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Introduction 
Icebergs are pieces of freshwater ice that have broken away 

from marine glaciers and are floating in open water. The 
majority of the icebergs occurring in northern latitudes are 
calved from western Greenland glaciers, where they drift into 
Baffin Bay, circulating north along the Greenland and south 
along the eastern coast of Canada. Some also drift more 
southwards through the Davis Strait up to the Grand Banks 
(Figure 1). Estimated numbers of icebergs that have their 
source in Greenland range from 10,000 to 30,000 every year 
(Diemand, 2001). Although they are visually striking features

in polar waters, they pose hazards to shipping and seabed 
structure (Buus-Hinkler et al., 2014).  

To safeguard shipping, satellite-based synthetic aperture 
radar (SAR) is widely used. Equipped with an active radar 
antenna, SAR satellites provide image data of the ocean and 
frozen waters independent of weather conditions, cloud cover 
or daylight. In our work, we use image data provided by the 
radar satellite TerraSAR-X, which is in a near-polar orbit and 
fully operational since January 2008. Its X-band radar system 
provides image products with different spatial resolutions, 
scene sizes and polarizations as listed in Table 1 (Eineder et 
al., 2008). Figure 2 exemplifies a section of a TerraSAR-X 
image in HH polarization and shows icebergs in open water. 
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Abstract. Over northern latitudes, icebergs frequently cross shipping routes and impair marine traffic. To improve ship 
routing, we explore the capabilities of an algorithm that detects and charts icebergs from images provided by the German 
radar satellite TerraSAR-X. TerraSAR-X is in a near-polar orbit, equipped with an active X-Band radar antenna, and thus 
allows monitoring the ocean and frozen waters regardless of cloud cover and darkness. The algorithm we apply is based on 
the iterative censoring constant false alarm rate (IC-CFAR) detector, which has proven its usefulness for terrestrial target 
detection already. Different from the standard approach, we not only estimate statistical properties of open water intensities 
expressed by a probability density function, but also search for recurring patterns (i.e. waves). This allows discriminating 
icebergs from most false alarms that arise from rough sea and strong winds. Experiments carried out with a series of HH 
polarized TerraSAR-X Stripmap images acquired between 2012 and 2015 confirm that - due to consideration of wave pattern 
during image processing - the false alarm rate is reduced by a factor of three.  
 
Résumé. Dans les régions de haute latitude, les icebergs croisent régulièrement les routes maritimes, gênant ainsi le trafic en 
mer. Afin d’améliorer le routage des navires, nous étudions un algorithme qui détecte et cartographie les icebergs à partir 
d’images radar du satellite allemand TerraSAR-X. TerraSAR-X est sur une orbite quasi-polaire. Il est équipé d’une antenne 
radar active en bande X, ce qui lui permet d’observer les océans et eaux glacées de jour comme de nuit et ce, quelle que soit 
la couverture nuageuse. L’algorithme que nous utilisons est basé sur le détecteur IC-CFAR qui a déjà prouvé son utilité pour 
la détection de cibles terrestres. Contrairement à l’approche habituelle, nous n’évaluons pas seulement les propriétés 
statistiques des intensités des eaux libres exprimées par une fonction de densité de probabilité, mais nous recherchons 
également des motifs récurrents (par exemple des vagues). Ceci permet de distinguer les icebergs de la plupart des fausses 
alertes dues aux mers agitées et aux forts vents. Les essais effectués sur une série d’images Stripmap à polarisation HH du 
satellite TerraSAR-X prises entre 2012 et 2015 confirment que le taux de fausses alertes est divisé par 3 grâce à la prise en 
compte des motifs des vagues pendant le traitement. 
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Figure 1. Main iceberg drift in northern latitudes (blue arrows) and 
acquisition areas selected for in the experiments (red rectangles) 

 
Figure 2. Section of a TerraSAR-X Stripmap image taken over Disko 
Bay, Greenland, 2013/04/23. Feature of the surface structure of 
icebergs are visible. Pinnacles appear bright on the right hand side, 
since the satellite was in right looking descending orbit (heading from 
North to South) during image acquisition. 

