkers, some of the clinical results
regarding the genetic association between the biomar-
ker and the pharmacology of a drug have been incon-
sistent (Lam 2013). Third, in addition to inherited
genetic factors, many environmental, lifestyle and
other factors could have important and complicated
impacts on a patient’s response to a drug. Researchers
will continue to use clinical studies to link genetic and
biomarker information to patient responses. As such
information becomes part of patient records, it will
also become available for use as observational data in
uncontrolled studies.

4.2. Estimation

Analyzing large-scale observational data presents
several estimation issues, which can be grouped into
those related to “high dimensionality” and those asso-
ciated with the “uncontrolled” nature of the data. Fur-
ther complicating analysis is that treatments may
have heterogeneous effects on different patients, and
that this heterogeneity may differ among treatments.
In this subsection, we first discuss issues related to
high dimensionality, and then issues caused by the
uncontrolled nature of the data. Finally, we discuss
the challenges of addressing these two types of issues
simultaneously in treatment effect analysis. We shall
note that the issues and potential solutions we point
out below are by no means exhaustive. While they
represent some key challenges, the area offers a great
potential for many more research opportunities.
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4.21. High Dimensionality-Related Issues. A
direct challenge of working with a large number of
variables is that it is unclear which variables are
important and how they affect the response vari-
able. Finding the model, which could include non-
linear terms and interactions between variables,
with the highest explanatory power is both compu-
tationally complex and statistically challenging. The
most important statistical challenges are the issues
of over-fitting and multi-collinearity, and the prob-
lem of multiple testing.

Over-fitting is a common problem in statistical
analysis of high-dimensional data, especially when
the number of observations is small relative to the
number of variables. To illustrate this point, consider
a simple example with two observations and one vari-
able. It is possible to perfectly fit the data with a
straight-line model that has R® equal to one and
mean-squared error equal to zero. As such, it has per-
fect in-sample performance, but will probably have
very poor out-sample performance. If someone
neglects the issue of over-fitting, he/she might erro-
neously pick such a model for prediction. Coefficient
estimates and p-values in over-fitted models are mis-
leading as well, as they often indicate that the effects
of almost all variables are not statistically significant.

Multi-collinearity refers to a situation where some
independent variables are highly correlated. An
increase in the number of variables increases the
probability that some variables are multi-collinear.
This is partly because some variables in observational
data, though labeled differently, describe similar or
closely related attributes (e.g., height and weight) or
the same attribute measured at different times (e.g.,
blood pressure measured throughout the hospital
stay). When some variables suffer from multi-colli-
nearity, the estimated effects of these variables will
likely have large standard errors, which makes it
appear that none of them is statistically relevant.

A systematic approach to addressing both over-fit-
ting and multi-collinearity issues is stepwise variable
selection. Forward stepwise selection starts with a null
model (i.e, no variable) and recursively adds the
remaining variable that has the highest predictive
power as measured by R? or residual sum of square.
Inverse to this, backward stepwise selection starts with
the full model (i.e., with all variables) and recursively
removes one existing variable that has the lowest pre-
dictive power. These stepwise selection processes
result in a series of candidate models, whose perfor-
mances are then compared for model selection. Note,
however, this sequential variable selection is often
order dependent and computationally inefficient, espe-
cially when the number of candidate variables is large.

A more sophisticated approach to addressing over-
fitting and multi-collinearity is regularization, which

introduces a regularization factor to penalize the
number of independent variables that enter the
model. For example, the least absolute shrinkage and
selection operator (LASSO) is a widely used regular-
ization method that penalizes the number of variables
in a regression model and shrinks the coefficients of
insignificant or small-impact variables toward zero
(Bastani and Bayati 2018, Bertsimas et al. 2016, Fried-
man et al. 2001). Under mild conditions, LASSO gen-
erates sparse models that identify the truly relevant
variables. In contrast with stepwise variable selection,
regularization methods can be applied even when the
number of variables is larger than the number of
observations. However, while methodologically intu-
itive, regularization methods raise several new ques-
tions, including: What is an appropriate amount of
regularization? How to compare and select from dif-
ferent models that have similar explanatory powers?

These questions can be answered with cross valida-
tion, a technique commonly used in the machine
learning literature to compare the performance of dif-
ferent models (Friedman et al. 2001). It uses one set of
data (called the “training sample” or “in-sample”) to
train a model and an independent set of data (called
the “testing sample” or “out-sample”) to test the
model performance, which is usually measured by
mean-squared error (MSE) and coverage rate. Cross
validation selects a model with the right number and
type of variables that best predict outcomes in the
testing sample. However, because (i) different train-
ing and testing samples might result in different mod-
els and (ii) there is a potential correlation between
training and testing samples due to randomness, the
model selection process is usually undertaken using
multiple training and testing samples. A popular
approach is k-fold cross validation, where the data is
randomly divided into k parts. Each time, one of the k
parts is held-out for testing and the remaining k — 1
parts are used for training. Out-sample MSE of a
model is calculated as the average of the k mean-
squared errors.

Besides cross validation, researchers have fre-
quently used Akaike information criterion (AIC) and
the Bayesian information criterion (BIC) for model
selection as well. Both AIC and BIC balance the good-
ness-of-t of the model and its complexity, while BIC
penalizes complexity more strongly than AIC and
thus leads to sparser models. If the objective is to
make better predictions, AIC and cross validations
are commonly used. If the objective is to select vari-
ables that are truly economically relevant, BIC is typi-
cally preferred (Wang et al. 2007).

Finally, multiple testing arises when one uses the
same data to test a number of hypotheses. This issue
is particularly common in health care settings,
because multiple treatments are usually evaluated
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across multiple metrics for multiple patient groups at
multiple providers. For purposes of illustration, sup-
pose the treatment and control groups are patients
who received mitral valve repair and replacement,
respectively. To guide future treatment decisions, we
want to know whether mitral valve repair is superior
to replacement for some patients and whether the out-
come differences between providers are heteroge-
neous across different patients. We could partition
patients into groups based on their gender and com-
pare repair with replacement as well as different
providers for each group in terms of mortality, com-
plication, readmission, graft failure, etc. The more
quality metrics used for comparison, the more likely
that the treatment and control groups differ on at least
one quality metric due to random errors. Similarly,
the more patient groups and providers we consider,
the more likely that mitral valve repair will be found
to be superior for at least one patient group at one
provider.

To address the issue of multiple testing, one needs
to adjust the significance levels used for rejecting a
null hypothesis. Bonferroni and Benjamini-Hochberg
are two commonly used approaches partly due to
their simplicity (see Bonferroni 1936, Benjamini and
Hochberg 1995 for details). Note these tests rely on
the assumption that different hypotheses are indepen-
dent of each other, which might not be true in health
care settings. For example, a patient who is more
likely to have a complication is also more likely to
have a readmission. A better and more complicated
approach to finding adjusted significance levels is
simulation. The null hypothesis is that the treatment
does not have any effect on any observation for any
metric. We can then randomly permute the treatment
dummies among observations and test all hypotheses
to obtain a set of p values. After that, we repeat the
permutation N times and count the number of times
at least one test is deemed significant based on the tar-
get significance level a. The adjusted significance level
can be calculated as a/N.

4.2.2. Uncontrolled Data-Related Issues. The un-
controlled nature of observational data introduces
a number of challenges beyond those presented by
the high-dimensionality of the data. In randomized
controlled experiments, because observations are ran-
domly assigned to treatment and control groups, we
can control the number of observations in each group
and the treatment effect can be estimated using the
average outcome difference between the treatment and
control groups. In observational studies, because we
cannot randomly assign treatments to individuals, the
treatment group may have systematically different
attributes than the control group, which may result in
estimation biases. The sample size of the treatment

may also be insufficient to power the analysis, because
unlike randomized experiments, the sample size of the
treatment group in an observational study is not cho-
sen by researchers for detecting a given effect at the
desired level of significance. In addition to bias and
sample size issues, censoring is common in health care
observational data, because an event (e.g., mortality)
may occur beyond the data collection period. Below
we first review a list of common sources of biases,
which include omitted variable, sample selection and
missing value, and then discuss issues of sample size
and censored data.

Omitted variable bias occurs because observational
data may not include all variables of interest. While it
is safe to omit a variable that is pure noise, omitting a
variable that directly affects the outcome not only
reduces the prediction accuracy of a model, but also
creates biases in estimating the coefficients of all other
variables that correlate with the omitted variable. For
example, health-conscious patients may be more
likely to seek treatments at a Center of Excellence
(CoE). At the same time, these patients are healthier
due to their lifestyles. However, we may not be able
to observe from observational data whether a patient
is health-conscious or not. Simply ignoring this unob-
servable variable will bias the estimate of the quality
gap between CoEs and non-CoEs.

Sample selection bias occurs when patients
described by observational data are not a representa-
tive sample of the population of interest. For example,
some transplant centers decide whether to admit a
patient to their waiting lists based on the acuity of the
patient. A very sick patient may be denied access to
waiting lists. Therefore, comparing centers based on
samples of admitted patients can lead to biased con-
clusions, especially when different centers have dif-
ferent patient admission practices. Similarly, selection
bias is the primary threat to using observational data
in comparative treatment analysis. For example,
early-stage cancer patients with better prognoses are
more likely to receive milder forms of chemotherapy
with fewer side effects, while advanced-stage cancer
patients with poorer prognoses are more likely to
receive stronger drugs with harsher side effects.
Hence, both outcomes and side effects are strongly
influenced by the mix of patients treated in a center.
Giordano et al. (2008) demonstrated how selection
bias can lead to different or even opposite conclusions
to those from randomized clinical trials in cancer
research.

Missing value bias is common in observational data
that are collected over a long period of time and from
different sources (e.g., multiple hospitals). If only a
small portion of the values are missing, and the miss-
ing values happened completely at random, we can
safely delete these observations without biasing the
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results. However, if values are missing in a systematic
way or for a specific group of observations (e.g.,
patients with certain comorbidities), simply ignoring
the observations will create estimation biases.

Popular techniques for addressing these biases
include instrumental variable, panel data, difference-
in-differences, regression discontinuity, selection
models, and others. The instrumental variable (IV)
method explores the variation in an exogenous vari-
able that correlates with the endogenous variable but
does not directly correlate with the outcome variable.
The IV approach extracts and uses only the exogenous
variation in the variable of interest in the estimation,
and obtains an unbiased estimate of its impact (see
e.g., Bartel et al. 2016, Chan et al. 2016, Freeman et al.
2016, Ho et al. 2000, KC and Terwiesch 2011, 2012,
Kim et al. 2014, Lee et al. 2017, Lu and Lu 2017,
McClellan et al. 1994, Xu et al. 2018). For example,
Hadley et al. (2010) showed that a properly chosen
instrumental variable can correct the potential selec-
tion bias of observational data and provide consistent
results as in randomized trials in the context of pros-
tate cancer. Panel data models exploit longitudinal
variations to take out unobserved time-invariant indi-
vidual fixed effects (see e.g., Clark and Huckman
2012, Clark et al. 2013, KC 2013). The difference-in-
differences method relies on the assumption that the
treatment and control groups would have had paral-
lel trends if there had been no treatment (see e.g.,
Song et al. 2015). It uses group fixed effects to capture
time-invariant differences between the two groups
and time fixed effects to capture the trends. Regres-
sion discontinuity exploits sharp changes in the vari-
able of interest and compares outcomes of
observations lying slightly above and below the
threshold (see e.g., KC 2018). Other techniques
involve direct modeling of the bias generating pro-
cess. For example, the Heckman two-stage selection
model (see Heckman 1976, 1977 for more details) cor-
rects for biases caused by sample selection or non-
random missing data. Which technique is most
appropriate depends on the context and the availabil-
ity of exogenous variables.

Even with big observational data, insufficient sam-
ple size may still be an issue, particularly as the strati-
fications in stratified medicine become finer. In
experimental studies, researchers use power analysis
to determine the sample size required detecting a cer-
tain treatment effect at a given significance level, sam-
ple size is a critical part of the experiment design.
However, in observational studies, because research-
ers have no control over the number of patients who
receive a given treatment, the treatment group may
have a very small number of observations, which cre-
ates estimation difficulties. For example, suppose we
want to compare the mortality rates of two hospitals

for a particular surgical procedure. One hospital trea-
ted 200 patients with 4 deaths and the other hospital
treated 10 patients with no deaths. Which hospital is
better? Obviously, the second hospital has a lower
mortality rate, but we cannot conclude that it is better
because the small sample size makes it likely that this
rate was largely due to randomness.

The sample size issue described above is usually
difficult to address without borrowing additional
information from other sources. If we can construct a
prior distribution regarding the outcome based on
outside information, an empirical Bayes method can
be used to estimate the effect of a treatment or com-
pare multiple treatments. In the surgical example
described above, such a prior could be the overall dis-
tribution of mortality rates across all hospitals, the
relationship between a hospital’s volume and its out-
come, or the correlations between outcomes of similar
procedures. Dimick et al. (2009) applied the empirical
Bayes method that first estimates the effects of vol-
ume on outcomes from the data and then uses
updates based on actual performance to predict per-
formance of a specific hospital. Similar ideas might
be suited to analyzing the effectiveness of more
advanced chemotherapy treatment for patients of
uncommon cancer types with a given chromosome
gain or loss (e.g.,, a Wilms tumor patient with 16q
chromosome loss). For example, one could construct a
prior using data from patients of similar cancer types
with the same chromosome change (e.g., all other kid-
ney cancer patients with 16q loss) and then use the
Bayes method to update this prior specifically for
Wilms tumor patients.

Finally, censoring refers to the coding of a continu-
ous variable into one number when the variable is lar-
ger or smaller than a specific value. There are three
types of censoring: left censoring, interval censoring
and right censoring, which correspond to different
positions of the censored value. Right censoring is the
most common in survival analysis, as an event of
interest might happen beyond the study period. For
example, suppose we use survival time as a quality
metric to compare different hospitals for liver trans-
plant surgery. The study period is all the years when
data were collected, and the variable of interest is
length of survival after transplant. However, we can
only observe how long a patient survived only if the
patient died before the last date of data collection.

One approach for dealing with censored data is to
convert the variable of interest into binary indicators.
For example, instead of analyzing how long a patient
survived, we could analyze whether a patient sur-
vived more than 1 year after the transplant. However,
the choice of the cut-off points may be arbitrary (e.g.,
1 month vs. 1 year). Moreover, it usually fails to cap-
ture the long-term effect of the treatment. Another
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approach is survival analysis, which explicitly models
survival time as a continuous outcome variable. Para-
metric survival analysis assumes that the underlying
distribution of survival time follows a certain known
distribution (e.g., exponential) whereas nonparamet-
ric survival analysis such as the Kaplan-Meier
method (see Wooldridge 2010 for more details)
focuses on calculating and graphing survival proba-
bility as a function of time. A popular method for sur-
vival analysis is the Cox proportional hazards model,
which is a semiparametric model that can be used to
compare the survival time of two or more patient
groups of interest.

4.2.3. Issues Related to Treatment Effect Analysis. To
use big observational data to inform health care deci-
sions we must simultaneously address issues related
to both high-dimensionality and uncontrolled data in
the context of treatment effect analysis. Estimating
treatment effects is a different objective from
predicting outcomes. Even though a more precise esti-
mate of the treatment effect will improve the accuracy
of outcome prediction, the model with the most predic-
tive power does not necessarily capture the true treat-
ment effect unbiasedly.

Classic machine learning methods referenced above
are proven to be effective for predicting outcomes
while addressing the high-dimensionality challenge.
By themselves, these techniques are helpful in
answering questions such as: How long will a patient
with newly diagnosed stage III breast cancer survive?
What is the probability that a patient with hyperten-
sion (pre-existing) may experience a major complica-
tion after a mitral valve surgery? Outcome prediction
is particularly useful if a patient has already decided
which health care path to follow or which treatment
to receive. However, it is not directly useful for a
patient who is trying to choose among alternative
treatments, unless the causal effects of the treatments
have been properly estimated. For example, a patient
may ask questions like: How is my quality of life
likely to differ if I receive a kidney transplant instead
of continuing renal dialysis? What are the relative
risks of complications if I choose to get a stent instead
of a bypass graft?

While the effect of a treatment can be calculated by
comparing predicted outcomes with and without the
treatment, the results may be statistically misleading
for two reasons. First, the best model for outcome pre-
diction may not be the best for treatment effect estima-
tion. For example, if age is an important factor
affecting survival and race is an important factor
affecting the effectiveness of a treatment, a model
focusing outcome prediction will include age as a key
predictor whereas a model focusing on treatment
effect estimation will instead include race as a key

predictor. Second, there may be endogeneity issues,
which can bias the estimate of treatment effects.
Because patients are not randomly assigned to obser-
vations, the treatment and control groups may have
systematic differences (such as those cause treatment
selections) that affect their outcomes. As a result, the
effect estimated from a simple subtraction includes not
only the true treatment effect but also the systematic
difference between the treatment and control groups.

To modify classic machine learning methods for
treatment effect analysis, we need to address two
main issues. First, because we do not directly observe
the treatment effect from data, we cannot use them as
a dependent variable to train a model. If we instead
use outcomes to train a model, an important variable
that affects treatment effect but not outcome may be
excluded during variable selection, whereas a less
important variable that affects outcome but not treat-
ment effect may be included in the final model. Sec-
ond, because we do not know the treatment effects for
observations in the testing sample, we cannot analyze
the performance of a model by calculating its mean
squared error or coverage rate or use cross validation
for model selection. If we use outcomes in cross vali-
dation, we are likely to choose a model with the
best outcome instead of the best treatment effect
prediction.

One approach to addressing these issues is to use
different penalization factors in LASSO to differenti-
ate variables that affect outcomes from those that
affect treatment effects (Imai and Ratkovic 2013). This
approach allows for the possibility that some vari-
ables have a relatively small impact on outcomes but
a large impact on treatment effects. This approach,
however, requires institutional knowledge to distin-
guish between the two types of variables. An alterna-
tive approach first transforms the original outcomes
and then applies the standard LASSO with the trans-
formed outcomes and original independent variables
for treatment effect analyses (Signorovitch 2007).

These approaches identify variables that signifi-
cantly affect treatment effects when there are no
pressing concerns of endogeneity. To address poten-
tial endogeneity issues associated with observational
data, we need to integrate econometric methods such
as the instrumental variable into machine learning
models to obtain unbiased estimates of the treatment
effects. For example, Li et al. (2017) combined LASSO
and the instrumental variable technique to identify
price competition in high-dimensional space. Approa-
ches like this offer the best of both worlds by using
machine learning to deal with big data and economet-
rics to establish causality.

Existing studies that analyze the causal effect of a
treatment have focused on the average treatment
effect. These studies implicitly assume that a
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treatment has the same effect for all observations.
However, it is possible that the same treatment has a
positive effect on some patients but a negative or no
effect on others. In cases when a treatment has a posi-
tive (or negative) effect on all patients, it is possible
that the magnitude of the effect differs by patient.
Recognizing the differences in patients’ responses to
the same treatment, researchers have called for strati-
fied medicine that identifies patient groups with
heterogeneous treatment effects.

One approach to identifying patient groups is to
first interact the treatment dummy with patient char-
acteristics and then include both the interaction terms
and other variables in a regression model such as
LASSO for variable selection. The main difficulty with
this approach is that the number of interaction terms
increases exponentially with the number of variables.
As a result, this approach is computationally expen-
sive and requires a large number of instruments (or
other econometric techniques) to obtain unbiased esti-
mates of all interaction terms.

An alternative approach is to partition observations
into groups for subgroup analyses. The first challenge
with this approach is that the number of ways to par-
tition patients increases exponentially with the num-
ber of patient characteristics. It is not clear how many
patient groups we should have and which character-
istics should be used for partitioning. The second
challenge is that there is a clear tradeoff between rele-
vance and reliability. A finer partitioning of patients
provides more relevant information but may not have
enough statistical power due to a reduced sample
size. A coarser partitioning of patients will have a lar-
ger sample size, but the information provided may
not be as relevant.

These challenges can be addressed by tree-based
methods, which are data-driven automatic processes
that partition observations into groups such that
observations in the same group have similar treat-
ment effects and those across different groups have
different treatment effects. A tree method usually
starts at the root where all observations are in the
same group (called “parent” node) and recursively
partitions observations into “child” nodes using the
variable that increases in-sample goodness of fit the
most. It then treats each child node as a parent node
and continues the partitioning until a stopping crite-
rion is reached. Finally, it uses cross validation
to select the tree that has the best out-sample
performance.

While it is straightforward to calculate the treat-
ment effect for a group in randomized controlled tri-
als using average outcome differences between the
treatment and control groups (Athey and Imbens
2016), we need to address potential endogeneity
issues with observational data and wuse the

instrumental variable or another econometric method
to obtain unbiased estimates of treatment effects. Fur-
thermore, most existing tree-based methods are myo-
pic in partitioning observations and may not achieve
the best overall prediction accuracy. Bertsimas and
Dunn (2017) proposed an optimal tree to address this
issue, but this approach is computationally expensive
if the dimension of the problem is high.

Finally, the main challenge of using big observa-
tional data to inform medical decisions at the individ-
ual patient level is that we cannot observe both the
treatment and no-treatment conditions for a patient
and no two patients are exactly alike. Even if we are
able to perfectly match two patients based on observ-
able characteristics, there is no guarantee that the two
patients have the same unobservable characteristics.
To address this main challenge and move practice clo-
ser to precision medicine, we can look to the inevita-
ble increase in the amount of health care data and rise
of real-time monitoring through use of wearable
devices. In many health care settings, it is reasonable
to assume that only a finite number of variables affect
treatment effects, which means an increase in the
number of observations will enable us to partition
patients into finer groups without losing statistical
power. Real-time monitoring by wearable devices
allows us to collect observations for the same patient
on a daily or even hourly basis. If a treatment is
assigned to the same patient at random times or based
on observable variables, these observations constitute
trials for the same patient (see e.g., Klasnja et al.
2015). For example, a wearable device might remind
the wearer to take deep breaths as an anxiety reduc-
ing therapy (see e.g., Sarker et al. 2017). With some
randomization of the reminders and measurement of
the physical responses, the device could optimize a
breathing strategy for a given individual (see e.g.,
Walton et al. 2018). Finally, if the previously men-
tioned privacy concerns can be addressed, data from
such devices could be pooled and used to determine
the individual characteristics that make people most
and least receptive to breathing therapy.

In summary, heterogenous treatment analysis with
high-dimensional observational data offers a wealth
of research opportunities. New research in this area is
emerging (see, e.g., Athey et al. 2017, Boruvka et al.
2017, Wang et al. 2017a,b) and has the potential to
sharpen precision medicine protocols for a vast range
of patients.

4.3. Modeling and Optimization

Once we have used big data to estimate patient
responses to various health care alternatives, the
problem becomes how to use the results to facilitate
better decisions across the health care system. These
decisions include choice of type of health care and
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specific providers by patients, selection of specific
treatments by patients and providers, strategic posi-
tioning and process improvement decisions by
providers, reimbursement and incentive structure
decisions by payers, and many others. We list some
important decisions that present challenges amenable
to the modeling and optimization skills of OM
scholars below.

4.3.1. Individual Patient Level. In decentralized
health care systems where patients can choose the type
of treatment and the specific providers for the treat-
ment, observational data can be used to understand
how patients make choices and identify barriers that
prevent patients from finding health care most suitable
for them. When choosing a health care provider,
patients consider not only outcome differences
between providers but also travel distance, waiting
time, insurance co-pay, etc. Patient choice models help
understand not only the relative weights patients place
on different factors but also how much outcomes
would improve if one or more barriers are removed.
For example, Wang et al. (2015) studied the impact of
quality information, travel distance and insurance on
patients’ choice of cardiac surgeons for mitral valve
surgeries and found that lack of quality information is
the most important barrier preventing mitral patients
from choosing the best care and reducing this barrier
could improve mitral valve repair rate by 13%.

Although choice models using observational data
can help understand what patients are doing, analyti-
cal models using OM techniques such as optimization
are needed to tell patients and their providers what
they should do. Compared with traditional models
that rely on wide range of assumptions, data-driven
analytical models estimate parameters based on
observational data and use them as input for model-
ing and optimization. One application of data-driven
analytical models is multi-criteria decision making,
where multiple treatments (e.g., surgery, stents and
statins for carotid disease) are available and a patient
needs to consider multiple factors (e.g., recovery time
from treatment, risk of complications and life expec-
tancy) in choosing a treatment. Multi-criteria decision
making is challenging because a given treatment may
look better on one criterion but worse on others. OM
techniques such as multi-objective optimization and
the analytical network/hierarchical approach (Saaty
2013) can help patients choose the best treatment
based on their individual preferences. These tech-
niques can also help patients with sensitivity analyses
that help them see how their choice depends on out-
come estimates and/or their personal preferences.

In addition to multiple criteria, health care deci-
sions often involve multiple periods. For example,
patients with chronic diseases are typically faced with

a series of decisions to manage their condition. In
some cases, such decisions are spread over time
because treatment options change over time. For
example, patients waiting for an organ transplant
must decide whether to accept a currently available
organ or to wait for a future and potentially better
organ. Metastatic cancer patients can face similar
decisions involving uncertain future options as they
wait for improved chemotherapy options to become
available. This type of multi-period decision making
is challenging, because a patient's health status
evolves over time. In the case of organ transplant, if a
patient decides to reject an organ and stay on the
waiting list, he/she might get a better offer in the
future, but his/her health state might get worse. Prob-
lems like these can be addressed using familiar meth-
ods, such as linear programming and dynamic
programming (Alagoz et al. 2009), but may also
require new data analytics methods to update evolv-
ing options, risks, and patient characteristics to prop-
erly parameterize the models.

4.3.2. Health Care System Level. As data
becomes more and more transparent, health care pro-
viders of all kinds will be faced with decisions of what
services to offer. If patients can see which providers
are substandard for which procedures, they will be
able to selectively avoid them. Since hospitals will no
longer be able to use the halo from their strengths to
hide their weaknesses, it will become increasingly dif-
ficult to offer a full range of medical services. This will
present hospitals and other medical providers with
“invest or specialize” scenarios. They will either need
to invest in process improvement to make their weak-
est services competitive or eliminate those services
and compete on their strong services. Such decisions
will be complicated by the fact that there are synergies
between services (e.g., a strong transplant program
for one type of organ may offer infrastructure and
marketing advantages with which to build a trans-
plant program for another type of organ). These com-
plex strategic planning problems will require
modeling support, which will need grounding in the
types of data-driven evaluation of performance we
have discussed in study.

Observational data can also help health systems
improve outcomes through better matching of
patients to facility and/or provider. As described ear-
lier, the effect of a treatment may be heterogeneous
for different patients and such heterogeneity may dif-
fer across treatments. Here, the “treatment” could be
the actual medical treatment (e.g., surgery, stent, sta-
tin), but it could also be the type of facility (e.g., doc-
tor’s office, urgent care clinic, community hospital,
research hospital) or the individual provider (e.g.,
specific surgeon). Heterogeneous outcomes imply
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that a given facility or provider may be better suited
to one type of patient than another and that the “best”
facility or provider will be different for different
patients. Using big data analysis to uncover such
heterogeneity in outcomes can enable health systems
to better guide patients (e.g., through physician refer-
rals) to the types and sources of care that best meet
their individual needs. By taking into account both
clinical quality and operational efficiency, improve-
ments in the matching process can help systems pro-
vide better health at a lower cost.

Modeling and optimization can also help health
systems respond to pay-for-performance systems.
Increased transparency of hospital performance data,
made possible by more sophisticated big data analyt-
ics, will allow payers such as CMS to tie reimburse-
ments more closely to the actual value hospitals
provide to patients. An example of early efforts to do
this are the hospital readmission reduction program
(HRRP), which penalizes hospitals with excessive 30-
day readmission rates and the hospital acquired con-
dition reduction program (HACRP), which penalizes
the worst quartile of hospitals with regard to hospital
acquired infections. Because these programs base
penalties on coarse evaluations of under-performing
hospitals, they create incentives that may not align
with the goal of promoting improvements in hospital
performance. For example, Zhang et al. (2016) devel-
oped a game-theoretic model that captures the com-
petition among hospitals induced by HRRP’s
benchmarking mechanism and found that low-per-
forming hospitals prefer paying penalties to reducing
readmissions. Better performance evaluation will cre-
ate opportunities for more targeted and more effec-
tive pay-for-performance mechanisms, which will
require modeling and optimization support to
exploit.

4.3.3. Societal Level. If a health care system were
governed by a central planner who decides how to
allocate limited treatment resources to different
patients, heterogeneous and personalized data could
be used directly to make better patient assignment
decisions. But even this highly simplified version of
the health care resource allocation problem is not
entirely straightforward. While it is generally simple
to solve an allocation problem in which both treat-
ment effects and disease states are deterministic, the
problem becomes much harder if we consider uncer-
tainty in the effect of a treatment and the progression
of a disease. To illustrate this point, consider two
treatment types (Treatment 1 and 2) and two disease
states (State 1 and 2). Treatment 1 is more effective
and expensive than Treatment 2, but none of the treat-
ments can cure the disease. Furthermore, the disease
state evolves over time as a function of prior state and

treatment type. Because budget is limited in each per-
iod, the central planner must decide which patients to
treat and the type of treatments to provide. This type
of problem can be formulated using linear program-
ming or dynamic program but is generally difficult to
solve when the number of periods, treatment types or
disease states under consideration is large. Zayas-
Caban et al. (2017) proposed an asymptotically opti-
mal heuristic based on a linear programming relax-
ation to the original stochastic formulation.

Since no country or health care system operates in
pure central planning mode, analyses of such systems
are used as guides for narrow decisions that do
involve central planning, such as which procedures
should be covered in medical plans, which patients
should be prioritized in allocating scarce resources,
and what guidelines and regulations should be
adopted. Specific examples include allocating organs
for transplant (Ata et al. 2017), optimizing colono-
scopy screening for colorectal cancer prevention and
surveillance (Erenay et al. 2014), allocating scarce
healthcare resources in developing countries (Griffin
et al. 2013), optimizing breast screening policies given
heterogeneous adherence (Ayer et al. 2015).

All real-world health systems are at least partially
decentralized because patients have at least some
choice about what treatment to get and where to get
it. Such systems still require modeling and optimiza-
tion to design and plan. For example, to help system
managers evaluate the value of a new type of infor-
mation (e.g, EMR information made possible by
Medicalchain), we need to be able to predict how the
new information will affect patient decision making
and how this will impact patients and other stake-
holders. An example of such a model is that of Wang
et al. (2018), which analyzed the relative value of pop-
ulation-average and patient-specific quality informa-
tion about cardiac surgeons. This involved modeling
patient choice of surgeon as a function of outcome
quality, travel distance and waiting time on the surgi-
cal schedule and combining this with a queueing
model to estimate patient waiting time. The results
suggested that societal benefits (i.e., sum of patient
utility) from using patient-specific information about
mitral valve surgery outcomes are comparable to
those achievable by enabling the best surgeons to treat
10%—20% more patients under population-average
information. Analyses like these can help identify
areas where more detailed information can facilitate
precision medicine to achieve the greatest societal
benefits.

Modeling and optimization can also help under-
stand and improve interactions between system man-
agers and patients that govern how resources are
used. For example, in organ transplant systems,
UNOS plays the role of system manager responsible
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for organ allocation. When an organ becomes avail-
able, patients with compatible blood type and anti-
body-antigen are sequenced according to their
sickness, waiting time, proximity to donor, etc. The
organ is then offered to patients in this sequence.
UNOS quickly realized that patients who were more
likely to receive an allocation were also more likely to
reject the allocation. Hence, by using historical data to
understand patients’” decisions, UNOS developed the
Liver Simulation Allocation Model to compare poten-
tial outcomes of alternative allocation policies. Several
studies have made use of this simulation to incorpo-
rate patient choice into optimization models that
improve the allocation process (Akan et al. 2012, Su
and Zenios 2004, 2005, 2006). As more performance
data becomes available as a result of the combined big
data and precision medicine revolutions, analogous
analyses of other scarce resources (e.g., elite surgeon
time, experimental drugs, new imaging technologies,
etc.) will become possible. POM scholars are well-
equipped to provide the needed analytic innovations.

4.4. Implementation

Achieving precision medicine, as we have described
it here, will require more than solving statistical and
analytics problems or creating simulation and opti-
mization models. We must also find ways to commu-
nicate complex information about treatment options
and outcomes to patients and providers in ways they
can use it. This will require better displays (e.g., cus-
tomized rankings in web pages) and tools for dealing
with multi-criteria decisions (e.g., aids to help users
figure out weights for criteria or mechanisms for
using partial weight information to choose between
alternatives).

A number of observers have noted that public
reporting of health care outcomes has been less effec-
tive than anticipated in altering patient and provider
behavior (see e.g., DeVore et al. 2012, Ryan et al.
2012, Smith et al. 2012). Saghafian and Hopp (2018)
concluded that the primary reason for this is that
patients have acted as though they either do not have
or do not understand the publically reported data.
This implies that information contained in this data
has not been communicated in a clear and usable
way. If this is indeed the case, then there is consider-
able opportunity to advance progress toward preci-
sion medicine by Dbetter communicating the
information being generated by the big data revolu-
tion. POM scholars can contribute to research into
how patients perceive information about uncertain
outcomes, how trust (e.g., of doctors, insurance com-
panies, government) influences patient reception of
information from various sources, and many other
practical questions related to the use of information in
real-world settings.

