
International Journal of Digital Content Technology and its Applications
Volume 3, Number 3, September 2009

Improving Software Development Using Scrum Model by Analyzing
Up and Down Movements on The Sprint Burn Down Chart:

Proposition for Better Alternatives

Md. Junaid Arafeen1, Saugata Bose*
1 Software Engineer, Vonair Inc, Dhaka, Bangladesh, email: arafeenbd@yahoo.com
* Lecturer, Daffodil University, Dhaka, Bangladesh, e-mail: saugata28@yahoo.com

doi: 10.4156/jdcta.vol3.issue3.14

Abstract

Among various models, now a day, to address changing

customer’s needs, commercial software developers intend to
use iterative processes. Agile software development processes
are built on the foundation of iterative development. One of
the agile development processes is Scrum, which is an
iterative incremental process of software development.
Besides meeting varying needs of customer, timely delivery of
product is important too. To predict when all of the work will
be completed the developers use Burn Down Chart which
represents work left to do vs. time. Theoretically, progression
of time should leave less amount of task, the chart will look
like straight line and the sprint will remain constant. However,
in software industry, the irregularities on burn down chart are
common which are the ups and downs occurring due to
introducing new story points, new technology, wrong
estimation of resources, cost and schedule. These reasons in
turn affect the cost of the project, which in turn pull down the
quality of the product because of failed to attain the defined
sprint goal. To avoid such irregularities in development the
better solution might be use of sprint burn up chart or
modified Phil Goodwin and Russ Rufer’s burn down chart.

Keywords

Scrum, Product backlog, Sprint, Burn Down Chart,
Person-Month, Burn Up Chart

1. Introduction

Computer software is the product that software

professionals build and then support over the long term.
It encompasses programs that execute within a
computer of any size and architecture. Because software
is embodied knowledge and because that knowledge is
initially dispersed, tacit, latent and incomplete, software
development is a learning process. The process is a
dialogue in which the knowledge that must become the
software is brought together and embodied in the
software. The process provides interaction between
users and designers, between users and evolving tools
and between designers and evolving tools. The evolving
tool itself serves as the medium for communication,
with each new round of the dialogue eliciting more
useful knowledge from the people involved in an

iterative process. This process is a framework for the
tasks that are required to build high quality software.
Agile Software Development is a methodology for
software development process that promotes
development iterations, open collaboration and
adaptability throughout the life cycle of the project. The
agile philosophy stresses four key issues: the
importance of self-organizing teams that have control
over the work they perform, communication and
collaboration between team members and between
practitioner and their customers. Agile process models
have been designed to address each of these issues.
Scrum is one of the models that are widely used in
software development firms. In Scrum, work is
delivered in monthly "sprints". Each sprint delivers a
single, usable piece of work called the "product
increment". This product increment is immediately
available for evaluation and use by the customer at the
end of a sprint. To monitor sprint progress, release
progress, product progress, each day a spreadsheet is
updated with the current work remaining. Scrum uses
"burn-down" charts to monitor progress during a sprint.
In a burn-down chart, remaining work is plotted on the
Y-axis, and time proceeds along the X-axis. As tasks are
completed, the line slopes down. Burn down charts
provides an intuitive feel for the progress of a sprint.
The most common burn down chart "signature" is a
steady decline. But this “signature” is mostly
uncommon in commercial level.

 In this paper, we intend to point out the controversy
happened whenever burn down chart is implemented
commercially and try to find out the reasons behind ups
and down movements on burn down chart and try to
figure out the consequences faced by the industry by
this irregularity. Then we propose two alternative
solutions for prospective software developers. Initially
the report contains the summary of Scrum model. Then
characteristics of Burn Down Chart are defined. At the
second phase, we study two Burn Down Charts which
were derived from our 2 case studies and analyze the
reasons of ups and down movements occur on those
charts, then at the last phase we propose two alternative
solutions for irregular movements on burn down chart.