In this paper, we explore the capabilities of a fully 
automatic algorithm to detect icebergs in TerraSAR-X 
Stripmap images. For detection, we make use of the constant 
false alarm rate (CFAR) detector, applying the iterative 
concept as mentioned by Ressel et al. (2015). Building on our 
previous work and on former studies in wind and sea state 
retrieval, we survey patterns in SAR images (i.e. waves) and 
integrate a new wave filter into our automated methodology. 
The wave filter improves the discrimination of icebergs from 
most false alarms that arise from rough seas and strong winds. 
In our experiments, we quantify the reliability of the 
algorithm, and the improvement brought about by the 
introduction of the wave filter. 

In the following section, we briefly describe the standard 
CFAR detector and discuss its limitations when used for 
iceberg detection. Afterwards, we explain our iterative 
approach including the wave filter and present the test results. 

 

Table 1. Specifications of selected TerraSAR-X imaging modes. 
Resolution and effective number of looks correspond to radio-
metrically enhanced images. 

 

Mode Stripmap,  
single 

polarized 

Stripmap,  
dual 

polarized 

ScanSAR,  
single 

polarized 
Standard scene size 30  50 km² 15  50 km² 100  150    km²
Resolution     
 in near range (20°) 8.0 m 11.8 m 19.2 m
 in far range (45°) 7.0 m 9.9 m 17.0 m
Effective no. of looks    
 in near range (20°) 6.1 6.5 5.6 
 in far range (45°) 6.4 6.6 11.1 
Polarizations 
available 

 HH or VV HH+HH  
or HH+HV 
or VV+VH 

HH or VV or 
HV or VH 

 

Standard CFAR detector 
Numerous studies on iceberg detection from SAR images 

have been published to date. The CFAR detector is frequently 
applied and has proven its usefulness already for ship 
detection (Scharf, 1991; Vachon, 1997; Brusch, 2011) and 
later has been applied to iceberg detection (Power et al., 2001; 
Gill, 2001). Buus-Hinkler et al. (2014) utilized an adapted 
CFAR detector for studies on iceberg frequency in Greenland 
waters. Howell et al. (2004) applied the CFAR detector to 
multipolarized images and differentiated icebergs from ships. 
Gao et al. (2009) have introduced an iterative concept of the 
CFAR detector for terrestrial target detection in dense traffic 
situations; however, thus far it has not been applied to iceberg 
detection. In our previous work, we have adapted this iterative 
approach and applied to TerraSAR-X ScanSAR images 
containing a high iceberg density (Ressel et al., 2015). 

 
Implementation details 

 
The CFAR detector is designed to identify pixels whose 

intensity is unusually high when compared to the intensities in 
the surrounding image region (Scharf, 1991). That is, the 
detector performs pixel-based thresholding. The threshold 
calculation relies on a constant probability of false alarm 
(PFA) given by the user, as well as on assumptions about the 
expected probability density function of the intensity in the 
surrounding region (in our case: in open water). Generally, the 
threshold T is obtained by solving the relation 

                                  daapPFA
T


  (1) 

where p(a) represents the probability density function of the 
surroundings intensity.  

The probability density function of the intensity of open 
water is usually assumed to be gamma- or k-distributed 
(Power et al., 2001; Gill, 2001; Buus-Hinkler et al., 2014; 
Bentes et al., 2014). In our work, we approximate with a 
Gaussian distribution, using the amplitude as random 
variable a. This approximation marginally impacts the 
performance of a CFAR-based detection from multi-looked 
SAR images (Truckenbrodt, 2012; Brusch et al., 2011). The 
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prime benefit of the Gaussian distribution is the fast 
computation of its parameters. This is crucial for any 
algorithm supporting operational, near real time services.  