However, having and understanding the data
needed to make effective decisions for precision
health care is not enough. Both patients and providers
must act upon it. If other factors distort treatment
decisions, patient and societal benefits will fall short
of their potential. Three issues that may prevent a pro-
vider from acting in patients’ best interests are: (i)
Some hospitals are profit-driven, so they may pick
patients or prescribe medications based on how much
revenue they could generate rather than how well the
patients could be treated; (ii) Hospitals that are rated
and reimbursed according to imperfectly risk-
adjusted outcomes may intentionally avoid very sick
patients who are likely to have bad outcomes (Dra-
nove et al. 2003); (iii) Referral decisions by physicians
may be influenced by non-clinical factors such as hos-
pital affiliation, personal relationship, waiting time,
etc. (Lu and Lu 2016). Analyses of the impact of big
data on precision medicine, as well as designs of pay-
for-performance systems, must take behaviors like
this into account.

Finally, there are several important roles payers can
play in the evolution of precision medicine. First, pay-
ers can help guide patients to the most suitable provi-
ders by structuring networks, co-pays and other
policies to favor effective choices. Second, by combin-
ing the above patient incentives with reimbursements
that favor high quality outcomes, payers can influence
providers to focus on patients and procedures that fit
their relative strengths. Third, payers can improve
health care through pay-for-performance that incent
providers to invest in process improvements that
result in better patient outcomes. The ability of payers
to carry these out will depend critically on the analyt-
ics that underlie performance evaluation.

5. Conclusion

As depicted in Figure 3, the improved data collection
and analysis that will result from the trends and activ-
ities discussed here will lead to stratified medicine
that is increasingly better targeted at individual
patient needs. Patients will use the improved infor-
mation to make more informed decisions about their
own health care, while providers will use it to make
better strategic planning and process improvement
decisions, and payers will use it to design better
incentives for both patients and providers. The com-
bined effect will be improved patient outcomes and
greater efficiency due to elimination of waste and
errors caused by trial-and-error medicine.

For patients, the primary benefit of better decisions
at all levels of the health care hierarchy will be better
health. By providing evidence-based guidance to
treatment options and provider choices that best suit
an individual patient’s needs, precision medicine will
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Figure 3 Impact of Precision Medicine on Health Care Stakeholders
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lead to significant improvements in patient outcomes.
Big data will amplify this impact by providing
increasingly detailed evidence that increases the
power and specificity of precision medicine.

For example, a patient who suffers from severe
depression today can expect it to take months, or even
years, of consultation with psychiatrists, psycholo-
gists, therapists, yoga instructors, etc., to find a combi-
nation of medications and lifestyle changes that bring
relief. In the coming world of precision medicine, the
patient will receive treatments aligned with his/her
individual characteristics and will see improvement
much faster and will ultimately find a better health
outcome.

But patients will benefit from more than better
health because of precision medicine. By shifting
the basis for medical decisions away from subjec-
tive judgement and toward statistical evidence, big
data will move the locus of decision-making
toward patients. Under trial-and-error medicine, in
which providers choose a course of action largely
on their personal experience, a patient has little
choice but to accept a recommendation based on
the provider’s judgment. Its not easy for a lay

Improved business
performance

Improved medical and
financial performance

person to argue with an experienced medical pro-
fessional who says, “in my considered opinion you
should do X.” But under precision medicine, where
there is an explicit base of evidence to indicate a
course of action, it will become possible for the
patient to argue with a recommendation without
disparaging the recommender. For example, sup-
pose an orthopedist recommended a total knee
replacement based on data showing an 80% chance
of significant pain and mobility improvement and
only a 5% chance of an outcome worse than the
status quo. A particularly risk-averse patient could
reasonably argue that the procedure is too risky for
him/her. As data becomes more transparent,
patients will become increasingly empowered to
participate in more decisions regarding his/her
health. The precision medicine revolution will
ultimately bring about the end of paternalistic
medicine.

In addition to improving health outcomes at the
individual and societal levels, precision medicine
powered by big data will also reduce costs. Brownlee
(2008) estimates that between one-fifth and one-third
of health care dollars are spent on unnecessary tests,
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drugs and treatments (and that such overtreatment is
responsible for as many as 30,000 deaths per year). By
providing a clear evidence base for determining
which interventions are clinically worthwhile, big-
data-driven precision medicine will help patients and
providers avoid unnecessary treatments and their
associated costs. Furthermore, by forgoing treatments
that are not well-suited to the patient, precision medi-
cine will lead to fewer errors, complications, and fol-
low-up corrections, all of which will reduce costs.
Finally, precision medicine can and should indicate
where less invasive measures (e.g., prevention) are
the best course of action. In the right situations, these
approaches can achieve better health at dramatically
reduced costs.

The impact of the precision medicine revolution
will impact provider behavior beyond interactions
with patients. The detailed patient response data on
which precision medicine is based will give clinicians
and administrators granular feedback on their
strengths and weaknesses. This will allow them to
make strategic decisions about their focus, for exam-
ple, choosing which surgical procedurses to offer or
which patient types to target. It will also help them
focus their process improvement efforts on the
patients and services where improvements are most
needed.

Finally, precision medicine will open up a host of
opportunities for payers to sharpen the incentives
they provide to both patients and providers, with a
goal of achieving better health outcomes at lower
costs. When payers have detailed data on the best care
options and choice of provider for a given patient,
they can design pricing and co-payment schemes that
incentivize patients to choose the most cost-effective
alternatives. Similarly, they can design pay-for-per-
formance reimbursement schemes that incentivize
payers to seek out patients where they have a compar-
ative quality advantage and to invest in targeted pro-
cess improvements.

This impressive list of benefits will only be possi-
ble if we can resolve the data collection, estimation,
modeling and optimization, and implementation
issues discussed above. Since these are all chal-
lenges POM scholars are well-suited to address, the
combined big data/precision medicine revolution is
an area where our field can change the world for
the better.
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Notes

'Risk-adjusted success rates correct for differences in
patient characteristics by computing the average outcome
from each alternative for a mix of patients that reflects the
population. Note that the expected outcome for a “popula-
tion average” patient may not reflect the outcome for any
actual patient. Hence, as we note in Wang et al. (2018),
population average data may not give appropriate
rankings of alternatives when patient outcomes are
heterogeneous.

*For example, Park et al. (2015) compared percutaneous
coronary intervention (PCI) using stents with coronary-
artery bypass grafting (CABG) in treating multi-vessel
coronary artery disease. Although they found the rate of
major adverse cardiovascular events was significantly
higher among PCI patients than CABG patients, their abil-
ity to detect differences in outcomes among patient sub-
groups was limited by the size of the study. The study
involved a total of 880 patients, which permitted analysis
of only a small number of patient characteristics and
restricted the statistical power of the analyses that were
done.
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1. Introduction

The two of us have been working on bringing data
and analysis-based approaches to retailing since
the mid-1990s. We did not have the clairvoyance to
call it “Big Data” when we started but instead
referred to it as “Rocket Science Retailing” in a Har-
vard Business Review article published in 2000
(Fisher et al. (2000). In 1997, we were fortunate to
receive a grant from the Alfred P. Sloan Foundation
to examine and document how retailers were
approaching the opportunities presented to them
by the increasing availability of data and computer
hardware and software to analyze the data. Over
the next few decades, with the participation of over
50 retail partners, we studied and wrote about a
variety of problems in retailing—ranging from
inventory planning, labor scheduling, assortment
planning, store execution (including inventory
record inaccuracies and phantom stockouts), and
incentives (within the organization and in the sup-
ply chain). Over time, we wrote many articles and
case studies and summarized our findings in a
book The New Science of Retailing, which we co-
authored (Fisher and Raman 2010). Together, we
direct the Consortium for Operational Excellence in
Retailing (COER), an industry-academia research
group, and host the annual COER conference. By
far, the biggest satisfaction we gained during the
last 20 years was from mentoring and supervising
over a dozen doctoral students directly and in
teaching concepts in retail operations to thousands
of undergraduates, MBA students, and executive
participants.
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In 1995, when we began to research how retailers
could make better use of data, big data was not as big
as it is today. The data available to retailers was
mainly point-of-sale (POS) data, augmented by things
like loyalty cards, that gave insight into the demo-
graphics of customers buying the retailer’s products.
During the 15 years leading up to publishing The New
Science of Retailing, we discovered that even only sales
data, properly analyzed, can be extremely useful to a
retailer in improving decision-making and adding a
component of science to their art. But in 1995, retailing
was much more art than science and the use of even
sales data was limited. Over time this has changed,
and many exciting analytic tools have emerged, some
described below. Moreover, data truly has gotten big-
ger, as more and better data have emerged. Now we
have much new data, including ever-growing data
from e-tailing, in-store video, tracking of customers
within store via mobile phones, and smart fitting
rooms. Most e-tailers now scrape the websites of their
competitors to obtain competitive intelligence, like
what prices they are charging, that day. The Chinese
Internet retailer Yihaodian created a remarkable tech-
nology in which a “hot spot” can be created in a park-
ing lot or other open space that creates a display on a
customer smart phone that shows product on shelves
as though they were walking around a store. And of
course, we all await the opening of the technologically
rich Amazon ‘Go Store.’

These days, when we mention in a social setting
that we work with retailers, we are often met with
sympathy. “Oh, that’s too bad. Retailing’s in trouble,
isn’t it?” And certainly, we are confronted by a steady
stream of retail bad news about physical store



Fisher and Raman: Using Data and Big Data in Retailing

1666 Production and Operations Management 27(9), pp. 1665-1669, © 2018 Production and Operations Management Society

retailers closing stores, seeing their stocks plunge,
and not infrequently declaring bankruptcy.

Among the many examples of retail bad news is JC
Penny. While commenting on the turnaround that
incoming CEO Ron Johnson attempted unsuccessfully
at iconic US retailer JC Penney, investor Bill Ackman
summarized Johnson’s challenge as, “Build the
fastest growing retailer (0—7 million square feet in
15 months) while winding down the 110-year-old ico-
nic retailer at the same time ... that has a different
customer base and driving pricing experience...by
the way, we need those cash flows to fund the
growth.” Most retailers in the United States and in
many other developed markets can relate to this
challenge—they have to find ways to launch and
scale-up innovations successfully, while also execut-
ing and unwinding their current business model. In
other words, they have to “explore” new business
models and “exploit” their mature business concur-
rently (O'Reilly and Tushman 2011).

Much of the physical store retail malaise is attribu-
ted to the steady advance of e-tailing, led by Ama-
zon. One would think in a few years physical stores
would be a thing of the past. But to paraphrase Mark
Twain, reports of the stores’ death have been greatly
exaggerated. An August 17, 2017 U.S. Department of
Commerce report lists Q2 2017 E-Commerce Sales at
8.9% of total retail . One year prior, that number was
8% and the year before that 7%. So e-Commerce’s
share of retail revenue is growing linearly at the rate
of about 1%. If that were to continue (and most
growth rates do not continue unabated, they slow
down), in 40 years e-Commerce would still be less
than half of retailing. So stores will be with us for a
long time.

Fisher et al. (2017a,b) point out that mature retailers
can continue to prosper, even when they run out of
room for new stores, if they focus on growing sales in
their existing stores using data to optimize the drivers
of sales, including assortment, inventory, price, and
store staffing levels. Examples of retailers discussed
in the article that are doing this well, and prospering
thereby, include Home Depot and McDonald’s.

Data—and Big Data—can help retailers not only to
explore new opportunities and innovations but also
to execute their current business models and wind
down parts of the business that are not working. This
essay provides some guidelines on why Big Data rep-
resents a significant opportunity in retailing, and
identifies a few specific application areas that retailers
could consider.

Before we discuss how data can enable retailers to
improve their performance, it is helpful to understand
that retailing—both brick-and-mortar retailing and
e-commerce—is a high fixed-cost, low net margin
business. Net margins in retailing are commonly

around 2-3% of sales and significantly lower than
gross margin, labor cost, the cost of real estate, and
inventory levels. This means even small increases in
revenue have a big impact on profit. Consider, for
example, the impact of increasing sales by 1% for a
retailer with gross margins of 50% and net margin of
2%. The incremental sales will increase gross margin
dollars by 0.5% of sales; assuming fixed costs stay
unchanged, this will flow to the bottom line and
increase net profits by 25%. Similarly, as has been
shown in prior literature (Gaur et al. 2014), even small
errors in valuing a retailer’s inventory level can have
very significant impact on a retailer’s market capital-
ization. These examples help to illustrate why even
small changes in retail operations can have very sig-
nificant impact on a retailer’s net profits and market
capitalization. They also serve to explain why US
publicly listed retailers on average have delivered
stock-market returns that exceed the market average
even while facing a significantly higher risk of bank-
ruptcy than other listed firms.

2. How Data (and Big Data) Can
Help Retailers Innovate while
Executing Better

We describe below how retailers can use—and are
using—data about their customers and their business
operations more creatively to explore and exploit bet-
ter. We had discussed many illustrative examples a
few years ago in our book that was published in 2010;
so, we will highlight some more recent examples
here.

2.1. Innovation

Data and analytics provide retailers with tremendous
opportunity to innovate in their operations and their
business models. When we started studying retailing
a few decades ago, our primary focus had been on the
vast amounts of point-of-sale (POS) data that retailers
were gathering. Today, the POS data have been aug-
mented in numerous ways. In many ecommerce and
brick-and-mortar contexts, retailers can track not only
what is being sold at different locations and times
(through POS systems) but also who is buying these
items. Moreover, technology potentially allows retail-
ers to observe what a customer browses or tries on in
the fitting room before purchase. It is easy to visualize
how ecommerce retailers can track their customers’
browsing behavior. Brick-and-mortar retailers have
similar options too. For example, one retailer that we
are familiar with used RFID tags on clothes to track
which products were being tried on by customers in
fitting rooms. A supermarket chain (Larson et al.
2005) was able to use data obtained through RFID
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tags to track the path of shopping carts and hence,
customers, within the store. Video analysis and face
recognition technology potentially allow retailers to
track when an individual customer enters a store and
also identify the social networks that exist among cus-
tomers by knowing which customers tend to enter a
store together.

Leveraging these technologies will require retailers
to think creatively about offering new services and
developing new business models. Some retailers—
like Amazon.com (Amazon)—seem especially adept
at developing such services. Today, most products
are reviewed extensively at Amazon, and the com-
pany uses its vast data to identify for any consumers
“items that are frequently bought together” and
“customers who bought this item also bought.” It is
reasonable to expect that when “Amazon Go”"—
Amazon’s future store concept with very little or no
store staff—is rolled out, it will likely use cell phones
and video recognition technology to track customers
and RFID tags to track products.

It is hard to generalize about retailing broadly,
given its size and diversity. It is our sense though that
while retailers have been adept at using technology
incrementally, they have found it hard to reinvent
their business models based on the new technology.
The video retailer Blockbuster is often held up as a
canonical example. Why did Blockbuster not move
more aggressively in reinventing its business model?
Similarly, Borders—an excellent bookstore that we
have studied closely on multiple occasions—failed to
capitalize on the opportunity for selling books on the
Internet. In Borders case, the company also saw the
opportunity for doing so, and its annual report had
discussed the possibility in 1990 of distributing floppy
disks that customers could use to order books from
home—well before the launch of Amazon.com!

2.2. Execution

Data and Big data can also help retailers execute their
current business model better. In addition to enhanc-
ing the retailer’s market capitalization, superior exe-
cution can provide the cash flow needed to invest in
innovation projects. In recent years, we have seen at
our annual COER conferences how data can be used
to tackle new kinds of problems in retailing; in the fol-
lowing paragraphs, we explain how data can be used
to improve assortment, pricing, and store closing, and
to quantify the impact of stockouts on lost sales
and profits and of delivery time on revenue. Feng Qi
and Shanthikumar (2017) describe elsewhere in this
issue how the enhanced availability of data is influ-
encing academic research in many areas of operations
management. Their article, which includes many
applications in retailing, complements our study very
well.

2.2.1. Optimizing Store Assortments. Periodically,
retailers update the assortment of products carried in
the various categories in their stores, dropping some
products and adding others, in response to changing
demand patterns and to new products that have
entered the market. The hardest part of this process
is knowing what a potential new product will sell if
added to the assortment in a store, and how much of
those sales will be incremental and how much will
cannibalize the sales of existing products. Fisher and
Vaidyanathan (2012, 2014) describe a way to do this
by first identifying the attributes of the products in a
category, then using sales of existing products to
estimate the demand for attributes, and finally, esti-
mate the demand for a potential new product from
the demand for its constituent attributes. Examples
of attributes include size and price/value for tires,
and product, material, primary gemstone, and
price/value for jewelry. The parameters in a demand
model, attribute level demand shares in a store for
attributes and the probability a customer will substi-
tute to another attribute level if their first choice is
not in the assortment, are chosen to minimize the
deviation between actual sales and demand model
predictions for existing products. Implementations
of this approach have produced revenue increases of
3% to 6%.

2.2.2. Online Dynamic Pricing. A type of new
data that is enabled by e-commerce is the ability to
track a competitor’s prices, and indeed, many e-tailers
will use software to ‘scrape’ competitor web sites
daily to download the assortment of products they
carry, their prices and whether or not they are in
stock. Fisher et al. (2017a) describes a project with an
e-tailer who was collecting prices daily from several
competitors and wondering how to respond in their
own pricing. They formulate a model that estimates
demand for each product sold by the e-tailer based on
their prices and competitor prices, an experiment
with randomized prices to estimate the parameters in
the model, and a best-response pricing algorithm that
takes into account consumer choice behavior, com-
petitors’ actions, and supply parameters (procure-
ment costs, margin target, and manufacturer price
restrictions). Initial implementation of the algorithm
produced an 11% revenue increase in one category
and a 19% increase in a second, while maintaining
margin above a retailer-specified target.

2.2.3. Online Order Fulfillment Speed. Many
e-tailers and omni-channel retailers are making sub-
stantial investments to shorten customer order fulfill-
ment time. While it is plausible that customers will be
happier getting their order fulfilled more quickly,
there is little to no evidence on whether the increased
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revenue from one of these initiatives is sufficient to
justify the cost. Gallino et al. (2014) describes a
retailer that added a second Distribution Center
(DC) that reduced order fulfillment time for a seg-
ment of their customers from 5-9 days to 2—4 days.
A difference-in-difference analysis of revenue
before and after this event, while controlling for
other demand drivers, showed that this resulted in
a 4% revenue increase, an amount sufficient to more
than justify the cost of the second DC. The demand
model was also used to show that given the retail-
ers’ current volume, a third DC would not be cost
justified. This thus affords a retailer a technique for
determining the optimal investment in order fulfill-
ment speed.

2.24. Store Closing and Liquidation. Retailers
periodically need to identify those of their stores
that are not performing well and close them. More-
over, entire retail chains need to be liquidated from
time to time. In either case, retailers usually find
ways to liquidate, as profitably as possible, the
inventory in the store so as to recover as much cash
as possible for their investors and lenders; more
importantly, as a consequence of retailers becoming
more efficient at liquidation, lenders (e.g., big banks
in the United States) have become more comfortable
using inventory as a collateral for loans (see Foley
et al. 2015).

One of our former students, Nathan Craig, studied
the store liquidation problem extensively, and identi-
fied ways in which the process of liquidation could be
made more efficient. He showed that the performance
of a store during liquidation differs substantially from
its performance prior to liquidation. It is common for
sales to increase by a factor of 5 or 6 during the liqui-
dation period (relative to the same period the prior
year) at certain stores but hardly increase at other
stores in the same chain. Moreover, to the best of our
knowledge, the difference in performance cannot be
predicted in advance.

Professional liquidator firms (like our research part-
ner Gordon Brothers) understand the importance of
tracking store performance during liquidation and
making adjustments in price, inventory, and duration
of liquidation accordingly. Research described in
Craig and Raman (2016) showed that data-based fore-
casting and optimization could have improved the
net recovery on cost (i.e., the profit obtained during a
liquidation, stated as a percentage of the cost value of
liquidated inventory) by two to five percentage points
in the cases we examined. Interestingly, the experts’
decisions differed in some systematic ways from the
method that we proposed in our study. On mark-
downs, for example, experts typically take a smaller-
than-optimal markdown early in the liquidation and

take too steep a markdown toward the end of the
liquidation.

2.2.5. Estimating the Impact of B2B Service
Level on Demand. Most manufacturers know that
the orders they receive from retailers (and other B2B
customers) is a function of the service levels they pro-
vide. Most manufacturers are unable to quantify the
relationship in large part because they lack a method-
ology to identify the relationship in a retailer’s operat-
ing data.

Craig et al. (2016) uses data from a field experiment
at Hugo Boss to quantify the relationship in that con-
text and to present a method that could be used more
widely. Their method examines the relationship
between historical fill rates and order quantity, and
finds that a 1% increase in historical fill rate is associ-
ated with a statistically significant 11% increase in
current retailer demand, controlling for other factors
that might affect retailer demand.

3. Data and Big Data in Retailing: The
Potential is Huge, the Pilots are Very
Promising, but the Scale-up has
Been Challenging

The potential for using data and big data to improve
retail operations is huge. Numerous pilots have
shown that retailers can improve their performance
substantially. Moreover, as we have argued above,
the retail business is such that even small improve-
ments—such as, increases in sales (or reductions
in lost sales), reductions in bad inventory, or
reductions in labor costs—could improve profits
substantially.
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e are living in an era in which data is generated in huge volume with high velocity and variety. Big Data and tech-
W nology are reshaping our life and business. Our research inevitably needs to catch up with these changes. In this
short essay, we focus on two aspects of supply chain management, namely, demand management and manufacturing. We
feel that, while rapidly growing research on these two areas is contributed by scholars in computer science and engineer-
ing, the developments made by production and operations management society have been insufficient. We believe that
our field has the expertise and talent to push for advancements in the theory and practice of demand management and
manufacturing (of course, among many other areas) along unique dimensions. We summarize some relevant concepts
emerged with Big Data and present several prototype models to demonstrate how these concepts can lead to rethinking
of our research. Our intention is to generate interests and guide directions for new research in production and operations
management in the era of Big Data.
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principles that would lead to transformations of

1. Introduction ; :
today’s supply chains.

Technology has dramatically changed our life and In this short essay, we would like to focus on two
business in many ways. It is now possible to access, specific areas, namely, (i) demand learning and plan-
store, and process a massive amount of data, which ning and (ii) manufacturing. These two areas have
we would not have imagined not so long ago. Tradi- gained rapidly increasing interests from scholars in
tionally, firms make decisions based on data that are many different fields, while they seem to be, in our
directly coming from their day-to-day operations and opinion, under-researched by Production and Opera-

transactions or that are known to the industries they ~ tions Management community in recent years. We
are operating in and interacting with. Nowadays, believe, with the fourth industrial revolution and the
such data is available in much larger scopes and in rapid development of internet-based business mod-
much greater details. Moreover, a huge amount of els, POM researchers can make unique contributions,

external sources of data has become accessible. which cannot be neglected by other fields, to these
Many new frameworks and concepts have two areas.
appeared and have stimulated tremendous atten- An important trend enabled by Big Data and the
tions on Big Data, as well as associated technolo- associated technological developments, which is clo-
gies and business models, in industry and sely related to POM research, is personalization or indi-
academia. As an immediate implication of Big vidualization. Firms now possess a tremendous
Data, there are now a large amount of variables  amount of data on individual customers, allowing for
(co-factors, co-variates, and contexts) available to identifying their unique characteristics. It is now pos-
describe and predict, which aid improved decision sible for firms to become innovative in creating dis-
making. The advancements in data mining and tinct values to individual customers in an economical
machine learning have significantly improved the way. Values can be generated through personalized
accuracy of the descriptions and predictions sales process, personalized product design, personal-
derived from data. All these have intrigued  ized production, and personalized services. For
researchers from computer science, statistics, infor- example, smart devices are now recording and com-
mation and communication technologies, and man- municating diverse data which can help firms to iden-
ufacturing science and technology to devote to the tify opportunities of innovative service using learning

development of new technologies and management  algorithms; with the advances in laser sintering

1670



Feng and Shanthikumar: POM in the Era of Big Data

Production and Operations Management 27(9), pp. 1670-1684, © 2017 Production and Operations Management Society 1671

technology, the end customers may now create their
own designs and have their products “printed.” We
are truly entering an age of mass customization. As our
discussion unfolds, it will become evident that many
of the emerging concepts find their genetic roots to
personalization or individualization.

While we discuss many concepts that are becoming
popular, our focus is not to describe or speculate the
industrial trends. Instead, we would like to make
it explicit that research on issues or phenomena
emerged with Big Data should not be a mere inclusion
of data into our studies. We need to rethink our mod-
eling and analysis to integrate the available data. Such
an integration inevitably requires fundamental
changes in the way we develop methodologies and
applications. As Simchi-Levi (2014) states, “connect-
ing the realms of data, models, and decisions will
require our community to move out of our comfort
zone and address intellectual challenges that demand
bringing together statistics, computational science,
and operations research techniques.” We present sev-
eral prototype models to demonstrate how the think-
ing and modeling of POM issues may need to evolve
in order to integrate the data and to incorporate the
emerging concepts. The models presented below
are only examples, which can be elaborated and
enhanced in many different directions. Our intention
is to entice contributions from POM researchers to
areas that are traditionally within the core of POM
but may have been neglected recently by some of us.

2. Demand Learning and Planning

Accurate demand forecast has always been a major
puzzle in supply chain management. An industrial
survey conducted recently (Chase 2013) suggests that
the top focus area to use analytics and Big Data is
improving demand forecasting and planning. Despite
the presence of massive data, firms find it challenging
to convert the data into actionable information for
improved decision making. In this section, we review
the research development in demand forecasting, and
discuss how one may extract useful features from Big
Data to improve predictive accuracy and facilitate
prescriptive solutions.

2.1. From Aggregate to Individualized

Demand Forecasts

A vast literature has been devoted to develop and
analyze forecasting methods based on time series,
including exponential smoothing (Gardner 1985),
autoregressive models (Makridakis and Winkler
1983), diffusion models (Parker 1994), and Bayesian
models (West and Harrison 1997). As a commonality
among these methods, the inputs used are the (recent)
history of demands, and their relationship to the

output, i.e., the future demand, is described through
some functional form. A significant amount of effort
in this area is devoted to compare and combine vari-
ous forecasting methods (see, e.g.,, Clemen 1989,
Petropoulosa et al. 2014).

Improving demand forecasts using features (co-fac-
tors, co-variates, contexts, etc.) has been advocated in
the very long past. Statistical techniques played a cru-
cial part in the distant past, while statistical and
machine learning methods are now used to learn,
extract and select these features. For instance, when
developing forecasting models for specific industries,
domain knowledge can be used to refine the func-
tional form used to fit the data. Use of domain knowl-
edge in developing forecasts can be found in, for
example, the study on semiconductor companies by
Cakanyildirim and Roundy (2002) and in that on mili-
tary distribution systems by Gardner (1990). In addi-
tion, information of the economic, social and climate
environment in which the systems are operating can
be helpful to improve forecasts. The demographic
information is often used in retail demand forecast
(e.g., Feng et al. 2013, Hoch et al. 1995) and weather
index is often used in electricity consumption forecast
(e.g., Carbonneau et al. 2008).

With the emergence and rapid growth of the Inter-
net, decision makers are now swamped with a mas-
sive amount of accessible information, which enriches
the data describing the environment of the operations.
Real-time data on economic activities is also provided
by many companies including Google, MasterCard,
Federal Express, UPS, Intuit, among others. Such data
is shown to help improving the demand forecasts.
Goel et al. (2010) use web search data in linear or log-
linear time series models to forecast the revenue
generated from movie, video games and music; Choi
and Varian (2012) use Google Trend data to predict
the demand for auto parts; Yang et al. (2014) use web
traffic data to predict hotel demands; Huang and Van
Mieghem (2014) use online clickstream data to fore-
cast the off-line demand for a door manufacturer;
Cui et al. (2017) use Facebook data to predict daily
demand for an online retailer.

Though theoretically more information leads to bet-
ter forecasts, the challenge, however, comes from
dealing with the increased number of variables and
their ambiguous relationships. It is unlikely that the
commonly used linear, loglinear, exponential or
quadratic functional forms would fit all the variables.
Identifying a functional form with good fit generally
requires a large sample generated by repeated
events. Though the amount of the data available is
huge, the data collected, however, are often sparse
and non-repetitive. Take the web traffic data as an
example, the search on a trendy topic exhibits high
frequencies only for a short period of time. Recently,
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semi-nonparametric approach like quantile regression
(see, e.g., Feng and Shanthikumar 2018b, Lu and Shen
2015) and nonparametric approach like regression
tree (see, e.g., Ferreira et al. 2016), neural networks
(see, e.g., Srinivasan et al. 1995) and support vector
machines (see, e.g., Carbonneau et al. 2008) have been
introduced. Many studies suggest machine learning
approaches generally outperform the traditional time
series analysis in forecast accuracy, though the
improvement may not be always statistically
significant.

The research on demand forecast, including the
aforementioned studies, heavily focuses on describing
the aggregate demands. Features carefully identified
from Big Data can be used to reduce the uncertainties
and improve the predictions at the aggregate level.
More importantly, a great detail of individual cus-
tomers’ information is becoming available in Big
Data, and it is now possible to predict the demands at
the individual level. Individualized or personalized
learning can facilitate demand planning and shaping
at a much finer granularity than before. For the pur-
pose of demonstration, we will present some simple
models to obtain individualized forecasts and then
discuss how firms may use such forecasts for plan-
ning. Our intention here is to put seeds for more
indepth research in this area.

2.2. Individualized Demand Learning Models: A
Retail Example

Nowadays, retail stores can collect a tremendous
amount of information about their consumers. In the
case of an online retailer, a consumer’s entire purchas-
ing history is recorded in his registered account. In
the case of a brick-and-motor store, an individual con-
sumer can be identified through his membership
information or payment methods. Such information
allows the firm to understand and analyze the unique
characteristics of a repeat shopper, which makes the
prediction of individual’s future preference and
behavior possible.

2.2.1. A Model for Online Retailer. Take a typi-
cal consumer of an online store. At the time of regis-
tration, say, t;, the consumer provides his basic
information, which is denoted by an attribute vector,
Xo. This information may contain the consumer’s
name, address, payment information, etc. Over time,
the consumer visits the store website and leaves a his-
tory of browsing and purchasing. Suppose the con-
sumer’s nth visit of the store website happens at time
a, (with a; = t;). The clickstream during this arrival is
recorded in a vector, ¢,, which specifies the pages or
products browsed and the sequence. If the consumer
makes a purchase, then the order information is also
recorded. We use S, to denote the set of products

bought and g,; the quantity of product i € S, pur-
chased. We would also like to include the entire pro-
duct offering and the entire price list at the time of
this consumer’s arrival, as the available choice set
may very well influence the consumer’s purchasing
decision. Specifically, the retail store knows the price
Pn;j and available quantity y,.; of each product j € J,
offered at that time, where |, is the set of entire
product offering. We also define q, = (a1,
Gu2s -5 GniSa)s P = (Pus Pu2, -, Puyy,) and y, =
(Yn:1s Yn2, - -+ Yuyp,))- If the consumer visits the web-
site without a purchase, then S, = and only the
clickstream data ¢, are recorded. We use
z, = (¢y, Sy, Qs Jns P ¥i) to denote the information
collected on the consumer’s nth visit. With a slight
abuse of notation, we use n(t) to denote the number of
visits the consumer makes up to time ¢.

The entire history of one consumer, ie.,
{z1, 25, ..., Zyp}, can contain a massive amount of
variables. In addition, the retailer may be closely
monitoring the economic and social trends as well as
the offerings of its online competitors, which may also
play a role in influencing the consumer’s decision. For
ease of exposition, we do not explicitly include such
environmental data, as the same methodology can be
applied to the model involving such data.

In any case, fully describing a consumer with all the
available data requires dealing with a large number
of variables. To characterize and predict the behavior
of a consumer, one would extract and select critical
features of this consumer, denoted by x;, from the raw
data xo and {z, 25, ..., Z,p}. Feature extraction and
selection help to improve the efficiency of data stor-
age and processing. The commonly used methods
include filters, search algorithms, regularizations,
fuzzy neurons, Bayesian neural networks, support
vector machines, etc. Guyon et al. (2006) provide an
excellent summary of basic feature extraction and
selection strategies as well as recent advancements in
this area. Additional updates on feature selection
techniques can be found in Chandrashekar and Sahin
(2014) and Miao and Niu (2016). It is important to
keep in mind that the extraction and selection of fea-
tures depend heavily on the goal. Even from the same
data set, the groups of features identified can be very
different for different predictive variables.

In our context of a retail consumer, an elaborate
model for the consumer’s visit and purchase pattern
may assume that {(a,, z,), n =1, 2, ...} form a Mar-
kov renewal process. Depending on the application
context, the state space of this Markov renewal pro-
cess can be reduced by applying feature extraction
and selection techniques mentioned before on z, to
obtain a vector w,, with a manageable size.