109

mailto:saugata28@yahoo.com�

Improving Software Development Using Scrum Model by Analyzing Up and Down Movements On The Sprint Burn
Down Chart: Proposition for Better Alternatives

Md. Junaid Arafeen, Saugata Bose

2. Scrum methodology

Scrum is an enhancement of the iterative and

incremental approach to delivering object-oriented
software initially documented by Pittman and later
expanded upon by Booch. Scrum is a management,
enhancement and maintenance methodology for an
existing system or production prototype. It assumes
existing design and code which is virtually always the
case in object-oriented development due to the presence
of class libraries. Scrum will address totally new or
re-engineered legacy systems development efforts at a
later date.

Software product releases are planned based on the
following variables:

•Customer requirements - how the current system
needs enhancing.

•Time pressure - what time frame is required to gain
a competitive advantage.

•Competition - what is the competition up to, and
what is required to best them.

•Quality - What is the required quality, given the
above variables?

•Vision - what changes are required at this stage to
fulfill the system vision?

•Resource - what staff and funding are available.
 These variables form the initial plan for a software

enhancement project. However, these variables also
change during the project. A successful development
methodology must take these variables and their
evolutionary nature into account. The system
development process is complicated and complex.

Therefore, maximum flexibility and appropriate
control is required. Evolution favors those that operate
with maximum exposure to environmental change and
have optimized for flexible adaptation to change. The
SCRUM approach assumes that the analysis, design and
development processes in the Sprint phase are
unpredictable.

A control mechanism is used to manage the

unpredictability and control the risk. Flexibility,
responsiveness and reliability are the results.

3. Overview of scrum

Scrum has three roles Product owner, Scrum master
and Project Team.

1. Product owner defines the features of the product,
prioritize product features based on market value and
prioritize them after every 30 Days, accepts and rejects
work results. The release date of the product is defined
by product owner. Product owner can be customer.

2. Scrum master is the interface point between
customer, scrum team and management. Scrum master
ensures that the scrum practices are followed and
monitors overall project progress.

3. Scrum project team is a cross-functional team
with 5-7 members. It includes systems analysts,
programmers and quality assurance professionals and
therefore it is called cross functional team.

Scrum uses three types of backlogs. These are
product backlog, Burn Down chart and sprint backlog.

1. Product backlog is a prioritized queue containing
all the project requirements. The product owner does the
priority of backlog items but any stakeholder can add
requirements to product backlog. The project progress
is determined by the number of items in product
backlog. Initially the size of product backlog grows as
stakeholders add requirements but then it gradually
decreases by the start of sprint.

2. Burn Down chart shows the work remaining in
sprint. As the sprint precedes the requirements in sprint
backlog decreases or burns down. A sprint is successful
if sprint backlog is zero. So Burn Down chart is a useful
tool for scrum teams for timely completion of sprint.

3. Sprint backlog is the output of sprint planning
meeting. The requirements are broken into manageable
tasks that require two days or sixteen developer hours.

Sprint: The scrum team works for a fixed period of
time. This is known as sprint. The sprint period is 30
days. During sprint, the team self-organizes and self
directs. Here there can be two possible ways for scrum
team.

• If the sprint goals are not achieved the scrum, team
can change the functionality to be delivered by the
sprint.

• Scrum team aborts the sprint if based on some new
information; they feel that the sprint goal cannot be
achieved.

Sprint review: Its duration is usually four hours .In
the first half of sprint review demonstration of sprint
progress is given to stake holders. This includes
customers, product owner, scrum master, scrum team
and management of software house. It provides agenda
for next sprint planning meeting. The second half of
sprint review meeting is with the scrum master and
scrum team. The scrum team analyzes their
performance in sprint and identifies positive ways of
working together. They also identify weak areas and
develop strategies for improvements.

110

International Journal of Digital Content Technology and its Applications
Volume 3, Number 3, September 2009

Sprint Planning Meeting: All stakeholders
participate in the sprint-planning meeting. They agree
on the sprint goals and sprint backlogs. During sprint
planning meeting, scrum team divides individual tasks
to be completed during sprint.