The parameters of the probability density function 
mean µwater and standard deviation σwater are estimated from a 
sliding window, which is fixed in size and hollow square 
shaped (Figure 3). Then, the threshold is set to n-times the 
standard deviation above the expected value of open water 
(Brekke, 2009): 
                                 

waterwater nT    (2) 

 
Finally, a pixel is defined as part of an iceberg in case its 

amplitude is greater than the threshold T. Otherwise it is 
defined as open water.  
 

 
Figure 3. Principle of the CFAR detector. For each position (x,y), the 
statistical properties of open water are estimated, and the pixel at 
position (x,y) is set to iceberg (white) or open water (black).  

 
Limitations 

 
All thresholding methods fail once the backscatter 

intensities of icebergs overlap with those of open water. The 
intensity of open water depends on sea surface roughness; the 
higher the wind speed, the rougher the sea, the more the 
intensity of open water backscatter increases. Figure 4 shows 
the expected mean intensities of open water for different wind 
speeds (5 m/s, 10 m/s, 15 m/s, and 18 m/s). They result from 
the geophysical model function XMOD, which was developed 
on the basis of an analysis of a large series of TerraSAR-X 
images with corresponding in situ measurements, e.g. buoys 
(Ren et al., 2012), and was adapted to HH polarized 
TerraSAR-X images by Shao et al. (2014). Additionally, 
Figure 4 shows the mean intensity of 153 icebergs that have 
been identified manually from fourteen HH polarized 
TerraSAR-X images (as specified in Table 2). At wind speeds 
of 15 m/s, the intensities of open water pixels can equal the 
intensities of iceberg pixels. When image noise and variations 
caused by topographic differences in icebergs are taken into 
consideration, detection performance degrades.  

The detection is even more affected in areas of high iceberg 
density. As soon as a neighboring iceberg is located in the 
sliding window, the estimated values µwater and σwater no longer 

 
Figure 4. Mean intensity of 153 manually identified icebergs from 14 
TerraSAR-X images in dependence of the local incidence angle (blue 
dots), expected mean intensity of open water for different upwind 
speeds (black lines), and noise floor (NESZ) of TerraSAR-X 
Stripmap images (red and orange line). 

 

Table 2. Data sets. Each image was recorded in TerraSAR-X 
Stripmap mode and is radiometrically enhanced. In case of dual 
polarized image products, only the HH channel is processed. Single 
polarized image products are all taken in HH polarization. Details on 
the iceberg selection are given in the experimental results section. 
Data 
set 

Center 
coordinate 

Date of  
acquisition 

Center  
incidence angle 

Polarisation 

1 73.655, -58.876 2012/07/28 36.1° Single pol. 
2 73.725, -58.560 2012/07/29 26.2° Dual pol. 
3 73.698, -58.609 2012/08/03 32.7° Dual pol. 
4 73.682, -58.635 2012/08/24 42.9° Single pol. 
5 73.697, -58.615 2012/08/25 32.7° Dual pol. 
6 69.101, -51.881 2013/04/23 33.8° Dual pol. 
7 48.578, -52.988 2014/06/03 38.8° Dual pol. 
8 48.659, -51.592 2014/06/14 46.1° Single pol. 
9 48.334, -50.703 2014/06/17 24.0° Single pol. 

10 48.384, -52.770 2014/06/25 39.7° Dual pol. 
11 48.774, -52.872 2014/06/25 39.7° Dual pol. 
12 48.334, -50.705 2014/06/28 24.0° Single pol. 
13 48.675, -52.948 2015/06/04 39.3° Single pol. 
14 69.255, -51.208 2014/10/09 38.8° Dual pol. 