Now suppose that the store has m registered cus-
tomers at time t and the transformed data for the jth
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consumer is {(a,({), wg)), n=12 ..n0t} with
extracted set of features x;’. We can estimate or pre-
dict the next arrival time of a consumer and his choice
of products based on the products and prices to be
offered. For example, if we choose to use the maxi-
mum likelihood estimator, the log-likelihood of
the next arrival time for all m consumers can be com-
puted as

m n9(H)—1 ‘ ) ) ‘ )

> 3 log (@l — aw X))

=1 k=1
- VPR R )

- Zlog (FA (t— P (1) W) (1) Xt ))a
=

where fg)(~, w,@, xp) is the density function of the

next arrival of consumer j after the kth arrival given
the consumer’s clickstream and purchase informa-
tion w,? ) and the extracted features x? ) at time t, and
F/ is the corresponding survival function.
Assuming a proportional hazard rate model for
all individual consumers or for a clustered subset of
consumers, a parametrized hazard rate function,
and a parametrized function that maps (w, x) to
the proportion, one may compute the maximum
likelihood estimates for the parameters. In addition,
we may estimate the transition probability for the
consumer’s purchases. That is, p(w, wg x;) = P
Wi = wIW, =wy, x;}. Hence for a consumer
with feature vector x;, whose last arrival before ¢ is
at time t with click and purchase data w, we can
obtain the density function of his arrival time after
time t as
fals + (t — 1), w, xi)

T )

s>0
Fa(t — 1, W, x¢)

)

and his next visit and purchase probability as

p(W, W; ).
If one prefers a non-parametric approach, tech-
niques such as Kernel smoothing regression

(Warnd and Jones 1995) could be used. Further-
more, by appropriately using the full data set and
state space reduction, it is also possible to estimate
lost sales and consumer substitutions in the event
of stockout. For example, we may find that a con-
sumer, who has regularly bought a specific product
(i.e., a product with high purchase probability) that
is out of stock, purchases a similar item that he
rarely picks (i.e., a product with low purchase
probability). With the above model, such an event
can be identified, which can then be used to esti-
mate the lost sales on a product and the resulting
substitution behaviors. In other words, the data-
integrated personalized demand model can lead to
a new way of learning and planning under
demand censoring.

2.2.2. A Model for In-Store Purchase. Compared
with online purchase, an important feature of in-store
shopping lies in its periodic pattern. For example, a
particular consumer may mostly shop during week-
ends, while occasionally picking up items during the
middle of a week. In this case, it is natural to model a
weekly purchase demand pattern.

Consider the situation where the store is able to
track the purchases of a consumer starting from week
t;. The record of a consumer reveals whether this con-
sumer has arrived (a,, = 1) or not (a,, = 0) during week
t, + n. In the event of the consumer arrival, the set of
items purchased S, and the quantity purchased q,, are
also recorded. Like in the case of the online store, the
retailer knows the store offering J,, as well as the cor-
responding prices and inventories (p,,, y,).

Based on our discussion of the previous model, the
retailer is able to extract feature x to characterize this
consumer. Let p4(1, S, q, ], p, ¥, ) be the probability
that the consumer with features x will visit the store
in the next week given that this consumer has arrived
in the current week, purchased the set of products S
in amounts q, and the store has offered the set of
products | with list prices p and inventories y at this
consumer’s arrival. We also define p4(0, J, p, y) to be
the probability of a visit by the consumer with fea-
tures x in the next week given that this consumer has
not visited in the current week. In the same token, we
can further estimate the exact visit day and purchase
quantities of a consumer conditioning on the event
that he will visit in the next week. Specifically, given
that the consumer will come in the next week, let
Paay/®), t =1, 2, ..., 7, be the probability that the con-
sumer will arrive on the jth day of the next week and
Di(pj), j € ], be the quantity of product j to be pur-
chased by the consumer when the price for product j
is set at p;.

We would also like to point out that personal-
ized consumer characterizations can help the retai-
ler to better predict the behavior of a new
consumer who does not have a long purchase his-
tory, or to better forecast the selling of a new pro-
duct which is on shelf for only a short period of
time. Techniques like clustering (Jain and Dubes
1988), support vector machines and Kernel smooth-
ing (Warnd and Jones 1995) can be used to match
the features of the new consumer to those with
longer purchasing histories for a specific purpose
(e.g., adoption of a certain product). Recent devel-
opment in this area has suggested that with the
massive amount of individualized data, segmenta-
tion of consumers based on Big Data can lead to
categorizations that are very different from those
generated in the past—Consumers who are seem-
ingly alike (e.g., with similar demographic features
and visit patterns) may behave very differently in
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their choices of specific products (see, e.g., Zhang
et al. 2017).

2.3. Demand Shaping with Individualized
Learning

Certainly, the individualized forecasts can be consoli-
dated to generate the aggregate forecast. In spirit, this
is similar to the approach used in many utility-based
consumer models, where the firm’s demand function
is derived by aggregating consumers’ choices based
on their respective utility functions (see the examples
discussed in Talluri and Van Ryzin 2004).

This, however, seems to go against the commonly
held notion in supply chain management that aggre-
gations along, say, products, regions and time, help to
improve forecast accuracy when individual demands
are not positively correlated. This notion has shown
to reduce supply-demand mismatch for decisions
with long lead time. In contrast, based on individual-
ized short-term forecast, retailers now can make daily
adjustments on shipment schedule, merchandising,
advertisement, and pricing. Moreover, individualized
demand forecasts have shown to enable firms to use
personalized pricing (e.g., Liu and Zhang 2006) and
personalized marketing (e.g., Bauer etal. 2005,
Shankar et al. 2016) to increase sales and revenue. Fol-
lowing the discussions in section 2.2, the demand
models derived can be directly used to predict how
an individual consumer would react to changes in
price, product offering or even web page design. The
retail firm thus can use these models to decide per-
sonalized product information or promotion deals
offered to specific consumers. For example, using the
prediction of each individual consumer’s store visit
day and purchase pattern in section 2.2.2, the retailer
can now try to nudge the consumers to come on a
specific day of a week by sending coupons valid only
for that day. This way, the retailer can smooth out the
store traffic and the demands for certain products
throughout the week to improve staff scheduling and
shelf space management. Furthermore, when the
stock of an item is running low, the retailer may
choose to entice a small identified group of consumers
from whom a great revenue can be generated. When
excess inventory is found for a newly introduced pro-
duct, the retailer may give promotions only to
selected consumers who are likely to generate contin-
uous future values.

More importantly, the benefit of aggregated
demand forecast comes under the premises of the
demand-driven planning framework, an approach
adopted by most firms. Under this framework,
demand forecasts are generated, marketing and sales
plans are derived, and then resource and production
planning are conducted based on the marketing
parameters. With the knowledge of individual

consumers, firms are now ready to shift from the
marketing-lead paradigm to a full integration of sales
and operations planning. Both the environmental fea-
tures and individual customer features are likely to
change rapidly. It is crucial that when adapting to
observed changes in demand patterns, the firm inte-
grates the the marketing strategies with resource and
inventory decisions. On the implementation front, the
new planning paradigm requires an integration of
predictive tools with prescriptive solutions, which
invokes the rethinking of forecasting and decision
making models to facilitate a direct transformation of
a massive amount of consumer data into efficient
decisions.

2.4. Preference Learning and Planning

Learning about customer preferences on product
functionalities or service offerings is an integral part
of demand learning. Customers’ behaviors and
responses have always been important input for the
successful designs of products and services (Bloch
1995). Many researchers in marketing have examined
how various factors may influence consumer
preferences.

With the wide use of search engines, consumer
reviews, blogs and so on, researchers have developed
various techniques for opinion mining and sentiment
analysis (see, e.g., Pang and Lee 2008) to extract useful
information to understand the trend of consumer
preferences, which may guide firms in their product
design and production processes. Moreover, with the
emergence of Internet of Things (IoT), an increasing
number of sensors and communication devices are
built into the products. The engineers can now collect
data to monitor and understand how customers are
using the products in the field, for example, whether
certain functionalities are never used and whether the
products are likely to break down under certain way
of use. Such data, together with analytics, can provide
accurate predictions of customer preferences on
design features and help firms to improve the design
and process.

Consumers’ need for uniqueness has been docu-
mented in marketing studies (e.g., Tian et al. 2001).
Personalized designs are becoming popular in areas
like apparel, medicine, tourist trip and cars. Digital
shoppers, in particular, are increasingly demanding
personalized service and experience (see, e.g., Amato-
Mccoy 2017). Big Data and IoT allow firms to better
understand consumers’ self-perceptions of unique-
ness and the role their purchasing decisions play in
expressing personal identity.

Before ending this subsection, we would like to
emphasize that, though we focus much of our discus-
sion in retail contexts, the concept of personalization
is not limited to consumer interfaces. Industries have
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moved toward personalized demand learning and
planning even in business-to-business interactions
(see, e.g., Balci and Cetin 2010). Moreover, as we dis-
cuss personalization, we mostly take the angle of a
firm’s planning to satisfy the customers. With the
growing development of technologies for online mar-
ketplaces, there soon will come a time where individ-
uals, with guaranteed anonymity and security, can
“sell” their personal data of product exploration and
purchasing behavior. This, in effect, can create com-
petition among firms to supply specific products that
the customers are looking to have (see, e.g, Wolf 2017)
or accurately advise the customers on the timing and
quantity availability. Such a trend would lead to a
completely different landscape for demand learning
and planning.

2.5. A Newsvendor Demonstration of Big Data
Enabled Forecasting and Planning

In this subsection, we use the newsvendor model as
the workhorse to show how Big Data can change the
demand modeling and operational planning, as well
as the possible evolution of research. The develop-
ment below is intended to provide a concrete demon-
stration of the concepts and ideas discussed
previously in a simple setting and to generate inter-
ests in further research along these directions. More
detailed analysis and results on data-integrated
newsvendor models can be found in Feng and
Shanthikumar (2017).

The newsvendor model has served as a basis to
explain phenomena, explore strategies and develop
understandings in operations management. In the
classical newsvendor model, the demand is specified
in an aggregate way as a random variable D and the
product (newspaper) is generic with no design varia-
tions. The newsvendor, when making a quantity deci-
sion y, obtains a profit of

¥(y,D) = smin{y,D} — cy,

where s is the per-unit revenue and c is the per-unit
cost. The goal is to maximize the expected profit
defined as

o) = EF D) = [ “Ep()dx — ey,

where Fp is the survival function of random vari-
able D.

In what follows, we introduce the design parame-
ters and the market or environmental features into the
newsvendor model separately in sections 2.5.1 and
2.5.2 to demonstrate how one may use available data
to enhance the aggregate forecast and planning. Then
in section 2.5.3, we show how to reconcile all the
available data and enable personalized newsvendor

planning. Finally, we include the aspect of supply
shortage in section 2.5.4 and show how a personalized
newsvendor can appropriately ration the limited
stock by enticing the “right” customers to purchase.

2.5.1. A Design Focused Newsvendor. There are
many extensions of the newsvendor model. The most
studied one is the pricing newsvendor model, where
the demand is price-dependent. That is, D is a
stochastic function of the price s chosen. To make
some connection to our discussion in section 2.4, one
may also consider design parameters of the product,
denoted by a vector w. Due to the complexity of fore-
casting the joint demand distribution for a large num-
ber of design alternatives and the challenge of
dealing with the issues in traditional manufacturing
(e.g., costly change over, efficiency reduction with
reduced batch size), it is natural to limit the number
of alternative designs. Suppose we can choose only
one design and D(s, w) is the aggregate demand.
Using the techniques discussed previously, the
newsvendor can learn through experiment, expert
opinion or customer input to identify a model
describing D(s, w). With this knowledge, the
newsvendor’s profit becomes

Y(s,y,D(s,w),w) = (s — 6(w)) min{D(s, w),y}
—c(w)y,

where d(w) and c(w), respectively, represent the
costs of selling and producing the product with
design variation w compared with the generic prod-
uct. The problem then becomes one of choosing the
optimal quantity decision y, price decision s and
design decision w to maximize the expected profit
expressed as

Bls.w) = (5= 0(w) [ Folriswid —c(wly

2.5.2. An Information Gathering Newsvendor.
Echoing the discussion in sections 2.1 and 2.2, the
newsvendor may use available environmental infor-
mation including web search data, industry trend,
and competitors” moves to improve the demand fore-
cast. Suppose V is the set of features that are selected
based on all the available data. These features V take
values V € {v : v € V} for some state space V C RV,
Statistical and machine learning approaches dis-
cussed in section 2.2 can provide the predictive char-
acterization of the demand D(s, v). The newsvendor’s
profit is now defined as

Y(s,y,D(s,V)) = smin{D(s, V),y} — cy,

and the expected profit as
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P(s,y;v) = [E[‘PJSS,]/,D(S,V)HV =V]
= s/ Fp(x;s,v)dx — cy.
0

This model could be seen as a version of the Big
Data newsvendor (see, e.g., Ban and Rudin 2017), as it
requires a predictive characterization of the demand
model based on the massive data available. Next, we
will add an important layer to this model by integrat-
ing the design parameters described in section 2.5.1,
which enables personalization.

2.5.3. A Big Data Newsvendor with Personalized
Design. As we demonstrate in section 2.2, Big
Data with statistical and machine learning algo-
rithms allows for identification of features that
accurately predict an individual’s behavior towards
a certain purchase (e.g., purchasing a specific
item at a certain price or choosing one item over
others). Moreover, with the emerging technologies
advancing smart manufacturing (see more discus-
sions in section 3), customized products can now be
produced efficiently. Firms are able to use the
knowledge learned from individual customers to
offer products that are catered toward unique
preferences.

Suppose that the newsvendor has identified such
characterizations of m high-value customers. These
high-value customers may have generated a large
revenue in the past and have shown significant
loyalty. Also, they highly value uniqueness or per-
sonal identity in the sense that they may exhibit
strong individual preferences on particular func-
tionalities of the product. Specifically, for each cus-
tomer j in this set, the newsvendor has a fairly
accurate prediction of the probability p;(s, v, w) that
customer j would purchase a product at price s
when the environmental features take the values v
and the design parameters are w.

The newsvendor would like to offer personalized
designs and prices targeting the high-value cus-
tomer. In the meanwhile, outside of the group of
high-value customers, general customers form an
aggregate demand D,,.(s, v, w), which the
newsvendor may learn using the framework dis-
cussed in section 2.2. Suppose that the newsvendor
orders y(>m) units of the generic product (W,,.1),
which takes a significant lead time. Upon receiving
the units, the newsvendor can approach each high-
value customer to offer a personalized variation
w;, j=1,2,...,m If a high-value customer accepts
the offer, a unit is modified at a cost d(w; and
sold to that customer. Otherwise, that unit
would be made available to general customers in
D,y 11841, V, Wyii1). Thus, the Big Data newsvendor
with personalized design makes a profit of

m

i1 MING Dy 1 (i1, Vs Wing1), Y — Z Dj(5j7V7 Wj)
=1

+ D (sj— 6(w;))Dj(sj, v, wj) — ey,
j=1

for y>m. Here Djs;, V, wj) is the personalized
demand with E[D;(s;, V, w;)|[V = v] = pi(s;, v,
wi), j = 1,2,...,m. Note that we have assumed
that a high-value customer, if not purchasing the
personalized product, will not purchase the generic
product.

While we consider m high-value customers with
unique preferences, the above model can be easily
recast to consider m classified groups of high-value
customers. Many clustering methods can be used to
categorize the customers in terms of their prefer-
ences in purchasing the product considered. Refine-
ments along several other directions are also
possible. For example, in the above model, we have
assumed that the high-value customers exhibit
strong personal preferences on the design and they
are unlikely to choose a generic product regardless
of the price differences between the products. In
other words, high-value customers do not substi-
tute. The consideration of substitution would
require one to predict the high-value customers’
demands when only the generic product is offered.
Specifically, suppose Dj(sui1, V, Wiy1) is  the
demand for the generic product (w,;) from high-
value customer j. We must have Dj(sj, v, wj) +
Dj(sm+1, vV, Wing1) < 1, as the customer will purchase
at most one unit. Then, the above profit function is
modified to

M=

Derl (Sm+17vvwm+l) + bj(sm+17vvwm+1)>

]

I
—

Spo1Min
m+1 m

y— Z;Dj(sj.,v,wj)
j=

+ (5= (W) Dy(s),v,w;) —cy.
j=1

In addition, the Big Data newsvendor with persona-
lization may potentially offer individualized prices
to every customer (including the general group). We
will discuss this possibility in the context of limited
supply in the next subsection.

2.54. A Big Data Newsvendor with Limited
Supply. Now suppose that there are only one design
of the product and the design parameters are defined
by the supplier, who offers a limited amount to the
newsvendor. Specifically, let D(s) be the aggregate
demand the newsvendor is facing when a price s is
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posted. Without supplier limitation, the newsvendor’s
optimal pricing and quantity decisions are

y_
(s",y")=arg max{s/ FD(x;s)dx—cy:§§s§§,y20},
0

where s and 5 are lower and upper bounds of a fea-
sible price. Supply shortage suggests that the sup-
plier can only offer a quantity y <y". If the
newsvendor chooses to receive all y units from the
supplier, the classical newsvendor would choose
the following optimal price

Y _
5(y) = arg max{s/ Fp(x;s)dx : §§s§§},
0

However, the newsvendor would like to set a
higher price sy > 5(y), while at the same time trying
to sell all y units. With aggregate planning, such a
policy is certainly suboptimal. A Big Data newsven-
dor with personalization may actually achieve a bet-
ter profit by posting a price s, than by posting a
price 5(y), yet selling all y units. Specifically, the
newsvendor would attempt to obtain personalized
features x that characterize the individual cus-
tomers. Let x; be the feature vector obtained for cus-
tomer j (e.g., through past purchasing behavior),
and p(s, v, x;) be the predicted probability that cus-
tomer j would purchase the product at price s when
the environmental feature vector is v. In cases where
such characterization is available for all customers
(Zhang et al. 2017), the Big Data newsvendor can
potentially offer personalized prices to each cus-
tomer. Such offers can be implemented by setting a
common list price sy and providing selected cus-
tomers with individualized coupons which give dis-
counts over the list price.

If the individualized coupons are offered to the
selected customers at the same time, the individual-
ized demand is still uncertain to the newsvendor, as
customers’ purchases are predicted in probabilities. A
potential strategy that the newsvendor can adopt is to
identify a set R € {1, 2, ..., m} of customers who are
price sensitive but are insensitive to the stockout of
this particular product. Coupons (i.e., price discounts)
that can only be redeemed at the end of the selling
season are offered to these customers. Let
R = {1,2,...,m}\R. Then the Big Data newsven-
dor’s profit becomes

soE[min{Dr(R, o), y}]
max (v—Dr(Rao))* ’
y— S (g .
+E maX{(]/*DT&:{,S[));)JF,DT(R@)} . Py siDj(sj, v, X))

where

Dr(R,s0) = ZDj(so,v, x;) and
jeR
DT(R7 S) = Z Dj(Sj,V, x])

jER

are, respectively, the aggregate demand generated
by customers without coupon and that by customers
with coupons. Because the customers with coupons
must wait until the end of the selling season for
redemptions, there is a chance that some of these
customers find the product sold out.

In the above formulation, the customers seeking to
redeem their coupons are randomly assigned the
available inventory in the event of stockout. In view
of this, one may, of course, extend the above model
by incorporating strategic customers’ behaviors.
Specifically, a customer with coupon may choose
between purchasing at the full price and waiting to
use the coupon by trading off his desire of possessing
the product and his sensitivity to price reduction. It is
not hard to see that a Big Data newsvendor with per-
sonalization is poised to reap a much higher profit
than the classical or even the information gathering
newsvendor is.

With today’s technologies, it is possible to further
improve the implementation of personalized offers.
Specifically, the newsvendor can choose customers in
sequence, assign a price, observe the outcome and
then choose the next customer (provided that the
newsvendor chooses a price-only strategy without
further interactions with individual customers; see
Feng and Shanthikumar 2018a). Such a sequential
selling process is now viable with the wide adoption
of smart mobile devices and the internet. The
newsvendor can push the individualized offers
directly to customers through text messaging or
email, and can have the customers committing pur-
chases through direct mobile or online payment. With
the inventions of technologies like Blockchain
(Pilkington 2016), such transactions can be imple-
mented in trusted and even anonymous ways.

To describe the sequential selling decisions, a
dynamic programming formulation is needed for the
Big Data newsvendor. Specifically, let v(i, R) be the
newsvendor’s optimal profit when there are i items
left and R is the set of customers who have not yet
received an offer. Then, the optimality equation is

(i, R) = max{p;(s,v,xj)(s + v(i — 1,R —j)
—o(i,R—j))+v(i,R—j):j€R,s<s<sp},
i=12,...,y, Rc{1,2,...n}.

The dynamic model provides an efficient way to sell
the limited supply y with the most profit through
sequential price discrimination.
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Realizing that the newsvendor is utilizing Big Data
in demand learning and planning, the supplier may
react accordingly. It would be interesting to investi-
gate how personalization strategies adopted by the
newsvendor may affect the supplier’s decisions (e.g.,
contract price, capacity, or even directly personalizing
the sales to the newsvendor). Moreover, while per-
sonalization is seen as a direction to build the core
competence by many firms, myopically implemented
strategies can backfire. Anecdotal evidence from
online retailing has suggested that an aggressive push
of personalized recommendation may lead to reduced
sales of the recommended products. Also, consumers
who take personalized offers may tend to reduce their
visits to the store website, leading to reduced co-
selling of other products. The consideration of Big
Data with personalization opens up many new
avenues for research in supply chain interactions.

3. Manufacturing

In manufacturing, the internet-triggered revolution,
termed Industry 4.0, is expected to change the land-
scape of the industries (Tomlin 2017). The most
important directions along this are represented by
Cyber-Physical Systems (CPSs) and Industrial Inter-
net of Things (IloT). CPSs offer integrations of compu-
tation, networking, and physical processes (Khaitan
and McCalley 2015). Moreover, the virtual and physi-
cal worlds are growing closer together to form the
Internet of Things (Monostori 2014).

In today’s manufacturing environment, sensors,
processors, actuators, and communication devices
are often in place to collect and process real time
data about the machines, the processes, and the
products. CPS would enable the communications
between machines, between machines and prod-
ucts, and between machines and humans. Machines
may become self-controlled on certain tasks, as well
as interacting with humans through interfaces. Via
learning and interaction over networks, both facto-
ries and products become smart. Areas including
robotic systems, smart grid, autonomous automo-
bile, and medical monitoring are among the first
adopters of these concepts. With the advancement
in automation using sensors and networked machi-
nes, an extreme amount of data is continuously
generated.

In the classical automation pyramid, the communi-
cation hierarchy moves from the sensor level up to
the device level, control level, plant level and eventu-
ally the enterprise level, and the exchanges often
occur only between adjacent levels. The CPS-based
automation, in contrast, is breaking the communica-
tion boundaries of the hierarchical levels, transform-
ing the pyramid into a network. In other words, the

vision is an evolution toward autonomous and social
production systems.

In the last decade, the related research has rapidly
emerged and grown in computer science, statistics,
information and communication technologies, and
manufacturing science and technology. Many of the
studies there have intricate connections to our
research. For example, an enabler for automation is
the design of learning architectures and learning algo-
rithms that are adaptive in response to significant
events while remaining stable when facing irrelevant
events. Moreover, the changes in information commu-
nication and learning structure entail the need for
deviations from the traditional hierarchical planning
approaches.

3.1. Contributions Needed from Production and
Operations Management

The focus of the computer science and engineering lit-
erature is on developing predictive informatics tools to
manage Big Data. Adaptation and integration of these
predictive tools into prescriptive decisions are where
we believe POM researchers can contribute. We iden-
tify three important aspects that are closely related to
our expertise. They are individualized production,
integration and coordination over distributed net-
works, and connecting production and services.

3.1.1. Individualized Production. The idea of
individualized production is not new. Considerable
attentions were given to this topic around early 1990’s
from researchers in manufacturing and service opera-
tions and in marketing. Techniques for mass cus-
tomization, including modularization, setup reduction,
and postponement, have been taught in operations
management classes.

In the smart manufacturing environment, mass cus-
tomization is leading its way through. Techniques like
additive manufacturing (e.g., 3D printing) and recon-
figurable manufacturing have enabled quick reaction
to changing customer requirements with cost-effective
production. The new information communication, pro-
cessing, and analytics tools now reconcile knowledge
of manufacturing process and consumer applications,
making customized products also intelligent. All these
have expanded the landscape of mass customization.

Recently, a few researchers have paid attention to
new operational phenomena induced by individual-
ized production techniques. For example, Song and
Zhang (2016) study management of inventory and
logistics systems when 3D printing are used to pro-
duce spare parts. Dong et al. (2017) analyze assort-
ment decisions after adopting 3D printing. Additional
research on understanding the process, variety,
scheduling and inventory management would make
contributions to shape the trend in industry.
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3.1.2. Integration and Coordination over Distrib-
uted Networks. With the increasing complexity of
products and processes, integration has always been
the focal point in the development of Industry 4.0.
Practitioners and academics identify the challenges in
horizontal integration through value network, vertical
integration of networked manufacturing, and end-to-
end digital integration of engineering across the entire
value chain systems (Kagermann et al. 2013).

Data availability and visibility throughout the
entire network is a prerequisite to build and integrate
the analytics capabilities (Srinivasan and Swink 2017).
This requires extensive real time information sharing
across the boundaries of legally independent organi-
zations, such that these organizations can share
competence and exploit increased values and oppor-
tunities, eventually forming virtual corporations
(Davidow and Malone 1992). For small and medium
enterprises (SME), who each have limited resources
and capabilities, collaborative development and man-
ufacturing environments have become particularly
important for their survival and success. In cloud-
based design and manufacturing systems (Wu et al.
2015), resources are highly distributed over the net-
work. To sustain collaborations, the business model
has shifted from offering superior products to collec-
tively offering superior manufacturing capability
(Brettel et al. 2014).

Two aspects associated with this shifting business
model are particularly relevant to POM research,
namely, information exchange and incentive coordina-
tion. While we all know that information sharing
enables collaboration efficiency, long-standing and
significant challenges are yet to be addressed. One
obstacle hindering seamless collaborations is the lack
of trust when data is transmitted across organiza-
tional boundaries. This is especially the situation
when a collaborator may also compete on the mar-
ket. Even otherwise, firms concern the implied risks
through data sharing on security of proprietary
information and protection of intellectual property.
Studies on SMEs suggest that, while information
sharing can trigger innovation, asymmetric learning
can lead to learning races (see, e.g., Bounckena and
Kraus 2013). These issues, resulting in high coordi-
nation costs, have led to the failures of many collabo-
rations. For example, more often than not, the data
from sensors on machines are collected by the equip-
ment supplier, while the data from sensors on prod-
ucts are collected by the manufacturer. Due to the
concern of leaking proprietary information, equip-
ment suppliers are reluctant to share the real time
machine status, which may very well affect the pro-
cess productivity and quality. Though there has been
a large literature in operations management on coor-
dination through appropriate contracting, little on

collaboration with data exchange mechanism is
studied.

On the coordination front, the goal of a collabora-
tive network is to balance and consolidate limited
resources across different organizations to expand the
overall capability. This requires optimization of
resource allocation and capability investment in a dis-
tributed network. Understanding the distributions of
resource, information, responsibility, and decision
authority requires rethinking of the coordination
models studied in supply chain management.
Approaches like evolutionary games (see, e.g., Friedman
1991), which have been extensively used in eco-
nomics, computer science, social science, and physics,
can be introduced to understand the dynamic adap-
tion and evolution of new technology in collaborated
networks.

3.1.3. Connecting Production and Services. An
envisioned smart manufacturing system involves
machines that are self-aware, self-learning and
self-maintained. Machines would be able to actively
suggest task arrangements and adjust operational
parameters to maximize productivity and quality.
Moreover, machines could assess their own health
and use information from their peers for maintenance
or adjustment to avoid potential issues (Lee et al.
2014). With these capabilities, real time data from out-
side of the organization (e.g., suppliers or end cus-
tomers) can be directly adopted to enhance the
manufacturing processes in order to eventually
improve the experience of the end customers. Though
self-learning machines are yet far from wide imple-
mentation, it is recognized in industries that service is
becoming an increasing part of production. The con-
cept of manufacturing servitization (Vandermerwe
and Rada 1989), advocating customer focus, empha-
sizes the combination of products, services, support,
and knowledge in developing innovated value-added
service to enhance core competence.

With an increasing amount of sensors and commu-
nication devices placed on smart products, produc-
tion engineers can now gather real time information
on how end customers are using the products in the
field. Such data allows manufacturing facilities to
quickly adjust the production plan and quality con-
trol, or even process design and product design, to
better service the end customer.

3.2. Example: Collaborative Learning in

Machine Maintenance

In this subsection, we use the planning of machine
maintenance as an example to illustrate how some of
the aspects discussed in the previous subsection can
lead to management approaches that are different
from the classical models.
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Big Data learning from IloT (e.g., sensors) for
machine maintenance and root cause analysis has
gained momentum recently. According to a McKinsey
report (Dilda et al. 2017), predictive maintenance typ-
ically reduces machine down time by 30%-50% and
increases machine life by 20%—40%. In general the
learning for such predictive maintenance uses sensor
measurements and machine status. The learning
about maintenance is generally conducted by the
machine tool suppliers, while the learning on process
and quality improvement is generally performed by
the product manufacturer. Data sharing between the
supplier and the manufacturer is often stopped by the
concerns of leaking proprietary information. Also,
the machine tool suppliers often worry that unex-
pected fluctuations in sensor collected data may lead
to immediate complaints from the manufacturers,
hurting the perceived quality and brand image. In
many situations, however, the process information is
useful for the equipment supplier to understand the
factors influencing machine performance, and the
machine status information is valuable for the manu-
facturer to guide process improvements and produc-
tion schedules. Due to the lack of data exchange, it is
very typical that the machine tool supplier, who offers
service contracts and takes the responsibility for
maintaining the equipment, would trigger a mainte-
nance solely based on the machine senor measure-
ments. While this approach of maintenance planning
may work well in automatic transfer lines (see, e.g.,
Buzacott and Shanthikumar 1992) that produce the
same parts in repetitive cycles, it can be suboptimal
for multi-product manufacturing facilities.

Let us focus on a manufacturing facility (e.g., a job
shop or a flexible manufacturing system) that pro-
duces multiple product types. To effectively and effi-
ciently manage the line productivity, a predictive
algorithm to identify maintenance timing is needed.
Certainly, the machine tools have their intrinsic aging
processes (see, e.g., Cinlar et al. 1989). The levels of
stress, wear and energy use placed on the machine
tools are generally different when producing different
products. These factors play a crucial role in affecting
machine deteriorations. Therefore, a pure time-based
aging model cannot accurately predict the health of
the machine tools. Instead, one needs to understand
the product mix and its implication on the aging pro-
cesses. In addition, it may be appropriate to perform a
maintenance before the production of a specific pro-
duct that induces high stress, wear or energy require-
ments on the machine tool, but to postpone
maintenance to after the production of a product that
is less demanding. Take an example from the semi-
conductor manufacturing process (Nurani et al
1996). The chamber of an etcher may get dirty with
tiny particles and may need to be cleaned. The

particles in the chambers can potentially cause yield
loss to chips with a small line width and line spacing,
while they may not affect the yield for less sensitive
chips (i.e., those with a wider line width and line
spacing). Hence learning for predictive maintenance
has to be carried out in conjunction with the produc-
tion schedule.

In the reminder of this subsection, we first present a
basic model of stochastic machine maintenance. Then,
we add layers to this model to demonstrate how col-
laborative learning with Big Data and IIoT can lead to
rethinking of the classical planning approach.

3.2.1. Sensor Data Triggered Machine Mainte-
nance. Suppose the sensor identifiable states of the
machine are {1, 2, ..., m} with 1 denoting the healthi-
est or new state and m representing the failure state.
Careful monitoring of the machine using senors has
revealed an aggregate transition probability matrix
P = (pj), i,j€{1,2,...,m} (see details in Sloan
and Shanthikumar 2000). The knowledge P is aggre-
gate because it is derived based on the historical
sensor data. The actual production schedule involv-
ing product types is not integrated into the learning
of P.

Now suppose we are producing n different product
types at a required ratio of y;:yp: iy, with
Z]’-’Zl 7; = 1. This ratio reflects the mix of the product
demands that the firm anticipates from its customers.
Product type j brings a profit of 7; and the aggregate

yield of productj is y;.
At the beginning of period t, the machine status
X €{1,2,...,m} is observed. If the machine fails,

i.e., X; = m, repair is performed at a cost cg to bring
the machine state back to new, ie., X;;; = 1. If the
machine is working properly, i.e., X; < m, a decision
needs to be made in terms of whether or not to sched-
ule a preventive maintenance in the current period. If
so, the machine state is restored to X;;; = 1 at the end
of the current period and a cost of cys(<cg) is charged
for maintenance. Note that we have assumed that
repair or maintenance takes exactly one period. Con-
sideration of a general repair time can be easily incor-
porated and does not change the main insights of the
model.

