Bug Report Networks: Varieties, Strategies, and Impacts
in a F/OSS Development Community

Robert J. Sandusky’

Les Gasser'?

Gabriel Ripoche',’

'Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign
’Institute for Software Research, U.C. Irvine

SLIMSI/CNRS, Orsay, France
{sandusky,gasser,gripoche}@uiuc.edu

Abstract

Our empirical research has shown that a
predominant structural feature of defect tracking
repositories is the evolving "bug report network"
(BRN). Community members create BRNs by
progressively asserting various formal and informal
relationships between bug reports (BRs). In one F/OSS
bug repository under study, participants assert two
formal relationships (duplications and dependencies)
and various informal relationships (like "see also"
references).

BRN5s can be interpreted as (1) information ordering
strategies that support collocation of related BRs,
decreasing cognitive and organizational effort; (2)
sense-making strategies wherein BRNs provide more
refined representations of software and work-
organization issues; (3) social ordering strategies that
rearrange collective relationships among community
members. This paper presents findings from an
investigation of the nature, extent, and impact of BRNs
in one large F/0OSS development community. We
investigate whether and how specific classes of BRNs
influence problem management within the community,
and identify several new research questions.

1. Introduction

We are conducting empirical investigations into how
F/OSS development communities manage software
problems. The goal of our research is to develop models
of how software problems are managed by large,
distributed software development organizations. We aim
to identify factors, such as information, activity, and
process, which help explain better or worse software
problem management (SWPM) performance, with the
goal of both understanding such distributed collective
practices and improving software production. The early
stages of our work include qualitative analysis of the
information used and activities performed by members
of this community. We use this qualitative analysis to
identify concepts, phenomena, and relationships between
them as revealed through the examination of the bug
reports created and managed by this community. The
factors we identify can then be related to each other,

hypotheses can be created, and the hypotheses can
subsequently be tested in order to isolate the factors that
affect SWPM performance. In addition, the seeds
created from this human-based mining and analysis can
be “computationally amplified,” forming the basis of
broader automated extraction of process models from
very large corpuses of problem data [1].

The negative financial and social impacts of low
quality software have been well documented [2, 3].
Previous research on software quality has focused on the
development of metrics [4] and defect prediction models
[5]. Other research has identified relationships between
organizational structure, processes, and quality [6, 7, 8].
The SWPM process itself has been studied less
frequently [9]. Our research approach, while grounded in
empirical data, acknowledges the contributions of
research on process and organizational issues.

Figure 1 shows the main elements of the bug report
repository used by one community we are studying. The
repository itself is a relational database system and a set
of associated scripts that interact with the database and
provide a Web-based user interface. The repository
contains more than 235,000 records, referred to as bug
reports (BRs). Each BR consists of (1) a number of
fixed, vocabulary-controlled fields (e.g., status,
resolution, severity), (2) several short-length text fields
(e.g., keywords, summary), (3) attachments (e.g.,
screenshots, code patches), (4) a sequential series of text
comments that are time-stamped and show the identity
of the submitter, and (5) optional indications of
relationships between BRs (e.g., duplication,
dependency, and informal citations).

One of the most notable structural features of this
community’s bug report repository is the bug report
network (BRN). A bug report network is created when
members of the software community assert duplication,
dependency, or reference relationships among bug
reports. Duplication and dependency are both formal,
symmetrical types of relationships with an explicit and
codified representation in the bug reports. Community
members frequently create informal relationships, like
“see also” references, by referring to other bug reports
when they are adding text comments to existing bug
reports. Sixty-five percent of the bug reports in this
repository are associated with other bug reports using
one of these three types of relationships.

Bug Report
Repository

—_— N
~
Y

F =l s
/Y BR Oy Y BR S BR
| Network ¢ ! Network (| Network ¢
ot / et / Yot /
\\H_’T'_; _“. _)\\,’ \7’__ N_oT
BR BR BR BR BR

Figure 1. Bug report repository
elements

Bug reports are first-class database objects, but bug
report networks are not. Figure 1 shows three typical
BRN patterns. The leftmost BRN represents the 35% of
the bug reports that have zero formal or informal
relationships to other bug reports: each of these bug
reports forms a trivial BRN. The middle BRN shows
two bug reports associated by a dependency or informal
relationship. The rightmost BRN shows a more
complex set of relationships. The doubled bug report on
the right represents a bug report with a duplicate
relationship to the second bug report behind it. The
duplicated bug report is also associated by either a
dependency or informal relationship with the other bug
report in the network. Note that it is also possible for
BRNSs to be connected to each other, as indicated by the
line connecting the middle and rightmost networks.