Daily Scrum Meetings: Daily scrum meeting is a

short
15 minutes meeting that takes place. every day. It is

an event where scrum team members gather to
exchange and share

information regarding
various issues in sprints. Customers can also

participate in Scrum meeting but they are not allowed
to speak. This is done to keep the meeting short.

During daily scrum meeting, each scrum member
answers three questions.

1. What have you done since the last Scrum?
2. What will you do between now and next Scrum?
3. What got in your way of doing work?
In daily scrum meeting scrum Master leads the

scrum team.
Characteristics of Scrum: Scrum has following

characteristics.
•Small teams: Scrum team is a cross functional team

comprising 5-7 members. The main motive behind
scrum is that each team member should work
independently but towards the same goal like sports
team.

•Frequent Reviews: The project progress is
monitored frequently in daily scrum meetings.
 Here all team members discuss various issues
related to their work.

•All requirements are available in prioritized queue
known as product backlog.

•The role of Scrum Master is very relationship
oriented with scrum team. Scrum Master acts as a
bridge between customer, software house management
and scrum team. Scrum master ensures that scrum
practices are followed during sprint and eliminates
obstacles in the project.

•In Scrum requirements prioritization, acceptance
and rejection of sprint results and product release date is
specified by product owner.

•All the stakeholders including customer are
continuously updated regarding the project progress by
the help of sprint review.

•Scrum focuses on continuous improvements by
focusing on weak area during the sprint. This is usually
done in the second half of sprint review meeting where
participating audience are Scrum master and scrum
team.

4. Theoretical approach of sprint burn
down chart

On a Scrum project, the team tracks its progress

against a release plan by updating a release burn down
chart at the end of each sprint. The horizontal axis of the
release burn down chart shows the sprints; the vertical
axis shows the amount of work remaining at the start of
each sprint. Work remaining can be shown in whatever
unit the team prefers--story points, ideal days, team
days, and so on. There are two approaches remaining for
sprint burn down chart among theorists.

Burn Down
Chart(Approach1)

0
50

100

1 2 3 4 5 6

Days

R
em

ai
ni

ng

S
to

ry
 P

oi
nt

s

Approach1: The remaining story points should

reduce at every day of a sprint. Therefore, the ultimate
shape of the sprint burn down chart would look

like downward straight line.
Approach2: The remaining story points would

reduce at every day of a sprint. Whenever any new task
is introduced, it would insert at the current sprint.
Insertion of new task in turn makes upward movements
of remaining work tasks on the burn down chart. But the
duration of sprint should remain constant.

Burn Down Chart(Approach2)

On the burndown chart(right side), the team started a

project that was planned to be eleven two-week sprints.
They began with 200 story points of work. The first
sprint went well and from the chart we can infer
thatthey had around 180 story points of work remaining

111

Improving Software Development Using Scrum Model by Analyzing Up and Down Movements On The Sprint Burn
Down Chart: Proposition for Better Alternatives

Md. Junaid Arafeen, Saugata Bose

after the first sprint. During the second sprint, however,
the estimated work remaining actually burned up. This
could have been because work was added to the project
or because the team changed some estimates of the
remaining work. From there the project continued well.
Progress slowed during sprint 7 but then quickly
resumed.

5. Implementation of sprint burn down
chart (where the problem lies)

Case Study1
Project: Intrusion Detection System
The system will be setup in a network as a node and

analyze the network packet i.e. TCP/UDP, ICMP, ARP.
It will make a profile for each node and evaluate the
vulnerability of the whole network which indicates the
susceptibility to any intrusion. It will further detect an
intrusion or any irregularity happened based on the
profile.

Project length: 6 months.
Size: 5 Person-month
Technology Used: Java 6.0, Eclipse RCP (Rich

Client Platform), OSGi (Open Services Gateway
Initiative), JOGL (Java OpenGL Library), JPCap,
NMAP, Web Services.

Team’s Knowledge Base: Team members are 1
year experienced

Expertise: J2EE technology like Struts, Hibernate,
Servlet, JSP, SOAP, Web Services etc.