 

Data 
set 

Location 
 

Wind 
direction 

Wind  
speed 

Number of  
icebergs 

1 Baffin Bay 135° 16.7 m/s 20 
2 Baffin Bay 360° 5.8 m/s 12 
3 Baffin Bay 338° 4.4 m/s 4 
4 Baffin Bay 270° 1.4 m/s 10 
5 Baffin Bay 338° 4.4 m/s 2 
6 Disko Bay 67° 9.2 m/s 48 
7 Grand Banks 90° 6.7 m/s 32 
8 Grand Banks 28° 4.7 m/s 5 
9 Grand Banks 35° 8.9 m/s 1 

10 Grand Banks 21° 7.2 m/s 1 
11 Grand Banks 21° 10.8 m/s 2 
12 Grand Banks 4° 4.7 m/s 1 
13 Bonavista Bay 90° 5.5 m/s 10 
14 Disko Bay 135° < 1 m/s 5 
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represent mean and standard deviation of open water pixel 
values, but of a mixture of open water and ice. In all 
likelihood, the values µwater and σwater, and therefore the 
threshold T, are too high. Figure 5 illustrates how this can 
result in missed detections.  

To sum up, in situations with high iceberg density, high 
wind speed or high sea state, thresholding techniques such as 
the standard CFAR detector reach their limits. The following 
section describes our approach.  

Iterative iceberg detector 
 

Iterative Concept 
 

The more iceberg pixels are located in the sliding window, 
the more the threshold T increases. The example in Figure 5 
shows that within the iceberg cluster, many iceberg targets are 
missed, as the threshold T is too high. But as there are a few 
iceberg pixels that have been detected successfully, it is 
possible to steer the estimated values µwater and σwater towards 
the correct values, and detect formerly missed icebergs. 
Therefore, the CFAR detector is carried out iteratively.  

In each iteration step, µwater and σwater are re-estimated. For 
re-estimation, we exclude pixels that have been identified in 
the previous iteration step to be part of an iceberg. In so doing, 
the new estimate is less corrupted and more iceberg pixels get 
detected.  

In Figure 6, the iterative process is tested with the example 
iceberg cluster of Figure 5. After two iteration steps, all 
icebergs are detected. Obviously, the estimated values µwater 
and σwater converge towards the correct mean and standard 
deviation of open water pixel values. In future work, we want 
to investigate the convergence rate and develop stopping 
criteria. For the experiment in this paper, the number of 
iterations is fixed to two. 

In order to minimize the computing time, we only re-
estimate µwater and σwater in the regions surrounding detected 
iceberg pixels, since the other areas will not undergo a change.  

Figure 7 illustrates the flow of our algorithm. After each 
iteration step, the output image is copied to a mask in order to 
save pixels that have to be excluded in the next re-estimation.  

 
Front side driven region growing 

 
The aim of region growing is to find all pixels that belong 

to one iceberg. Contiguous iceberg pixels are merged into one 
region. In this section, we describe a new front side driven 
region growing and also respond to the question of how to 
choose the design parameter n in equation (2). 

The example in Figure 8 shows that a low design parameter 
(n=5) in practice results in many false alarms. But apart from 
this fact, it makes it possible to map each iceberg as one solid 
region. n=15 keeps a low false alarm rate, but several iceberg 
pixels are missed. To combine the benefit of both, a low and a 
high design parameter n, we first execute the CFAR detector 
with n=15. Thereby, some pixels in each iceberg get detected, 

 
Figure 5. Standard CFAR detector applied to a section of a 
TerraSAR-X image with high iceberg density (Disko Bay, Greenland, 
2013/04/23). Several icebergs remain undetected. 

 
Figure 6. Iterative CFAR detector applied to the example image 
shown in Figure 5. Formerly missed icebergs get detected. 

 

 
Figure 7. Flow chart of the iterative iceberg detector. 
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frequently those from the bright front side facing towards the 
radar. Then, starting with the detected front side pixels, region 
growing is carried out that includes all pixels with an intensity 
above a second threshold calculated with n=5. Figure 8 (on 
the bottom right) illustrates how false alarms vanish and 
icebergs are mapped more accurately. 
 

 
Figure 8. Optimization by front side driven region growing. Iceberg 
mapping is more accurate. The false alarm rate is kept down. 

Wave filter 
 

Even though the front side driven region growing ensures a 
low false alarm rate, it is not possible to avoid false alarms 
that arise from high wind speeds and rough seas. The intensity 
of wave crests can tend towards the intensity of icebergs 
(Figure 9, top row). Moreover, in some cases the ocean 
surface shows vertical smears of high intensity (Figure 9, 
bottom row). These smears and wave crests are frequently 
detected as icebergs.  