We use the following definitions, based upon the
definitions stated by the community in their SWPM
documentation, to identify the formal relationships
between bug reports:

- Duplicate: A bug report is marked as a duplicate if

the problem represented by the bug report is believed
to be already represented by another bug report. A
duplicate relationship is a formal, symmetrical
relationship between two bug reports.
Dependency: A bug report is marked as a blocker of
another bug report if resolution of the software
problem it represents blocks development and/or
testing work on the problem represented by the other
bug report. A bug report is marked as dependent on
another bug report if the problem it represents can't
be fixed until the problem represented by the other
bug report is fixed. Bug reports that are dependent
on each other have a formal, symmetrical “blocks” /
“depends on” relationship.

Community members also frequently assert informal
references between bug reports. While it is possible to

automatically extract instances of informal relationships
from the repository, the nature and purpose of these
references vary considerably and are most reliably
understood by reading the bug reports and understanding
the contexts in which the citations are made. Here are
some examples of these informal references:

- This looks related to #X

- See comments on X -- same applies here I
think.

- My fix for X kinda helps fixing this too.

- Should bug X be added to this?

2. Method

A random sample of 385 BRs was systematically
drawn from a population of more than 182,000 bug
reports opened over a five year period. The bug report is
the primary unit of analysis in this study. The sample
size was determined using an approach reported by
Powell [10] (p.75). A conservative sample size was
suitable here because we did not have complete
information about the variability of all characteristics of
the bug reports at the time the sample was drawn.

2.1. Qualitative analysis

Each bug report in the sample was treated as a text
and was read and analyzed using a content-analytic
approach [11]. Concepts, phenomena, and relationships
between phenomena were identified and refined as they
emerged from the bug reports during data analysis using
grounded theory [12]. References to other BRs were
noted (their location within the BR, reference type, BR
serial number) as each BR in the sample was analyzed.

2.2. Automatic processing

Another characterization of bug report networks was
attempted using automatic extraction of relationships in
a snapshot of over 130,000 bug reports originating from
the same bug report repository. Two types of
relationships were considered:

- Formal relationships identified by specific fields
(“blocks” and “depends on) or computer generated
output inserted as comments in the bug report’s
discussion.

- Informal relationships in the form of references made
by participants in their comments (e.g.: “See bug
#X”, “Looks like bug Y7, etc.), which were
mined using regular expressions.

The processing yielded relationship matrices from
which BRNs could be identified. However, the
automated processing was less accurate than content
analysis. When we compared the automatic and manual
processes, we found that the automatic process
completely identified all the “informally” connected
BRs 40% of the time. Also, our current extraction

approach does not allow for the distinction of the
various types of relationships that are being established.
Results from the qualitative analysis are being used to
improve the regular expressions used to automatically
identify the informal relationships.

14 other BRs block A

: t | .

BRA @?N‘iiii L

Meta bug |
report

TEEY

: B blocks A; A depends on B

BR_—B o

1
(NN
—
|

|

|

|
(NN
(N
II‘_
(NRN
I
I
I

A j
©

C resalved

BR-C @

BR-D

[NRRAAN
—

BR opened

BR marked resolved

Relationship asserted between BRs

wer DO

Comments added to BR in one day

Month 1 2 3

D resolved,
duplicate of C

- R duplicate of B

Cites

E E cites fix for B
i as cause

E (regression); fix
: for B is backed
. out, E marked
. resolved.

. F resobved,

: duplicate of E

4 5 6 7

Figure 2. Bug report network

3. Anatomy of a bug report network

Figure 2 represents the bug report network associated
with one “critical” severity bug report drawn from the bug
report repository under study. This bug report network,
consisting of six bug reports, illustrates a number of
different relationships that often occur in this repository.
The x-axis represents time over a 6-month period; the
relationship of the objects in the diagram to the timescale
is approximate. The columns of dashes below each bug
report’s lifeline represent the count of comments added to
a bug report on a single day and are shown to provide a
sense of the level of activity associated with each bug
report throughout the bug report’s life.