If production continues in period t, the machine
state changes according to the transition probability
matrix P. Due to possible yield losses, the firm has to
carefully decide the input mix so that the numbers of
final products passing quality assurance follow
roughly the ratios y; : y2 : - : y,. To achieve this, pro-
duct j is chosen to be processed at random with
probability

_%i 1
}/J'Z;'Llﬁ

B
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Note that we seek policies that meet the required
output ratio in expectation. We will use this require-
ment in the rest of this section. However, one may
use actual counts on successful production (which
enlarges the state space) and dynamically adjust
the input mix to make the output mix as close as
possible to the required ratio.

Let v;.c(?) and v..p(7), respectively, denote the opti-
mal profits for machine state i when production con-
tinues and when maintenance is scheduled. Then, the
optimal profit function at the beginning of period t,
denoted by v,(i), is simply the larger one of v;.c(i) and
vepm(D. That is,

(i) = max{opm(i), v0p.c(i)}, i=1,2,...,m—1,

where

vem(i) = —em + v (1), i=1,2,...

Ot C Z qutﬂ (]

i=1,2,...m—1

=

= ﬁ]]/]r]a
=

and o is the discount factor. Furthermore,

ve(m) = —cg + owpy1(1).
The above equations constitute the formulation
of the Markov decision model for machine
maintenance.

Naturally, the machine in production is likely to stay
in a healthier state if its initial state is healthier. This
monotone relationship can be reflected by assuming
that the transition probability matrix P is stochastically
monotone. Under this assumption, it is easy to show
(see, e.g., Ross 1983) that there exists a threshold ¢ such
that the machine should be subject to maintenance if
the sensor reported machine state is ¢ or larger. This
control is monitored by the machine tool supplier, who
triggers a maintenance based on sensor data.

3.2.2. Sensor Data Triggered Machine Mainte-
nance with Yield Knowledge. A little reflection of
the above model reveals that the yields of different
products can be different at different states of the
machine. To predict the yield of product j produced
under machine state i, denoted by y;;, the machine tool
supplier and the manufacturer need to collaborate on
data sharing and learning. This knowledge certainly
improves the machine maintenance decision.

To ensure the output ratios y; : y2 : -+ : y,, the pro-
duction input mix must satisfy

Vj 1

Bi=—ir—>
! Yij D k1 Y/ Yik

In other words, product j is selected for processing
with probability f; when the machine state is i.
Also, the revenue generated by the machine
becomes state-dependent, i.e.,

r Z) = Z ﬁ,]y,]rj
j=1

Now the problem formulated in section 3.2.1 can be
modified to

Ut(i) = maX{Ut;M (i)7vt:C(i)}a
Ut(m) = —CR + “Ut+1(1)7

vem (i) = —cm + a1 (1),

V(i )+ Z Piior(j)-

It is easy to show that a threshold maintenance pol-
icy continues to be optimal provided that the revenue
r(i) generated is increasing in the healthiness of the
machine (i.e., decreasing in 7). Under such collabora-
tive learning on machine state dependent yields, the
machine tool supplier can trigger maintenance calls.

3.2.3. Integrated Production and Maintenance
Scheduling. When the manufacturer collaborates
with the machine tool supplier on learning about
machine state, the production scheduling can be coor-
dinated with the machine state. This, of course, must
be under the premises that the machine status data is
made available by the supplier.

In addition to jointly determining whether or not
production process should be interrupted for mainte-
nance, the manufacturer also needs to decide the pro-
duction input mix ﬁt:xd, j=12,...,n, in period ¢t
when the machine state is x;. Certainly the input mix
decision is only made if no maintenance activity is
scheduled, which we denote by an indicator function
Ii.c(xp). Specifically, Ii.c(x) =1 if we choose to con-
tinue production at time ¢t when the machine state is
x(#m), and I.c(x)) = 0 if we choose to schedule a
maintenance at time f. Naturally, I,.c(m) = 0. Thus,
the dynamic production and maintenance scheduling
problem becomes

ItC(Xr) /ftXuJXHV/
|:Zt 1% ( (1- Irc(Xr))CM I(Xt =mp(eR— CM)>:|
(ﬁtz]7]_12 )71_12 113

It:C( ), 1—1125 , M5 Itc( ) 0

T
s.t. E [Z It:C(Xt)ﬁt:ijyXf]“|

t=1

T n
E LE; Inc(X:) ,; ﬁtx,kyxtkl , j=12,...n

max
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Here the state transitions are governed by:

P{Xi11 = 0X; = i,I1.c(i) = 1} = pur,
i=1,2,..m—-1;,4=1,2,....m,
P{Xi1 = 1X; = i,11.c(i) = 0} =1,
P{Xy1 =1Xy =m} =1.

i=1,2,...,m—1,

With IIoT and IoT development platforms (like
GE’s Predix, Amazon’s AWS, Microsoft's Azure and
others), many machine tool suppliers have opted to
maintain tools at the shop floors. Such servitization is
becoming increasingly popular, making it possible to
jointly optimize the production and maintenance
schedules. The formulation above attempts to identify
the best policy for the entire production system. In
reality, collaborative learning and decision making
are facilitated through bilateral contracts between the
machine tool supplier and the manufacturer. Though
contracts and coordination have been extensively
researched by the production and operations manage-
ment researchers, little work has considered appro-
priate contract terms involving information exchange.
This is an area that needs new development to guide
practice. For example, in many industries, the
machine tool suppliers charge manufactures based on
machine up time. It is worth investigating whether
such a payment scheme would facilitate long-term
coordination and information exchange.

3.2.4. Integrated Production and Maintenance
Scheduling with Collaborative Learning. Further
collaboration between the machine tool supplier and
the manufacturer can enable the learning of the
machine deterioration based on the products pro-
cessed. Matching the data from machine sensors and
production schedules, it is possible to understand
how the machine state transition varies with the pro-
cessing of different products. Let P? be the transition
probability matrix of the machine status when pro-
duct j is produced. Now the problem formulation in
section 3.2.3 has a different state transition (though
the expressions of the objective and product mix con-
straint remain the same):

P{Xi1 = 01X = i, By j = 1.2, (i) = 1}
n -

= Bl i=1,2,.m—1; £=1,2,....m,
j=1

P{Xp1 = O|X; = i, Inc(i) = 0} =1,
P{Xprl = 1|Xt = m} =1.

i=1,2,...,m—1,

As we have mentioned before, one major obstacle
in collaborative learning and planning lies in the con-
cern of intellectual property violation in the data
exchange process. Researchers from engineering have

given tremendous emphasis on the design of secured
data exchange technologies and protocols. From the
production and operations management perspective,
an important question is to identify the right data in
the right format (e.g., the right level of aggregation or
the right surrogate measures) so that collaboration
can be achieved, while ill incentives are not created.

4. Remarks

We have briefly discussed some thoughts on how Big
Data may change the POM research in demand plan-
ning and manufacturing. There are of course many
other important and interesting topics (e.g., crowd
sourcing, blockchain, sharing economy, lock boxes or
drones, among many others) left out in our discus-
sions. Even on topics we have covered, their impact
on supply chain may go much beyond the scope of
demand planning and manufacturing. For example,
an issue that has gathered many debates is regarding
whether to set up local 3D printing facilities or to
build centralized foundries for consumer and indus-
trial products. Such a decision is unlikely to be dic-
tated solely by the traditional logistics network
design parameters like the costs of production, trans-
portation, and inventory. Instead, it will be heavily
driven by customers’ need for personalization with
customized designs.

While Big Data enables extractions of useful fea-
tures for better prediction, researchers should be
mindful of the veracity associated with Big Data. On
the one hand, unexpected trend in the data may con-
tain early warnings of pattern changes. Timely detec-
tion of such changed patterns can generate great
business value. On the other hand, biases, noise and
abnormality in data post the biggest challenges in
data and analytics based decision making. For exam-
ple, Mukherjee and Sinha (2017) suggest that noisy
signals contained unstructured user reports may
induce under-reactions in medical device recall
decisions.

We are at the very beginning of developing models
for supply chain management that incorporate the
real effects of Big Data. These effects are fell through-
out the supply chain via the recognition of features
and personalization. Going forward we have to pay
attention to the way the supply chain will be managed
as a consequence of the available information. Using
Big Data is not merely to expand our models with
additional features. Moreover, not every phenomenon
or issue must be studied through models that are data
driven or data integrated. For example, when a new
policy or technology is to be introduced, one may
need to understand its potential impact using data-
supported theories and data-supported models. Also,
models formulated with the awareness of potentially
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available data can still provide understandings for
general contexts without having to postulate the real
data as inputs. In our view, what is important for our
research in the era of Big Data is not merely the ability
to collect data and carry out regressions. The way we
think about operational processes and decision mak-
ing needs to be transformed fundamentally.
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1. Introduction

Big data is here to stay, but what are some of the envi-
ronmental and social consequences of the big data
revolution? How sustainable is big data? The advent
of big data provides revolutionary new opportunities
for increased understanding of the environmental
and social impacts of supply chains, with the con-
comitant potential for improvement along those
dimensions. Big data also gives rise to both known
and unknown environmental and social challenges.
The purpose of this essay is to highlight some of those
challenges. My intention is not to argue that big data
is a phenomenon to be resisted. However, any techno-
logical breakthrough, if adopted on a sufficiently
wide scale, will have far-reaching externalities, both
positive and negative.

I use the term big data according to the emerging
consensus (e.g., Etzion and Aragon-Correa 2016, p.
148), which holds that big data is not necessarily
“big” but rather that it is differentiated from “tradi-
tional data” by any of the “4Vs”: volume, variety, veloc-
ity, and veracity. Goes (2014) argues that the promise
of big data is the ability to exploit various combina-
tions of these 4Vs.

Define sustainability loosely as making decisions
while simultaneously taking into account economic,
environmental, and social considerations. When sus-
tainability is defined this way, it becomes clear that
sustainability is inherently intertwined with big data.
When we seek to measure the environmental and
social impact of our decisions, an explosion in both
the volume and the variety of data naturally results.
Environmental impacts could be on global climate,
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health of watersheds, human health, biodiversity, etc.,
while social impacts could affect workers, consumers,
communities, societies, or value chain actors.

In the past, we may have received periodic updates
on climatic conditions, or sporadic insights into the
treatment of workers at vendor facilities. Now, how-
ever, the real-time monitoring of such phenomena at
ever greater granularity results in a much greater vol-
ume and velocity of data. Now that such data can
include anything from temperatures to satellite
images to social media posts, the variety is widening
too. The veracity of data also varies widely, depending
on factors such as whether weather data are observed
or extrapolated, or whether worker conditions are
self-reported or independently verified.

Although the main purpose of this essay is to high-
light sustainability-related challenges associated with
big data, I do not want it to sound negative. So, I will
first provide a few (unpresentative and unscientifically
selected) examples of the exciting benefits and opportu-
nities that big data already provides or promises.

2. Examples of Big Data and
Sustainable Operations

This section offers a few examples of how big data is,
or can be, used to enhance our understanding of the
impacts supply chains have on environmental and
social conditions, and vice versa. These examples are
not intended to be comprehensive or representative.
Instead, they are provided to illustrate the wide range
of (potential) applications of big data to sustainable
operations, and to serve as a counterweight to the
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subsequent section’s emphasis on the emerging sus-
tainability-related challenges associated with big
data.

Many of the examples of firms successfully reduc-
ing their environmental footprint involve harnessing
large amounts of timely data. The importance of per-
formance measurement as a tool to improve environ-
mental performance has long been known, as the
examples in Corbett and Van Wassenhove (1993)
illustrate. One good example is the energy manage-
ment program at Walt Disney World (Allen 2005),
which was initiated in the late 1990s and already
involved collecting hourly information on the con-
sumption of electricity, water, and other resources at
a highly localized level. By gathering and sharing this
information with the appropriate stakeholders (e.g.,
the maintenance crew or executive managers), Walt
Disney World has been able to reduce its annual elec-
tricity usage by some 100 million kWh, while earning
a 53% internal rate of return for their efforts. Monthly
report cards provide historical and benchmarking
information; showing the managers of Epcot how
they performed relative to the Animal Kingdom helps
to generate healthy competition among them. Con-
versely, real-time monitoring of a building’s HVAC
system allows a repair crew to be notified immedi-
ately if a control for a door to an air-conditioned space
malfunctions in the evening, rather than only finding
out when the next utility bill arrives a month or two
later. The velocity with which the data is collected,
processed, and shared, is critical to ensuring the data
has the intended impact on energy consumption.

In a different setting, Marr (2017) points out how
Caterpillar’s Marine Division uses shipboard sensors
to monitor a wide range of systems. The resulting
data provide new insights into optimal operating
practices; in one instance, a customer discovered that
running more generators at lower power is more effi-
cient than running fewer generators at maximum out-
put. Big data help firms design better materials
(National Academy of Sciences 2014), such as new
photovoltaic materials with higher efficiency (p. 17)
or GM’s new thermoelectric materials for higher fuel
efficiency (p. 24).

It is well understood that a changing climate will
have a wide range of consequences for all kinds of
organizations and supply chains. The exact effects of
climate change on the conditions in any given location
are still not well understood, but the combination of
increasingly comprehensive historical data and fine-
grained climate simulation models allows for more
tailored predictions of how different regions will be
affected. Some activities, such as wine growing and
ski tourism, depend heavily on highly local microcli-
mates, so forecasts must be available at a much more
detailed spatial scale than was previously possible.

For instance, Jones et al. (2005) combine data on the
ratings of wines from regions around the world with
a widely used climate simulation model (HadCM3) to
predict how the wines from each region will be
affected, positively or negatively, by changes in local
climatic conditions from 2000 to 2049. Ski tourism,
which depends on the thickness and the persistence
of snowpack on specific slopes, provides a similar
example. Sun et al. (2016) used statistical downscal-
ing to predict that various mountain locations in
Southern California will be snow-free several weeks
earlier by mid-century than is currently the case.
Investors in winter sports facilities would do well to
consider this kind of detailed forecast. In some
instances, the activities of the supply chain itself cause
changes in weather patterns: Thornton et al. (2017)
combine data on shipping emissions and on 1.5 bil-
lion lightning strikes on a 10 x 10 km? grid to find
that the number of lightning strikes was elevated by
20%-100% along polluted shipping lanes. These are
just a few examples; there are numerous similar
studies.

This kind of data gathering is no longer constrained
to earthbound monitoring stations, as various satellite-
based systems provide more data with more detail
and at higher frequencies. This trend will continue to
accelerate because of the constant effort to miniaturize
satellites. Woellert et al. (2011) outline a range of
opportunities being opened by the use of CubeSats.
These are small satellites that have a mass of around
1 kg and a volume of 10 cm®. CubeSats provide much
more fine-grained monitoring of atmospheric condi-
tions. These cheap satellites will also allow near real-
time tracking of animal populations, and they can
help disaster relief agencies allocate resources by pro-
viding images of earthquake damage. Satellite ima-
gery is already being used to detect illegal logging
after the fact, but Lynch et al. (2013) argue that daily
observations are required if we are to take preventive
action against illegal logging, instead of just observing
it from a distance. Laurance and Balmford (2013)
propose that satellite data could help prevent inap-
propriate road-building. This would help prevent
ecological disasters long before they occur, because
even a single road through a forest can wreak envi-
ronmental damage far out of proportion to the physi-
cal footprint of the road itself. All these kinds of
analyses will require a staggering amount of data.
And, the attendant databases will rapidly become
massive, because many studies of this kind require
longitudinal data with very fine spatial and temporal
resolution.

At the opposite end of the spectrum, firms are
becoming more and more interested in the conditions
experienced by workers in their supply chains. Tradi-
tionally, much work in this area depended on sending
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auditors, third-party or otherwise, to assess the extent
to which factories implemented the environmental
and social practices expected of them. With the
advent of smartphones, workers in factories around
the world can now directly and anonymously report
any conditions or practices they are exposed to. For
instance, Walmart uses such worker-generated data
collected through LaborVoices (de Felice 2015, p. 553).
LaborLink is a similar effort. Firms must navigate
between great opportunities and serious challenges to
make the best decisions about how to use this data,
since it comes from individual workers, in real time,
covering a range of dimensions, and with unknown
accuracy.

It would be easy to provide countless other exam-
ples of how big data can enhance sustainability,
whether by allowing firms to make better decisions
about the operation of their supply chains, or by
allowing regulators to exert tighter control over those
supply chains. The opportunities are boundless and
exciting. Nevertheless, the big data revolution is also
rapidly generating sustainability-related challenges of
its own, which is the subject of the next section.

3. Sustainability Challenges Related to
Big Data

The advent of big data presents unbounded opportu-
nities to improve decision-making and to ensure more
sustainable outcomes. However, like any other tech-
nological advance, it also brings challenges that will
become increasingly acute as the use of big data
becomes more prevalent. Some of these challenges
may seem far-fetched today, but recall that the inter-
nal combustion engine was once considered an envi-
ronmental breakthrough (Kirsch 2000). It is unlikely
that advocates of fossil fuel-powered vehicles in the
early 1900s could have had an inkling of the dramatic
effects this technology would have on global air qual-
ity and climate over the course of the subsequent cen-
tury. As mentioned earlier, the intention of this essay
is not to argue that the rise of big data is an undesir-
able trend; the intent is to stress that we should be
cognizant of some of its concomitant downsides.
Below, I will review some of these risks associated
with using or managing big data.

3.1. Social and Ethical Consequences of Using

Big Data

When initially deciding where to roll out its Prime
Free Same-Day Delivery service, Amazon aimed to
serve as many people as it could, using its data to
identify ZIP codes that contained a high concentration
of Amazon Prime members. Maps of various cities
produced by Bloomberg BusinessWeek (Ingold and
Soper 2016), show the areas within the city limits that

initially received same-day delivery. In the case of
Boston, it shows that the Roxbury neighborhood was
excluded, while all surrounding neighborhoods did
receive same-day delivery. The extent to which Rox-
bury was an anomaly is highlighted when one consid-
ers how far beyond the city limits the same-day
delivery area stretched. The population of Roxbury is
59% Black. The Bloomberg Business Week analysis found
similar (though not quite as striking) effects in other
major cities.

Without a doubt, Amazon did not set out to distin-
guish neighborhoods based on racial or ethnic compo-
sition. In the Bloomberg BusinessWeek article, an
Amazon spokesperson stated, “Demographics play
no role in it. Zero.” However, the result of their analy-
sis was undesirable enough that Amazon rapidly
backtracked. They added same-day service to initially
excluded regions in Boston, New York, and Chicago.
Even though race played no direct role in Amazon'’s
analysis, the algorithm they used led to “apparent dis-
crimination,” as defined in Galhotra et al. (2017).

Fairness in algorithms is now the subject of signifi-
cant research efforts, as also mentioned in Cohen
(2018). For instance, Calders and Verwer (2010) define
a discrimination score to measure the strength of group
discrimination, and Galhotra et al. (2017) highlight
some limitations of that score and generalize it to set-
tings with more complex inputs. They also propose
ways of testing software for fairness, something that
Amazon presumably wishes it had done before roll-
ing out the early phase of its same-day delivery pro-
gram.

A different way in which virtually all of us have
been negatively affected by big data is through the
various hacks that have occurred over the years,
exposing our personal data to unauthorized parties.
Equifax revealed a particularly large data breach in
September 2017. The company disclosed that sensitive
personal information for some 146 million customers
were stolen, including financial records and social
security numbers. Many other large organizations
around the world have been the subject of similar
hacks.

The vast majority of individuals whose data was
compromised are not directly financially affected,
beyond perhaps the cost associated with additional
identity protection services. Lai et al. (2012) observe
that there appears to be relatively little research on
the consequences for victims of the subsequent poten-
tial identity theft. They mention various studies that
estimate the total costs to consumers on the order of
$50 billion in 2008-2009, or $6000 per victim (p. 353).
The horror stories reported by victims such as Amy
Krebs are more salient (Shin 2014). Cohen (2018) men-
tions that the breach at Ashley Madison,
a Canadian online dating site that specializes in
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extramarital affairs, had severe consequences for fam-
ilies affected, and may have led to several uncon-
firmed suicides. The social and emotional costs
incurred by individuals following data breaches can
be substantial, in turn causing reputational damage
and increased regulatory scrutiny of the firms that
were hacked. Even firms that were not hacked can
suffer consequences when a competitor is breached:
Experian issued a warning about the risks it may face
due to the “increased legislative and regulatory activ-
ity” that followed the Equifax breach (Financial Times,
2017).

Discussions of various ethical aspects of big data
are emerging. Zwitter (2014) observes that global big
data is shifting the power balance between the vari-
ous stakeholders. They argue that major conse-
quences can follow from many small actions taken by
many individuals online (such as re-tweets or Face-
book likes), and these consequences require a differ-
ent perspective on what constitutes ethical behavior.
Even offline actions, such as an individual parking his
or her car in front of his or her own house, can be used
to predict information such as demographics and vot-
ing behavior, as Gebru et al. (2017) describe in their
application of deep learning to images from Google
Street View. They also note that this raises important
ethical concerns (p. 5). Richards and King (2013) high-
light three paradoxes related to the ethics of big data.
First, they note that although big data supposedly
enhances transparency, much of the process by which
the data are collected and analyzed is invisible to the
public. Second, they pinpoint that in many cases, even
though big data is about large numbers of individu-
als, its purpose is often precisely to identify specific
individuals. And third, they also caution that big data
will fundamentally change existing power structures.

A particular ethical quandary associated with big
data is how it is used to make technology as addictive
as possible. As Alter (2017a,b) notes, the people who
design games, websites, and other interactive experi-
ences run endless tests on millions of users to collect
massive amounts of data on which features (fonts,
sounds, swipes, incentives, etc.) maximize user
engagement and keep users coming back time and
again. In Alter’s (2017a) words: “As an experience
evolves, it becomes an irresistible, weaponized ver-
sion of the experience it once was. In 2004, Facebook
was fun; in 2016, it’'s addictive.” Tristan Harris, a for-
mer Google Design Ethicist, lists 10 ways in which
product designers hijack our psychological vulnera-
bilities in order to keep our attention focused on their
creations; among others, he lays out how our phone
and the collection of apps that reside on it are like car-
rying slot machines in our pockets (Harris 2016). He
argues that designers should use the data at their dis-
posal to protect us from our addictive tendencies,

rather than exploit them; we should protect our time
just as we protect our privacy.

To summarize, the use of big data is generating a
wide range of ethical challenges. Some are more obvi-
ous than others, but they must be addressed if society
is to reap the many positive benefits that big data has
to offer.

3.2. Big Data May Not be the Right Data

How do we prioritize all these data? We have ever-
growing amounts of increasingly fine-grained data on
variables related to climate, and we should use that
data by all means. But, when world leaders adopted
17 sustainable development goals (SDGs) at a United
Nations summit in September 2015, climate change
mitigation was Goal 13 of those 17." It may be harder
to measure progress on some of the other SDGs, such
as “zero hunger” (Goal 2) or “peace, justice, and
strong institutions” (Goal 16), but that difficulty does
not mean those areas should be neglected.

Even within each goal, it is essential to first define
the objective, and only then try to determine appro-
priate indicators, rather than the reverse. Hak et al.
(2016) point out the danger of letting data availability
drive priorities: “Operationalisation of the targets
through indicators would be methodologically incor-
rect and might lead to distortions in the development
of the policy agenda (such an approach might cause
the false interpretation that only what can be mea-
sured is important to our lives)” (p. 568). This lack of
data is not an idle threat; Sachs (2012) identified data
shortcomings as “one of the biggest drawbacks” (p.
2210) of the Millennium Development Goals (the pre-
decessor to the SDGs). With all the excitement about
the vast amount of data becoming available for analy-
sis, we must always ask what is not being captured.

Moreover, even when data appears to exist, it may
not be correct. Veracity is always a concern. Firms
and nations increasingly formulate quantitative tar-
gets related to sustainability: For example, firms set
“science-based targets” and nations work together
under the Paris agreement to reduce greenhouse gas
emissions. The success of this kind of initiative inevi-
tably hinges on the credibility of the associated emis-
sions data. Ongoing debates, such as the discussion
on China’s CO, emissions, indicate that there is as
much as 10% uncertainty about the magnitude of
those emissions over the period 2000-2013, which
could be a decisive factor in whether China’s cumula-
tive emissions will be consistent with a 2°C warming
target (Korsbakken et al. 2016, Liu et al. 2015). At the
firm level, Melville and Whisnant (2014) document
various kinds of errors two firms made in their green-
house gas emissions reporting. Blanco et al. (2016)
point out that firms’ reports of supply chain emissions
are even more difficult to interpret. Melville et al.
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(2017) find that firms that paid attention to the accu-
racy of their carbon emissions data also achieved
lower emissions. In the context of big data, these
errors would suggest that improving the veracity of
sustainability-related data may be beneficial in itself.

Finally, even when the data are correct in a narrow
technical sense, it can easily be abused. With data
arriving ever more rapidly, it is easy to fall into the
trap of churning out analyses and rankings without
due consideration of the underlying phenomena or
the impact of those rankings. There are multitudes of
rankings of countries, states, or firms on all kinds of
environmental or social metrics. These rankings may
sometimes have some informative value, but it is rare
that a device as simple as a ranking can capture the
many nuances involved in social or environmental
concerns. Delmas et al. (2013) provide an illustration
of how combining multiple rankings of firms’ corpo-
rate social responsibility performance can lead to sub-
stantially better insights than any single ranking by
itself. Many readers of this essay will find the con-
cerns about business school rankings to be all too
familiar. These ranking methods are dissected in
Bachrach et al. (2017), who argue that the fundamen-
tal flaws in the methodologies used to rank business
schools negatively impact those schools’ ability to
meet their social obligations. This danger of the mis-
use of big data is well examined in Lazer et al. (2014).
They use the large error in predictions made by Goo-
gle Flu Trends as an example of “big data hubris,”
which is the “often implicit assumption that big data
are a substitute for, rather than a supplement to, tradi-
tional data collection and analysis” (p. 1203). They
close with the reminder that, despite the enormous
opportunities provided by big data, much informa-
tion is also contained in “small data” (p. 1205) that is
not, or cannot be, contained in big data.

In short, despite the excitement associated with
emerging big data related to environmental and social
indicators, “small data” is still a critical component of
environmental and social progress too.

3.3. Big Data May Not Mean Better Decisions

Part of the implicit premise underlying the excitement
around big data is the assumption that more data will
lead to better decisions. There is a vast literature on
biases and heuristics (e.g., Kahneman 2011). Muthu-
lingam et al. (2013) provide one example in a sustain-
ability-related context: they document that managers
who are faced with well-structured information about
energy-efficiency initiatives will disproportionately
choose items that appear closer to the top of the list,
even when other initiatives further down are econom-
ically and environmentally superior. In the face of
more data, these biases are likely to persist, or possi-
bly become even more acute, due to the additional

cognitive burden associated with big data. The con-
cern that more data might lead to worse decisions is
not new, as illustrated by a well-known quote from
Herbert Simon (1971, pp. 40—-41): “In an information-
rich world, the wealth of information means a dearth
of something else: a scarcity of whatever it is that
information consumes. What information consumes
is rather obvious: it consumes the attention of its
recipients. Hence a wealth of information creates a
poverty of attention and a need to allocate that atten-
tion efficiently among the overabundance of informa-
tion sources that might consume it.”

Even when there is no obvious bias at work, indi-
viduals may not respond to big data in the intended
manner. One well-documented instance is the “re-
bound effect” in energy conservation, in which indi-
viduals who adopt energy-efficient technologies
sometimes partly or fully negate these energy savings
by consuming more energy elsewhere. Asensio and
Delmas (2016, p. 207) find mixed evidence on this
effect using real-time energy consumption data from
118 households over 9 months, yielding 374 million
observations. The households in the treatment group
were given feedback on their energy use, either in
terms of cost or environmental health. The health
treatment generally led to more durable energy con-
servation, but the households that received the cost
treatment, after an initial reduction, ended up increas-
ing their energy use related to heating and cooling.
Even more surprisingly, both treatment groups expe-
rienced an increase in refrigerator energy use, which
the authors attribute to unintuitive design of the tem-
perature controls in the appliances concerned, mak-
ing it hard for the participants to know which way to
adjust the knob. This goes to show that no amount of
data can compensate for the simple issue of poor pro-
duct design. (Although, without the large dataset pro-
duced during this study, the product design issue
would not have become clear.)

Discussions about big data often focus on the
increasing volume of data, but the increasing variety of
data poses growing challenges for decision-making.
Decisions that have environmental consequences
often involve data about a range of impacts, such as
neurotoxicity, carcinogenicity, biotoxicity, global
warming potential, land use effects, and various
social indicators that may also be relevant. Multi-
criteria decision methods can help to inform policies
or decisions that balance such a range of environmen-
tal and social indicators in an appropriate manner.
The use of these methods is growing, but still rela-
tively nascent (Linkov and Moberg 2012, Ch. 2), and
these methods are not without their drawbacks.

Consider the case of Alternatives Analysis, an
approach intended to identify safer chemicals while
avoiding inadvertent substitution of toxic chemicals
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with even more undesirable substances. This
approach is a response to chemical policies changing
from a risk management focus to a prevention focus.
Data on the human health and ecosystem health
impacts of a chemical become more reliable as we
gain more experience with that chemical. However,
negative “experience” is precisely what policies such
as the California Safer Consumer Products
program and the European Union’s Registration,
Evaluation, Authorization, and Restriction of Chemi-
cals (REACH) program seek to avoid. By the time we
have big data on the ecological or human health
impacts of a chemical, we are already well past the
time for prevention and well into the time for risk
management and mitigation. Malloy et al. (2016)
describe some of the challenges involved with making
early assessments about safer alternatives when the
data on risks and impacts is severely incomplete and
multidimensional. Linkov and Moberg (2012) provide
an in-depth discussion of how multi-criteria decision
analysis can be used in a variety of environmental
decision contexts. A recent workshop we held at
UCLA with some 15 participants involved in various
aspects of alternatives analysis revealed that there is a
great need for more systematic approaches to making
these kinds of decisions, and also that application of
existing multi-criteria decision methods to these ques-
tions is far from straightforward. In each of these set-
tings, the main challenge is in how to deal with the
small data, rather than the big data.

To summarize, big data can clearly help inform
environmental and social decisions in some situa-
tions, but in other contexts, we must focus on making
better decisions with little or no data rather than wait-
ing for more information to arrive.

3.4. Big Data Can Change the Manufacturing
Landscape

Big data is not only a technological revolution in itself.
It will also facilitate other potentially large shifts,
including in the physical world. One such potential
consequence is that the spread of big data may foster
wider application of mass customization, which in
turn would likely be linked to a broader use of 3D
printing or additive manufacturing. Two other arti-
cles in this special issue, by Feng and Shanthikumar
(2018) and Guha and Kumar (2018), also point to this
potential effect.

This raises the question whether additive manufac-
turing is more or less sustainable than conventional
production. Several recent articles, including a special
issue of the Journal of Industrial Ecology, investigate
this question. The overall takeaway is that the answer
is not obvious. Summarizing existing studies, Kellens
et al. (2017) observe that the specific energy involved
in additive manufacturing is “1 to 2 orders of

magnitude” (p. 563) higher than for conventional
manufacturing. However, they also note that additive
manufacturing can lead to environmental benefits if a
larger portion of a damaged part can be reused in a
repair process, or if parts are redesigned appropri-
ately. This need for appropriate redesign was also
found by Mami et al. (2017) in the manufacture of air-
craft doorstops. In addition, Walachowicz et al. (2017)
find that additive manufacturing has lower impact
along various dimensions than conventional pro-
cesses for the repair of gas turbine burners. In the case
of injection molding, Huang et al. (2017) estimate that
additive manufacturing uses slightly less energy than
conventional manufacturing. In the manufacture of
eyeglasses, Cerdas et al. (2017) find that the compar-
ison between additive and conventional manufactur-
ing depends heavily on the material used. They
caution that one of the potential benefits of 3D print-
ing is to allow more distributed manufacturing, but
that such a more dispersed production system is
harder to regulate. Taking a life-cycle perspective,
Huang et al. (2017) predict major savings due to the
weight reduction in aircraft components that 3D
printing allows.

The point here is not to argue that 3D printing is the
only innovation that is likely to be accelerated by the
big data revolution, nor that 3D printing is more or
less sustainable than conventional manufacturing.
The point is to highlight that the consequences of big
data on sustainability are likely to reach well beyond
big data itself and even into the physical world. The
example of CubeSats mentioned earlier is another
instance of this linkage. The big data that CubeSats
will enable will lead to high demand for such satel-
lites, which in turn will have real environmental con-
sequences: launch is clearly energy-intensive, but
many satellites will eventually become space junk, a
very different environmental challenge.