We propose a CFAR-related filter, which additionally 
recognizes recurring patterns in the surroundings of 
detections. µwater and σwater are re-estimated from an area, 
which is no longer hollow squared shaped. It now gets the 
same outer shape of the detected object, but increased size 
(draft in Figure 9). By this means, in case of wave crests and 
smears, the estimation area is narrow and mainly captures 
pixels that belong to the same wave crest or smear. 
Accordingly, the detected object is no longer unusually bright. 
We can proceed from the assumption that most smears go 
undetected, that is, they are filtered out. In contrast, for most 
icebergs the estimation area is expanded in range and azimuth 
direction. The re-estimate differs minimally from the output of 
the hollow square shaped sliding window. Icebergs are 
detected again. 

 
 

 
Figure 9. Basic idea of the wave filter. For each detected object, the 
CFAR detector is executed again. Different from Figure 3, the area 
used for estimating the statistical properties of the surroundings gets 
the same outer shape as the detection, but increased size (yellow 
lines). Its inner limit is given by the boundary of the detection itself. 
For most icebergs, the reshaping hardly makes a difference, i.e. they 
get detected again. But false alarms e.g. occurring at waves are no 
longer unusually bright compared to the pixels in the estimation area. 
They go undetected. 

 
The idea of using a nonrectangular shaped sliding window 

has been mentioned by El-Darymli et al. (2013). Principe et al. 
(1995) used a gamma kernel instead of the hollow square 
shaped sliding window. In our work, we fit the shape 
individually to each detection.  
 

Mask initialization 
 

After each iteration step, the binary output image is copied 
to a mask in order to save pixels that have to be excluded in 
the next re-estimation step. Similar to Gao et al. (2009), the 
mask is initialized with a binary image generated from the 
input SAR image using a global threshold. This is done to 
speed up the iterative approach.  

In our work, the global threshold is given by a priori 
knowledge about the gradient of icebergs and open water. The 
gradient is generally high at the edge of an iceberg, and also 
within an iceberg. In open water, low gradient values 
predominate. In former studies, e.g. Lehner et al. (2014); 
Ressel et al. (2015), gradient related features are used to 
classify different ice types. Here, the binarized gradient is used 
to initialize the mask.  
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Experimental Results 
 

Quantitative analysis of the reliability 
 

The figures presented above have visually highlighted the 
benefit of the iterative iceberg detector. In the following, we 
analyze the reliability of the detector quantitatively. 

The experiment deals with 14 TerraSAR-X images listed in 
Table 2. We chose data sets that cover different weather and 
sea state conditions. Reported wind speeds and wind 
directions come from nearby weather stations.  

The complete TerraSAR-X scenes are examined, except for 
data set 6, 7, 13, and 14. Data set 6 depicts more than 4000 
icebergs. We selected an ROI the size of 4.8 km  5.8 km. It 
contains 48 icebergs. For data set 7, the ROI spans 30 km  
15 km including 32 icebergs. For the data sets 13 and 14, in 
situ observations of icebergs are available in ROIs covering 
30 km  36 km (data set 13) and 0.5 km  0.18 km (data set 
14). Icebergs in the other data sets (1-12) have been identified 
manually by visual inspection of the TerraSAR-X image.  

Two iteration steps are carried out, followed by the filter 
(that can be seen as a third iteration). 

Table 3 summarizes the results. 153 icebergs have been 
identified manually from the images. Of these, 137 icebergs 
have been detected successfully, i.e. the detection rate of our 
algorithm amounts to 137/153 = 0.895. 16 icebergs were 
missed.  

The lengths of the selected 153 icebergs range from 15 m 
(size category: small) to 650 m (size category: very large). In 
future work, we want to analyze the detection rate depending 
on different iceberg sizes. 

Most false alarms arise from data set 1, which captures the 
highest wind speed (16.7 m/s). Here, 41 smears passed the 
wave filter. Nonetheless, it must be pointed out that without 
the filter, data set 1 would have yielded 117 false alarms. The 
other data sets (2-14) contain 24 false alarms before and 9 
false alarms after filtering. Altogether, there remain 50 false 
alarms, which is equivalent to 0.003 false alarms per km².  

In Figure 10, the overall detection rate and false alarm rate 
of our iterative iceberg detector are compared with the output 
of the standard CFAR detector carried out with a varying 
design parameter n, as well as with the iterative iceberg 
detector run without the wave filter. The high detection rate of 
the iterative iceberg detector (with wave filter) is achievable 
with the standard CFAR detector at n<10, but this is 
accompanied by a false alarm rate at least five times higher 
than the false alarm rate of the iterative detector. The standard 
CFAR detector shows a low false alarm rate at n=15, but the 
detection rate is significantly reduced. The wave filter reduces 
the false alarm rate of the iterative iceberg detector by 
approximately a factor of three, while the detection rate is 
decreased only marginally.  

 
Computing time 

 
All data sets were processed on a 2.2 GHz quad core CPU. 

On average, the computing time amounts to 12 minutes per 
Stripmap image, though it can extend in case many icebergs 
(>> 1000) are present; beginning with the second iteration, the 

computing time depends on the number of detections, because 
µwater and σwater are re-estimated in the surrounding region of 
detected iceberg pixels. The higher the number of detected 
pixels is, the more re-estimations have to be carried out. 
 
Table 3. Results of the iterative iceberg detector. 
 

Data 
set 

Number of 
missed hits 

Number of  
false alarms 

False alarms  
per km² 

1 2 41 0.023 
2 2 0 0 
3 0 4 0.004 
4 0 3 0.001 
5 0 0 0 
6 5 0 0 
7 2 1 0.002 
8 0 0 0 
9 1 0 0 
10 0 1 0.001 
11 1 0 0 
12 0 0 0 
13 1 0 0 
14 2 0 0 

Sum 16 50 Mean = 0.003 

 

 
Figure 10. Comparison of different detectors. 

 
 Scientific use 

 
The iterative iceberg detector presented in this paper is 

designed to support ship routing in ice frequented areas. 
Beyond that, it may also improve associated works in polar 
research, e.g. observations on iceberg frequency, iceberg 
collapse, or ice concentration. As a case study, we analyze the 
TerraSAR-X image of data set 14 (Table 2). While the 
previous experiment focused on an ROI in which in situ data 
are available, we now analyze the complete scene (Figure 11).  

Utilizing the iterative iceberg detector, 6,873 icebergs were 
detected in the scene. From the binary output image, we 
calculated the iceberg coverage map depicted in Figure 12. 
The resolution of the map is ten times smaller than the 
resolution of the input image, i.e. for map generation, the 
binary output image is partitioned into (non-overlapping) 
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10x10 pixel patches in checkerboard pattern. For each such 
patch, we compute the percentage of detected iceberg pixels. 
These percentage values, in original geometric order, then 
form the iceberg coverage map.  

The iceberg coverage map in Figure 12 reveals an 
expanded area of high iceberg density along the coast. This 
coincides well with field observations.  

Conclusion 
In this paper, we proposed an automatic algorithm for 

iceberg detection from high resolution X-band SAR data. It is 
based on the iterative censoring CFAR detector, which has 
proven its usefulness already for target detection in dense 
traffic situations. However, we are the first to apply to the 
iceberg detection problem. In order to better discriminate 
icebergs from false alarms that frequently arise from rough 
seas and strong winds, we included a novel filter, taking into 
account the outer shape of detected objects. Detections that are 
part of a recurring pattern (such as waves) are filtered out. The 
“wave filter” reduces the false alarm rate significantly.  

Furthermore, two minor modifications on the CFAR 
detector make a contribution to the results: First, gradient 
information is used to roughly distinguish between iceberg 
pixels and open water pixels in the very first iteration step, 
which speeds up the iterative approach. Second, a front side 
driven region growing is added in order to merge pixels that 
belong to one iceberg into an iceberg region and - in so doing - 
map icebergs more accurately.  

We tested the algorithm with a series of HH polarized 
TerraSAR-X Stripmap images covering different sea state and 
wind conditions (wind speed up to 16.7 m/s) and different 
incidence angles (from 24.0° to 39.7°). Overall, we recorded a 
detection rate of about 90 %. The false alarm rate is kept down 
at 0.003 false alarms per km². The wave filter on its own 
reduced the false alarm rate by factor three, while the 
detection rate is only marginally affected.  

In comparison, the standard (i.e. non iterative) n-sigma 
CFAR detector achieves a detection rate ≥ 90 % at n < 10, but 
this is accompanied by a false alarm rate at least five times 
higher than the false alarm rate of the proposed iterative 
algorithm. A lower false alarm rate (approx. 0.003 false 
alarms per km²) is reached with the standard CFAR detector at 
n = 15, but at the same time the detection rate is reduced. To 
sum up, the proposed iterative algorithm optimizes both, the 
detection rate and the false alarm rate.  

Results are output within 12 minutes of computing time. 
This provides us with the basis for supporting operational 
services on ship routing in ice frequented waters. 

Future works 
Although the wave filter shows promise for reducing the 

false alarm rate, upcoming research will focus on further 
reduction of false alarms. Since by now the filter is based on 
the nonrectangular CFAR concept, it expresses the probability 
that a detection is “not representing water”. We want to add a 
quality measure that expresses the probability of “representing 
ice”. Both quality measures can be fused in terms of 

 

 
Figure 11. Section of a TerraSAR-X Stripmap image taken over 
Disko Bay off the Jakobshavn Glacier, Greenland, 2014/10/09. 

 

 
Figure 12. Iceberg coverage map generated from the TerraSAR-X 
image shown in Figure 11. 
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Dempster’s rule of combination as applied by Ike (2011) and 
Frost et al. (2012). Further improvements in the recognition of 
false alarms might be expected.  

The iterative iceberg detector detects ships as icebergs. In 
practice, ships have to be sorted out from the detection results 
manually. In ongoing work, we utilize a neural network for 
automated differentiation of icebergs and ships (Bentes et al., 
2016). 

Acknowledgment 
We acknowledge Airbus D&S for providing the TerraSAR-

X data sets 8, 9, and 12.  
We thank C-CORE for supporting the record of ground 

truth data in the footprint of data set 13. 

References 
Bentes, C., Velotto, D., and Lehner, S. 2014. Analysis of ship size 

detectability over different TerraSAR-X modes. In Geoscience and 
Remote Sensing Symposium (IGARSS), 13-18 July 2014, Quebec City, 
Canada. IEEE International, pp. 5137 - 5140.  

 
Bentes, C., Frost, A., Velotto, D., and Tings, B. 2016. Ship-Iceberg 

Discrimination with Convolutional Neural Networks in High Resolution 
SAR Images. In EUSAR 2016 

 
Brekke, C. 2008. Automatic ship detection based on satellite SAR. FFI 

rapport. 
 
Brusch, S., Lehner, S., Fritz, T., Soccorsi, M., Soloviev, A., and Van Schie, B. 

2011. Ship surveillance with TerraSAR-X. IEEE Transactions on 
Geoscience and Remote Sensing, 49(3), pp. 1092-1103. 

 
Buus-Hinkler, J., Qvistgaard, K., and Harnvig Krane, K.A. 2014. Iceberg 

number density – Reaching a full picture of the Greenland waters. In 
Geoscience and Remote Sensing Symposium (IGARSS), 13-18 July 2014, 
Quebec City, Canada. IEEE International. pp. 270 – 273. 

 
Diemand, D. 2001. Icebergs. Academic Press, pp. 1255-1264. 

 
Eineder, M., Fritz, T., Mittermayer, J., Roth, A., Boerner, E., and Breit, H. 

2008. TerraSAR-X Ground Segment, Basic Product Specification 
Document. Cluster Applied Remote Sensing (CAF), Oberpfaffenhofen, 
Germany. Report No. TX-GS-DD-3302. 

 
El-Darymli, K., McGuire, P., Power, D., and Moloney, C. 2013. Target 

detection in synthetic aperture radar imagery: a state-of-the-art survey. 
Journal of Applied Remote Sensing, 7(1). 

 
Frost, A., Renners, E., Hötter, M., and Ostermann, J. 2012. Probabilistic 

evaluation of three-dimensional reconstructions from X-ray images 
spanning a limited angle. Sensors, 13(1), pp. 137-151. 

 
Gao, G., Liu, L., Zhao, L., Shi, G., and Kuang, G. 2009. An adaptive and fast 

CFAR algorithm based on automatic censoring for target detection in 
high-resolution SAR images. IEEE Transactions on Geoscience and 
Remote Sensing, 47(6), pp. 1685-1697. 

 
Gill, R.S. 2001. Operational detection of sea ice edges and icebergs using 

SAR. Canadian journal of remote sensing, 27(5), pp. 411-432. 
 
Howell, C., Youden, J., Lane, K., Power, D., Randell, C., and Flett, D. 2004. 

Iceberg and ship discrimination with ENVISAT multipolarization 
ASAR. In Geoscience and Remote Sensing Symposium, 20-24 
September 2004, IEEE International. 

 
Ike, T. 2011. Evidenzbasierte Analyse interner Konflikte bei der Fusion 

komplementärer Fahrzeugumfeldbeschreibungen. VDI Verlag, 
Düsseldorf, Germany. Fortschrittsberichte Reihe 12, No. 736.  

 
Lehner, S., Krumpen, T., Frost, A., Ressel, R., Busche, T.E., and Schwarz, E. 

2014. First tests on near real time ice type classification in Antarctica. In 
Geoscience and Remote Sensing Symposium (IGARSS), 13-18 July 2014, 
Quebec City, Canada. IEEE International, pp. 4876-4879. 

 
Power, D., Youden, J., Lane, K., Randell, C., and Flett, D. 2001. Iceberg 

detection capabilities of RADARSAT synthetic aperture radar. 
Canadian Journal of Remote Sensing, 27(5), pp. 476-486. 

 
Principe, J.C., Radisavljevic, A., Kim, M., Fisher III, J., Hiett, M., and Novak, 

L.M. 1995. Target prescreening based on 2D gamma kernels. In SPIE 
Proceedings, Vol. 2487, pp. 251-258. 

 
Ren, Y., Lehner, S., Brusch, S., Li, X., and He, M. 2012. An algorithm for the 

retrieval of sea surface wind fields using X-band TerraSAR-X data. 
International journal of remote sensing, 33(23), pp. 7310-7336. 

 
Ressel, R., Frost, A., and Lehner, S. 2015. Navigation Assistance for Ice-

Infested Waters through Automatic Iceberg Detection and Ice 
Classification Based on TerraSAR-X Imagery. International Archives of 
the Photogrammetry, Remote Sensing and Spatial Information Sciences. 

 
Scharf, L.L. 1991. Statistical signal processing. Reading, MA: Addison-

Wesley. 
 
Shao, W., Li, X. M., Lehner, S., and Guan, C. 2014. Development of 

polarization ratio model for sea surface wind field retrieval from 
TerraSAR-X HH polarization data. International Journal of Remote 
Sensing, 35(11-12), pp. 4046-4063. 

 
Truckenbrodt, J. 2012. Bestimmung und Validierung von U10 Windfeldern 

aus TerraSAR-X Daten und deren Nutzung für operationelle 
Schiffsdetektion. Thesis. University of Jena, Germany. 

 
Vachon, P.W., Campbell, J.W.M., Bjerkelund, C.A., Dobson, F.W., and Rey, 

M.T. 1997. Ship detection by the RADARSAT SAR: Validation of 
detection model predictions. Canadian Journal of Remote Sensing, 
23(1), pp. 48-59. 