New Technology: Eclipse RCP, OSGi, JOGL,
JPCap, JFreeChart

Overview: Agile-scrum was implanted from the
scratch of the project. To accomplish this project we had
decided to take Sprint of 2 weeks length (10 working
days). To accomplish this project we have assigned 5
persons. Since we have 10 days then per sprint we had
maximum 50 points to cover. Here 1 point = 1
person-day work. Sprint goal was to

1. Develop the database schema and implementation
2. Draw the UI interface.
3. Draw the 3 dimensional graph using JOGL
The following burn down chart actually represents

the project’s progress.
Burn Down Chart

0

10

20

30

40

50

20-
Apr

21-
Apr

22-
Apr

23-
Apr

24-
Apr

27-
Apr

28-
Apr

29-
Apr

30-
Apr

1-
May

Day

Re
m

ai
ni

ng
 S

to
ry

 P
oi

nt
s

Case Study2
Project: Client Management System
The system will provide a service delivery platform

to manage various CPE (Client Premise Equipment)
systems. It is a plug-in based system where various
plug-in will incorporate knowledgebase to the system to
support/provide services to the management.

Project-length: Two years.
Size: 3 Person-month.
Technology Used: Java 5.0, Web Services, Axis 1.0,

XML, JSP, Servlet, Java Script, EJB, JBoss Server.
Team’s Knowledge Base: Team members are 1 year

experienced.
Expertise: Java 5.0, Web Services, Axis 1.0, XML,

JSP, Servlet, EJB, JBoss Server.
Overview: The Sprint goal was to develop the web

pages for the system. The user requirement was changed
at the middle of the sprint. The user wanted some
widget based UI that means they wanted Web 2.0 based
Web UI. Before that the developer was developing Web
1.0 based web pages. That was a significant change for
the developer. The burn down chart for that particular
sprint is given below

Burn Down Chart

0

5

10
15

20

25

30

20-
Apr

21-
Apr

22-
Apr

23-
Apr

24-
Apr

27-
Apr

28-
Apr

29-
Apr

30-
Apr

1-
May

Day

Re
ma

ini
ng

 St
ory

 Po
int

s

6. Analysis of the sprint burn down chart

To estimate a job correctly one has to know the

answer of these three questions what to do, how to do
and what is required to do.

“What To Do” refers the developers have to
understand the customer requirements very well. The
answer of the following question depends on this one. If
they fail to understand “What To Do”, then the answer
of the subsequent two questions will be changed
accordingly.

“How To Do” indicates the developers need to chop
down the task into smaller one.

“What Is Required To Do” refers which language
or tools or expertise or level of experience they need to
accomplish the job. So Burn Down Chart can vary for
any misinterpretation for the above three answers.

Considering the above case studies, we identify that
there are some striking reasons that compels the burn
down chart acting differently from the theoretical
concept.

A. Customer Requirements Are Changing: In
view of the above case studies, we find that in every

112

International Journal of Digital Content Technology and its Applications
Volume 3, Number 3, September 2009

sprint customer is changing his requirements. So the
number of unsolved tasks is increasing, which makes
the ups and downs in the burn down chart.

B. Introducing New Technology: “What Is
Required” includes technology language, tool etc. if it
is new then developers can not correctly anticipate the
time required to know the required knowledge to do a
task. This in turn, deviates burn down chart from the
ideal curve.

C. Wrong Estimation: “What To Do” and “How
To Do” is also another point to consider. Lack of
experience will hamper the correct time anticipation. A
new task spawns many and only experience developer
can foresee it. And thus helps to maintain the burn down
line. Human factor is another point to consider. An
experienced and productive developer needs less time
than a fresher one. But the time estimation will be such
that it will minimize the difference. The time margin
should be justified irrespective of highly experienced
and the regular developer.

7. Consequences of the sprint burn down
chart

•The firm needs to add extra person-month for that

sprint to reach the sprint goal. But it is rather impossible
for a firm to employ extra persons.

•Transfer the extra requirements to the next sprint as
per discussion with the customer, which will increase
the effort per person-month

•If customer forces that requirement should be
fulfilled in, the current sprint then it will replace another
lower priority task of a story or a full story, which will
again increase the effort estimated earlier for
person-month. In this way, firms fail to reach the goal
promised to serve to customer.