3.5. Managing and Storing Big Data
There is no question that in many instances, better
data can help reduce energy or material consumption,
but managing that data still requires physical pro-
cesses, which consume energy. A widely cited analy-
sis by Gartner (2007) claims that information and
communication technology (ICT) accounted for about
2% of global CO, emissions in 2007, and this amount
was comparable to the emissions associated with avi-
ation. Although Malmodin et al. (2010) point out that
the comparison is distorted, they confirm that the 2%
estimate is about right. (They estimate the ICT portion
of CO,e emissions as 1.3%.) In other words, the
energy consumption of ICT is not huge, but it is
already significant, and it is growing.

Predicting how the impact of ICT will evolve over
time involves balancing two counteracting factors. On
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the one hand, storing and transmitting data is becom-
ing more efficient over time. Aslan et al. (2018) esti-
mate that electricity intensity of data transmission has
decreased by about 50% per year since 2000. Opera-
tors of some of the largest data centers increasingly
rely on renewable energy. Apple’s data centers oper-
ate on 100% renewable energy (Apple 2017, p. 41),
and Google will reach 100% renewable energy for its
operations in 2017 (Google 2016, p. 9); Facebook is
similarly committed to powering its operations with
100% renewable energy (Facebook 2017). On the other
hand, our data footprint is growing dramatically, and
with it the energy required by data centers, data net-
works, and connected devices. The International
Energy Agency projects that data center electricity
use will increase by 3% by 2020, despite a tripling in
workload; its forecast for data networks ranges any-
where from a 70% increase to a 15% decrease by 2021
(IEA 2017, p. 103). An encouraging sign is that, as
Khuntia et al. (2018) find, firms that invest in green IT
not only achieve lower IT equipment energy con-
sumption, but also earn higher profits.

Whether the energy used for storing and transmit-
ting data is renewable or not, that energy has to be
generated somehow, and even renewable energy
comes with (significant) costs, in the form of land use,
material use, noise and visual pollution, and more. A
rapid increase in the energy demands associated with
big data is therefore a concern which we need to con-
front. How can we translate figures such as “2% of
global CO, emissions” to numbers on a scale that
apply to individuals or companies? For instance, what
are the greenhouse gas emissions associated with
storing 1 TB of data? Estimates vary widely. An anal-
ysis by the Natural Resources Defense Council (2012)
compares various technologies and data hosting sce-
narios, and the result was a range of 0.6 kg CO5e per
year (i.e., using best practices, public cloud storage) to
159 kg CO,e per year (worst case scenario, on-
premise with virtualization) (see figure 2 in Natural
Resources Defense Council 2012). The high end of this
range translates to 15.9 metric tons of CO,e per year
per TB of data, which would be comparable to the
annual emissions of several passenger vehicles. This
seems unreasonably high. A report by Google (2011, p.
6) estimates that keeping email on a locally hosted ser-
ver at a small business causes 103 kg of CO, per year
per user. Because this still seems high, I asked an
expert in this area, Professor Eric Masanet at the
McCormick School of Engineering at Northwestern
University. He provided some very helpful estimates
that seem more believable (Masanet 2017).

Taking data from Shehabi et al. (2016), a Lawrence
Berkeley National Laboratory report he coauthored,
he estimates US data centers stored about 300 mil-
lion TB of data in 2016 (figure 12, p. 14), which

consumed around 8.3 billion kWh (figure 16, p. 17),
hence 27.7 kWh per TB of data. This is the energy
directly used for storage by the IT equipment, which
we must multiply by the power usage effectiveness
(PUE, or total data center facility energy use < IT equip-
ment energy use) to obtain the total consumption of the
data centers, which includes the energy consumption
of associated technology such as cooling and lighting.
According to figure 21 in Shehabi et al. (2016, p. 25),
the total data center energy usage is about 72 bil-
lion kWh in 2016, of which 43 billion kWh was for IT
equipment, yielding a PUE of 72 = 43 = 1.67. The
total energy consumption of data centers is then
1.67 x 27.7 kWh = 46.33 kWh per TB of data per
year.

Converting this to CO,e emissions is not straight-
forward, since energy consumption varies widely
across data centers. Using an EPA (2017) estimate
for the emission factor (the US national weighted
average CO, marginal emission rate) of 0.744 kg of
CO; per kWh, the carbon emissions associated with
data storage would be 0.744 x 46.33, or approxi-
mately 35 kg of CO, per TB per year. Of course,
this is a very rough estimate at best, and with
changes in storage technology and energy mix, this
footprint per TB will likely improve. At the same
time, with the continuation of big data and the
advent of augmented reality and virtual reality, our
data footprint will likely increase.

The numbers so far have only focused on storage,
but transmitting data also consumes energy. Coroama
et al. (2013) estimate that a videoconference transmis-
sion between Switzerland and Japan in 2009
accounted for 200 kWh per TB, substantially above
the 46.33 kWh per TB estimated above for storage.
Weber et al. (2010) find that online delivery of music
to consumers generally causes a lower carbon foot-
print than physical CDs, but Mayers et al. (2015) pre-
dict that downloading large games over the Internet
will cause higher carbon emissions than physical
delivery via Blu-Ray discs. Altogether, these (and
other) studies illustrate that, while there is consider-
able uncertainty about the energy impacts of big data
storage and transmission, they are large enough to
take seriously.

What makes all these figures more disconcerting is
that the vast majority of data stored can safely be con-
sidered as waste. This is sometimes referred to as
“dark data,” or “the information assets organizations
collect, process and store during regular business
activities, but generally fail to use for other purposes.”
Again, reliable estimates of how much dark data
exists are hard to come by, but the numbers are quite
astounding. IBM estimates that 90% of all data stored
is never used (Johnson 2015). Paul Rogers, chief
development officer at General Electric, stated in
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Wharton (2014) that “[o]nly about one-half of 1% of
the world’s data is being analyzed” (p. 2), which
means that the other 99.5% is dark data. Cohen (2018)
cites another source that mentions the same figure of
0.5%. A Veritas survey suggests that 54% of data is
dark, while 32% is ROT (redundant, obsolete, trivial),
and only 14% is business-critical. This survey also
estimates that there will be almost $900 billion in
avoidable costs of data storage by 2020 (Hernandez
2015). The prevalence of dark data and the costs of
data storage suggest that a sizable proportion of the
energy use associated with big data is avoidable, and
we must begin to consider the waste hidden in big
data in the same way we think about physical waste.
It is not just energy that is wasted: Shehabi et al.
(2016, p. 28) estimate that data centers in the US were
responsible for the consumption of 626 billion liters
of water in 2014.

We need to start using tools such as value stream
mapping for data flows, just as we already do to iden-
tify waste in physical flows. This would help uncover
the vast amounts of unnecessary and obsolete copies
of data currently being stored because we have not
yet started treating it as actual waste with a real cost.
The ISO/IEC 38505 series of standards for governance
of data provide a helpful organizing framework for
how to collect, store, report, decide, distribute, and
dispose of data. The concepts of the circular economy
that are already being applied to supply chains (e.g.,
Agrawal et al. 2018) might also help curtail the
unbounded growth of data being transmitted or sit-
ting in storage. As data become too big, it will become
excessively costly to distribute it, so it will need to be
analyzed locally at data repositories. Space missions
may provide inspiration on how to do this: the explo-
sion of data collected during a mission far exceeds the
severe constraints on what can be transmitted back to
earth, which means that local data reduction will be
necessary (National Academy of Sciences, 2014;
p-12).

This is a good time to recall the analogy of the
internal combustion engine. When that technology
was in its infancy, people were certainly concerned
about the visible air pollution it created, but the
thought that something as small as a car could
change our climate must have been inconceivable.
Now, several billion cars later, we know better. The
point I wish to make here is that, even though the
environmental benefits of big data are often large and
obvious, it is not too early to start measuring and
minimizing the environmental costs, as some firms
already do by investing in renewable energy to
power their data centers. This applies not only to big
data but also to other complementary technologies
that have surfaced earlier in this essay, such as addi-
tive manufacturing and CubeSats.

4. Conclusions

We have only begun to explore the potential of big
data to improve decision-making in many areas of
life. These applications permeate the field of sustain-
ability, broadly defined. I have described a few exam-
ples, and other articles in this special issue provide
more. Devalkar et al. (2018) outline how big data
can help agriculture in India. Swaminathan (2018)
describes opportunities for using big data to assist in
humanitarian operations. These opportunities are
exciting and profoundly promising, and we should
pursue them accordingly.

However, while doing so, we should not lose track
of the fact that rushing to collect and exploit ever
“bigger” data will inevitably have undesirable side
effects. Some of these side effects have already sur-
faced, but others may arise in unexpected areas. We
should not dampen the excitement deservedly
attached to big data, but we should also be vigilant
about potential side effects. I have catalogued some of
these potential unwanted byproducts. Some of them
may turn out to be irrelevant in the long term, but
some others not mentioned here will surely emerge.

One often hears the slogan Big data is the new oil, but
like all analogies, it only goes so far. It is true that fos-
sil fuel was a critical driver of growth and change in
the global economy during the 20th century (The
Economist, 2017), but as Thorp (2012) points out, infor-
mation is inherently renewable, unlike fossil fuel.
Thorp does draw a different parallel, arguing that oil
has also been the cause of untold environmental and
social devastation. He observes that “data spills” have
already occurred, and he asks when we might
encounter “dangerous data drilling practices” or suf-
fer the long-term effects of “data pollution.” In her
discussion of ethical issues in big data, Martin (2015)
also refers to the surveillance that results from the
systematic way in which individual data are collected
as pollution. She draws a number of parallels between
traditional supply chains and information supply
chains, with implications for how data should be
managed throughout the supply chain to minimize
the negative aspects of the growth of big data. For
instance, just as manufacturers are concerned about
ethical sourcing, firms in the big data industry should
ensure that the data they rely on are obtained
ethically.

One could argue that, in its earliest days, the fossil
fuel revolution was mostly beneficial and relatively
harmless. Its disastrous side effects were the result of
the sheer breadth and depth of the penetration of fos-
sil fuel-based products into every aspect of human
life. Moreover, the collateral inertia associated with
the vast investments made over the years have cre-
ated the pronounced path dependency that has



Corbett: How Sustainable Is Big Data?

Production and Operations Management 27(9), pp. 1685-1695, © 2017 Production and Operations Management Society 1693

caused so much difficulty as we try to migrate away
from fossil fuels.

We are now making important decisions about big
data—decisions about issues such as technology plat-
forms, governance mechanisms, ownership struc-
tures, and access rights. All these decisions could
have pivotal implications for what options will be
available to us later, when the costs of big data start
coming into focus. In order to ensure we use big data
in a sustainable way, we must always be on the alert
for potential repercussions, even repercussions that
seem far-fetched to us now. The big data revolution
has opened a vast uncharted frontier, and we must
not only explore this frontier with enthusiasm, but
also with caution.
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Notes

ISee http:/ /www.un.org/sustainabledevelopment/developme
nt- agenda/ (accessed date November 15, 2017).

*https:/ /www.gartner.com/it-glossary/dark-data (accessed
date October 27, 2017).
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here has been a significant increase in the scale and scope of humanitarian efforts over the last decade. Humanitarian
operations need to be—rapid, impactful, sustained, and efficient (RISE). Big data offers many opportunities to enable

RISE humanitarian operations. In this study, we introduce the role of big data in humanitarian settings and discuss data
streams which could be utilized to develop descriptive, prescriptive, and predictive models to significantly impact the

lives of people in need.
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1. Introduction

Humanitarian efforts are increasing on a daily basis
both in terms of scale and scope. This past year has
been terrible in terms of devastations and losses dur-
ing hurricanes and earthquake in North America.
Hurricanes Harvey and Irma are expected to lead to
losses of more than $150 billion US dollars due to
damages and lost productivity (Dillow 2017). In addi-
tion, more than 200 lives have been lost and millions
of people have suffered from power outages and
shortage of basic necessities for an extended period of
time in the United States and the Caribbean. In the
same year, a 7.1 earthquake rattled Mexico City
killing more than 150 people and leaving thousands
struggling to get their lives back to normalcy
(Buchanan et al. 2017). Based on the Intergovernmen-
tal Panel on Climate Change, NASA predicts that
global warming could possibly lead to increase in nat-
ural calamities such as drought, intensity of storms,
hurricanes, monsoons, and mid-latitude storms in the
upcoming years. Simultaneously, the geo-political,
social, and economic tensions have increased the need
for humanitarian operations globally; such impacts
have been experienced due to the crisis in Middle
East, refugees in Europe, the systemic needs related
to drought, hunger, disease, and poverty in the devel-
oping world, and the increased frequency of random
acts of terrorism. According to the Global Humanitar-
ian Assistance Report, 164.2 million people across 46
countries needed some form of humanitarian assis-
tance in 2016 and 65.6 million people were displaced
from their homes, the highest number witnessed thus
far. At the same time, the international humanitarian
aid increased to all time high of $27.3 billion US
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dollars from $16.1 billion US dollars in 2012. Despite
that increase, common belief is that funding is not
sufficient to meet the growing humanitarian needs.
Therefore, humanitarian organizations will continue
to operate under capacity constraints and will need to
innovate their operations to make them more efficient
and responsive.

There are many areas in which humanitarian opera-
tions can improve. Humanitarian operations are often
blamed for being slow or unresponsive. For example,
the most recent relief efforts for Puerto Rico have been
criticized for slow response. These organizations also
face challenges in being able to sustain a policy or best
practice for an extended period of time because of
constant turnover in personnel. They are often
blamed for being inefficient in how they utilize
resources (Vanrooyen 2013). Some of the reasons that
contribute to their inefficiency include operating envi-
ronment such as infrastructure deficiencies in the last
mile, socio-political tensions, uncertainty in funding,
randomness of events and presence of multiple agen-
cies and stake holders. However, it is critical that
humanitarian operations show high level of perfor-
mance so that every dollar that is routed in these
activities is utilized to have the maximum impact on
the people in need. Twenty-one donor governments
and 16 agencies have pledged at the World Humani-
tarian Summit in 2016 to find at least one billion USD
in savings by working more efficiently over the next
5 years (Rowling 2016).

We believe the best performing humanitarian oper-
ations need to have the following characteristics—
they need to be Rapid, they have to be Impactful in
terms of saving human lives, should be effective in
terms of providing Sustained benefits and they
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should be highly Efficient. We coin RISE as an acro-
nym that succinctly describes the characteristics of
successful humanitarian operations and it stands for
Rapid, Impactful, Sustained, and Efficient.

One of the major opportunities for improving
humanitarian operations lies in how data and infor-
mation are leveraged to develop above competencies.
Traditionally, humanitarian operations have suffered
from lack of consistent data and information (Starr
and Van Wassennhove 2014). In these settings, infor-
mation comes from a diverse set of stakeholders and
a common information technology is not readily
deployable in remote parts of the world. However,
the Big Data wave that is sweeping through all busi-
ness environments is starting to have an impact in
humanitarian operations as well. For example, after
the 2010 Haiti Earthquake, population displacement
was studied for a period of 341 days using data from
mobile phone and SIM card tracking using FlowMin-
der. The data analysis allowed researchers to predict
refugee locations 3 months out with 85% accuracy.
This analysis facilitated the identification of cholera
outbreak areas (Lu et al. 2012). Similarly, during the
Typhoon Pablo in 2012, the first official crisis map
was created using social media data that gave situa-
tion reports on housing, infrastructure, crop damage,
and population displacement using metadata from
Twitter. The map became influential in guiding both
UN and Philippines government agencies (Meier
2012).

Big Data is defined as large volume of structured
and unstructured data. The three V’s of Big Data
are Volume, Variety, and Velocity (McCafee and
Brynjolfsson 2012). Big Data Analytics examines
large amounts of data to uncover hidden patterns
and correlations which can then be utilized to
develop intelligence around the operating environ-
ment to make better decisions. Our goal in this arti-
cle is to lay out a framework and present examples
around how Big Data Analytics could enable RISE
humanitarian operations.

2. Humanitarian Operations—Planning
and Execution

Planning and Execution are critical aspects of human-
itarian operations that deal with emergencies (like
hurricanes) and systemic needs (hunger). All humani-
tarian operations have activities during preparedness
phase (before) and disaster phase (during). Emergen-
cies also need additional focus on the recovery phase
(after). Planning and execution decisions revolve
around Where, When, How, and What. We will take
the UNICEF RUTF supply chain for the Horn of
Africa (Kenya, Ethiopia, and Somalia) as an example.
RUTF (ready to use therapeutic food) also called

Plumpy’ Nut is a packaged protein supplement that
can be given to malnourished children under the age
of 5 years. The supplement was found to be very
effective; therefore, the demand for RUTF skyrock-
eted, and UNICEF supply chain became over
stretched (Swaminathan 2010). UNICEF supply chain
showed many inefficiencies due to long lead times,
high transportation costs, product shortages, funding
uncertainties, severe production capacity constraints,
and government regulations (So and Swaminathan
2009). Our analysis using forecasted demand data
from the region found that it was important to deter-
mine where inventory should be prepositioned (in
Kenya or in Dubai). The decision greatly influenced
the speed and efficiency of distribution of RUTF.
The amount of prepositioned inventory also needed
to be appropriately computed and operationalized
(Swaminathan et al. 2012). Given that the amount of
funding and timing showed a lot of uncertainty, when
funding was obtained, and how inventory was pro-
cured and allocated, dramatically influenced the over-
all performance (Natarajan and Swaminathan 2014,
2017). Finally, understanding the major roadblocks to
execution and addressing those for a sustained solu-
tion had a great impact on the overall performance. In
the UNICEF example, solving the production bottle-
neck in France was critical. UNICEF was able to suc-
cessfully diversify its global supply base and bring in
more local suppliers into the network. Along with the
other changes that were incorporated, UNICEF RUTF
supply chain came closer to being a RISE humanitar-
ian operations and estimated that an additional one
million malnourished children were fed RUTF over
the next 5 years (Komrska et al. 2013). There are a
number of other studies that have developed robust
optimization models and analyzed humanitarian
settings along many dimensions. While not an
exhaustive list, these areas include humanitarian
transportation planning (Gralla et al. 2016), vehicle
procurement and allocation (Eftekar et al. 2014),
equity and fairness in delivery (McCoy and Lee 2014),
funding processes and stock-outs (Gallien et al. 2017),
post-disaster debris operation (Lorca et al. 2017),
capacity planning (Deo et al. 2013), efficiency drivers
in global health (Berenguer et al. 2016), and decentral-
ized decision-making (Deo and Sohoni 2015). In a
humanitarian setting, the following types of questions
need to be answered.

Where

a. Where is the affected population? Where did it
originate? Where is it moving to?

b. Where is supply going to be stored? Where is the
supply coming from? Where will the distribution
points be located?
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c. Where is the location of source of disruption (e.g.,
hurricane)? Where is it coming from? Where is
moving to?

d. Where are the debris concentrated after the
event?

When

a. When is the landfall or damage likely to occur?

b. When is the right time to alert the affected popu-

lation to minimize damages as well as unwanted
stress?

c. When should delivery vehicles be dispatched to
the affected area?

d. When should supply be reordered to avoid
stock-outs or long delays?

e. When should debris collection start?

How

a. How should critical resources be allocated to the

affected population?

b. How much of the resources should be preposi-
tioned?

c¢. How many suppliers or providers should be in
the network?

d. How to transport much needed suppliers and
personnel in the affected areas?

e. How should the affected population be routed?

What

a. What types of calamities are likely to happen in

the upcoming future?

b. What policies and procedure could help in plan-
ning and execution?

c. What are the needs of the affected population?
What are reasons for the distress or movement?

d. What needs are most urgent? What additional
resources are needed?

3. Big Data Analytics

Big Data Analytics can help organizations in obtain-
ing better answers to the above types of questions and
in this process enable them to make sound real-time

decisions during and after the event as well as help
them plan and prepare before the event (see Figure 1).
Descriptive analytics (that describes the situation)
could be used for describing the current crisis state,
identifying needs and key drivers as well as advocat-
ing policies. Prescriptive analytics (that prescribes
solutions) can be utilized in alert and dispatch, prepo-
sitioning of supplies, routing, supplier selection,
scheduling, allocation, and capacity management.
Predictive analytics (that predicts the future state)
could be utilized for developing forecasts around
societal needs, surge capacity needs in an emergency,
supply planning, and financial needs. Four types of
data streams that could be utilized to develop such
models are social media data, SMS data, weather data,
and enterprise data.

3.1. Social Media Data

The availability of data from social media such as
Twitter has opened up several opportunities to
improve humanitarian emergency response. Descrip-
tive analytics from the data feed during an emer-
gency could help create the emergency crisis map in
rapid time and inform about areas of acute needs as
well as movement of distressed population. This
could help with rapid response into areas that need
the most help. Furthermore, such data feed could
also be used to predict the future movement of the
affected population as well as surges in demand for
certain types of products or services. A detailed anal-
ysis of these data after the event could inform
humanitarian operations about the quality of
response during the disaster as well as better ways
to prepare for future events of a similar type. This
could be in terms of deciding where to stock inven-
tory, when and how many supply vehicles should be
dispatched and also make a case for funding needs
with the donors. Simulation using social media data
could provide solid underpinning for a request for
increased funding. Analysis of information diffusion
in the social network could present new insights on
the speed and efficacy of messages relayed in the
social network (Yoo et al. 2016). Furthermore, ana-
lyzing the population movement data in any given
region of interest could provide valuable input for

Figure 1 Big Data Analytics and Rapid, Impactful, Sustained, and Effi-
cient Humanitarian Operations

Descriptive Prescriptive Predictive

Create Crisis Maps
Identify Needs Preposition Supplies
Advocate Policies Supplier Selection
Identify Success Drivers | Routing
Scheduling/Allocation
Capacity Management

Alert and Dispatch Societal Needs Planning
Supply Planning
Surge Capacity Planning

Shelter Capacity Planning
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ground operations related to supply planning, posi-
tioning, and vehicle routing. Finally, social media
data is coming from the public directly and some-
times may contain random or useless information
even during emergency. There is an opportunity to
develop advanced filtering models so that social
media data are leveraged in real-time decision-
making.

3.2. SMS Data

Big Data Analytics can also be adapted successfully
for SMS-based mobile communications. For example,
a number of areas in the United States have started
using cell phone SMS to text subscribers about
warnings and alerts. Timely and accurate alerts can
save lives particularly during emergencies. Predic-
tive analytics models can be developed to determine
when, where, and to whom these alerts should be
broadcasted in order to maximize the efficacy of the
alerts. The usage of mobile alerts is gaining momen-
tum in the case of sustained humanitarian response
as well. For example, frequent reporting of inventory
at the warehouse for food and drugs can reduce
shortages. Analytics on these data could provide
more nuances on the demand patterns which in turn
could be used to plan for the correct amount and
location of supplies. Mobile phone alerts have also
shown to improve antiretroviral treatment adherence
in patients. In such situations, there is a great oppor-
tunity to analyze what kinds of alerts and what
levels of granularity lead to the best response from
the patient.

3.3. Weather Data

Most regions have highly sophisticated systems to
track weather patterns. This type of real-time data is
useful in improving the speed of response, so that the
affected population can be alerted early and evacua-
tions can be planned better. It also has a lot of infor-
mation for designing humanitarian efforts for the
future. For example, by analyzing the data related to
the weather changes along with population move-
ment, one could develop robust prescriptive models
around how shelter capacity should be planned as
well as how the affected population should be routed
to these locations. So, rather than trying to reach a
shelter on their own, an affected person can be
assigned a shelter and directed to go there. Preposi-
tioning of inventory at the right locations based on
weather data could improve response dramatically as
reflected by the actions of firms such as Wal-Mart and
Home Depot that have made it a routine process after
successful implementation during hurricane Katrina.
Finally, the weather pattern data could be utilized to
develop predictive models around the needs of the
population in the medium to long term. For example,

the drought cycles in certain regions of Africa follow
a typical time pattern. A predictive model around
the chances of famine in those regions could then
inform the needs and funding requirements for food
supplements.

3.4. Enterprise Data

Most large humanitarian organizations such as UNI-
CEF have information systems that collect a large
amount of data about their operations. Analytics on
such data can be useful to develop robust policies and
guide the operational decisions well. For example, in
systemic and emergent humanitarian needs, analyz-
ing the demand and prepositioning inventory accord-
ingly has shown to improve the operational
performance. Furthermore, the analysis of long-term
data could provide guidelines for surge capacity
needed under different environments as well as pre-
dict long-term patterns for social needs across the
globe due to changing demographics and socioeco-
nomic conditions.

As the Big Data Analytics models and techniques
develop further, there will be greater opportunities
to leverage these data streams in more effective
ways, particularly, given that the accuracy of data
coming out of the different sources may not have
the same level of fidelity in a humanitarian setting.
While data are available in abundance in the devel-
oped world, there are still geographical areas
around the globe where cell phone service is lim-
ited, leave alone social media data. In those situa-
tions, models with incomplete or missing data
need to be developed. Also the presence of multi-
ple decentralized organizations with varied degree
of information technology competencies and objec-
tives limits their ability to effectively synthesize
the different data streams to coordinate decision-
making.

4. Concluding Remarks

Big data has enabled new opportunities in the value
creation process including product design and inno-
vation (Lee 2018), manufacturing and supply chain
(Feng and Shanthikumar 2018), service operations
(Cohen 2018), and retailing (Fisher and Raman
2018). It is also likely to impact sustainability
(Corbett 2018), agriculture (Devalkar et al. 2018),
and healthcare (Guha and Kumar 2018). In our opin-
ion, humanitarian organizations are also well posi-
tioned to benefit from this phenomenon. Operations
Management researchers will have opportunity to
study newer topics and develop robust models and
insights that could guide humanitarian operations
and make them more Responsive, Impactful, Sustained,
and Efficient.
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gricultural supply chains in the developing world face the daunting task of feeding a growing population in the
coming decades. Along with the provision of food, sustaining livelihoods, enhancing nutrition and the ability to

cope with rapid changes in the environment and marketplaces are equally important to millions of small farmers. Data
science can help in many ways. In this article, we outline the beginnings of data science applications in Indian agriculture.
We cover various initiatives such as data collection, visualization and information dissemination, and applications of algo-
rithmic data analysis techniques for decision support. We describe one application under development that provides

timely price information to farmers, traders, and policy makers.
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1. Introduction

The food output of the world has to increase by 50%
by 2050 to cater to the needs of a growing world pop-
ulation (FAO 2017). It is also a fact that a significant
portion of the demand will come from developing
countries in Asia and Africa. And the burden of
increasing the output will most likely fall on large
producers such as China, India, and the United States.
In this context, there has been a call to modernize
every aspect of the sector (The Economist 2016). Sev-
eral initiatives, both in the public and the private sec-
tors, are underway to explore the use of analytics and
data science in agriculture. The Operations Manage-
ment profession is also heeding the call to arms
(INFORMS 2016).

This essay is about data science applications in
India, where the application context is very different.
The Indian agricultural sector is characterized by
small landholdings, with an average landholding size
of one hectare and more than 120 million farmers that
are classified as marginal or small farmers. While the
agricultural sector’s contribution to India’s GDP has
shrunk from close to 52% in the 1950s to about 14% in
2011, over 50% of India’s labor force is still employed
in this sector (Government of India 2016). Despite the
fragmented holdings, India is the second largest agri-
cultural producer in the world (based on FAO data
available at http://www.fao.org/faostat/en/#data).
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Along with being tasked with the provision of food,
sustaining livelihoods, enhancing nutrition and being
prepared to cope with rapid changes in the environ-
ment and marketplaces are equally important to mil-
lions of small farmers.

In developed countries, the infrastructure for sup-
porting agriculture is well developed. Information
about inputs and markets for produce is easily acces-
sible for most players in the agricultural supply chain.
As a result, most of the focus has been on data science
applications for improving the production process
(see Wolfert et al. 2017, and articles alluded to above).
In contrast, initiatives in the Indian context have tried
to address more basic aspects of the agricultural sup-
ply chain, such as, strengthening the infrastructure
that supports agricultural activity, increasing access
to, and information about input and output markets
and the cultivation process to various degrees. These
interventions are aimed at improving;:

e The infrastructure that supports agricultural
activity, including connectivity and communi-
cations support, provision of financial assis-
tance, and crop insurance.

® Access to, and information about inputs used
in agricultural activity. These include technol-
ogy to measure soil health, suitability of differ-
ent fertilizers, pesticides, seeds research,
information about the weather, etc.
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® Production process, including use of sensors to
collect data about crop growth on a continuous
basis and provide targeted advice as well as
inputs, use of automated harvesters for higher
harvesting yields, etc.

® Access to, and information about output mar-
kets to enable farmers to identify markets to
sell in, including data about prices and avail-
ability of various commodities in different
markets in a neighbourhood.

In the rest of the article, we first provide an over-
view of various existing data science applications. We
use the data value chain framework of Miller and
Mork (2013) to classify them into the following broad
life cycle stages: (i) data collection, cleaning and
archiving, (ii) data visualization and information dis-
semination, (iii) application of algorithmic data analy-
sis techniques to derive insights and (iv) using
insights from data analysis for decision making. We
then describe an application under development that
spans all the different stages.

2. Existing Data Science Applications
in the Indian Agriculture Sector

2.1. Data Collection Applications

The application of data science in the Indian agricul-
ture sector traces back to the early periods of post-
independence India (after 1947) when the govern-
ment set up the National Sample Survey Office
(NSSO) with the aim of creating a database of infor-
mation related to the key sectors of the economy.
Given the complexity of the Indian economy, the cost
and time required for frequent census of the different
sectors was enormous. The cost had to be mitigated
by the clever use of data collection and estimation
techniques. The Indian Statistical Institute (ISI) was
entrusted with the development of a sampling strat-
egy to collect data using nationally representative
samples and develop methods to use the sample data
to make inferences (Rao 2010). While the NSSO sur-
vey methodology continues to be used for collecting
data about various aspects of the Indian economy, a
well-developed, decentralized Agriculture Statistics
System exists today to collect and compile various
agricultural statistics such as land holding, land and
crop use, crop production forecasts, etcetera (Srivastava
2012). These methods have been used to estimate
agricultural production and perhaps, indirectly con-
tributed to the implementation of the “Green Revolu-
tion” agricultural reforms in the 1960s. The Green
Revolution enabled India to transform itself from a
food-grain deficient to a food-grain surplus country.
According to Government of India (2015) the total
production of food grains has increased from

50.8 million tonnes in 1950-1951 to over 257 million
tonnes in 2012-2013, more than enough to meet the
current population’s consumption requirement of
160 million tonnes.

While the existing, predominantly manual, process
continues to be used for collecting data related to agri-
culture, there have been various initiatives to use
technology to collect data related to the physical,
financial and legal infrastructure that supports agri-
cultural activity in the country. Many state govern-
ments have undertaken projects such as digitization
of land records for accurate recording of land owner-
ship and creation of soil health cards to capture infor-
mation about soil quality (see, e.g., Meebhoomi 2017,
a portal where land owners in the state of Andhra
Pradesh can access their land records electronically).
The data collected can enable targeted advice to farm-
ers about better farming practices suited for their
landholdings. Together with other programs, such as,
improving financial assistance and loan availability to
backward classes and instituting crop insurance sup-
port, these steps help create an environment that is
conducive to realizing higher profits from agricultural
activity (see Chhatre et al. 2016 for a discussion on
factors constraining farmers in India). The challenge
continues in being able to collect and store the data on
a continuous basis in a costless manner. Future efforts
to improve data collection will have to focus on devel-
oping processes and technology for automated collec-
tion and dissemination of information to make sure
these initiatives can be easily scaled.

2.2. Information Dissemination Applications

The dissemination of information is equally critical to
development efforts. Therefore, alongside the data
gathering applications described above, various
schemes are underway to disseminate the information
gathered to different stakeholders in the agricultural
supply chain. State governments have invested in
developing satellite based communication networks
to provide information and advice to farmers (Indian
Space Research Organization 2000). This network can
be used to broadcast systematic and targeted informa-
tion, e.g., recommendations on fertilizer use and crop
rotation to farmers by combining the digitized land
records and soil health information for individual
farmers. In addition to targeted information, the gov-
ernment has also developed portals to disseminate
technical information; e.g., Mkisan is a government
run information portal for farmers (Ministry of Agri-
culture and Farmers Welfare 2017b). While the infor-
mation provided through these portals is not specific
to an individual farmer, they nevertheless have to
take into account the wide diversity of agricultural
operations in India. Significant diversity in agro-
climatic conditions and soil quality, combined with
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differential access to irrigation, varied rainfall pat-
terns and diversity in language mean that information
disseminated through such portals is state/district
specific. For example, the Agrisnet portal maintained
by the Andhra Pradesh state government provides
information on farming practices, availability of
inputs, and advice that is specific to farmers in the
state, in the local language, Telugu (Agriculture
Department 2017). One may even envisage the con-
cept of a one-to-one mapping of virtual and real farms
in the future! Such a map can create a virtual reality
where farmers can experiment with different ideas
and obtain advice without waiting for the rains and
harvest to take place. The idea of virtualization has
already been implemented in manufacturing, thus,
extension to agriculture is not far in the future.

A bigger challenge in translating the productivity
gains from initiatives on the input side to higher prof-
its for farmers is the lack of adequate access to mar-
kets and reliable information about markets. Farmers
in India, especially small farmers, face significant hur-
dles in accessing markets to sell their output—they
often do not have accurate information about prices
in the output market. As a result, farmers are heavily
dependent on middlemen, who influence what farm-
ers grow, what they pay for services and the price of
the output, thus, depressing the returns that farmers
get from cultivation. This in turn makes it less afford-
able for farmers to invest in technologies that can help
improve farm productivity. In recent years, many pri-
vate organizations have tried to address this issue by
providing close to real-time market information to
farmers (e.g., RML Agtech Pvt. Ltd., formerly known
as Reuters Market Light). Some agri-business firms
have also invested in procurement infrastructure to
provide viable channels for farmers to sell directly to
the firms rather than be dependent on middlemen
(e.g., ITC e-Choupal). The government has also taken
steps to provide market information through public
portals and mobile applications through the Agmar-
ket portal and AgriMarket App (Ministry of Agricul-
ture and Farmers Welfare 2017a), and more recently
enable access to markets through the Electronic
National Agriculture Market platform (NAM 2017).
One interesting area for study would be the unbund-
ling, fragmenting, and servicification of the activities
in the agriculture supply chain as and when “data
science as a decision-making tool” gets accepted and
used widely (see Bhagwati 1984, a prescient paper
that discusses the possibility of fragmentation and
outsourcing of service processes.)

2.3. Algorithmic Data Analysis and Decision
Support Applications

In the United States and other developed coun-
tries, many private companies have developed

technological and data analytics solutions targeted
towards providing decision support systems to farm-
ers to improve productivity (see Sparapani 2017 for
examples). Unlike developed countries in the West,
there has not been any large scale adoption of such
technologies to-date in India. Part of the reason for
this is the nature of landholding in India, where the
average landholding size for farmers is very small, of
the order of one hectare, making investments in such
technology unviable at the level of a single farmer.
Also, because the agricultural sector is a major
employer, capital intensive technologies might meet
resistance due to reduction in the usage of labour.
Thus, a careful analysis of the types of innovations
that benefit small farms is necessary. At this moment,
the ideas are scattered and available only as anec-
dotes. Also, Indian agriculture is primarily rain-fed.
Therefore, soil conservation, water conservation,
proper crop rotation, and practice of the art, and craft
handed out over generations combined with modern
science and data is very much necessary (Chaudhary
and Singh 2016).

Some organizations, both private and government,
are foraying into using big data analytics techniques
to provide decision support to small farmers (Ramesh
2015). For example, ICRISAT is piloting a service
which uses data intensive climate simulation com-
bined with crop growth models to provide advice to
peanut farmers in the district of Anantapur in Andhra
Pradesh. The decision support provided by ICRISAT
includes advice on when to prepare the land for sow-
ing contingent on current rainfall in the growing sea-
son, which variety of seed to sow given the weather
and soil conditions specific to the farmer, what inputs
to use and such (ICRISAT 2017).

Unlike initiatives similar to the green revolution
where the goal was to improve productivity and
ensure overall food sufficiency—the current context
needs applications that are concomitantly geared
towards increasing returns to employment in the agri-
cultural sector, provide stable income and drive eco-
nomic growth. A necessary factor for improving
profitability from farming is to connect farmers to
markets & markets to farms, provide visibility of mar-
ket prices, and enable farmers to identify crops that
have the potential to generate more profits. Past
examples of success show that individual entrepre-
neurs have worked with farmer-communities to grow
crops that are not necessarily consumed in the local
markets but have high demand in other markets to
increase supply chain profitability (these include age-
old examples of tea and coffee plantation in India, to a
recent example of how Gherkin cultivation has
improved livelihood for farmers in the state of Kar-
nataka (Basu 2014)). Use of data science techniques,
spanning the different stages of the lifecycle described
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earlier, can play a significant role in coordinating agri-
cultural supply chains and enabling farmers to dis-
cover such profitable opportunities.

To the best of our knowledge, while existing appli-
cations in India provide access to information, they
barely provide analytics or decision support tools
based on the data. Herein lies the opportunity for
Operations Management researchers to contribute to
a truly worthwhile cause. We describe below a poten-
tial application of data analytics that collects available
information from output markets and renders it use-
ful for various players in the agricultural supply chain
such as, farmers, traders, and policy makers.

3. A Specific Example—Market Price
Analytics Application for
Agricultural Commodities

For many farmers in India, price discovery and price
realization for their produce is simultaneous, i.e.,
farmers know what price they will get for their pro-
duce only after it is taken to the market, after having
incurred significant costs of travel and time. As a
result, farmers often settle for lower prices than what
they possibly can get. Given the small scale of opera-
tions many farmers are dependent on intermediaries
for marketing their produce, leading to double-margin-
alization and hence lower prices. As a consequence,
the net income of most farmers in India is around
25,000 INR (little less than 400 USD) per year, leaving
most of them below the poverty line (Government of
India 2014).

Ensuring easy access to price information should
help address the farmers’ information disadvantage
regarding market prices. Combined with information
visibility, decision support tools to help the farmers
decide when, and to which market, to take their pro-
duce will help improve the returns to farming. Simi-
larly, while intermediaries/traders possibly have
better information about market prices, a decision
support tool that allows traders to improve profits
from marketing agricultural produce will improve
overall welfare. Additionally, data analysis algo-
rithms based on price and volumes traded across
multiple markets can help policy makers identify
anomalies in prices and volumes traded, differences
in patterns across years and markets, et cetera and
take steps to correct any imbalances. All these differ-
ent applications will have the effect of improving
overall supply chain surplus, with some of these gains
accruing to the farmers.

The market price analytics application we are cur-
rently developing (expected to be available by May
2018) is aimed at providing all of the above benefits to
the various stakeholders in the agricultural supply
chain. Below, we describe the data used by the

application, the process of data collection and clean-
ing, and key use cases describing how farmers, tra-
ders and policy makers can use this application.

3.1. Data Source and Data Collection Process

The Government of India has mandated that every
regulated agricultural commodity market in India
publish details of daily transactions. These data are
collated by the states and aggregate data at the daily
level is made publicly available through the Agmar-
ket portal (Ministry of Agriculture and Farmers
Welfare 2017a). We rely on this portal for our data.
Data from each physical agricultural market (known
as a “mandi”) across India are updated on the portal
on a daily basis. We are able to “scrape” data from the
portal every day, after the closing time of the current
day and before the opening time of the next day. Cur-
rently, the application is focused on the state of Pun-
jab, which has over 450 mandis. In the future, the
scope of the application will be expanded to include
all mandis in India. The data collected consists of the
fields shown in Table 1. After obtaining the data, a
number of data cleaning steps are performed to han-
dle missing or incomplete information and inconsis-
tencies in data about prices and arrival.

While the application is currently envisaged to pro-
vide information about prices and arrivals and
decision support with regards to marketing and pro-
curement for farmers and traders, the application has
the potential to add value to other players in the agri-
cultural eco-system by integrating other data sources
and providing an interface for providers of ancillary
services such as logistics, banking and insurance, etc.
In addition, the physical agricultural market data in
the application can be complemented with data such
as weather forecasts and spot and futures prices from
various commodity exchanges. Appendix A provides
a schematic of how this application can integrate with

Table 1 Description of Data Collected by the Application from
agmarket.gov.in

Field Description

Date Date of reporting
Market (Mandi) name Name/Address of the Market (Mandi)
Commodity name Uniquely identifiable commodity name
Variety The variety/variant (grade) of the commaodity
Group Food group of the commodity
(cereal, pulse, etc.)
Minimum price at which the commodity
was sold on the day
Maximum price at which the commodity
was sold on the day
Modal price at which the commodity
was sold on the day
Volume of commodity transacted
(in 100s of Kg) on the day

Minimum selling price
Maximum selling price
Modal selling price

Arrivals
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various data sources, and the steps in the data collec-
tion and cleaning process.

3.2. Price and Arrivals Information Dissemination
With over 500 million active mobile subscribers and
growing, India is on course to become one of the lar-
gest mobile telephone markets in the world. The high
level of mobile phone penetration, combined with
modest incomes and limited literacy levels imply that
the Indian farmer is of short of means, is more likely
to have access to a feature phone without any internet
access, and can only read and write to a limited extent
in the native language. To this end, the application
provides services via an SMS-based system that the
farmer can interact with using any simple feature
phone. The SMS-based system is available in the local
language of the state where the farmer resides, and
the farmer can interact with the system using fixed-
form text. The farmer can query the application to
enquire about the price of any particular crop in the
mandis closest to him/her. The mandis closest to the
farmer are identified based on the farmer’s location
either through GPS tracking of the phone or pre-
determined location of the farmer specified at the
time of registration for the service. In addition to
prices, the farmer can also query for the arrivals at the
mandis closest to him/her, prices and/or quantity for
a given commodity at a particular mandi in the imme-
diate past week. The application also allows users
such as traders and farmers with access to smart-
phones and internet access to make more sophisti-
cated queries through the smartphone app and/or
web portal of the application. Large buyers who wish
to transact at one or more mandis and buy from one
or more farmer (or, alternately large farmers who
wish to sell at one or more mandis) can use the appli-
cation to identify mandi(s) with the best price to fulfil
their buying (or, sales) needs. Appendix B provides
a schematic on how different users interact with
the application through SMS/web-based portal/
smartphone app.

3.3. Algorithmic Data Analysis and

Decision Support

In addition to information about historical prices and
arrivals, the application provides localized informa-
tion to help farmers and traders make decisions on
when and where to transact for the produce. Auto-
mated forecasting and advanced algorithmic data
analysis embedded in the application can generate
price and arrival predictions for different commodi-
ties in the upcoming week at a particular mandi or
group of mandis. These predictions can be combined
with optimization techniques to help buyers (sellers)
to identify the combination of mandis that can pro-
vide the quantity required (to be sold) at the best

price, source (or, sell) multiple commodities through
multiple mandis within a stipulated price and dis-
tance range.

The application can also provide an aggregate view
across all mandis to policy makers and regulators.
The application’s database has price and quantity
information for multiple commodities across all man-
dis for multiple years. This data can be mined to
identify patterns and help in making effective, data-
driven policy interventions. Some of the important
questions that this application helps answer at a
macro-level, include: information about aggregate
arrivals of a particular commodity across the mandis
of a state/district, identify patterns in arrivals over
multiple years and identify deviations from the past,
predict estimated arrivals/prices of particular com-
modities in the upcoming season at major mandis,
using algorithmic techniques on historical data from
previous years and combine it with other information
such as weather and yield forecasts for the current
season, track deviation between supply and demand,
monitor deviations from the minimum support price
guaranteed for some commodities by the govern-
ment, use the data to create region-specific price
indices for food, create dynamic models of supply-
demand matching on a spatial network, etcetera. We
do not provide specific use cases but expect to allow
integration with the data to enable such applications.

In addition to the data collected from external
sources mentioned before, an additional source of
data, namely the queries and searches performed by
various users of the application, will become available
to be mined and generate insights. For example, based
on queries by farmers, the application will be able to
analyze patterns and predict likely arrivals of a com-
modity at a given mandi on a given day or week. Sim-
ilarly, based on queries by the traders the application
will be able to predict expected demand for various
commodities at a given mandi, and based on the esti-
mated supply and demand, forecast prices for major
commodities that are likely to prevail in mandis
within a specific geographic region. These and other
possible insights from mining the social media data
on the platform will be useful for members of the agri-
cultural supply chain to make better decisions and
improve profitability. One can imagine applications
wherein bulletin boards can be provided to help clear
specific commodities that are highly seasonal or of
high quality. We leave it to the readers’ imagination
to speculate about other possible benefits that the
application will bring about.

The obvious question is whether the cost of devel-
oping and maintaining this application at scale is
going to be prohibitive, rendering this a mere theoret-
ical exercise and a small scale proof of concept. The
surprising answer is no. The costs of developing and
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maintaining this application—hardware costs for data
storage, software development, manpower costs for
maintaining the application, incremental costs of data
acquisition from multiple sources, cost for users to
access the application—can be estimated in a fairly
straightforward manner (see Appendix C for an esti-
mate of the development and maintenance costs of
the application). Given the potential impact of the
information, the low cost, less than USD 3500 per
month, reflects the progress data science has made in
the last decade.

4. Data Science and Social Change

The role of big data in transforming businesses
and society is becoming more and more apparent
with the convergence of data availability, technol-
ogy, and democratization of access (see Fisher and
Raman 2018 and Swaminathan 2018, in this vol-
ume for two examples of how big data can help
improve retail and humanitarian operations). To
play a truly transformational role, data science
applications have to additionally take into account
local contextual factors.

For example, a key feature of the Indian agricul-
tural sector, and those in other developing countries,
is that in addition to being a major supplier of food to
the world, the sector is also a major employer. Thus,
while we discussed the technological and informa-
tional aspects related to various data science applica-
tions, we should note that the ability of these

applications to address the challenges facing the
Indian agricultural sector also depends on having the
right combination of user-skills and market processes.
To this end, there is a need to equip the users with the
right skills to make the best use of the data science
applications. We also cannot end this essay without
mentioning the need for good governance and regula-
tion. In the absence of safeguards and provisions of
recourse, it is likely that these applications can lead to
asymmetric distribution of benefits and leave the
most vulnerable players worse-off (see Helbing et al.
2017 for a discussion on the pitfalls of control of data
and information being centralized in the hands of a
few, large enterprises and/or governments). Thus,
with careful design, we foresee data science as being
truly transformational in the techno-social-political-
economic sense in rural India.
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Appendix A. Data Collection and Cleaning Process [Color figure can be viewed at
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Appendix B. Process Flow for the Interaction between Users and the Application
[Color figure can be viewed at wileyonlinelibrary.com]
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Appendix C. Application Development and Maintenance Costs

Reference

Item Cost per month (in INR)
Application development phase

Computation Resources 71,000
Data Storage 20,000

APl access 32,500
Backend development 3 x 20,000
UX development 3 x 20,000
Office space 50,000
Total monthly expenses 293,500
Maintenance phase

Computation, Storage, API access 123,500
Development team 2 x 20,000
Office space 50,000
Total monthly expenses 213,500

For dedicated computing resources on m4 instance
https://aws.amazon.com/ec2/dedicated-hosts/pricing/

Estimated 10TB initial requirement
https://aws.amazon.com/govcloud-us/pricing/s3/

https://openweathermap.org/price

3 developers

2 developers

We estimate development to take ~6 months

2 developers in the long run to maintain the application

Note. One USD = 65 INR approximately.
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his study discusses how the tremendous volume of available data collected by firms has been transforming the ser-
T vice industry. The focus is primarily on services in the following sectors: finance/banking, transportation and hospi-
tality, and online platforms (e.g., subscription services, online advertising, and online dating). We report anecdotal
evidence borrowed from various collaborations and discussions with executives and data analysts who work in manage-
ment consulting or finance, or for technology/startup companies. Our main goals are (i) to present an overview of how
big data is shaping the service industry, (ii) to describe several mechanisms used in the service industry that leverage the
potential information hidden in big data, and (iii) to point out some of the pitfalls and risks incurred. On one hand, col-
lecting and storing large amounts of data on customers and on past transactions can help firms improve the quality of
their services. For example, firms can now customize their services to unprecedented levels of granularity, which enables
the firms to offer targeted personalized offers (sometimes, even in real-time). On the other hand, collecting this data may
allow some firms to utilize the data against their customers by charging them higher prices. Furthermore, data-driven
algorithms may often be biased toward illicit discrimination. The availability of data on sensitive personal information
may also attract hackers and gives rise to important cybersecurity concerns (e.g., information leakage, fraud, and identity
theft).
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revenue derived from sales of related hardware, soft-
ware, and services reached $18.6 billion in 2013. Bro-
This study presents a broad overview of how the ser- ken down by type, the revenue generated from big
vice industry has been affected by the presence of big data services made it to the first place with 40% of the
data (i.e, granular data collected and stored at total market ($7.39 billion), as can be seen in Figure 1.

1. Introduction

unprecedented levels of variety, velocity, and vol- The vast majority of companies across different
ume). Today, most firms collect and store large  industries are aware of the potential of utilizing big
amounts of data on their customers (e.g., personal data to increase their bottom line. It is now common
information, demographics, social networks, geo-  to find a data science team in most organizations (e.g.,
localization, past searches, and previous purchases), Walmart, Staples, Zara, the New York Yankees, Mar-
and keep a record of all their past transactions. Sev- riott, American Airlines, Spotify, and Disney, to name
eral experts claim that we are only at the beginning of ~ a few). Even small startup companies often include
a revolution, and that in the near future every com- one co-founder with expertise in data science and
pany will base most operational decisions on data.  analytics. A 2012 survey indicated that 54% of finan-
Such a practice is often referred to as data-driven deci- cial services firms have appointed a chief data officer
sion making or data-driven algorithms. It has become (Bean 2016). Companies are well aware of the benefits
surprisingly simple to find impressive statistics on the of collecting and storing past data. Interestingly,
massive size of this phenomenon. For instance, more research by MGI and McKinsey’s Business Technol-
data were created within the past 2 years than in the ogy Office revealed that firms are facing a steep short-

entire previous history of the human race. By 2020, it ~ age of talent capable of managing and analyzing big
is predicted that 1.7 megabytes of new information  data. By 2018, the United States alone could face a
will be created every second for every person on the shortage of 140,000 to 190,000 people with strong ana-

planet. For example, Walmart handles more than lytical skills.
1 million customer transactions every hour. These Most firms have invested heavily in collecting and
data are imported into databases, which are estimated  storing data. However, it was reported that less than

to contain more than 2.5 petabytes of data." A recent ~ 0.5% of all collected data has ever been analyzed or
study by Wikibon.org reported that big data will be a used.’ Thus, finding innovative and efficient ways to
$50 billion business by 2017.> According to the same utilize existing data represents a major challenge for
study, the big data market as measured by vendor  firms to unlock the benefit of big data. In the service
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Figure 1 The Big Data Market as Measured by Vendor Revenue in
2013 (source: wikibon.org) [Color figure can be viewed at
wileyonlinelibrary.com]

Big Data Revenue by Type, 2013
Wikibon (in $US millions)
(n=$18,814)

industry, this task is of primary importance, as histor-
ical data can help service providers learn their cus-
tomers’ behavior and preferences to enhance service
quality and therefore, increase profit and customer
satisfaction. Given the competitive landscape of the
service industry, it is crucial for firms to know their
existing customers (by learning their preferences from
the data) in order to offer better customized services.
The data on existing customers can also be used to
attract similar new customers and increase the firm’s
market share.

In the digital era of today’s economy, almost all
types of services have a digital presence and are data
oriented. Interestingly, firms interact with their cus-
tomers via several channels. For example, users can
connect and interact with a service company (e.g., an
airline, hotel, or restaurant) via their Internet website,
smartphone application, phone customer service,
chatbot, Twitter account, etc. It is important to aggre-
gate the multiple sources of data and to understand
how a typical user utilizes the different channels
offered by the firm. The challenge then is to transform
the data into strategic levers that help the firm
improve the current customer experience, and thus,
the firm’s bottom line. Big data has widely impacted
management practices. According to McAfee et al.
(2012): “Data-driven decisions are better decisions—
it's as simple as that. Using big data enables managers
to decide on the basis of evidence rather than intu-
ition. For that reason it has the potential to revolution-
ize management.” A similar claim also applies to
service operations, which should strive to unlock the
powerful information hidden in big data.

In this study, we discuss how the presence of big
data has transformed services. In particular, section 2
focuses on financial services (credit cards, online pay-
ments, peer-to-peer lending, and trading services). Sec-
tion 3 discusses the transportation and hospitality

sectors, with an emphasis on ride-hailing and market-
places, as well as traditional firms, such as airlines and
hotels. Section 4 considers services delivered by online
platforms. In section 5, we present some of the main
pitfalls and risks due to the abundance of big data.
Finally, our conclusions are reported in section 6.

For each topic and industry, we convey some of the
recent changes induced by the presence of large data-
sets. We discuss in greater detail companies with
which the author collaborated through research, con-
sulting, and/or informal discussions. The ideas pre-
sented in this study are by no means exhaustive and
portray only a partial representation of the actual situ-
ation which is evolving every day. Our goal is to
make the reader aware of the impact of big data on
services, as well as to discuss some of the marketing
and operational tools commonly used to improve the
decision-making process by exploiting historical data.
The focus of this study is less on the technical aspects
and more on the high-level picture. Before presenting
concrete examples from the aforementioned sectors,
we briefly discuss several tools and mechanisms the
service industry uses to analyze and exploit big data.

1.1. Tools and Mechanisms

Companies seek to use their data to identify trends,
detect patterns, and know better their customers’
habits and preferences. As big data holds the poten-
tial to describe customers with a high accuracy, many
firms use their data to refine their definition of the
Ideal Customer Profile (ICP). Furthermore, one can
use past digital information to define target audiences
(age, location, education, income, interests, etc.). By
observing users’ habits and online search results, the
firm can identify the type of customer who is attracted
by certain products. Exploiting big data provides
insights into how to lower the Customer Acquisition
Cost (CAQ), increase the Customer Lifetime Value
(CLTV), reduce customer churn, and manage several
other customer-driven metrics.

The process of collecting, storing, and analyzing
data is based on several steps, and each step can be
performed, using specific tools and software. These
steps include data collection, data storage and man-
agement (e.g.,, Hadoop and Cloudera), data cleaning
(e.g., OpenRefine and DataCleaner), data mining and
analysis (e.g., IBM SPSS Modeler and BigML), data
visualization (e.g., Tableau), and data integration (e.g.,
Talend). In this study, we focus on the data mining
and analysis step. Next, we describe mechanisms (or
methods) commonly used in the service industry that
leverage the potential information hidden in big data.

® Real-time personalization: Companies aim to
send the right offer to the right user at the right
time. Big data can be used to effectively
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personalize offers, prices, displayed assortments,
and the order of online searches. Personalization
can be performed dynamically, as well as at the
user level. Depending on the context, personal-
ization can utilize customers’ attributes, such as
geo-localization, demographic information, time
of the day, etc. Today, differentiating pricing
strategies at the customer-product-time level and
optimizing prices using big data have become
ubiquitous. Several academic papers were writ-
ten on this topic (see, e.g., Amatriain 2013,
Golrezaei et al. 2014).

e Targeted promotions and campaigns: Sending
promotions to existing or new customers can
be expensive and often results in low conver-
sion rates. Using large historical data sets can
help guide the design of future promotion
campaigns. For example, firms need to decide
which types of customers to target, and what
are the most important features (e.g., geo-
localization, demographics, or past behavior).
Search engine optimization and targeted mar-
keting campaigns (email and mobile offers) are
two domains where big data is having a signif-
icant impact. Designing targeted promotions
has been extensively studied in the academic
literature (see, e.g., Andrews et al. 2015, Arora
et al. 2008, Fong et al. 2015).

e Pattern and trend identification: This process,
sometimes also called lead scoring, involves
the use of historical data to identify existing
trends and predict future outcomes (see, e.g.,
Thomas et al. 2017 and the references therein).
Companies try to identify shopping trends
(e.g., by using Google Trends), so they can
highlight their top-selling products and elimi-
nate the underperforming ones (Choi and Varian
2012). Other examples include identifying demo-
graphic trends, which allows businesses to
better cater to specific groups. Advanced sta-
tistical and machine learning algorithms are
routinely used to search for new patterns and
correlations in the data. Subsequently, such
patterns are used to inform future operational
decisions. One common technique is associa-
tion rule learning, which aims to discover inter-
esting hidden relationships among several
attributes in large databases. One application
is market basket analysis, in which a retailer
can determine which products are frequently
purchased together and then use this informa-
tion for marketing purposes.

e Customer segmentation: This consists of cluster-
ing customer data to create customized marketing
campaigns that cater to several specific groups of
users. Examples include recommendation engines

that create value for customers by reducing their
search and evaluation costs (e.g.,, Amazon and
Netflix). Firms try to segment users based on
several attributes in order to leverage the data
on existing users to make decisions for similar
new customers (see, e.g., Bobadilla et al. 2013,
Zhou et al. 2010).

e Predictive modeling and analytics: Predictive
analytics is a commonly used statistical tech-
nique to algorithmically predict future out-
comes based on historical, current, and even
social data (Cui et al. 2017). In practice, predic-
tive analytics can be applied to a wide spec-
trum of disciplines—from predicting the failure
of an aircraft engine based on the data stream
from sensors to predicting customers’ next
actions based on their previous purchases and
their social media engagement. One popular
application is fraud analytics, where the data
are used to detect fraudulent activities.

e Text, audio, and video analytics: Text analyt-
ics (or text mining) refers to techniques that
extract information from textual data, obtained
from online reviews/forums, emails, survey
responses, social network feeds, and call center
logs. Text analytics involves statistical analysis,
computational linguistics, and machine learn-
ing. Audio or speech analytics analyzes and
extracts information from unstructured audio
data. Currently, call centers are one of the pri-
mary application areas of audio analytics.
Recently, video analytics has also received a
lot of attention.

In the next three sections, we report several con-
crete examples of services from different sectors that
use at least one of the mechanisms above.

2. Financial Services

In this section, we discuss how big data has been
shaping some of the financial services. We first com-
ment on the impact of credit cards applications, which
is a multi-billion dollar industry. Second, we discuss
the impact on online payment platforms that have
emerged in recent years. Third, we consider the mar-
ket of matching borrowers with lenders (peer-to-peer
lending), which is a growing industry powered by
large datasets. Fourth, we briefly discuss the impact
of big data on trading and investment services. More
details on operations in financial services can be
found in Xu et al. (2017) and Pinedo and Xu (2017).

2.1. Credit Cards
Banks and financial institutions are constantly seeking
to improve their credit card departments. Credit card
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services yield a comfortable margin and have become
a very lucrative business. For example, in 2014, Amer-
ican Express made a net interest income of approxi-
mately $5.8 billion.* From the bank’s perspective,
credit cards generate revenue by charging a member-
ship fee, a small fee per transaction to merchants
(called the interchange fee, which typically ranges
between 1% and 6% of the transaction amount), inter-
national fees on transactions in a foreign currency,
and exchange rate loading fees. In many cases, banks
also charge a high penalty fee for late or overdue pay-
ments, a fee for exceeding the credit limit (called the
over-limit fee), as well as relatively high interest rates
on outstanding balances. From the user’s perspective,
having a credit card is almost a necessity (at least, in
the United States). The variety of credit card options
has exploded in the last two decades. It is now com-
mon for companies to partner with a bank in order to
offer their own credit card (e.g.,, Amazon, American
Airlines, Macy’s, Costco, Best Buy, Toys “R” Us, and
the recent example of the Uber VISA card). The num-
ber of credit cards in circulation and the number of
active users have also exploded. In 2015, the number
of credit cards from the four primary credit card net-
works (VISA, MasterCard, American Express, and
Discover) was 636 million.” In addition, Americans
made 33.8 billion credit card transactions in 2015, for
a total value of $3.16 trillion.® As of November 2016, a
typical American held an average of 2.35 credit
cards.”

Picking the right credit card (either for personal or
business purposes) can save users thousands of dol-
lars each year on interest, helps book travel for free,
as well as earns significant rewards (e.g., receiving
cash back, collecting airfare miles, and accessing air-
port lounges). It is also important for users to use their
credit cards wisely, as it affects their credit score,
which is crucial for loan applications. With the
unprecedented volumes of data on users and past
transactions, credit card companies seek to send tar-
geted offers to users to increase their profits. In partic-
ular, companies use data-driven models to predict the
default probability of users, as well as their propen-
sity to spend. Such companies often use their data in
order to guide decisions, such as (i) which individuals
to offer a credit card, (ii) the credit limit, (iii) when
and by how much to increase the credit limit for exist-
ing users, and (iv) which benefits or rewards to offer
in order to increase the conversion rate.

Consider the concrete problem faced by a credit
card company that needs to decide whether to issue
credit cards to a specific set of users. The first goal is
to assess their risk of default. Note that this task can
be challenging as the historical data is available only
for individuals who were given a credit card in the
past. Consequently, for users who were never issued

a credit card, it is not possible to know if they would
have defaulted. If the population of people applying
is “similar” to the population who were issued cards
in the past, one can use the past information to infer
future decisions. But very often, this is not quite the
case. In particular, there are a large number of appli-
cations from customers who are completely
unbanked, with no credit history (e.g.,, new immi-
grants and students who get their first job). The pres-
ence of large datasets can help identify similar users
(by using clustering techniques) and leverage some
detailed information on similar users.

An additional business decision related to credit
cards is to decide whether to give a credit limit
increase to existing customers. Existing users may
request a credit limit increase every several months.
Then, the credit card company needs to decide
whether or not to approve such a request. On one
hand, the company wants to increase the spending
power of users, as it may potentially enhance the
firm’s profits. On the other hand, this can lead to a
higher risk of defaulting, and such decisions are sub-
ject to strict laws and regulations. More precisely,
credit card companies cannot grant infinite credit
limit increases as the companies must keep a portion
of their capital on hand to cover the credit they are
issuing. Consequently, with the credit limit con-
straint, the firm wants to increase credit limits for
individuals who are the most likely to spend, while
minimizing the default risk. Solving this optimization
problem calibrated with historical data is definitely
not a simple task.

In addition to credit card companies, banks face
similar data-driven decision-making problems. Con-
sider, for example, a bank that needs to decide which
financial product to suggest next to a particular client.
Banks always try to persuade customers to acquire
new products (e.g., a credit card, a savings account, a
mortgage, or a private wealth account). However,
advertising a new product can often be expensive.
Therefore, several banks put great efforts into care-
fully selecting whom to advertise to, and which pro-
duct(s). Similarly, banks need to decide which price
to offer for long-term savings accounts. Many individ-
uals have at least one savings account. When the term
ends (e.g., every year) and the account rolls over, the
user has to decide whether to renew, and this decision
depends on the rate offered by the bank. Today, banks
often rely on past data to solve this problem. Several
related works can be found, see, e.g., Bharath et al.
(2009).

Interestingly, some credit card companies sell
(anonymous and aggregated) customers’ data to
other businesses, such as retailers that would like to
garner better insights into consumer spending habits.
The data can be aggregated by ZIP code, which
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informs retailers what areas are more likely to make
purchases. Alternatively, credit card companies can
sell data to advertisers that can use this information
to target specific users with ads. Similarly, compa-
nies, such as creditkarma, sell aggregate information
to credit card companies and to advertisers. Cred-
itkarma is a personal financial management platform
that offers free credit scores (with weekly monitor-
ing), tax preparation, tools for identifying and dis-
puting credit report errors, and tools for simulating
credit score evolution. The revenue stream of such
(free to consumers) platforms is typically covered by
targeted advertisements for financial products (e.g.,
credit card recommendations based on users’ credit
profiles).

2.2. Online Payments

Online payment systems can be based either on fiat
currencies or on virtual currencies. Traditionally,
small payments in the United States, as well as in
many other countries, were made through checks.
Launched in December 1998, PayPal quickly became
the leader in accepting and receiving online pay-
ments. It appears to be the de facto online payment
solution for online customers, freelancers, and small
business owners. For example, many transactions on
eBay are performed via PayPal. Similarly, a large
number of websites that aim to request donations use
PayPal. PayPal’s shares increased by nearly 80%
between January and October 2017 with $85.8 billion
in market capital (October 26, 2017). In October 2017,
PayPal launched a new product called PayPal for
Marketplaces. This new modular system is designed
for businesses that operate online marketplaces (e.g.,
ride-sharing and room rental platforms, crowdfund-
ing portals, peer-to-peer e-commerce sites, and online
gaming). In recent years, technological advances have
opened the door for a number of competitors to chal-
lenge PayPal by offering cheaper fees, faster transac-
tions, and enhanced security. Over the last several
years, new payment systems proliferated. One can
count more than a dozen of alternatives. Examples
include Stripe, Due, Apple Pay, Google Wallet, Pay-
oneer, Square, Alipay, Amazon Pay, Skrill, WePay,
and Venmo; a more exhaustive list can be found
online.® Such systems may allow users to complete
payments via email or by using their smartphones.
Consider, for example, the service offered by Venmo
(which was acquired by Braintree in 2012, which was
itself acquired by PayPal in 2013). Venmo is designed
for quick and small payments (after verifying their
identity, users can send up to $2999.99 during each
seven-day period). Although the number of users is
not publicly reported, the dollar amount in transac-
tions is quite impressive. Venmo handled $17.6
billion in transactions in 2016, $6.8 billion in

transactions in Q1 of 201 7,9 and more than $8.0 billion
in transactions in Q2 of 2017."° The main competitive
edge of Venmo lies in its social dimension. In particu-
lar, a popular use case is when friends conveniently
split bills (e.g., for meals, movies, rent, or trips).
Venmo allows users to log in to the platform using
Facebook, thus providing access to social network
data to the provider. When a user completes a pay-
ment transaction, the transaction details (the payer,
receiver, amount, and specifics of the expense) are
shared on the user’s “feed,” so that other friends can
also see it.!! In addition, Venmo encourages social
interactions on the platform through likes and com-
ments on each transaction. Consequently, the richness
of the data available to a platform like Venmo is strik-
ing. The platform has access to the network of friends,
to the types of relationships and mutual interests peo-
ple have (e.g., going to watch a movie on a weekend),
and to all the pairwise money transactions. Monetiz-
ing this data is a challenge but if done properly, can
lead to very high profits.

2.3. Peer-to-Peer Lending

In today’s economy, borrowing and lending often
occur online, especially when the borrowing party
does not have a high enough credit score. Borrowing
and lending (peer-to-peer) can take place between
two individuals without involving a banking institu-
tion. Peer-to-peer lending refers to the practice of
lending money to individuals or businesses through
online services that match lenders with borrowers.
The borrower must be able to provide sufficient infor-
mation about his or her creditworthiness on the
online platform in order for the lender to be able to
assess the credit risk. The interest rates can be set by
lenders who compete for the lowest rate on the
reverse auction model or fixed by the intermediary
firm based of an analysis on the borrower’s credit.

For many years, private individuals have already
been offered the option to secure mortgages on their
homes through websites such as LendingTree.com.
This platform is an online lending exchange that
matches individuals with given credit rating scores
(FICO) with established banking institutions that
compete for business. Such transactions are made
possible thanks to reliable credit scores provided by
three credit rating agencies (Equifax, Experian, and
TransUnion) that collect extensive financial informa-
tion on individuals. At times, the borrower may be a
small company (e.g., a startup) that would have diffi-
culties to obtain financing from a banking institution.
Such a company may also resort to crowdfunding to
obtain financing in the form of a loan or an equity
stake in the company.

LendingClub is the world’s largest peer-to-peer
lending platform.'> More precisely, it is an online
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lending platform that offers loan trading on a sec-
ondary market and enables borrowers to create unse-
cured personal loans between $1000 and $40,000.
The company claims that $28.75 billion in loans have
been originated through its platform up to June 30,
2017."® Each loan displayed on the website includes
information about the borrower (e.g., FICO score,
credit history, debt-to-income ratio, and personal
income), the amount of the loan, the loan’s grade,
and the loan’s purpose. Investors earn money from
the interest, whereas the platform charges borrowers
an origination fee and investors a service fee. The
amount of historical data available to the platform is
enormous. This data (which is partially made pub-
licly available) is transforming the lending industry
and has incentivized several investment firms to
enter this market.

2.4. Investment and Trading Services

Investment and trading services, which often occur
through online platforms, are other prominent finan-
cial services that have been affected by big data.
Users can easily create accounts allowing them to
trade securities, stocks, bonds, and exchange-traded
funds (ETFs). Such platforms have access to unique
datasets. For example, the platform can have access
to how often users connect to the platform and
which types of financial products users monitor.
Subsequently, the platform can sell such aggregate
information to advertisers. In addition, the platform
can send targeted offers to its users, such as free
webinars, referral promotions, and online workshops
on different topics. An interesting example is the
platform eToro, which is a social trading and
multi-asset brokerage company.14 Users can trade
currencies, commodities, indices, and contract for dif-
ference (CFD) stocks online. The unique characteristic
of eToro’s platform is that users can decide to follow
investors by replicating the same portfolio investment.
The slogan on their website reads as follows: “Join
the Social Trading revolution! Connect with other tra-
ders, discuss trading strategies, and use our patented
CopyTrader technology to automatically copy their
trading portfolio performance.” Their data is very rich
as it includes performance data and risk measures for
each user at each point in time. In addition, eToro has
access to fascinating data on social connections and
influences among the different users. Each user is
rated with a risk factor, the gain or loss in percentage
during the last 12 months, and the variation in gain
or loss during the last trading day. One can also
access historical statistics on the performance and the
current portfolio (i.e., open trades). Finding effective
ways to monetize such data is an interesting chal-
lenge, and several companies are working on this
type of problem.

3. Transportation and Hospitality

In this section, we discuss some of the recent disrup-
tions in the transportation and hospitality industries
that were partially driven by the presence of big data.
The world is clearly moving toward personalization
in these sectors, implemented through a large-scale
decentralized system. Most service providers aim to
constantly improve their customer service by collect-
ing large relevant datasets on users. We first consider
transportation services (with a focus on ride-hailing
platforms), and then consider hospitality services
(with a discussion on hotels and online marketplaces,
such as Airbnb).

3.1. Transportation

On-demand ride-hailing platforms have changed the
way people commute and travel for short distances.
Several well-known players in this market are Uber,
Lyft, Didi Chuxing, Grab, Ola, Via, Gett, and Juno, to
name a few. In October 2016, it was reported that
Uber had 40 million monthly riders worldwide."
Today, using this type of transportation service has
become the norm in most major cities (e.g., Uber now
operates in more than 600 cities around the world).
During the first few years, growth was moderate, but
within the last 2 years, this industry has expanded
rapidly. For example, it took Uber 6 years to complete
their first billion rides (from 2009 to 2015) but only an
additional 6 months to reach their two-billionth
ride.’® This means that during the first 6 months of
2016, the company was providing an average of
5.5 million rides a day (or 230,000 an hour). This type
of statistics illustrates the impressive scale and
growth of the ride-hailing industry. More impor-
tantly, ride-hailing platforms collect a massive
amount of granular data at a very large scale. Each
transaction (in this case, ride request) comes with a
stream of information: rider ID, drop-off/pick-up
times and locations, number of passengers, day of the
week, price offered, weather conditions, waiting time,
type of car requested, and much more. For example,
services like Uber allow riders to split the fare with
friends. Thus, this provides information on users’
social networks. Platforms can collect and store infor-
mation on geo-localization, willingness to pay, will-
ingness to wait, as well as many other features related
to their customers. Using this rich data on every sin-
gle user remains challenging but has unprecedented
potential in terms of increasing the service personal-
ization and the long-term profits. For example, if the
platform knows that some users do not mind waiting
for rides, whereas others do, this information could
be potentially used in the “dispatch algorithm” (i.e.,
deciding in real-time which drivers are assigned to
which ride requests). These platforms always try to
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find new ways to exploit the data in order to improve
service, retention, and revenue. A recent example is
related to geo-localization. When a user requests a
ride and does not accept it (e.g., the price was too
high), the application can notify the user a few min-
utes later that the price quote is now lower (while
knowing the rider’s exact position). The firm can also
use the data to decide how to send targeted promo-
tions to its users. By leveraging available fine-grained
data, promotion and referral campaigns can now be
customized to a very high degree of granularity. Since
such platforms often operate in an on-demand supply
mode, they also collect a vast amount of data on
workers/drivers (vehicle type, sometimes demo-
graphics information, geo-localization, work hours,
sensitivity to promotions, etc.). As a result, the plat-
forms can refine their algorithms and increase the effi-
ciency of their operations by using this data to create
better incentives for both riders and drivers. This
topic is a very active research area in the operations
management community (see, e.g., Bimpikis et al.
2016, Chen and Hu 2016, Chen and Sheldon 2016,
Cohen and Zhang 2017, Hu and Zhou 2017, Tang
et al. 2017, Taylor 2017).

Recently, taxi services have dedicated great efforts
to modernize their operations to better fit into today’s
economy. For example, in several cities, taxi rides can
now be directly ordered from a smartphone applica-
tion, and the payment (including the tip) can be com-
pleted either via the application or in person. One
such company based in the United States is Curb.'”
On their website, one can read: “Curb is the #1 taxi
app in the United States that connects you to fast, con-
venient and safe rides in 65 cities (50,000 Cabs—
100,000 Drivers).” Other similar examples include
Ace Taxi in Cleveland, Ohio, Talixo in Germany, and
taxi.eu which operates in 100 European cities. These
companies offer taxi rides by using an online plat-
form, and therefore, can easily collect data on previ-
ous transactions. Historical data can help taxi
companies improve operational decisions, such as
dispatching drivers across the city, predicting
demand in real-time, and sending targeted offers.
Most optimization and prediction algorithms used by
such platforms are data-driven and are tuned very
often in order to dynamically capture the high-paced
changes observed in the data.

Interestingly, several platforms go beyond just pas-
sively collecting data. In particular, several firms
design and run a multitude of micro-experiments
with the goal of generating high-quality data. A typi-
cal platform can decide to run a series of carefully
designed experiments (often called A/B tests), in order
to validate intuition and gain important novel knowl-
edge on users’ behavior. For example, are users more
likely to react to promotions sent in the morning or in

the evening? To answer such a question, the firm can
design a small experiment and randomly send pro-
motions to two samples of users. Then, by testing the
statistical significance of the results, the platform can
gain important knowledge that will be valuable mov-
ing forward. Today, Microsoft and several other lead-
ing companies, including Amazon, Booking.com,
Facebook, and Google, each conduct more than 10,000
online controlled experiments annually, with many
tests engaging millions of users (Kohavi and Thomke
2017). Startups companies and firms without digital
roots, such as Walmart, Hertz and Singapore Airlines,
also run this type of test regularly, albeit at a smaller
scale. For more details on this topic, we refer the
reader to the recent article by Kohavi and Thomke
(2017) and to the paper by Kohavi et al. (2013).

Airline companies have also been greatly affected
by big data. The pricing and scheduling decisions for
flights are often controlled by data-driven algorithms.
Airline companies collect rich datasets on customer
transactions (customers can now easily be identified
via frequent flyer numbers). Firms subsequently use
this data to customize price offerings and to enhance
customer loyalty. The demand prediction for each leg
is also performed by using large datasets which
include previous performance, weather conditions, as
well as many additional factors. Today, airlines make
the majority of their operational decisions (schedul-
ing, pricing, inventory, staffing, etc.) based (at least
partially) on historical data. From the customer per-
spective, things have also evolved significantly. The
increased level of competition and the explosion of
reservation systems (e.g., Kayak, Orbitz, and Expedia)
allow consumers to easily compare the different alter-
natives. Some of these reservation systems even offer
advice on whether to book now or to wait for a poten-
tial price decrease. These reservation systems have
access to very fine-grained data about users: geo-
graphical location, IP address, browser used, mobile
or desktop platform, past searches, previous reserva-
tions, number of clicks, and so on. The systems can
sell aggregate information to advertisers and use
some of this information to discriminate searches and
prices among users (see more details on this topic in
section 5.3).

Big data have also affected the transportation
industry from a completely different angle. Manufac-
turers and in particular, large aeronautics companies,
such as Boeing and Airbus, now routinely use data
obtained from sensors to manage the maintenance of
their aircrafts, and to create after-sales personalized
services (e.g., proactive maintenance and special
monitoring). More precisely, they place hundreds (if
not thousands) of different sensors to collect informa-
tion in a very fine-grained fashion. Those sensors
are very sophisticated and can often record
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measurements as fast as every second. They are
located in different parts of the aircraft and typically
measure the temperature, the humidity level, the
vibrations, as well as various physical and mechanical
properties. The data collected from these sensors
gives rise to very large time series (such datasets are
often hard to store and to visualize). Subsequently,
the firm’s goal is to analyze these datasets in order to
improve the current maintenance strategy. The ulti-
mate goal is to send specific aircraft parts for mainte-
nance before a critical issue occurs, but at the same
time not too early. This practice involves very high
costs and risks, and thus, the potential impact of
properly analyzing such data is tremendous. Firms
that offer this type of service to airlines have a unique
competitive advantage. A very similar story (albeit, at
a smaller scale) is present in the automobile industry,
which has also started to use a large number of data
Sensors.

3.2. Hospitality

Today, hotels collect and store as much information
as possible on their customers. Nevertheless, it can be
challenging to efficiently exploit the data as individu-
als often use different email addresses (e.g., business
versus personal). One common technique to ease the
data collection process is to offer a loyalty card to cus-
tomers. Very often, the loyalty program can be shared
among several hotel partners (e.g., the Starwood Pre-
ferred Guest network includes Sheraton, Le Meridien,
Westin, W Hotels, and several other hotel chains).
This allows the firm to identify each user by a unique
identifier. After each stay, hotels can record the spe-
cial requests and preferences (e.g., vegetarian or book-
ing room dining services). During the next stay, the
hotel can then accommodate the customer’s needs in
a more effective and personalized fashion.

Most hotels also use historical data to design and
send targeted promotional offers. For example, hotels
can collect data on which types of customers are likely
to accept which type of promotional offer, and at
what time of the year. Then, by leveraging the data
from past offers, the hotels can decide the specifics of
the next campaign. For example, hotels in the Inter-
continental Hotels Group use price optimization tools
(see Koushik et al. 2012). Another example is the
Carlson Rezidor Hotel Group that uses data-driven
methods to maximize revenue (see Pekgiin et al.
2013). This type of practice is particularly relevant to
hotels in Las Vegas (or other casino resorts), which
use data-driven predictive algorithms to infer the
spending capital of each potential customer. Such
practices are often taken very seriously as they can
drive a relatively large portion of the hotel’s revenue.
This topic has been extensively studied in the aca-
demic literature (see, e.g., Kilby et al. 2005, Lucas and

Brewer 2001). In addition, a large number of patents
were issued on this topic during the last two decades.
Having access to larger datasets can only make this
lucrative practice more exciting. It is now common for
hotel groups to hire a team of analysts who are dedi-
cated to improving their data-driven algorithms. In
addition, with the explosion of online travel search
websites (e.g., Kayak, Orbitz, and Expedia), hotels
need to decide at each point in time the portion of
reservations to assign to those channels, as well as the
pricing policy. Managing operational decisions for
cruises has also been affected by the presence of large
datasets (see, e.g., Gibson 2006). Today, several cruise
companies have a department fully dedicated to
developing and improving the management and use
of their data.

It does not seem reasonable to end this section with-
out mentioning online marketplaces such as Airbnb,
Homeaway, Homestay, VRBO, Vacasa, and Flipkey,
to name a few. These online platforms allow people to
lease or rent short-term lodging, including vacation
and apartment rentals. These companies typically do
not own any lodging but receive a percentage service
fee (commission) for every booking from guests and
hosts. As of October 2017, Airbnb has more than
3 million listings in 65,000 cities and 191 countries.'®
The price is typically set by the host and can depend
on the time of the year, the day of the week, the num-
ber of similar listings, the amenities available, the
number of nights, etc. The amount of data gathered
by such platforms is impressive, as they can collect
data on both the users and the properties. This data
allows the platform to deliver a better service by rec-
ommending prices to the host, and improving the
ranking of the different options for each browsing
user (based on previous preferences). It also leads to
more transparency for the industry (users can write
reviews of good and bad experiences so that other
users” knowledge increases considerably before book-
ing). Such platforms often hire senior data analysts
who are constantly working on exploiting historical
data to improve future tactical and operational
decisions.

4. Online Platforms

In this section, we focus on services which are offered
via online platforms. These services are also greatly
affected by the presence of big data. Today, many
firms interact with their customers via online plat-
forms. This is true for transportation services (ride-
hailing), as discussed in section 3.1. Other examples
include health and medical services (e.g., Zocdoc),
dating services (e.g., match.com), recruiting services
(e.g., CornerJob), restaurant reservations (e.g., Open-
Table), food delivery services (e.g.,, Grubhub and
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Slice), delivery and home services (e.g., TaskRabbit
and Handy), and subscription services (e.g., Stitch Fix
and Blue Apron). Services delivered by online plat-
forms have transformed a big part of the service
industry. These companies can collect vast amounts
of fine-grained data on customers’ habits and prefer-
ences with the goal of improving service customiza-
tion. The ultimate objective is to offer the optimal
product for each customer, and vary the prices
dynamically to maximize long-term revenue and
retention. Learning user preferences (for food, cloth-
ing style, dating affinities, etc.) can be performed
by analyzing survey data, questionnaires, online
reviews, data from social networks (friends, pictures,
and interests) and matching or clustering users with
other carefully selected similar users. This can be
accomplished only by leveraging and analyzing the
large amounts of historical data. For example, to use
the service offered by Stitch Fix, customers fill out a
survey about their style, pay a $20 up-front styling
fee, and then receive five clothing items tailored to
their taste. Stitch Fix runs relatively large data science
operations that leverage the data from in-depth sur-
veys to increase the accuracy in styling choices for
customers. This type of firm owns a valuable growing
dataset of detailed customer preferences and product
trends and is constantly working on refining its data-
driven algorithms. As mentioned before, such data-
sets can be sold to online advertisers. Online services
such as music (e.g., Spotify) and movies (e.g., Netflix)
also dedicate significant efforts to collecting and
exploiting large amounts of data. One of the basic
challenges is to accurately learn users’ preferences
from past usage in order to provide effective recom-
mendations. These companies are actively hiring top
data scientists to develop efficient algorithms that
operate in real-time at a very large scale.

Apart from these relatively new examples, one can
find similar data-driven practices by companies like
Amazon, Facebook, YouTube and many others.
Online retailers (e.g.,, Amazon) know when a user
recently visited their website and browsed a specific
product. Then, such a user may have a high valuation
for being shown an ad for this specific product. This
common practice is known as remarketing or retarget-
ing, and can generate significant revenue for retailers
and for advertisers. Facebook has access to endless
data on its users, and strives to exploit this data to
optimize advertising content. In particular, Facebook
can track users by using cookies which allow fine-
grained targeting for online advertising.

The media and entertainment industry has also
been greatly impacted by big data and analytics.
Entertainment theme parks (e.g., Disney) use state-of-
the-art machine learning techniques to improve their
user experience and to increase the profits generated

by their parks and by their consumers’ derived prod-
ucts (e.g., costumes, mugs, hats, and stuffed toys). In
most attraction parks, users can download a smart-
phone application that allows them to navigate
through the park. This application provides the firm
access to users’ geographic locations in real-time, and
thus, allows Disney to better estimate wait times for
the different park attractions. This also allows the
park restaurants to send targeted offers to specific
users, depending on their geographic locations and
other attributes.

Traditional restaurants try to use previous data on
consumers to improve their service quality and the
customer experience. Restaurants often track their
customers by requesting phone numbers during
reservations. They then record dietary restrictions
and preferences in order to customize the service for
future visits. At a higher level, restaurants collect data
on previous dishes (costs, statistics about people
ordering and reordering, online reviews, etc.) and on
prices with the goal to constantly improve their offer-
ings and their profits. It even seems that some restau-
rant owners practice A/B tests by varying the menus
and prices in order to learn customers’ preferences.

Finally, we conclude this section by discussing a
recent tool for customer service. Several decades ago,
many providers (e.g., banks, telecom companies, and
hospitals) opened call centers with the goal of address-
ing customer complaints and concerns (see, e.g., Aksin
et al. 2007, Kogaga et al. 2015). The data obtained from
call centers is very large and is often used to learn the
problems customers most frequently encounter, and
how the company can efficiently address those con-
cerns in a timely manner. Recently, artificial intelli-
gence brought chatbots to replace or complement these
services (e.g., ReplyYes, Interactbot, and Twyla). A
chatbot is a computer program which conducts a con-
versation via auditory or textual methods to address
customers’ concerns by appropriately querying the rel-
evant databases (chatbots are often used as part of
instant messaging platforms making the interaction
with customers convenient). Companies such as Dom-
ino’s, Pizza Hut, Disney, KLM, Starbucks, Sephora,
Staples, Whole Foods, and many others use chatbots to
increase customer engagement, promote their prod-
ucts and services, and provide their customers a con-
venient way to communicate and/or to place orders.
Some chatbots use sophisticated natural language pro-
cessing tools in order to provide a higher quality of
service by efficiently scanning databases for matching
keywords and word patterns. The presence of large
accessible data on previous customers’ transactions
and complaints has allowed firms in this sector to
build enormous datasets. These data sets are routinely
used by programs based on artificial intelligence to
improve customer service, as well as for information
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acquisition. For example, a firm can directly ask the
chatbot questions about its suppliers, its pending
orders, and other matters that can be answered
directly from the data.

5. Pitfalls and Risks

The big data revolution raises a number of ethical
issues related to privacy, confidentiality, trans-
parency, and identity. Big data brings the natural
requirement for issuing laws and regulations on the
ways firms can use data, as well as the potential
development of big data ethics (Richards and King
2014). This will help protect values such as privacy,
confidentiality, and identity theft, as well as avoid
illegal discrimination. In this section, we discuss some
of the main pitfalls incurred by big data. First, we
report examples of recent data leakages that had seri-
ous consequences. Second, we highlight several prac-
tical challenges related to data accessibility and
aggregation. Finally, we consider a serious problem
coined machine bias that corresponds to the phe-
nomenon in which data-driven algorithms often lead
to unfair decisions based on illicit discrimination (e.g.,
race or gender).

5.1. Data Leakage and Identity Theft

It was reported that 1093 data breaches took place in
2016." One can also count several dozens of large
substantial data breaches in the United States in
2017.*° Two notable examples are Deloitte and Equi-
fax. Deloitte was the victim of a cybersecurity attack
in 2017 that went unnoticed for several months. The
hackers compromised the firm’s global email server

through an administrator’s account that gave them
privileged, unrestricted access. Emails to and from
Deloitte’s 244,000 staff were stored (some emails had
attachments with sensitive security and design
details). In addition, the hackers had potential access
to usernames, passwords, Internet Protocol (IP)
addresses, architectural diagrams for businesses, and
health information.

Equifax is one of the three main credit monitoring
agencies in the United States that provides credit
reports. In September 2017, Equifax announced that
the personal data of 143 million US customers had
been accessed or stolen in a massive hack. The breach
is thought to have revealed the names, Social Security
numbers, dates of birth, addresses, and driver’s num-
bers of almost half the US population (44%). Also
compromised were the credit card numbers of
209,000 consumers and the personal identifying infor-
mation of 182,000 users. In addition, the company
admitted in October 2017 that the data of some
694,000 British customers was also compromised,
some of whom had their financial information and
passwords stolen, including partial credit card infor-
mation. The company’s share price plummeted 35%
the week after the breach was disclosed (see Figure 2).

This type of data breach can allow hackers to apply
for credit cards and loans by stealing the identity of
the hacked users. The total losses from identity theft
in 2014 amounted to $15.4 billion, with an out-of-
pocket loss average of $2895 for the victims.*! A sur-
vey by Gallup News reported that 27% of US adults
claim that they were affected by stolen credit card
information between October 2015 and October 2016
(up from 22% between October 2014 and October

Figure 2 The Equifax Inc. Stock Price on the NYSE between August 4, 2017, and October 6, 2017 (source: investopedia.com) [Color figure can be

viewed at wileyonlinelibrary.com]
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2015). This increase is partially driven by the presence
of larger datasets.

Two additional recent massive hacks were Yahoo
and Ashley Madison. Yahoo disclosed in 2017 that all
of its 3 billion email users were likely compromised
in a 2013 breach, breaking a potential record for the
largest ever potential data breach. Yahoo took action
and invalidated unencrypted security questions and
answers so they could not be used to access an
account. Ashley Madison is a Canadian online dating
service specializing in extramarital affairs, marketed
to people who are married or in relationships. In July
2015, a group of hackers stole user data, by copying
personal information, and threatened to release users’
names and personal information if the website did
not immediately shut down. In August 2015, the
hackers leaked more than 25 gigabytes of company
data, including user details (containing several thou-
sand corporate emails). This breach received exten-
sive media coverage and had heavy consequences for
families, with a few unconfirmed suicides linked to
the data breach.

Cybersecurity and privacy are evidently important
issues in financial services. Several major operational
risk events have happened over the years. A signifi-
cant breach occurred at JPMorgan Chase in 2014
when information was stolen regarding 83 million
accounts.?? The hackers gained access to the names,
addresses, phone numbers, and email addresses of
account holders. The bank did not reveal the total cost
of the data breach but the bank announced it would
spend $250 million a year to improve its cybersecu-
rity. Another event involved the bitcoin exchange Mt.
Gox which experienced several security breaches
between 2010 and 2014 resulting in losses of approxi-
mately $500 million, forcing it to shut down in 2014.
Other types of operational risk events that financial
institutions have to deal with involve crimes in the
form of insider trading, rogue trading (ie., an
employee authorized to make trades on behalf of an
employer who makes unauthorized trades), and
money laundering. Banks and the US Securities and
Exchange Commission (SEC) have put several anom-
aly detection mechanisms in place to detect such
events. These mechanisms are typically based on
machine learning techniques, such as Neural Net-
works, Bayesian Belief Networks, and Support Vector
Machines. The presence of big data and online trans-
actions clearly accentuates the risks of rogue trading
and money laundering.

Many companies that deal with digital information
have several data and cyber analysts who are respon-
sible for detecting fraud (e.g., fraud accounts, adver-
tising fraud, and payment fraud). For instance, it is
common to develop data-driven models for cleaning
up illicit content from websites (e.g., reviews),

primarily based on text and language processing tech-
niques. A second example is models that are based on
a set of rules that classify fraudulent and legitimate
massive registrations to detect fake accounts. In such
models, it is very important to avoid false positives as
much as possible. Several startup companies (e.g.,
Shift Technology) work on developing methods based
on artificial intelligence to detect patterns and flag
fraudulent insurance claims. This type of algorithm
can be trained on hundreds of millions of past insur-
ance claims. Finally, online platforms need to also
deal with detecting fraudulent ads (such models are
often based on building a dictionary of past fraudu-
lent ads and detecting similarities). It has also become
the norm to use multi-factor authentication in order
to securely log into many online services. Payment
companies such as PayPal invest significant efforts in
reducing fraud by developing state-of-the-art algo-
rithms. Such algorithms can be tuned on very large
datasets and are typically predictive models that can
vary depending on various critical user features. For
example, the most valued customers (e.g., monthly
users who are high spenders) may face an easier veri-
fication process. Such problems are challenging due
to the scale of the data and the dynamic aspect.

In the last few years, the field of fraud analytics has
exploded. Using data analytics to handle fraud allows
organizations to keep control over every transaction.
Fraud analytics also identifies hidden patterns and
trends to control the exposure of sensitive data across
the organization. In addition, it can constantly scan
internal systems by trying to detect anomalies in sev-
eral targeted statistics (e.g., by calculating statistical
parameters to find out if or when values exceed aver-
ages of standard deviations or by classifying outliers)
and learn from previous breaches. A typical method
is to use predictive models to compute fraud propen-
sity scores for each transaction in real-time. Then, the
firm needs to set the threshold values that dictate the
boundary detection for different types of anomalies.
Adapting the threshold values dynamically for differ-
ent users is crucial in order to avoid errors. For more
details on data-driven techniques to handle fraud
analytics, see, e.g., Bolton and Hand (2002), Delamaire
et al. (2009), and Bhattacharyya et al. (2011).

5.2. Data Accessibility, Aggregation, and
Acquisitions

Banks and financial institutions have data on millions
of customers (and up to hundreds of millions for the
largest banks). As a result, the data often needs to be
stored in a distributed fashion. Today, most sophisti-
cated banks know how to collect all the relevant data
and store it securely. However, one of the main chal-
lenges is to make this data easily available to all the
relevant users within the institution. Note that these
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users may range from advanced individuals who can
deal with systems and software, such as Hadoop Dis-
tributed File System (HDFS), Spark, and Map Reduce,
directly to others who have limited coding skills.
Many data scientists currently work on such projects
with the goal of making the existing datasets accessi-
ble to the largest possible number of employees
within the institution. This, of course, should be done
while being aware of access controls (i.e., sensitive
data should be accessible only to a very few users), as
well as security concerns. This raises a trade-off
between accessibility and security. Several factors can
impede having the data easily accessible to a large
number of users. One such factor is acquisitions. If an
institution acquires another institution (e.g., Bank of
America acquired Merrill Lynch in 2008, and Capital
One acquired ING Direct USA in 2011), unless a seri-
ous effort is invested in integrating the data properly,
it will be forever difficult to treat all customers in the
same fashion. In addition, there are several regulatory
concerns that banks should cope with. One example
is the European Union (EU) General Data Protection
Regulation (GDPR),” which is arguably the most
important change in data privacy regulation in the
past 20 years. This regulation, which is set to take
effect in 2018, dictates, for instance, that algorithmic
decisions related to users must be easily explained
(the so-called right for explanation) at a later stage.

An additional challenge is to develop efficient ways
to use all the data that comes from different channels.
Today, customers interact with firms using different
modes: offline when customers go to brick-and-mor-
tar locations, online (either via the Internet website or
the smartphone application), and through social net-
works (e.g., many customers report issues with ser-
vice quality using Twitter). Combining all these
interactions and merging the different observations
generated by the same user is crucial. Several compa-
nies are putting a great effort into this data aggrega-
tion endeavor, as ultimately this will give rise to
richer and more valuable data. A similar challenge is
the one of using private datasets from the firm
together with publicly available data (e.g., the NYC
Taxi and Limousine Commission database or data
from Google Trend). Leveraging the strength of both
types of data can allow a better understanding of the
market and consumers.

5.3. Machine Bias and Discrimination

In 2017, Propublica, an American nonprofit organiza-
tion that produces investigative journalism, launched
the Documenting Hate project to systematically track
hate crimes and bias incidents. It has also used
machine learning and natural language processing
techniques to monitor and collect news stories about
hate crimes and bias incidents. Some of the findings

provide evidence for a machine bias. As Propublica
puts it: “There’s software used across the country to
predict future criminals. And it's biased against
blacks.”?* The organization provided statistical analy-
ses to support this claim and affirmed that basing
such decisions on data can be problematic. Recidi-
vism in crimes is only one of many examples. Similar
issues arise when insurance companies using data
analytics appear to have a bias toward minority
neighborhoods that often pay higher car insurance
premiums relative to other areas with the same risk.
Other typical examples include credit scoring and
loan assessment, as decisions in these areas may have
ethical and/or legal implications. Consequently, this
type of issue raises a flag about being careful when
using past data to generalize future insights. The data
and algorithms can be biased, and this is not accept-
able. This important topic is highlighted in O’Neil
(2017) recent book Weapons of Math Destruction:
How Big Data Increases Inequality and Threatens
Democracy. It is shown that in many cases, decision
making via mathematical models driven by big data
can reinforce discrimination and lead to unfair out-
comes. Many researchers in statistics and computer
science are working on this problem by trying to
ensure the fairness of data-driven algorithms (see,
e.g., Calders and Verwer 2010, Hardt et al. 2016).
They also address and quantify the bias introduced
by data collection, and the issue induced by the fact
that many predictor variables can be correlated with
the outcome (which we are trying to predict) and
some protected attributes (e.g., race or gender). This
type of correlation is often referred to as spurious corre-
lations, and should be carefully controlled for.

At the end of 2016, an investigation by ProPublica
revealed that Facebook not only allows advertisers
to target users by specific attributes (such as age,
interests, and likes), but Facebook may also let
advertisers eliminate users based on race.” Face-
book released an official statement to defend itself
and claims to strictly avoid such practices. As we
discussed, the era of big data allows advertisers to
target users to an exceptional degree of specificity.
However, it is important to train those algorithms
to understand which types of attributes are accept-
able and which are not. Embedding such knowl-
edge in data-driven algorithms is a clear necessity.
The features should be tested for discrimination,
fairness, and additional desired requirements
depending on the context.

Apart from bias and discrimination, the presence of
big data together with digitization allow firms to
quickly react. For example, prices on online platforms
can vary several times a day and can differ for differ-
ent users. It is not surprising to observe that two users
in the same city are offered different price points for
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the same product via the same website at the same
time. Firms use past data on users’ behavior in order
to refine their pricing strategies. This gives rise to new
issues where users can receive a higher price depend-
ing on how often they look at the website, their past
searches, the day of the week, the device they are
using (mobile versus computer), whether they are
using an ad blocker, their geo-localization, etc. Conse-
quently, firms can significantly improve their predic-
tion and profits. At the same time, users can be hurt
as they will often get charged a higher price, and this
can raise fairness issues. In other words, the fine-
grained personalization induced by big data can be
perceived as a disadvantage for buyers. A team of
researchers at Northeastern University examined 16
popular e-commerce sites (10 general retailers and six
hotel and car rental sites) to measure two specific
forms of personalization: (i) price discrimination, in
which a product’s price is user customized, and (ii)
price steering, in which the order of the search results
is user customized. They found evidence of personal-
ization on four retailer sites and five travel sites,
including cases where sites altered prices by hun-
dreds of dollars for the same product. Overall, travel
sites showed price inconsistencies in a higher percent-
age of cases, relative to the control samples (Hannak
et al. 2013). It was also claimed that websites such as
Expedia and Hotels.com steered a subset of users
toward more expensive hotels. It is worth mentioning
that in some cases, using big data can actually reduce
discrimination. The recent work in Cui et al. (2016)
provides evidence for discrimination by hosts against
guests of certain races in the marketplace Airbnb. The
authors also showed that a review posted on a guest’s
page significantly reduces discrimination, suggesting
that sharing-economy platforms can alleviate discrim-
ination by providing more information and incen-
tivizing peer reviews.

As mentioned in section 3.1, there is a growing
recent trend to design experiments that can produce
valuable data. Carefully controlled experiments not
only attempt to depict the shape of the demand-price
curve but also track how this curve changes hour to
hour. For example, in some contexts, online purchases
may peak during weekday office hours; therefore,
retailers are commonly advised to raise prices in
the morning and lower them in the early evening. The
different deals can vary according to the location, the
browsing history, and even the operating system used
by the potential buyer. A well-known example is Orb-
itz which has supposedly targeted Mac users with
more expensive search results. Those findings raise
the following question: Could the Internet, whose
transparency was supposed to empower consumers,
be doing the opposite? To alleviate the negative
effects of these practices, several tools have emerged

to help customers track price changes and detect the
best available offers. Examples of such tools are
camelcamelcamel.com (a free Amazon price tracker),
honey (a free deal-finding browser add-on), and
InvisibleHand (a free automatic price-tracker). Those
tools offer price history charts and price drop alerts
and may also allow users to search for coupon codes
whenever they check out online. Such companies gen-
erate revenue by earning commissions when users
find a sale or a coupon. In summary, the presence of
big data allows firms to better price discriminate cus-
tomers. On one hand, big data can generate higher
profits for firms that efficiently exploit historical data.
On the other hand, big data can be perceived as unfair
by some customers and thus reduce the market share
of businesses that use these methods. Finding the
right trade-off between these two conflicting effects
can be quite challenging.

6. Conclusion

In this study, we discussed how the large amounts of
data collected by firms have transformed the service
industry. We focused our discussion on services in
the following sectors: finance/banking, transportation
and hospitality, and online platforms. We presented
an overview of how big data has shaped the service
industry, discussed several mechanisms that leverage
the potential information hidden in big data, and
pointed out some of the pitfalls and risks incurred.
We conveyed that firms can now collect unprece-
dented levels of granular data on customers and on
transactions. Firms are also developing quantitative
data-driven tools to improve operational decisions,
such as prices and quality of service. It is clear that
having access to large amounts of data can help
enhance the service quality by tailoring the offerings
to the users’ needs.

Combining the power of big data analytics with
high-speed computing (which is becoming afford-
able) allows for real-time service personalization at a
very large scale (e.g., online recommendation systems
for movies). However, this personalization benefit
seems to come at a price. Firms that have access to this
rich data can utilize it to price discriminate against
customers. In addition, data-driven algorithms can
include a machine bias that accentuates illicit discrim-
ination. This raises several legal issues which need to
be carefully addressed by governments. Furthermore,
the availability of data on sensitive personal informa-
tion attracts hackers. The number of breaches has
increased and is now a major concern for most firms.

Interestingly, there is growing interest in cross-
disciplinary services, where many companies try to
exploit the interactions between different types of
services. For example, Amazon operates in multiple
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spaces (retail, cloud computing, media streaming,
and food delivery services). Airbnb is entering the
dining reservation market, and IKEA acquired
TaskRabbit, among many other examples.

It seems that having access to big data on dif-
ferent types of services can allow firms to exploit
the multi-dimensionality of their users’ interactions
in order to reach a more comprehensive picture
and to enhance the service quality, as well as the
long-term profits.

In summary, it is clear that big data has been trans-
forming the way firms interact with customers in the
service industry. It is also clear that this transforma-
tion is only in its infancy. What is less clear is the
extent of the long-term impact of such a disruption.
Although big data certainly brings several advan-
tages, some drawbacks are in order. One of the major
challenges for firms is to carefully exploit and unlock
the power of big data while preserving fairness, trust,
and consumers’ happiness. Identifying the fine line
involved in this trade-off seems to be subtle and may
require data scientists, marketers, psychologists, law-
yers and regulators to work together.
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Notes

'https:/ /www.sas.com/content/dam/SAS/en_us/doc/
whitepaper1/big-data-meets-big-data-analytics-105777.pdf.
2http: / /wikibon.org/wiki/v/Big_Data_Vendor Revenue_
and_Market Forecast 2013-2017.

*https:/ /www.technologyreview.com/s /514346 / the-data-
made-me-do-it/.

*https:/ /materials.proxyvote.com/Approved/025816/
20150313 /AR _239749/HTML2 /american_express-ar2014
0022.htm.

®Sources: visa.com, mastercard.com, americanexpress.com,
discover.com, 2015.

®https:/ /www.federalreserve.gov/newsevents/ press /other/
2016-payments-study-20161222.pdf.

"http:/ /www.experian.com/live-credit-smart/ state-of-cred
it-2016. html.

®https:/ /en.wikipedia.org/wiki/List_of_online_payment_
service_providers.

*http:/ /www.businessinsider.com/venmos-monetization-
will-be-worth-watching-2017-1.

%https:/ /www.recode.net/2017 /7/26 /16044528 /venmo-8-
billion-transaction-volume-growth-rate-chart.

""Users can decide to opt for a private mode, where not
all the details of the transactions are revealed. However, it
was reported that many users keep the default public set-
ting, as they do not bother change the privacy settings.

https:/ /www.economist.com/blogs/schumpeter /2013 /
01/lending-club.

Phttps:/ /www.lendingclub.com/info/statistics.action.
“https:/ /www.etoro.com/.

http:/ /fortune.com/2016/10/20/uber-app-riders/.
'®https:/ /techcrunch.com/2016/07/18 /uber-has-comple
ted-2-billion-rides/.

https:/ /gocurb.com/.

®https:/ /www.airbnb.com/about/about-us.

http:/ /www.idtheftcenter.org /2016databreaches.html.
Zhttps:/ /www.techworld.com/security /uks-most-infa
mous-data-breaches-3604586/ .

*'https:/ /www.bjs.gov/content/pub/pdf/vit14.pdf.
Zhttps:/ /www.reuters.com/article/us-jpmorgan-cybersec
urity /jpmorgan-hack-exposed-data-of-83-million-among-
biggest-breaches-in-history-idU.S.KCNOHR23T20141003.
Zhttp:/ /www.eugdpr.org/.

**https:/ /www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing.

*This alarming issue was the topic of extensive media
coverage, see, e.g., http://fortune.com/2016/10/28/faceb
ook-ad-propublica-race/.
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Data is the new science. Big Data holds the answers

—Pat Gelsinger (Gelsinger 2012)

1. Introduction

This is an era where we are generating data at an
exponential rate. Large quantities of data represent-
ing our digital footprint are generated whenever we
interact over social media and chat applications, use
online shopping portals, or even when we use such
ubiquitous applications as Google Search or Google
Maps (Marr 2017a). Aside from data generated by
us as users, an enormous amount of data comes
from “smart” devices, that is, devices with sensors
that collect data from the physical world and con-
vert them into a digital form (Hashem et al. 2016,
Riggins and Wamba 2015). This ever-growing
stream of data generation is made possible by the
advancements in computing and mobile technology
and the increasing accessibility of the Internet. For
example, according to a report by the United States
Census Bureau, in 2015, 78% of U.S. households
had a desktop or laptop, 75% had a handheld com-
puter such as a smartphone, and 77% had a broad-
band Internet connection (Ryan and Lewis 2017).
All of these devices, when connected to the Internet,
have the ability to generate data in large quantities
for those who know how to aggregate it.

It is these data—texts, reviews, ratings, news,
images, videos, audio, email, chat communications,
search history, etc.—that form the foundation of big
data. Big data is characterized by four dimensions:
Volume, Velocity, Variety, and Veracity (Dykes 2017,
McAfee et al. 2012, Zikopoulos and Eaton 2011). Since
the data is in unstructured form, a few years ago, it
was almost impossible to analyze the data in this form
and get meaningful insights. However, today with
betterment of analytics tools and technology, not only
can we obtain valuable information from the data but
also use the insights to predict future trends (Chen
et al. 2012). Most of the analytics involve artificial
intelligence and machine learning (Marr 2017b). The
computers are trained to identify patterns from the
data and they can spot patterns much more reliably
and efficiently than humans. Advanced analytics
tools can produce millions of these results in a very
short time. A report by Rubinson Partners, a market-
ing and research firm, shows that advertisers can
boost their Return on Advertisement Spending (ROAS)
by up to 16x using aggregated big data which give
them information about the right time of advertising
to the consumer (Rubinson 2017).

As a result, there is tremendous curiosity about the
application of big data among corporate houses. Any-
one who wants to have or maintain leverage over
their competitors today is encouraged to gather data
and analyze them using big data analytics. However,
there is still a lack of knowledge about how to imple-
ment big data analytics in many companies. In this
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article, we investigate how several disciplines, specifi-
cally Information systems, operations and supply
chain management, and healthcare, have applied big
data in their domain. We also explore future research
avenues for big data in these areas.

2. Information Systems

There was a time in academic research when data
were collected solely for testing hypotheses to confirm
our belief about certain phenomena or behaviors.
However, when we use the Internet today, we leave a
digital footprint that can be easily traced, collected,
and utilized by big data analytics to understand and
predict consumer behavior. Today it is even possible
to store and analyze such massive data at an inexpen-
sive rate. These analytics technologies can deliver
new knowledge on their own without active human
intervention (Dhar 2013), and as such can be very
valuable.

Information systems (IS) has been an interdisci-
plinary domain conducting research at the intersec-
tion of computer technology and data from the
business world (Agarwal and Dhar 2014). A majority
of the existing research in the IS domain focuses on
understanding and implementing processes that
increase the efficiency of business operations. Since IS
researchers were accustomed to handling huge vol-
ume of data, they started with an early advantage as
far as research in big data is concerned, when com-
pared to other business disciplines (Goes 2014). IS has
contributed to the field of work surrounding big data
in many ways, including surrounding issues of data
integrity, data security and cybersecurity, social
media, e-commerce, and web/mobile advertising. We
briefly discuss the recent work in each of these areas.

Data integrity is critical to big data. To semantically
integrate heterogeneous databases, it is essential to
identify what entities in a data source map to the
same entities in some other data sources so that data
have a uniform and common structure across all
heterogeneous databases (Kong et al. 2016). This pro-
cess is called entity reconciliation (Enriquez et al. 2017,
Zhao and Ram 2005). Entity reconciliation is of para-
mount importance to the process of data integration
and management in the big data environment.
Researchers have studied entity reconciliation from
various perspectives. For example, Li et al. (2011) pro-
pose a context-based entity description (CED) for
entity reconciliation where objects can be compared
with the CED to ascertain their corresponding enti-
ties. Some researchers have also studied rule-based
frameworks for entity reconciliation (Li et al. 2015).

Data security is another topic in big data where sev-
eral research studies have been conducted (e.g., Chen
and Zhang 2014, Demchenko et al. 2013, Katal et al.

2013). Some studies suggest the use of real-time secu-
rity analysis as a measure for risk prevention (Lafuente
2015), whereas some others investigate privacy-preser-
ving data mining (PPDM) operations (Xu et al. 2014).
PPDM is a method of preserving data in such a way
that applying data mining algorithms on the data do
not disclose any sensitive information about the data.
Big data analytics and optimization can be used as an
answer against advanced cybersecurity threats (Ji
et al. 2016). Since big data covers massive breadth of
information sources and enormous depth of data,
specifying and detecting risks become very precise
(Hurst et al. 2014, Sagiroglu and Sinanc 2013).

Some work at the interface of IS-Marketing research
has also touched on the topic of big data. For example,
data from social media have been analyzed to com-
prehend behavior and predict events (Ruths and
Pfeffer 2014, Xu et al. 2017). In this direction, Qiu and
Kumar (2017) study the performance of prediction
markets through a randomized field experiment and
find that an increase in audience size and a higher
level of online endorsement lead to more precise pre-
dictions. Moreover, they also suggest integrating
social media in predicting market because social
effects and reputational concerns improve the partici-
pants’ prediction accuracy. The results from this
study recommend that the predictions will be more
refined by targeting people of intermediate abilities.
Another area of social media research where big data
has contributed is text analysis and sentiment mining
(Mallipeddi et al. 2017, Salehan and Kim 2016). In this
area, Kumar et al. (2018a) study the importance of
management responses to online consumer reviews.
The results show that organizations who chose to
respond to consumer comments and reviews experi-
enced a surge in the total number of check-ins. Find-
ings from this study also confirm that the spillover
effect of online management response on neighboring
organizations depends on whether the focal organiza-
tion and the neighboring organizations are direct
competitor of each other. Furthermore, Millham and
Thakur (2016) examine the pitfalls of applying big
data techniques to social media data. In this direction,
Kumar et al. (2018b) propose a novel hierarchical
supervised-learning approach to increase the likeli-
hood of detecting anomalies in online reviews by
analyzing several user features and then characteriz-
ing their collective behavior in a unified manner.
The dishonest online reviews are difficult to detect
because of complex interactions between several
user characteristics, such as review velocity, volume,
and variety. Kumar et al. (2018b) model user char-
acteristics and interactions among them as univari-
ate and multivariate distributions. They then stack
these distributions using several supervised-learning
techniques, such as Logistic Regression, Support
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Vector Machine, and k-Nearest Neighbors yielding
robust meta-classifiers.

Big data analytics has also been studied from the
point of view of strategic decision-making in
e-commerce (Akter and Wamba 2016) and digital
marketing (Fulgoni 2013, Minelli et al. 2012). Some
of the growing areas of research in e-commerce
include the advertising strategy of online firms and
their use of recommender systems (Ghoshal et al.
2014, 2015, Liu et al. 2012). For example, Liu et al.
(2012) study the advertising game between two elec-
tronic retailers subject to a given level of informa-
tion technology (IT) capacity. They reach the
conclusion that if IT capacity constraints of the firms
are not included in advertisement decisions, then it
may result in wastage of advertisement expenditure.
Based on their results, they present implementable
insights for policy makers regarding how to control
wasteful advertising. Ghoshal et al. (2015) find that
recommendation systems impact the prices of prod-
ucts in both personalizing and non-personalizing
firms.

Furthermore, web and mobile advertising has been
an interesting area of research since the arrival of dot-
com firms (Dawande et al. 2003, 2005, Fan et al. 2007,
Kumar and Sethi 2009, Kumar et al. 2006). Dutta et al.
(2017) and Kumar (2015) summarize the use and
future trends of data analytics and optimization in
web and mobile advertising. Mookerjee et al. (2016)
develop a model predicting visitor’s click on web
advertisements. They then discuss an approach to
manage Internet ads so that both click-rate and rev-
enue earned from clicks are increased. The above
group of scholars has also developed a decision-
model that maximizes the advertising firm’s revenue
subject to a click-through rate constraint (Mookerjee
et al. 2012, 2016). Another study uses the real-world
data to validate new optimization methods for mobile
advertising (Mookerjee et al. 2014).

IS scholars have also studied big data as a service,
for example, a platform combining big data and ana-
lytics in cloud computing (Assungao et al. 2015,
Demirkan and Delen 2013, Zheng et al. 2013). For
instance, the Big-Data-as-a-Service (BDaaS) has been
explored to yield user-friendly application program-
ming interfaces (APIs) so that the users can easily
access the service-generated big data analytic tools
and corresponding results (Zheng et al. 2013). Cloud
computing plays a vital role in the use and adaption of
big data analytics because infrastructure requirement
and cost of resources can be adjusted according to
actual demand (Assuncgao et al. 2015).

Some studies have also been conducted on IT gov-
ernance from the perspective of big data (Hashem
et al. 2015, Tallon 2013) and deception detection
(Fuller et al. 2013, Rubin and Lukoianova 2015). In

the IT governance domain, Tallon (2013) suggests that
good data governance practices maintain a balance
between value creation and risk exposure. Imple-
menting such practices help firm earn a competitive
leverage from their use of big data and application of
big data analytics.

Figure 1 summarizes the above discussion. This fig-
ure also includes the contributions of big data in
Operations and Supply Chain Management, and
Healthcare (discussed in the following sections).

3. Operations and Supply
Chain Management

With the betterment of enterprise resource planning
(ERP) software, it is easier to capture data at different
levels of operations. Firms want to analyze these data
to develop more efficient processes. Hence, big data
and big data analytics are being used by operations
and supply chain academia as well as the industry to
get insights from existing data in order to make better
and informed decisions (Muhtaroglu et al. 2013,
Wamba et al. 2015). The key areas in this domain
where big data has left an impact are supply chain
network design, risk management, inventory man-
agement, and retail operations.

Big data analytics has been used to align sourcing
strategies with the organizational goals (Romano and
Formentini 2012) and to evaluate the performance of
suppliers (Chai and Ngai 2015, Choi 2013). Supply
chain network design can itself account for a massive
amount of data and hence is a favorite area for

Figure 1 Summary of Big Data Research in Operations Management,
Information Systems, and Healthcare
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applying big data analytics. Researchers have studied
supply chain network design where the demand is
uncertain (Benyoucef et al. 2013, Bouzembrak et al.
2012, Soleimani et al. 2014) as well as where the
demand is certain (Jindal and Sangwan 2014, Tiwari
et al. 2012). Firms can use analytics to ascertain the
cost, quality, and time-to-market parameters of prod-
ucts to gain leverage over competitors (Bloch 2011,
Luchs and Swan 2011, Srinivasan et al. 2012).

Big data analytics has also been applied to maxi-
mize production (Noyes et al.,, 2014) and minimize
the material waste (Sharma and Agrawal 2012).
Noyes et al. (2014) recommend that changes in exist-
ing manufacturing processes, incorporating automa-
tion, and simplification of methods and raw
materials, will result in increasing the speed and
throughput of in-process analytics during polysaccha-
ride manufacturing processes. Moreover, Sharma and
Agrawal (2012) implemented fuzzy analytic hierarchy
process to solve production control policy selection
problem. Inventory challenges, such as cost, demand,
and supply fluctuations have also been studied using
big data analytics (Babai et al. 2009, Hayya et al.
2006). In this direction, Babai et al. (2009) discuss a
new dynamic inventory control method where fore-
casts and uncertainties related to forecast are exoge-
nous and known at each period.

Big data has also been increasingly used in retail-
ing. In the last decade, retailing has been one of the
key areas of research for the OM researchers, espe-
cially with the growth of multi-channel retailing
(Mehra et al. 2018). Big data analytics has also been
applied to retail operations by firms to reduce cost
and to market themselves better than the competition
(Dutta et al. 2017, Janakiraman et al. 2013, Kumar
et al. 2017). For instance, big data techniques are now
being heavily used in recommender systems that
reduce consumer search efforts (Dutta et al. 2017).
Kumar et al. (2017) study how the presence of brick-
and-mortar stores impacts consumers’ online pur-
chase decision. Furthermore, Janakiraman et al.
(2013) study product returns in multi-channel retail-
ing taking into consideration consumers’ channel
preference and choice.

4. Healthcare Systems

Healthcare systems in the United States have been
rapidly adopting electronic health records (EHRs)
and Healthcare Information Exchanges (HIEs) that
are contributing to the accumulation of massive quanti-
ties of heterogeneous medical data from various sec-
tions of the healthcare industry—payers, providers, and
pharmaceuticals (Demirezen et al. 2016, Rajapakshe
et al. 2018). These data can be analyzed in order to
derive insights that can improve quality of healthcare

(Groves et al. 2016). However, the analyses and prac-
tical applications of such data become a challenge
because of its enormity and complexity. Since big data
can deal with massive data volume and variety at
high velocity, it has the potential to create significant
value in healthcare by improving outcomes while
lowering costs (Roski et al. 2014). It has been shown
to improve the quality of care, make operational pro-
cesses more efficient, predict and plan responses to
disease epidemics, and optimize healthcare spending
at all levels (Nambiar et al. 2013). Here, we explore
how big data analytics has revolutionized the health-
care industry.

4.1. Bioinformatics

One of the subsections of the healthcare industry
where big data has contributed the most is biomedical
research. With the emergence and enhancement of
parallel computing and cloud computing—two of the
most important infrastructural pillars of big data
analytics—and with the extensive use of EHRs and
HIEs, the cost and effort of capturing and exploring
biomedical data are decreasing.

In bioinformatics, big data contributes in yielding
infrastructure for computing and data processing,
including error detection techniques. Cloud-based
analytics tools, such as Hadoop and MapReduce, are
extensively used in the biomedical domain (Taylor
2010). Parallel computing models, such as CloudBurst
(Schatz 2009), Contrail (Schatz et al. 2010), and Cross-
bow (Gurtowski et al. 2012), are making the genome
mapping process easier. CloudBurst improves the
performance of the genome mapping process as well
as reduces the time required for mapping significantly
(Schatz 2009). DistMap, a scalable, integrated work-
flow on a Hadoop cluster, supports nine different
mapping tools (Pandey and Schlotterer 2013). Seq-
Ware (D O’Connor et al. 2010), based on Apache
HBase database (George 2011), is used for accessing
large-scale whole-genome datasets, whereas Hydra
(based on Hadoop-distributed computing framework)
is used for processing large peptide and spectra data-
bases (Lewis et al. 2012). Tools such as SAMQA
(Robinson et al. 2011), ART (Huang et al. 2011), and
CloudRS (Chen et al. 2013a) help in identifying errors
in sequencing data. Furthermore, Genome Analysis
Toolkit (GATK) (McKenna etal. 2010, Van der
Auwera et al. 2013), BlueSNP (Huang et al. 2012), and
Myrna (Langmead et al. 2010) are toolkits and pack-
ages that aid researchers in analyzing genomic data.

4.2. Healthcare Information Exchange

Clinical informatics focuses on the application of IT in
the healthcare domain. It includes activity-based
research, analysis of the relationship between a
patient’s main diagnosis (MD) and underlying cause
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of death (UCD), and storage of data from EHRs and
HIEs (Luo et al. 2016). Big data’s main contributions
have been to the manner in which EHR and HIE data
are stored. The clinical real-time stream data are
stored using NoSQL database, Hadoop, and HBase
database because of their high-performance character-
istics (Dutta et al. 2011, Jin et al. 2011, Mazurek 2014).
Some research work has also studied and proposed
several interactive methods of sharing medical data
from multiple platforms (Chen et al. 2013b).

Healthcare Information Exchanges are used for effi-
cient information sharing among heterogeneous
healthcare entities, thus increasing the quality of care
provided. Janakiraman et al. (2017) study the use of
HIEs in emergency departments (EDs) and find that
the benefits of HIEs increase with more information
on patients, doctors, and prior interaction between
them. Yaraghi et al. (2014) model HIE as a multi-
sided platform. Users evaluate the self-service tech-
nologies of the model based on both user-specific and
network-specific factors. Another body of research
studies whether healthcare reforming models leads to
better patient-centric outcomes (Youn et al. 2016).

Big data techniques have enabled the availability
and analyses of a massive volume of clinical data.
Insights derived from this data analysis can help
medical professionals in identifying disease symp-
toms and predicting the cause and occurrence of dis-
eases much better, eventually resulting in an overall
improved quality of care (Genta and Sonnenberg
2014, McGregor 2013, Wang and Krishnan 2014).
Since the size and complexity of data are enormous
and often involve integrating clinical data from vari-
ous platforms to understand the bigger picture, data
security is often compromised during analysis of clin-
ical data. Big data techniques can address this issue
(Schultz 2013). Researchers have proposed several
models and frameworks to efficiently protect the pri-
vacy of the data as well as effectively deal with con-
current analyses of datasets (Lin et al. 2015, Sobhy
et al. 2012).

4.3. Medical Image Informatics

With the dawn of improved imaging technology,
EHRs are often accompanied with high quality medi-
cal images. Studying the clinical data along with the
analysis of such images will lead to better diagnoses,
as well as more accurate prediction of diseases in
future (Ghani et al. 2014). Medical image informatics
focuses on processing images for meaningful insights
using big data tools and technologies. Similarly, pic-
ture archiving and communication systems (PACS)
have been critically advantageous for the medical
community, since these medical images can be used
for improved decision regarding treatment of patients
and predicting re-admission (Ghani et al. 2014). Silva

et al. (2012) discuss how to integrate data in PACS
when the digital imaging and communications in
medicine (DICOM) object repository and database
system of PACS are transferred to the cloud. Since
analyzing large quantities of high quality clinical
images using big data analytics generates rich, spa-
tially oriented information at the cellular and
sub-cellular levels, systems such as Hadoop-GIS
(Wang et al. 2011), that is, cost-effective parallel sys-
tems, are being developed to aid in managing
advanced spatial queries.

4.4. Health Management

Recent studies have also used big data techniques to
analyze the contents of social media as a means for
contagious disease surveillance, as well as for moni-
toring the occurrence of diseases throughout the
world (Hay et al. 2013, Young et al. 2014). Big data
analytics tools are used on social media communica-
tions to detect depression-related emotional patterns,
and thus identify individuals suffering from depres-
sion from among the users (Nambisan et al. 2015).
Health IT infrastructures, such as the US Veterans
Health Administration’s (VHA), have facilitated
improved quality of care by providing structured
clinical data from EHRs as well as unstructured data
such as physician’s notes (Kupersmith et al. 2007).

4.5. Privacy Concerns

In coming times, there is a massive potential of HIEs
becoming public utility infomediaries that many
interested markets can access to derive information
(De Brantes et al. 2007). However, a major hurdle that
adaption of HIEs faces is privacy concern among con-
sumers. A section of researchers is building HIE
frameworks incorporating privacy and security prin-
ciples. For example, Pickard and Swan (2014) have
created a health information sharing framework,
which increases sharing of health information, built
on trust, motivation, and informed consent. Trust is
necessary for dealing with access control issues, moti-
vation maps the willingness to share, and informed
consent enforces the legal requirement to keep the
information safe. In another study, Anderson and
Agarwal (2011) find that type of the requesting stake-
holder and how the information will be used are two
important factors that affect the privacy concern of an
individual while providing access to one’s health
information. Numerous states in the United States
have enacted laws that incentivize HIE efforts and
address the concerns of patients regarding sharing of
health information. In another study, Adjerid et al.
(2015) observe whether various forms of privacy reg-
ulation policies facilitate or decrease HIE efforts. They
find that although privacy regulation alone negatively
effects HIE efforts, when combined with incentives,
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privacy regulation with patient consent requirement
positively impacts HIE efforts.

5. Way Ahead: Potential Applications
and Challenges

In this section, we discuss the potential of big data
applications in Information Systems, Operations/
Supply Chain, and Healthcare domains. Figure 2
summarizes the key areas of future research.

5.1. Internet of Things (IoT) and Smart City

The Internet of Things creates a world of intercon-
nected sensory devices containing sensors that can
collect and store information from their respective
real-world surroundings (Hashem et al. 2016, Rig-
gins and Wamba 2015). According to Business Insi-
der, the number of IoT devices will be 75 billion
by the year 2020 (Danova 2013). These devices can
be sensors, databases, Bluetooth devices, global
positioning system (GPS), and radio-frequency
identification (RFID) tags (O’Leary 2013). These
devices collect massive amount of data, and if we
delve down deep into this information using big
data analytic tools and techniques, we may be able
to derive useful insights. The applications of IoT and
big data analytics combined have the potential to
bring path-breaking changes to various industries
and academic research. However, at the same time,
since these subjects are still very new, there are
uncertainties among scholars about how to imple-
ment them, and how best to extract the business
value from these concepts (Riggins and Wamba
2015).

One of the domains where the coupling of big data
techniques and IoT has made significant progress is
the concept of a smart city, that is, where each compo-
nent of urban surrounding consists of devices that are
connected to a network (Hashem et al. 2015). These
devices can collect data from their surroundings and
share among themselves. These data can be used to
monitor and manage the city in a refined dynamic
manner, to improve the standard of living, and to also
support the sustainability of the smart city (Kitchin
2014). IoT concepts enable information sharing across
various devices, thus aiding in the creation big data
caches. Furthermore, big data analytics are used to
conduct real-time analysis of smart city components.
Kitchin (2014) mentions that urban governance deci-
sions and future policies regarding city life are based
on these analyses. Some sub-areas under smart city
where the bulk of research is being conducted are
energy grids (Chourabi et al. 2012), smart environ-
ments (Atzori et al. 2010, Nam and Pardo 2011,
Tiwari et al. 2011), waste management (Neirotti et al.
2014, Washburn et al. 2009), smart healthcare (Nam

and Pardo 2011, Washburn et al. 2009), and public
security (Neirotti et al. 2014, Washburn et al. 2009).
An emerging field surrounding smart city research is
an area where big data has the potential to make a lot
of contribution in the coming days.

5.2. Predictive Manufacturing and 3-D Printer
Predictive manufacturing is based on cyber physi-
cal systems (CPS). CPS consists of devices that
communicate with each other, as well as with the
physical world, with the help of sensors and actua-
tors (Alur 2015). CPS technology is becoming
increasingly popular among manufacturers in the
United States and Europe as it allows them to gain
an edge in international manufacturing dynamics
(Wright 2014). CPS technology can also be used to
improve the design of products, to track its pro-
duction and in-service performance, and to enhance
productivity and efficiency of the manufacturers.
General Electric (GE) and Rolls Royce have embed-
ded sensors on their jet engines that capture data
during flight and post-flight, and maintenance deci-
sions can then be made based on these logged data
(Dai et al. 2012).

Massive amounts of data are being collected
from manufacturing plants through RFID and CPS
technologies (Lee et al. 2013). As more advance-
ment is made in big data analytics, these data
about production equipment and operations can be
processed better. Security of CPS and predictive
manufacturing is another potential area where big
data techniques can be applied for better security
outcomes. Furthermore, additive manufacturing
processes, also known as 3-D printing, are used to
build three-dimensional objects by depositing mate-
rials layer-by-layer (Campbell et al. 2011, Conner
et al. 2014). 3-D printing is a path-breaking technol-
ogy that, in coming future, will make the existing
models of manufacturing for certain products obso-
lete (Waller and Fawcett 2013). Hence, it is pro-
foundly important that we study the applications
of big data analytics to additive manufacturing in
order to derive insights.

5.3. Smart Healthcare

Smart Healthcare is an extension of IoT ideas in the
healthcare industry; that is, IoT devices equipped
with RFID, Wireless Sensor Network (WSN), and
advanced mobile technologies are being used to mon-
itor patients and biomedical devices (Catarinucci
et al. 2015). In the smart healthcare architecture, IoT-
supporting devices are being used for seamless and
constant data collection, and big data technology on
the cloud is being used for storing, analyzing, and
sharing this information (Muhammad et al. 2017).
The nexus of IoT and big data analytics hosted on
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Figure 2 Possible Future Research Directions for Big Data Applications in Operations Management, Information Systems, and Healthcare
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cloud technology will not only help in more accurate
detection and treatment of illnesses, but will also pro-
vide quality healthcare at a reduced cost (Varshney
and Chang 2016). Moreover, smart healthcare enables
to bring specialized healthcare to people who have
restricted movement, or who are in remote areas
where there is a dearth of specialized doctors
(Muhammad et al. 2017).

Recently, the use of wearable devices has seen a
rapid growth, and the number of such units shipped
annually is expected to reach 148 million by 2019
(Danova 2015). Olshansky et al. (2016) discuss how
data captured by wearable devices can be transmitted
to health data aggregation services, such as Human
API (humanapi.co) and Welltok (welltok.com), who
can transform the data into measures of risk. These
measures can be used to observe health trends as well
as to detect and prevent diseases. Some promising
topics of research in the smart healthcare domain
where big data can play an important role are smart
and connected health (Carroll 2016, Harwood et al.

Medical Image
—> .
Informatics
3| Health Management

Privacy Concerns

2014, Leroy et al. 2014), and privacy issues in the
smart healthcare framework (Ding et al. 2016).

6. Fading Boundaries

In this article, we explored the application of big data
in three different domains—information systems,
operations and supply chain, and healthcare. But, the
line between these disciplines are blurring with each
passing day. Several new avenues of research are
becoming popular that are common to at least two of
these domains. One such topic is use of ERP platforms
in healthcare that is common to all the three fields.
Healthcare organizations accumulate massive
amounts of information from various departments
and then different entities in healthcare management
rely on to carry out their services. An automated inte-
grated system, such as an ERP system to manage the
information coming from different services and pro-
cesses, will enable healthcare organizations to
improve efficiency of service and quality of care
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(Handayani et al. 2013). The motivations underlying
the adoption of ERP system in healthcare manage-
ment are technological, managerial, clinical, and
financial (Poba-Nzaou et al. 2014). An ERP system
integrates various business units of healthcare organi-
zation, such as finance, operation and supply chain
management, and human resource, and provides easy
access within each unit. It can also address the dispar-
ity in healthcare quality between urban and rural set-
tings. ERP provides connectivity among all healthcare
centers and hence information can also be accessed
from rural centers (Padhy et al. 2012). Benefits from
implementing ERP can be classified into four
categories—patients’ satisfaction, stakeholders’ satis-
faction, operations efficiency, and strategic and
performance management (Chiarini et al. 2017). How-
ever, ERP systems are costly to acquire and involve
hidden costs even after successful implementation
such as integration testing and staff members training
costs (Gupta 2000, Wailgum 2008). Till date, majority
of research work involving ERP in healthcare domain
has revolved around implementation of ERP systems
(Mucheleka and Halonen 2015). One potential research
avenue is to conduct empirical studies to quantify the
benefits from implementation of such systems.

7. Closing Thoughts

We generate data whenever we use the Internet.
Aside from the data generated by us, several inter-
connected smart devices collect data, that is,
devices with sensors collect data from their sur-
rounding real world. With this tremendous quan-
tity of data generated each day, big data and big
data analytics are very much in demand in several
industries as well as among scholars. In this study,
we discussed the contributions of big data in infor-
mation systems, operations and supply chain man-
agement, and healthcare domains. At the end, we
talked about four sub-areas of these domains—
cloud computing, Internet of things (IoT) and smart
city, predictive manufacturing and 3-D printer, and
smart healthcare—where big data techniques can
lead to significant improvements. We also dis-
cussed the corresponding challenges and future
research opportunities in the field, noting numer-
ous areas for growth and exploration.
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