Bug report “B” (BR-B in the diagram) is the central
report in this network. BR-B was opened with a “critical”

severity level because it represented a bug that caused the
software system to crash. As soon as it was opened, it
was associated as “blocking” the resolution of BR-A. BR-
A already existed, and was defined as a meta bug used to
collocate a group of 15 (including BR-B) bug reports
representing bugs that caused crashes in this part of the
overall system. (Note that it would be possible to look at
BR-A as the central BR in a different BRN: this is an
example of how BRNs can be connected to each other as
shown in Figure 1. See discussion of meta bug report
networks below.)

The chain of duplicate relations between BR-B, BR-C,
and BR-D is of interest. BR-C was opened several weeks
after BR-B, during a six-week period when BR-B was not
very active (no comments added). BR-D was opened later
the same day BR-C was opened. BR-D was quickly

identified as representing the same bug as BR-C and
marked “resolved/duplicate.” BR-C was not identified as
representing the same phenomena as BR-B until about six
weeks after BR-C was opened.

The relationships between BR-B, BR-E, and BF-F are
also of interest. The level of activity on BR-B was high
during month 5. At one point, a patch for the bug
represented by BR-B was introduced. This change caused
the bug represented by BR-E (a type of bug and bug
report identified as a “regression”) to occur. BR-F was
opened a couple of hours after BR-E was opened, and was
immediately recognized as a duplicate of BR-E. The bad
patch associated with BR-B was quickly backed out to
resolve the problem associated with BR-E. BR-E was
then marked “resolved/fixed.”

4. Varieties, strategies, and impacts

The kinds of relationships found between bug reports,
their frequency of occurrence, BRN strategies,
implications of the construction and use of BRNs, and
future work are discussed in this section.

4.1. Varieties

Almost two-thirds (65%) of the 385 bug reports in the
sample have either a formal or informal relationship with
at least one other bug report. Table 1 shows the frequency
with which different types of relationships occur within
the sample of 385 bug reports.

Table 1. Frequency of relations in
sample

Duplicates

BRs with one or more duplicate BRs 10%

BRs resolved as a duplicate of another BR | 33%

Dependencies

BRs “blocking” one or more BR 12%
BRs “dependent on” one or more BR 7%
Informal

BRs with “informal” relation to one or| 33%
more BR

Community members sometimes create bug reports
that, instead of representing problems (bugs), anchor a
collection of bug reports having common characteristics
(e.g., all the high priority bug reports that should be fixed
prior to the next software release). Community members
refer to these anchor bug reports as “meta” or “tracking”
bug reports. In the BRN illustrated in Figure 2, BR-A is
a “meta” bug report used to create a network of bug
reports representing system crashes of a similar type.
Creation of a meta bug report and its associated BRN
represents a specific social and information management

adaptation made by community members to increase the
utility of the bug report repository.

4.2. Strategies

Constructing BRNs is an information structuring
strategy. Individual bug reports, first-class database
objects, are composed over time into a new form of
information, the BRN. Creating a BRN collocates a
group of bug reports that would otherwise remain
scattered and disassociated from each other. A BRN thus
adds virtual structure to the bug report repository.
Collocating information by adding or imposing structure
is a complexity management / complexity reduction
technique.

Asserting that a bug report is a duplicate of another
bug report, for example, shrinks the set of bug reports
that must be worked on. Shrinking the set of bug reports
to work on reduces the complexity of the field of work.
However, identification of duplicates is costly because
members of the community must identify duplicates
manually. There is also danger of mis-identification: bug
reports that are not true duplicates (false positives) will be
ignored because their status is “resolved.” It’s also clear,
because of late-marked duplication and duplication time
inversion, that “undiscovered” duplicate bug reports exist
and multiple groups of people may be duplicating effort
by working on two bug reports that represent the same
issue (see, for example, the time period between the
opening of BR-C and its resolution as a duplicate of BR-
B in Figure 2.)

We also suspect that there are patterns of BRNs, for
example patterns in the kinds of links that appear, and
patterns in the types of links that are sanctioned and even
crystallized into standard categories and supporting tools,
such as dependencies and duplicates. There may also be
patterns in how such networks are formed.

4.3. Impacts

As BRN construction orders information, it also
orders social relations. BRs are
specifications/codifications of social relationships, such as
roles (reporter, assigned-to, cc: list member) and dynamic
and patterned interactions (e.g. dialogues, question-
response-elaboration sequences; negotiation; coordination
of work, etc.). This means that as information is ordered
through BRN creation/extension/modification, social
relations are also being ordered. The impacts of this kind
of social reordering might vary. In some cases, time-to-
resolution may be improved by bringing more resources
to bear upon a problem. In other cases, performance might
deteriorate if, for example, the cost of coordinating the
activities of more people slows progress toward
resolution.

When a bug report is marked "resolved/duplicate” this
means the bug report is resolved but it does not mean
that the underlying bug itself has been resolved.

"Resolved/duplicate" means that the resolver(s) believe
this is a duplicate report of a phenomenon that already has
an effective representation elsewhere in the repository. It
doesn't even mean that that the resolved bug report can
now be ignored, since we have seen instances of late-
identification of duplicates (e.g., BR-C in Figure 2) in
which accumulated knowledge and dialogue may still be
relevant to the resolution of the other bug reports in the
BRN. Thus the semantics of the “resolved” keyword are
clearly complex.

4.4. Future Work
Our work on understanding and identifying bug report

networks has just begun. Many challenges remain,
including:

Identifying the situations in which BRNs are helpful
(or unhelpful) in managing software problems;
understanding the extent to which complex BRNs are
taken into account by community members during
problem resolution.

Determining if BRNs are present in all bug report
repositories; how the capabilities of different
repositories and the conventions developed by the
different communities influence the use of BRNS.
Quantifying the range of complexity of BRNs in this
and other bug report repositories; identifying the most
useful metrics for measuring the size and complexity
of BRNs (for example, a BRN can be thought of as a
graph, with each bug report as a vertex in the graph).
Developing useful representational forms (e.g., Figure
2) for BRNs that can contribute to our understanding
and increase the utility of BRNs as a tool for SWPM.
Determining how the inclusion of a BR in a BRN
affects the community’s SWPM performance (e.g.,
testing for a correlation between BRN membership
and time to resolution).

Automatic extraction and representation of BRNs will
be an important part of addressing the research questions
raised here. The practical application of results of this
research to software engineering practice also depends
upon the development of effective and scalable automatic
extraction and representation techniques. Challenges
related to automatic extraction and representation include:

- Improving techniques for automatically extracting and
representing BRNs from a bug report repository.

- Develop computational tools to discover and formalize
the latent, undiscovered relationships between bug
reports.

5. Conclusion

The analysis performed so far demonstrates that bug
report networks are common in the bug report repository
studied here: 65% of the bug reports sampled are part of a

BRN. Members of this community commonly use the
formal, symmetrical relationships of duplication and
dependency as well as a wide variety of informal
relationships. BRNs are a common and powerful means
for structuring information and activity. BRNs, however,
have not yet been the subject of concerted research by the
software engineering community. The continuation of this
stream of research will result in a more complete
understanding of the contribution BRNs make to effective
software problem management.

6. References

[1] Gasser, L., & Ripoche, G. (2003). Distributed collec-
tive practices and F/OSS problem management: perspec-
tives and methods. CITE'03, Troyes, France, December
2003.

[2] NIST. (2002). The economic impacts of inadequate
infrastructure for software testing: final report. May
2002. Planning report 02-3. Gaithersburg, MD: NIST.

[3] Leveson, N. & Turner, C.S. (1993). An investigation
of the Therac-25 accidents. IEEE Computer, 26(7), 18-41.

[4] Osterweil, L. (1996). Strategic directions in software
quality. ACM Computing Surveys, 28(4), 738-750.

[5] Fenton, N. E., & Neil, M. (1999). A critique of
software defect prediction models. IEEE Transactions on
Software Engineering, 25(5), 675-689.

[6] Conway, M.E. (1968). How do committees invent?
Datamation, 14(4), 28-31.

[7] Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules. Communications of
the ACM, 15(12), 1053-1058.

[8] Herbsleb, J., Zubrow, D., Goldenson, D., Hayes, W.,
& Paulk, M. (1997). Software quality and the capability
maturity model. Communications of the ACM, 40(6), 30-
40.

[9] Crowston, K. (1997). A coordination theory approach
to organizational process design. Organization Science,
8(2), 157-175.

[10] Powell, R.R. (1991). Basic research methods for
librarians. (2nd ed.). Norwood, NJ: Ablex.

[11] Weber, R. P. (1990). Basic content analysis. (2nd
ed.). Newbury Park, CA: Sage.

[12] Strauss, A., & Corbin, J. (1990). Basics of
qualitative research: grounded theory procedures and
techniques. Newbury Park, CA: Sage.