8. Alternative proposed solution for sprint
burn down chart

Solution1: Burn Up Chart

One of the benefits of Agile is that it focuses on
small increments of functionality so that forward
progress is always being made. In this paper, we like
having a big printout (hand-drawn works just as well) of
the following artifact in a software development firm:

Progress Snapshot (with tasks blurred). Where are

we, and what do we have left?

This artifact can be easily understood at a glance,
and gives a quick snapshot as to how the team is doing –
right now. What it doesn’t do is show how the team has
been progressing over time. To show progress son a temporal
basis, we like using a “Burn-up” chart. It’s a modification f the
Burn-down chart prescribed by many of the Agile
methodologies, and simply plots the amount of work
completed each week.

 The Burn-up Chart. Dotted is target level.

The 3 reasons we use Burn-up charts:
1. It passes the Walk-By test. When it comes to

charts and graphs, we are strong advocate of the KISS
(Keep It Simple, Stupid) principle. Any developer
walking by the office should be able to understand the
chart without having to stop walking. The burn-up chart
is a simple snapshot of position, velocity and
acceleration. How much work has been done, how
much remains to be done, how fast is work being done,
and is the team gaining momentum or losing steam?
The burn-up chart answers these questions at a glance.

2. Better Estimates. Part of being agile is revisiting
estimates and refining them during the development
cycle. Actions speak louder than words, and past
performance speaks louder than verbal estimates. The
burn-up chart is a great artifact for projecting task
completion date. Draw a line through your current
position, and note where this line intersects the target
line – this is your projected finish date. We can change
the slope of the line to match our velocity for the past
week or the past 4 weeks and we can see how that
changes the projected finish date if we were to maintain
the velocity we’ve been working at recently. The key is

113

Improving Software Development Using Scrum Model by Analyzing Up and Down Movements On The Sprint Burn
Down Chart: Proposition for Better Alternatives

Md. Junaid Arafeen, Saugata Bose

that that this projected finish date is based on actual
team performance. Estimates at the planning stages
often involve “Engineering-hours”. Estimates with the
burn-up chart are not based on the performance of “2
engineers”, they are based on the performance of 2
developers, the actual people working on this project.

3. Changes to Requirements. The burn-up chart is
based on the burn-down chart prescribed by several
Agile methodologies. In a burn-down chart, the target
line is at the base of the X-axis and work is shown
sloping downward. One shortcoming of the burn-down
chart is that that the target line is fixed. In any project,
requirements change, estimates are (hopefully) refined,
and unfortunately, there is always the chance of feature
creep . Burn-up charts can react by moving the target
line and showing at which iteration these changes
occurred. It is also easy to analyze how changing the
target line will affect the projected finish date. The
burn-up chart embraces changes in requirements, and
encourages that estimates are revisited and refined at the
end of every iteration.

Strategy to Encompass Solution1

The strategy we will follow:
• We will make a list of all the items to be delivered.

We might work from the Project Map, Blitz Planning or
XP's planning game. Then we associate with each
delivery item a relative cost. Then we try to associate
with each item also a relative business benefit, so that
we can discuss with the Executive Sponsor the value
being delivered to the business over time. The reason
for using relative estimates instead of absolute ones is
that if we are, for example, 10% over on your first set of
items, all the remaining items will scale accordingly.
The burn charts will show this automatically.

• We will sort and sequence the work items by
development dependency, cost and value, and cluster
them into a sequence.

• We will estimate how much can be accomplished
in each iteration or delivery period. Then we will draw a
line under the last item that fits in each and will umber
the releases.

• At this point we will make a Burn-up chart. Then
we mark either relative work units or % complete on the
vertical axis, and calendar time on the horizontal. We
will draw a line from the origin to the completion point,
either by estimating the rate at which work can be
accomplished, or as often happens, the "drop dead"
delivery deadline. That shows the "planned" progress.
After each iteration, we will mark how much relative
work got completed.

Solution2: Phil Goodwin and Russ Rufer’s Modified
Burn Down Chart

The typical Scrum burn down chart shows a single
value--the net change in the amount of work remaining.
However, it can also mask what may be going on in a
project. For example, suppose a team had expected to
make progress of 40 (hours, points, whatever) last sprint
but the burndown chart only shows net progress of 10.
Was the team slower than expected or was more work
added to the release? It's important to know the answer
to this question because we cannot really predict when
the release will be done without it. With this in mind, we
propose the following type of burndown chart:

Burn Down Chart1(Proposed)

On this burn down chart, the height of each bar

represents the amount of work remaining in the release.
This figure shows a release with 175 story points
planned in it as of sprint 1. The team finished 25 points
in sprint 1, leaving 150 to go as of the start of sprint 2.
There were 120 as of the start of sprint 3. So, the top of
the bar is reduced by the amount of work the team
finishes in a given sprint. Before the start of sprint 4, the
product owner added work to the project. This
additional work is shown at the bottom of the bar for the
fourth sprint. We can see that the vertical height of
sprint 4 goes from about -40 to about 95, or 135 points
of work remaining. Forty of those 135 points are from
new work. One way to predict how many sprints a
project will take is to draw a trend line through the bars
and extend the baseline. For example we will consider
the figure below of Burn Down Chart2(Proposed) :

Burn Down Chart2(Proposed)

We can anticipate the number of sprints needed by

also drawing a trend line through the changes occurring
at the bottom of the bars as shown below of of Burn
Down Chart3(Proposed):

114

International Journal of Digital Content Technology and its Applications
Volume 3, Number 3, September 2009

Burn Down Chart3(Proposed)

9. Conclusion

Scrum is a very useful technique that can be also
used for software project management. Scrum

supports both large scale projects and small scale
projects. Burn down chart is an inevitable part of the
SCRUM model. It helps perceive the progress about the
project in which it is implemented as well as to foresee
the project future. The deviation from the real curve
which is an ideal straight line reflects the lack of domain
knowledge, the experience and the capability of the
software engineer. However, it is entirely possible that
the practical burn down chart is alike the ideal curve.
Therefore, if we follow either burn up chart or Phil
Goodwin and Russ Rufer’s modified burn down chart
we can track our sprint goals without affecting our
estimated

10. References

[1] Agile Software Development with Scrum, By Ken

Schwaber and Mike Beedle Published by Prentice Hall,
2001

[2] Agile Software Development By Alan S.Koch
[3] SCRUM - Process Model Report By Uzair Akbar Raja,

Farrakh Saeed, Mohammad Zeeshan ul Haq, Sheraz
Ahmad Students-MS Software Engineering, Blekinge
Institute of Technology

[4]http://www.scrumalliance.org/index.php/scrum_alliance/f
or_everyone/what_is_scrum/ scrum_roles

[5] Integrating Agile Development in the Real World”, By
Schuh, Published by Charles River Media, 2004.

[6] Agile Software Development with Scrum, By Schwaber
Beedle, Published by Prentice-Hall, 2001.

[7] SCRUM Development Process By Ken Schwaber
Advanced Development Methods

[8] The Challenge of “Good Enough” Software”, By Bach,
James, Published by American Programmer, October
1995.

[9] A Spiral Model of Software Development and
Enhancement By Boehm from Proceedings of an
International Workshop on Software Process and
Software Environments, Coto de Caza, Trabuco Canyon,
California, March 27-29, 1985.

[10] Earned-value and burn charts By Alistair Cockburn from
Chapter 3 of "Crystal Clear," Published by
Addison-Wesley, 2004

[11]http://www.solutionsiq.com/PDF/
Sulaiman-AgileEVM.pdf
[12] http://www.mountaingoatsoftware.com
[13] http://weblogs.asp.net/jcogley
[14] Agile Project Management with Scrum By Dafydd Rees
[15] http://www.controlchaos.com
[16] http://en.wikipedia.org/wiki

115

http://www.solutionsiq.com/PDF/�

