
PRODUCT DESIGN AND PRODUCT 

PORTFOLIO MODELED INTEGRATION AND 

OPTIMIZATION  

 

by 

 

BEVERLY VERONICA SMITH 

 

A Dissertation submitted to the   

Graduate School – New Brunswick 

Rutgers, The State University of New Jersey 

in partial fulfillment of the requirements  

for the degree of  

Doctor of Philosophy 

Graduate Program in Chemical and Biochemical Engineering 

 

written under the direction of  

Dr. Marianthi G. Ierapetritou 

and approved by 

 

______________________ 

______________________ 

______________________ 

______________________   

New Brunswick, New Jersey 

October, 2010 



 ii 

ABSTRACT OF THE DISSERTATION 

Product Design and New Product Portfolio Management Modeled 

Integration and Optimization 

 

by Beverly Veronica Smith 

 

Dissertation Director 

Dr. Marianthi G. Ieratpetritou 

 

 
In this work we developed decision support frameworks that relied on the modeling of 

multidisciplinary integration to enable the selection of optimal product design alternatives, 

and to facilitate efficient chemical product design planning and execution. 

 

 In recent years, the design of chemical products has received renewed and growing 

interest, as the industry transitions from a dominant bulk chemical product portfolio to 

one of high value-add specialty products. This industry shift results from the onset of 

global competitive pressures accompanied by intense market and consumer demand for 

improved product quality, lower product cost, shortened development cycle and greater 

product differentiation. Concurrently, the chemical manufacturers of commodity products 

are faced with pricing pressures and limited cost reduction options. The existence of these 

challenging market situations demand the adoption of rapid and efficient product design 
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approaches that leverage specialized capabilities across disciplines within the chemical 

enterprise.  

 

The findings from a recent industry benchmark study, conducted as a part of this research, 

supported the motivation for this work. An assessment of current industry practices 

involving 15 chemical manufacturers revealed varying levels of organizational maturity 

as it relates to multidisciplinary and cross-functional leveraging of knowledge in product 

design undertaking. The chemical manufacturers were evaluated on current practices of 

integrating consumer preferences, product-process integration and practices of linking 

business decisions into the product design process. The investigation revealed the 

absence of formalized frameworks to integrate the critical resources necessary to support 

optimal product performance and design process execution.  

 

In this study, the set of decision support procedures formalize the interaction between 

product design and product portfolio decision making by integrating critical elements of 

both domains.  Hence the methodologies incorporate structural framework to forge 

strategic alignment while optimizing domain interaction in order to minimize cost, reduce 

cycle time and to determine the optimal product design alternative.  Embedded industry 

case studies illustrate the application of the proposed methodologies which utilize a 

hybrid approach, involving the application of structural frameworks for domain 

integration, along with Monte Carlo Simulation and algorithmic processing to optimize 

the product design planning and execution process. 
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Chapter 1 
 

 

INTRODUCTION 
 

 

In today’s global economy, chemical manufacturers are facing increasingly complex 

challenges resulting from pricing pressures, intense competition, rising material costs and 

fluctuating market condition. Furthermore, because of excess manufacturing capacity, 

pricing of most industrial chemicals remain at commodity levels.  Against this backdrop, 

companies are constantly seeking to identify initiatives and strategies that will enable 

them to sustain growth and improve their profit margins. Beyond these economic 

pressures, companies face added demands due to rapid technological changes, such as the 

evolution in combinatorial chemical synthesis with the use of nano and micro technology 

(Charpentier 2009). These economic and technological changes are accompanied by 

intense market demand for speed and product differentiation (Charpentier and McKenna 

2004; Hill 2009).  Hence, the combination of these prevailing factors has driven the 

Chemical and related industries to transition to a product portfolio of high value-add 

specialty products with an accompanying commitment to product differentiation and to 

finding new market applications. This commitment is fueled by increasing consumer 

demand for products with specific end-use properties, and also by competitive pressures 

faced by the process companies (Charpentier and McKenna 2004).  Nevertheless, the 

industry shift from bulk commodity chemicals to high value-add specialty products 

portfolios creates unique challenges for the engineering design and business communities 

alike. The new market situation creates new demands on existing product design and 

product development approaches; in that, such efforts must directly account for the 
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combined market and business demands for shortened lead times, robust product 

performance and cost effective product differentiation. Moreover, in contrast to 

commodity chemicals, specialty chemicals are more susceptible to performance measure 

variability, resulting from the lack of standard performance indices or quantitative 

methods for evaluating in-process and end-use quality factors. These drivers have created 

a demand for an efficient product design framework that ensures that optimal product 

performance is achieved at a minimal cost.    

 

As illustrated in Figure 1.1 the chemical product design problem starts with a basic 

definition of the product requirement (s), and sets out to identify a chemical candidate 

that satisfies a specified set of properties along with their target values and/or ranges.  

The chemical candidate may be a mixture, a single chemical or a formulation of active 

ingredients and additives (Ng, Gani et al. 2007). 
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Figure 1.1:  The Cyclic Process of Chemical Product Design (Gani 2004) 

In this study we focus on a class of chemical products that is central to the new trend of 

an increasing dominance of value-added products for the consumer market.   These 

Chemical-based consumer products have complex functionalities and may include 

products such as specialty coatings, detergents, personal care products, cosmetics, paints 

and pharmaceutical drugs. The general optimization formulation for the chemical product 

design problem is given as: 

 

 

 Z(x)

 

( ) 0,  1.....

( ) 0  = 1......J

x

i

j

L U

Min

Subject to :

h x i I

g x j

x x x

x X

 



 



      (1.1) 
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where x is the vector of design variables, such as composition variables; Z(x) is the 

performance or cost objective function; I, and J are the number of product design equality 

constraints and product design inequality constraints respectively. Lx  and Ux  are upper 

and lower bounds for the design variables respectively.   

 

The objective of this work is to develop practical decision support systems that will 

enable efficient product design planning and optimal product performance specification 

development. The proposed decision support methodologies rely on interdisciplinary 

integration that is forged by exploiting underlying dependencies between product design 

and aspects of business operations, as illustrated in Figure 1.1.  

Consumer

requirements
Project 

selection

Business 

operations

Chemical

product

design

Product portfolio management domainOptimal product design

Business

performance

measure

Domain Linkage

 

Figure 1.2: Outlay of Product Design –Product Portfolio Integration System 

 

1.1 Background and Significance 

A review of the recent history of the chemical processing industry (CPI) has revealed a 

pattern of societal demand followed by product growth and corresponding technology 

and process adaptation.  For example, the period of 1950  to 1970 has witnessed a 
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dramatic growth in the production of synthetic textile fiber that has led to greater 

production efficiency and the development of computer-optimized design (Moggridge 

and Cussler 2000).  The authors further observed that in more recent times the market and 

the larger society have imposed new and greater demands on the industries within the 

chemical sector that has led to cost cutting measures such as ongoing restructuring and 

rationalization. However, over the years these companies have come to recognize the 

limitation of these measures during their quest to achieve sustained profitability.  Having 

exhausted some of the classic cost cutting measures, companies operating within the 

chemical and related industries now  face the crucial options of 1)departing the chemical 

business altogether 2)focusing exclusively on commodities and 3)concentrating on higher 

value-add specialty chemicals (Moggridge and Cussler 2000).  Increasingly companies 

are opting for product line expansion to include high value-add specialty products   

because of the upside potential. However, the absence of standard frameworks to support 

efficient product development of these complex specialty products, coupled with the lack 

of theoretical predictive models to quantifiably assess their performance in the 

marketplace often create challenges for the manufacturers.  Furthermore, an emphasis on 

product design necessarily focus on initial decisions concerning the form of the product 

and implicitly lessens the emphasis on manufacturing (Moggridge and Cussler 2000). 

Hence, the resulting change in focus from compositional specification to product end-use 

performance requires greater customer participation in the product design effort to ensure 

increased chance of product success. Additionally, the resulting growth in chemicals in 

the marketplace creates an auxiliary challenge due to product portfolio expansion and the 

derived management complexities.  The chemical industry has witnessed an expansion of 
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less than 2 million molecular compounds in 1953 (Charpentier and McKenna 2004) to 

over 14 million in 2005 (Charpentier 2009).     

 

In this study, we consider that one way to address the increased demand for product 

development speed and enhanced performance is to identify critical multidisciplinary 

synergies that can be leveraged to yield enhanced system efficiency. Hence, we focus on 

the integration of product design and product portfolio management as an effective 

strategy to secure optimal technical and economic performance. 

 

1.1.1 Interdisciplinary Approaches 

Over the past decades several studies involving multidisciplinary integration have 

recorded measurable improvement to the overall product development process (Luo, 

Kannan et al. 2005).  Some of the benefits recorded include improvement in product 

performance (Griffin and Hausser 1992; Olson and Wagner 1992) reduction in 

development cycle time (Griffin 1997; Saiedian and Urban 1997; Sherman, Berkowitz et 

al. 2005) and overall company and market performance (Griffin  and Hausser 1996; 

Gemser and Leenders 2001; Tatikonda and Montoya-Weiss 2001).   In more recent times, 

there have been many approaches proposed for linking engineering design to marketing 

and other business processes (McAllister and Simpson 2003; Georgiopoulos, Jonson et 

al. 2005; Michalek, Feinberg et al. 2005; Besharati, Luo et al. 2006). Many of these 

coordinated approaches offer one-sided support to the enterprise level decision maker but 

fail to assist engineering design activities and therefore creating sub-optimal solutions to 
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the enterprise wide problem. (Besharati, Luo et al. 2006), presented an integrated design 

and marketing approach to facilitate the generation of an optimal robust set of products 

design alternatives to advance to the next stage of the product development process. (Ng 

2004) offers a qualitative framework that sequentially links business decision making to 

product and process design. The hierarchical framework proposed by (Ng 2004) accounts 

for length and time scales associated with the different levels of decisions making within 

the enterprise. In this construct, the opportunities for interaction in decision making only 

exist wherever there are overlapping of the different length scales. However, according to 

(Georgiopoulos, Jonson et al. 2005), a better approach to linking technological 

requirements with business decisions, involves quantifying the interdependence between 

both. To quantify the linkage between technology and business planning, 

(Georgiopoulos, Jonson et al. 2005) employed a simple financial model and an 

engineering simulation model to obtain resource allocation solution in product 

development. 

 

1.2 Product Design and Portfolio Management  Integration 

Product design is a critical stage within the product development process, and one that 

involves a series of activities that result in product performance and manufacturing 

process specifications. In general the product design process involves a series of linear 

steps as shown in Figure 1.3. 

 



  

 

8 

Perform Economic Analysis

Identify

customer

needs

Establish

target

specifications

Generate &

Select

product

concepts

Test

product

concepts

Set 

final 

specification

Plan

manufacturing

transition

Develop and Test Models and Prototypes
 

Figure 1.3:  General Product Design Process ( Adapted:(Ulrich and Eppinger 2000)  ) 

However, the product design process can also be characterized by a set of decisions that 

are made in order to satisfy both technical and economic requirements for a given product 

(Gurnani and Lewis 2008). Among the critical decisions to be made during the design 

process, are decisions concerning the selection and prioritization of design tasks and the 

selection of variance reduction or noise control strategies, in the case of robust design 

application. A method that formalizes critical input from the business’ portfolio decision 

makers to the product design team is expected to help the product design decision making 

process. Conversely, in research and development (R&D) organizations, the ultimate 

decision concerning new product investment is made within the context of a new product 

portfolio.  

New product portfolio management is a dynamic decision making process involving the 

evaluation, selection and prioritization of product development projects (Cooper and 

Edgett 2003). Such decisions ultimately determine the set of design concepts that 

advance to the next phase in the product development life cycle, and eventually enter the 

marketplace. The discipline of product portfolio management has grown in importance in 

recent decades, as firms seek to respond to an increasing demand for shorter product life 

cycles heightened by global competition and rapidly changing technologies (Cooper and 



  

 

9 

Edgett 2003).  Moreover, the authors attributed many of the difficulties encountered in 

new product efforts to ineffective portfolio management.   On the other hand, in an earlier 

study, (Balachandra, Brockhoff et al. 1996) suggested that the difficulties encountered in 

portfolio decision making are linked to issues that exist at the project (product) level. 

These factors underscore the importance of portfolio management to product design 

efforts and therefore to the overall firm’s performance. Dynamic and intense market 

demand has also contributed to the creation of complex product portfolios with unique 

and enhanced challenges associated with imbalanced portfolios.  These new challenges 

have led to failure in product portfolio management (Cooper and Edgett 2003). Other 

research studies have also suggested that business reactions such as over-emphasis on 

speed-to-market, short term preoccupation and overloading of projects have led to 

portfolio management challenges and eventual product failure (Mikkola 2001). 

 

In this study we seek to isolate the points of integration between aspects of portfolio 

management and product design by making the distinction between operational portfolio 

management and strategic portfolio management. Operational portfolio management is 

primarily concerned with current process efficiency, and is therefore evaluated at the 

point of execution of product design and product development activities. Strategic 

portfolio management is forward looking and concerns process effectiveness and its 

relation to future business performance.  In this study we explore the relationship 

between operational portfolio management and product design decision making while 

evaluating the impact on the strategic layer of the portfolio management process.    

According to (Perks 2007), in the past, a number of research studies have focused on 
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improving inter-functional integration at the product level (Kahn 1996; Kahn  and 

McDonough 1997). However, there has been relatively little focus given to the nature of 

inter-functional integration at the product portfolio level (Perks 2007).  Several other 

studies have pointed to the importance of integration between portfolio level resource 

allocation and allocation at the project level (Cooper, Edgett et al. 1998; Cooper, Edgett 

et al. 1999). However, according to (Perks 2007), this area has not been sufficiently 

investigated.  Consequently, one acknowledges that there is a need to focus development 

on methodologies to facilitate efficient and effective coordination between product design 

decision making and product portfolio management decision making. A schematic of the 

proposed “enterprise wide”    integration model is presented in Figure 1.4 

Product

Review

Product 

Design
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Portfolio
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Portfolio

Portfolio Optimization 
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Product Design Domain

Market

Input

Product

portfolio

Performance

 

Figure 1.4: Schematic of the Enterprise-wide Integration Model 

Figure 1.4 illustrates the elements of the product design domain and the new product 

portfolio management domain at the enterprise level.   Integration activities between both 

domains are indicated by the directional arrows depicting two-way integration. Thus, 
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optimal design and investment decisions are obtained by simultaneously satisfying both 

business and technological requirements.  This planned integration minimizes the number 

of unplanned iterations between these two domains while enabling tradeoff between 

product performance requirements and the business aspects.  More importantly, reduction 

in the number of iterations leads to reduction in development costs and faster time to 

market. The subject of product design-portfolio management domains integration 

requires a priori treatment of significant aspects of the product design and portfolio 

management as separate problems.  Consequently, description of pertinent areas, related 

to specific domain, forms a major part of this thesis.  

 

1.3 Product Design Optimization  

A modification to the general product design optimization formulation explicitly 

integrates aspects of the product portfolio valuation consistent with a focus on product 

end-use properties.  

A general deterministic formulation for the chemical product design problem is shown in 

problem (1.2) to include consideration of end-use requirements: 

 

 

 

 Z= C

. .

, 0,  1.......I

, 0,   1.......J

y (0,1)

 x

T

i

j

L U

Min y f x

S T

h x y i

g x y j

x x



 

 



 

      (1.2) 
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In problem (1.2), C
T
y is the cost associated with the selected product attributes,  f(x) is the 

cost associated with the process design variables,  x  is a vector of continuous design 

variables,  y is a vector of binary variables indicating the existence of a product attribute 

or the existence of an attribute above a predefined value, the set of equality 

constraints,  , 0ih x y  , relates to process design specifications, process model equations 

and properties of the formulated product. The set of inequality constraints,  , 0jg x y  , 

relate to process and product specification.  

 

The optimization problem as presented in (1.2) searches for the optima of the function Z  

of n real continuous design variables 1 2( , ...., ) n

nx x x x X    subject to a set of 

equality and inequality constraints.  Formulation (1.2) can be either a mixed integer linear 

programming (MILP) problem or a mixed integer nonlinear programming (MINLP) 

problem depending on whether any of the functions Z(x,y), h(x,y) or g(x,y) is nonlinear, 

given {y} is nonempty.  In a deterministic optimization the feasible space is defined by 

all the points that satisfy the constraint equations, and in such formulation, global 

optimality is only assured if all possible design candidates were considered in the 

generation of the feasible set. Furthermore, the challenges encountered in determining the 

global solution of the MINLP problems are well documented in the literature (Murty and 

Kabadi 1987), (Pardalos and Schnitger 1988). The potential for the existence of multiple 

local solutions are characteristics of these MINLP problems which are generally 

nonconvex problems (Floudas 1995). Moreover, MILP and MINLP problems are 

precisely difficult to solve because of the combinatorial nature of the y domain (Floudas 
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1995). An increase in the number of binary variables (y) yields an exponential increase in 

the 0-1 possible combination of these variables. The resulting large combinatorial 

problem presents complex analysis such as to characterize the MINLP problems as NP-

complete.  Known methods for solving MINLP problems include Branch and Bound 

(B&B), Outer Approximation (OA), Extended Cutting Plane methods and Generalized 

Bender’s Decomposition (GBD).  One of the main objectives of the B&B method is to 

avoid enumeration of all possible 0-1 combinations of the y variable (Floudas 1995). The 

B&B method begins by considering the relaxed form of the original mixed integer 

problem (MIP) with the complete feasibility region. Relaxation of the MINLP is 

commonly attained by dropping the integrality requirement on the y variable and 

allowing it to be continuous (i.e. 0 1y  ).  The original problem is referred to as the root 

node in the binary tree representation of the branch and bound algorithm.  If an optimal 

solution is not found at the root node, the algorithm is applied recursively to successive 

sub-problems until an optimal solution is found. Both OA and GBD algorithms 

decompose the MINLP problem into NLP sub problems and a linear MIP master 

problem. Hence both of these algorithms require successive solution of a related MIP 

problem.  The main difference between GBD and OA is in the definition of the MIP 

master problem. OA relies on the linearizations of the nonlinear objective and constraints, 

thereby reducing each sub-problem to a smaller feasible set. Conversely, the master MIP 

problem generated by GBD is given by a dual representation of the continuous space. 

Both OA and GBD algorithms function by generating an upper bound and a lower bound 

on the MINLP solution obtained for each iteration. The generated upper bound and lower 

bound are found to be non-increasing and non-decreasing respectively, and eventually 
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converge within   in a finite number of iterations (Floudas 1995). According to 

(Bussieck, Drud et al. 2003) the approaches described above only guarantee global 

optimality under (generalized) convexity. As such, global optimization of non-convex 

problems, obtained by employing deterministic algorithms, requires the solution of sub-

problems via convex relaxations of the original problem in a branch and bound context 

(Bussieck, Drud et al. 2003). The limitations and challenges of specific algorithmic 

processing approaches were considered during this research study. 

 

The primary focus of this work is the development of a set of product design decision 

support systems for real world application. The set of decision supports formalize the 

interaction between product design and product portfolio decision making by integrating 

critical elements of both domains. Hence, the integrative approaches are aimed at 

obtaining optimal product performance and greater efficiency in product design planning. 

Embedded industry case studies illustrate the application of the proposed methodologies. 

These methodologies utilize a hybrid approach, involving the application of structural 

frameworks for domain integration, along with Monte Carlo Simulation and algorithmic 

processing to optimize the product design planning and execution process. 

The dissertation is structured as follows. An examination of the application of integrative 

product design solution strategies is the subject of chapter 2.  The findings from the 

review of the academic literature were supported by an industry benchmark study 

involving 15 chemical manufacturers. The combined findings from the literature review 

and the industry benchmark study established the current levels of development and 
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practice within the chemical industry and formed an important motivation for this work.  

In chapter 3 we introduced a comprehensive framework to facilitate the integration of 

consumer’s influence into the design space using a multi-objective optimization 

approach.  With a focus on end-use product performance, efficient integration of 

consumer’s input is a critical requirement for optimal design selection and trade off 

considerations.  Modeling and optimization of the product design and portfolio 

management interaction is presented in chapter 4. The proposed model framework 

utilizes the dependent relationship between product design decision making and product 

portfolio decision making to aid product design planning and design execution. Similar 

design planning objective was achieved in chapter 5 by relying on underlying sensitivities 

between the product design decisions and portfolio management evaluation criteria.  A 

summary of the work and recommendations for future work is presented in chapter 6. 
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Chapter 2 
 

 

INTEGRATIVE CHEMICAL PRODUCT 

DESIGN STRATEGIES: REFLECTING 

INDUSTRY TRENDS AND CHALLENGES 
 

A review of integrative product design strategies is motivated by current trends and 

challenges faced by the chemical processing industry. The transition in the chemical 

process industry towards more complex formulated and structured products challenges 

existing approaches and scientific tools that are well suited for bulk chemical design and 

properties estimation (Favre, Marchal-Heusler et al. 2002; Charpentier and McKenna 

2004). Moreover, the ensuing market challenges, brought on by dominant global trends, 

demand efficient product design approaches that seek to balance technical specifications 

and market requirements with the business performance objectives. Integrative 

approaches to product design are therefore repositioned as useful strategies that 

simultaneously enhance technical performance and efficiency in design execution. The 

discussion of the integrative product design strategies in this chapter is based on the 

findings of a recent industry benchmark study involving 15 chemical manufacturers. 
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2.1 Introduction 

General reference to the term “chemical products” in this chapter includes all categories 

of goods produced by the chemical and related industries. However, primary 

classification differentiating bulk commodity chemicals from specialty chemicals 

highlights differences in market influence, and also signals the recent shift within the 

chemical industry towards higher value-add products.  According to Favre et al. (2002), 

one practical distinction between bulk commodity chemicals market and specialty 

chemical market is that the latter emphasizes product quality and performance while the 

former pays particular attention to product pricing.  Further classification of these 

chemicals and chemical-based products elucidates the design solution approaches and 

highlights the requirement for multidisciplinary integration and non-traditional 

collaboration between the engineering and business communities. 

 

Chemical product design involves the undertaking that yields the set of product 

performance specifications necessary to satisfy unique customer requirements.  Such 

undertaking involves “defining customer needs, the generation and selection of design 

alternatives, determining appropriate product properties and specifying the corresponding 

process requirements”(Cussler and Moggridge 2001). Consequently, the chemical 

product of interest may be a mixture, a formulated product containing active ingredients 

and additives or a single chemical(Ng, Gani et al. 2007).  For centuries the dominant 

staple of the chemical processing industries has been bulk commodity chemicals, such as 

benzene and ammonia, with the attendant focus on methodologies of process design and 
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process optimization. However, in the face of an increasingly competitive and dynamic 

global marketplace, the chemical processing industry is responding to the demand for 

application–specific products that offer high added-value to the customer. Hence, the 

growth of specialty chemicals and the expansion of the industry’s product portfolio to 

include consumer-based configured products reflect  shifts in the chemical process 

industries (Costa and Moggridge 2006).  In a recent benchmark study involving 15 

chemical manufacturers, we assessed the impact of current trends on new product 

development activities within the chemical industry.  Figure 2.1 provides a breakdown of 

the current industry trend drivers along with percentages indicating the relative impact of 

the individual trend on firms’ performance. The data revealed that increased competition 

due to globalization, market demands for product variety and time-to-market pressure 

pose great challenge to product development firms within the chemical industry. 

 

Global 
Competitiveness

39%

Demand for Product 
Variety

29%

Demand for Green 
Products

9%

Time-to-Market 
Pressure

14%

Rapid Technological 
Change

9%

 

 

 

Figure 2.1: Drivers (Trends) of New Product Strategies within the Chemical Industry 
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The business impact resulting from these industry trends are reported by leading business 

performance indicators as shown in Table 2.1.   The overall impact of these trends is 

rated by the severity on each category of performance associated with product 

development and management.  The leading business performance indicators are ranked 

from 1 to 4; wherein a ranking of 1 indicates the business performance measure indicator 

most affected by the overall industry trend for the given product segment category. The 

difference in assigned rank between the primary categories of bulk chemicals and 

specialty products highlights the difference in market-based priorities and the firms’ 

product portfolio strategies. 

 

Table 2.1:  Rank of Performance Indicators by Product Segment 

Business Performance 

Indicators 

Bulk Chemicals Specialty high value 

product 

 

Product development cost 

Development cycle time 

Product risk 

Product portfolio 

complexity 

 

1                     

3 

2 

4 

 

1 

2 

3 

2 

 

The industry trends has delivered a new emphasis on chemical product design, and has 

correspondingly focused greater attention on processing operations such as granulation, 
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emulsification and coating applications (Favre, Marchal-Heusler et al. 2002). An 

extensive historical perspective on the chemical process industry is the focus of the work 

undertaken by (Favre, Marchal-Heusler et al. 2002), which will not be repeated here.  

 

The shift in the chemical industry has also expanded the traditional bounds of chemical 

engineering application, in that; chemical product design incorporates market 

requirements along with environmental and processing concerns (Charpentier and 

McKenna 2004).  However, the authors further illustrate that the enhanced complexity 

extends beyond multidisciplinary requirements to include more complex chemicals, in 

terms of their molecular structure, when compared to traditional industrial chemicals. 

Hence, the increase in market demand and intensity has influenced the design of 

molecular system towards delivering specific end-use product requirements (Favre, 

Marchal-Heusler et al. 2002).  Furthermore, the development of complex product 

formulation is accompanied by the adaptation or design of processes that can handle such 

complex structures (Favre, Marchal-Heusler et al. 2002).  The transition in the chemical 

process industry towards more complex formulated and structured products, challenges 

existing approaches and current scientific tools that are well suited for bulk chemical 

design and properties estimation (Favre, Marchal-Heusler et al. 2002; Charpentier and 

McKenna 2004).   Moreover, the ensuing business challenges brought on by dominant 

global trends demand innovative product design solution approaches suited by the 

individual product segment. 
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Against an examination of the trends, opportunities and challenges encountered within 

the chemical and related industries, the chapter explores product design solution 

strategies appropriate for three major chemical product classifications. In section 2.2 we 

review design solution approaches of three different classes of chemical products. This is 

followed in section 2.3 by a discussion on integrative product design solution strategies 

based on recommendations from a recent industry benchmark study. 

 

2.2 Classification of Chemical Products and Their Design Solution Approach 

“Product design is linked to product performance much the same way process design is 

linked to process performance” (Ng, Gani et al. 2007).  In general, the product design 

process begins with an understanding of the product’s functional and quality 

requirements. The product design operation involves steps leading to the identification of 

a chemical candidate along with a suitable manufacturing process that yield the desired 

product properties while satisfying a set of economic and processing constraints (Ng, 

Gani et al. 2007). 

 

Important classification of chemical products leads to appropriate specification of the 

product design elements and the overall design approach.  An example of such product 

grouping was offered by Seider et al. (2009), in which chemical products were classified 

as basic, industrial and configured consumer chemicals respectively. Such group labeling 

of chemical products hints at the targeted market and the product’s end-use application. 

In other works, product classification such as structured products or formulated product 

(Ng, Gani et al. 2007; Hill 2009) provides insights  concerning the design solution 
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approach and the product’s formation. In other instances, primary differentiation made 

between functional chemicals and chemical-based consumer products (such as drugs and 

cosmetics) implies differences in processing requirements and levels of end customer 

categories.  Hence, functional chemicals often serve as intermediate chemicals used in the 

manufacturing of chemical-based consumer products (Ng, Gani et al. 2007).  In the 

sections that follow we review three types of chemical products and their corresponding 

design trends and challenges. 

 

2.2.1 Basic / Functional Chemicals 

 In general, the design of the basic or functional chemicals, such as organic solvents, 

involves iterative  generation and testing of candidate molecules or mixtures in an effort 

to identify the candidate that yield the desired properties (Ng, Gani et al. 2007) .  The 

design of basic products exploits the molecular structure–properties relationship in order 

to achieve the desired performance.   For example, the design of basic polymeric products 

relies on the control of molecular weight distribution (MWD) to secure the desired 

mechanical and rheological properties for specific product applications. In a recent study, 

Chen et al. (2009) target specific molecular weight distribution of a polymer product by 

optimizing the initiator and temperature profile to attain the end-use specification.   

 

The application of computer-aided technique in molecular design for basic chemicals has 

offered greater efficiency when compared to traditional approaches such as database 

searches, benchscale synthesis and testing (Sahinidis, Tawarmalani et al. 2003; Siddhaye, 
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Camarda et al. 2004). However, the application of computer-aided technique is not 

trivial, since the efficacy of such optimization approach can be limited by 

computationally intensive enumeration techniques, deployed to evaluate all 

molecule/mixture combination (Churi and Achenie 1997). Furthermore, the use of 

nonlinear complex property prediction models leads to multiple local optima and likely 

suboptimal solution (Sahinidis, Tawarmalani et al. 2003). However, the solution of 

molecular design problems modeled as mixed integer nonlinear problems has been 

extensively researched over the past decades(Churi and Achenie 1997; Ostrovsky, 

Achenie et al. 2002; Ostrovsky, Achenie et al. 2003; Karunanithi and Achenie 2005). In a 

recent study, Sahinidis et al. (2003) proposed the application of a formulation that 

includes novel structural feasibility constraints coupled with a suitable branch-and-reduce 

algorithm to obtain global optimal solution for the general molecular design problem. 

The mathematical formulation for the general molecular design problem was given as 

(Sahinidis, Tawarmalani et al. 2003): 

,
min ( , )

 :

( , ) 0

,

obj
x n

m

f x y

Subject to

g x y

x n N



 

        (2.1) 

where ( , )objf x y  is the objective function  represented as a product performance index or an 

economic term to be minimized or maximized (e.g. profit, cost), ( , ) 0g x y   is the set of 

structural and property constraints, x is the vector of continuous variables such as mixture 

composition, y is the vector of  integer variables (binary variables) used for selection of 
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discrete molecules, groups or atoms. By accounting for the process performance in the 

design problem, Equation 2.1 is modified as follows: 

,
min ( , )

 :

( , ) 0

( , ) 0

,

obj
x n

m

f x y

Subject to

g x y

h x y

x n N





 

        (2.2) 

where ( , )objf x y  is the integrated product-process performance objective and 

( , ) 0h x y   is the set of process model constraints.  The continuous variable x concerns 

product properties and process variables such as temperature or flow rates.  The integer 

variable y accounts for the selection of the product component as well the selection of 

process units.  As pointed out by (Ng, Gani et al. 2007), there are instances involving 

mixture design where there exists no need for process constraint considerations. Such is 

the case in the design of solvent mixtures and petroleum blends (Ng, Gani et al. 2007). In 

molecular design applications the optimization limitations have been mitigated by use of 

various approaches. For example, the issue of multiple local optima was addressed  by 

applying  interval arithmetic techniques to create interval relaxation in molecular design 

applications (Joback and Stephanopoulos 1990; Joback and Stephanopoulos 1995; 

Vaidyanathan and El-Halwagi 1996). A modified branch and bound algorithm was 

applied to models in which the number of linear constraints exceeded the number of non-

linear constraints (Ostrovsky, Achenie et al. 2002; Ostrovsky, Achenie et al. 2003). 

Unlike conventional branch and bound approach, the branching activities occurred in a 

reduced space created by using branching function instead branching on all search 

variables  (Ostrovsky, Achenie et al. 2002; Ostrovsky, Achenie et al. 2003). Limited 
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search obtained by the use of stochastic search techniques applied to sampled regions of 

the search space that have high probability of good solutions (Devillers and Putavy 1996; 

Ourique and Telles 1998; Marcoulaki and Kokossis 2000a; Marcoulaki and Kokossis 

2000b; Venkatasubramanian 2005). However, there still exists the major challenge of 

predicting properties of compounds when required to apply optimization techniques  

(Balasubramanian and Grossmann 2004).   According to Ng et al.(2007), a combined 

computation and experimentation approach is followed when designing larger complex 

chemicals, such as the active ingredients (AI) used in consumer products or 

pharmaceutical drugs.  Experimentation (and property measurement) approaches are 

pursued when there are no mathematical models available for property estimation (Ng, 

Gani et al. 2007). However, the time-consuming and expensive nature of experimentation 

limits the number of product candidates that can be investigated. 

In spite of the challenges and industry trends towards specialty products, the design of 

molecules and mixtures with desired properties continues to be an expansive field as it 

finds application in the design of novel polymers and other chemical products. However, 

as revealed from the recent benchmark study, the basic chemical product category has not 

escape the market pressures brought on by global competition and rapid technological 

changes.  Consequently, there exists even greater demand for cost containment resulting 

in the need for innovative strategies for enhancing product design efficiency beyond the 

application of efficient search techniques or effective experimentation strategies. 
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2.2.2 Structured Products 

The design of structured products requires a solution strategy that considers the 

manufacturing process contribution to the final product properties (Ng, Gani et al. 2007; 

Hill 2009).  In this instance, the control of the product’s end-use properties is governed 

by the microstructure of formation(Ng, Gani et al. 2007).   Moreover, according to Ng et 

al. (2007), this class of products combines many properties and functions into a single 

product, and therefore relays a higher level of design complexity when compared to basic 

chemicals.  Various studies have proposed a systematic approach to designing structured 

products(Meeuse, J. Grievink et al. 2000; Wibowo and Ng 2001; Wibowo and Ng 2002; 

Hill 2009; Smith and Ierapepritou 2009) while carefully highlighting the limiting utility 

of these approaches due to unique product requirements. However, such proposed 

methods contain the common elements of determining up front product performance 

requirements, the generation and evaluation of product design alternatives, followed by 

the selection of an optimal design (Hill 2009). The design of cosmetic product, such as 

skin care cream, has been the subject of numerous research studies in recent 

times(Wibowo and Ng 2001; Wibowo and Ng 2002; Cheng, Lam et al. 2009; Smith and 

Ierapepritou 2009). For example, in a recent study to design an under eye cream product, 

Smith and Ierapepritou 2009) applied a multiobjective mixed integer optimization 

approach to generate a pareto optimal set of product design alternatives. The “most 

preferred” design was selected from this pareto set based on appropriate design tradeoff 

considerations.  In other studies, Chen et al. (2009) expanded the product design problem 

to include aspects of product development such as marketing and project management 

inputs. The skin care cream case study illustration included in this study, provide insights 
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on the interdisciplinary collaboration and challenges that accompany such development 

efforts (Chen, Chen et al. 2009). For example, changing market demands may challenge 

the capability for an appropriate or timely product design response (Chen, Chen et al. 

2009). The seminal work undertaken by Wibowo and Ng (2001); (2002) also offers a 

comprehensive review of the technical challenges encountered in the design and 

manufacture of structured products.  The performance of such structured products are 

evaluated based on its functional properties and a set of quality related attributes, 

commonly referred to as quality factors (Wibowo and Ng 2001).  Hence, one of the 

challenges associated with these structured products involves quantifying the relationship 

between sensory quality attributes (Wibowo and Ng 2001) and the product’s structural 

and material properties.   

The proposed combination of psychophysical models (Breuer 1983), experiential 

heuristics (Wibowo and Ng 2001) and predictive physical models still offers less than 

robust solution to the overall design problem. This is due to the fact that the use of 

arbitrary scales to quantify sensory quality factors (Wibowo and Ng 2001) maintains 

elements of inherent subjectivity.  Furthermore, the design of many structural products 

relies on trial and error experimentation approach or a hybrid model-based  

experimentation approach because of a lack of predictive mathematical models that 

adequately describes the relationship between the product’s performance and the process 

and material variables (Wibowo and Ng 2002; Cheng, Lam et al. 2009).  For example, in 

a recent study to select the optimal cream formulation, Mostefa et al. (2006) applied 

response surface modeling experimentation approach to determine the optimal 

composition of mixture excipients and the optimal operating conditions. The 
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characteristic complex media of these structured products present inherent technical 

challenges associated with the system’s stability, along with unique process design and 

process control issues (Ng, Gani et al. 2007).  Moreover, the combined functional 

requirements of these structured products create additional issues concerning conflicting 

technical objectives along with potential raw material incompatibility issues(Chen, Chen 

et al. 2009).  Hence, appropriate multidisciplinary consideration, including an integrated 

product-process strategy, is required when designing these structured chemical products.  

In addition to these technical challenges, this product category is greatly influenced by 

ever increasing market forces, such as time-to-market pressure and the need for product 

differentiation.  Consequently, product design strategies that ensure the incorporation of 

consumer influence, coupled with design process efficiency, play a crucial role in 

guaranteeing the product’s success.    

 

2.2.3 Configured-Consumer Products 

In this study the classification of configured-consumer products emphasizes the product’s 

design flexibility and the unique chemical-physical technology required for the product’s 

functionality. According to  (Seider, Soemantri et al. 2009), configured-consumer 

products are often manufactured from basic chemicals and industrial chemicals.  These 

products normally target the consumer end-user market (Seider, Soemantri et al. 2009), 

and therefore require up front consideration of end-use application conditions as 

important design considerations.  (Seider, Soemantri et al. 2009) further likened the 

properties of the configured products to those used to characterize industrial or structured 
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products, including functional properties (for example adhesion) and quality attributes 

(for example smell, feel).  However, by definition, a configured product may combine 

several technology platforms in a single product.  Hence, the product design efforts 

involve a wide cross section of technical expertise based on the technology platforms 

involved (Seider, Soemantri et al. 2009).  Examples of configured consumer products 

include drug delivery patches, medical tapes, post-it notes, integrated circuit (Ng, Gani et 

al. 2007) and pressure sensitive adhesive label products. The design of a transdermal 

delivery system (patch) for example, typically concerns a range of materials with specific 

functional and quality requirements. The basic multilayer drug delivery system consists 

an outer backing layer, the therapeutic drug,  pressure sensitive adhesive layer and a 

release liner layer (Prodduturi, Glen J. Smith et al. 2009). According to (Prodduturi et al. 

(2009), the drug that provides the therapeutic treatment may be incorporated in an “inert 

polymer matrix” or dissolved in solution in order to facilitate drug release and delivery. 

The outer backing layer provides structural support for the multilayer construction as well 

as provides barrier protection from the external environment and also provides drug 

impermeability capability. The pressure sensitive adhesive provides the necessary 

anchorage to the skin’s surface during product application (Prodduturi, Glen J. Smith et 

al. 2009); while the release liner provides protection to the adhesive layer prior to product 

application.  Hence, the design question for these types of products addresses the three 

dimensional product requirements while addressing the unique functional and quality 

specifications for each product component.  In an earlier study, (Woofson, McCafferty et 

al. 1995) described a novel bilaminar patch design that consist a drug-loaded bioadhesive 

film bonded to a backing layer formed from thermally-cured polyvinyl chloride emulsion.  
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In this instance, the design problem accounts for the morphology of the bioadhesive film 

via the particle size distribution requirements on the casting solvent and bioadhesion 

properties (Woofson, McCafferty et al. 1995).  Other design requirements specify the 

film’s mechanical stability under ambient storage condition and bioadhesive strength 

controlled by the plasticizer content in casting gel and film thickness. As noted by 

(Prodduturi et al. (2009); a well design drug delivery system accounts for a robustly 

defined drug release profile.  Hence, the rate-limiting step is identified as the release of 

drugs from the delivery system in oppose to the absorption of drug into the skin 

(Prodduturi, Glen J. Smith et al. 2009).   In the study undertaken by Woofson, et al. 

(1995), a comparison of the release profiles obtained by drug penetration via the 

bioadhesive layer and the backing layer satisfied the impermeability requirements of the 

backing layer. 

 

 Similarly, the product design problem of the pressure sensitive adhesive label materials 

is characterized by the design of individual materials components, the material 

components combination along with the specification of the coating and application 

technology.   In general, consumer-based configured products offers design flexibility, 

thereby allowing firms to respond rapidly to market and technological changes. Hence, 

inexpensive creation of product variants can be easily achieved by applying different 

combination of existing or alternate materials.  However, material compatibility issues 

can pose real design challenge, therefore demanding early and active multidisciplinary 

collaboration throughout the design process.  Moreover, the ease of creating product 

variants can lead to challenges in product portfolio decision making and ongoing 
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portfolio management.  Hence, the integration of aspects of technical product design with 

those of product portfolio management can aid the decision making process in both 

domains.  This integration can lead to enhanced efficiency in product design execution, 

better resource allocation and portfolio value maximization (Georgiopoulos, Jonsson et 

al. 2005).  

Design considerations for each product category are summarized by the design aspects of 

product properties, process design considerations and end-use application performance 

consideration.  The design solution approach summary is presented in Table 2.2. 
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Table 2.2: Design Solution Approach by Design Aspects 

 Product  Properties Process 

Design 

 

Application 

Performance 

Product 

Example 

Functional 

Chemicals 

(molecule or 

mixture) 

Based on relationship 

between molecular 

structure or mixture 

blend and desired 

properties  

 

 

 

May or may not 

consider 

process model 

constraint 

 

 

Combined focus 

on product 

quality and cost 

constraints 

Chemical 

compatibility 

 

Environmental 

impact 

 

Functionality 

requirement for 

intermediates 

 

 

Solvent 

(Toluene) 

Structured 

Products 

Industrial  or 

consumer 

based) 

Based on relationship 

between micro-

structural properties 

and product 

performance  

Product 

centered 

process design 

 

 

Product’s life 

cycle & 

system’s 

stability 

Cosmetics 

(Hand 

cream) 

 

 

Configured-

consumer 

products 

 

 

 

Based on relationship 

between materials, 

structural properties 

& combined 

performance 

requirements 

 

 

 

 

Integrative and 

multiple 

function & 

technology 

platforms  

 

Product-

centered 

process design 

 

 

Multi-function 

application  with 

unique 

application 

condition 

requirements 

 

 

 

Transdermal 

drug 

delivery 

system         

( patch) 
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2.3 Integrative Product Design Strategies 

Time-to-market pressures, combined with a market emphasis on value-add products, 

demand greater efficiency in product design practices within the chemical and related 

industries.    Practices such as iterative rounds of experimentation, sequential product and 

process design, ad hoc approach towards the undertaking of product design tasks, product 

over-design directed activities, product design schedule and cost overruns are just some 

of the common inefficient product design related practices encountered within the 

industry.   Furthermore, in an effort to meet the increasing market and industry demands, 

firms are consistently seeking to identify ways in which they can better leverage 

synergies among the disciplines involved in product design, product development and 

product management.  Hung et al. (2008) credit successful and effective product 

development to the integration of a variety of specialized capabilities and 

interdisciplinary collaboration through cross-functional teams.  However, the authors 

noted that such complicated interdisciplinary action requires many knowledge input in 

order to generate a suitable product solution (Hung, Kao et al. 2008).  Such collaborations 

must be supported by standardized streamlining mechanisms in order to maximize the 

benefits from domain knowledge in this time-competitive environment. Consequently, 

integrative product design strategies are best executed through standardized approaches 

aimed at addressing issues of product performance specification and product design 

scheduling and costing. The general integrative chemical product design methodology 

given in Figure 2.2 incorporates integrative strategies within the chemical product design 

problem. Such explicit incorporation encourages full and effective leveraging of 

multidisciplinary domain knowledge that leads to adjustment of the time and resource 
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requirements for the design planning optimization problem. Furthermore, formulation of 

the consumer objective forces tradeoff consideration between consumer preference and 

designer preference; thus increasing the probability of product success. Hence, the 

product design problem combines the technical performance objectives with the project 

planning aspects in response to the new market challenge of increased competition, 

increased demand for speed, shorter product life cycles and a diverse consumer base. 

Chemical

product design

problem

Design plan 

satisfies time 

& resource

constraint?

Basic/

Functional

chemicals

Structured

products

Configured

consumer

products

Consider :

•Consumer influence

•Performance requirements

•Business requirements

Select/Apply

Integrative Strategy
•Consumer

•Process

•Business decision

Yes

No

Execute design

Requirements

satisfied?

No
Yes

Acceptable

design

Plan 

design

Select design solution approach

•Model-based

•Experiment-based

•Hybrid Model-experiment based

 

Figure 2.2: Methodology for Integrative Chemical Product Design 
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 A recent investigation of current industry practices indicated varying levels of 

organizational maturity as it relates to multidisciplinary and cross-functional leveraging 

of knowledge in product design undertakings.  The 15 chemical manufacturers that 

participated in the benchmark study were evaluated on current practices of integrating 

consumer preferences, product-process integration practices and practices of linking 

business decisions (portfolio decision variable) into their product design process. 

Integrative practice levels were assessed on a scale of 0 to 5 as indicated in Table 2.3.  

 

Table 2.3: Integrative Product Design Practice Rating Scale 

0. None 1. Inadequate 3.Operational 5.Fully Integrated

Integrated Does not Low level of Have standardized Apply standardized 

Cross-functional exercise this implementation approach in place approach and practice

Element practice but followed inconsistently  consistenly  

 

The results obtained from our study sample have been summarized by chemical product 

categories as shown in Figure 2.3.  These results indicate some level of implementation 

across all product categories, albeit ad hoc and selective in many instances. We note that 

the integration of the voice of the consumer into product design activities is the most 

mature of the three integrated cross-functional practices across all chemical product 

categories. Conversely, the data reflect a notable absence of standard mechanism to 

facilitate the influence of business decisions on product design activities. Hence, in many 
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instances business decisions are linked to product design decisions in an ad hoc manner 

or for selective product design projects.  
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Figure 2.3: Practice Implementation Levels of Integrated Cross-functional Elements 

 

2.3.1 Consumer Preference Integration 

The process of product design consists of a series of decisions. Such decisions may 

involve the balancing of conflicting design objectives and ultimately the selection of the 

design alternative that advances through the development process.  According to 

(Besharati, Azarm et al. 2006), the decision to select a design for a given product is one 

of the most crucial decisions in the product design and development process.  

Traditionally, among the factors that influence successful product design are the customer 

preferences and the designer preferences, as influenced by his/her design issues and 

market considerations (Besharati, Azarm et al. 2006).  With an ever increasing transition 

to value-add products, integration of the voice of the consumer is playing an even more 

critical role in the product design process. However, with increased globalization and 
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media influence, the consumer expectations has “grown more diverse, changes more 

rapidly and has become more sophisticated” (Yang, Jang et al. 2003). Resulting from 

these challenging trends, firms require efficient and flexible approaches for timely 

integration of consumer voice in order to be successful (Costa and Moggridge 2006).   

The recent benchmark study revealed  3 causes of poor consumer voice integration; 

namely 1)failure to adopt a standard approach 2) disconnect between the point of 

information capture and point of application (product design) and 3) too much reliance on 

the historical knowledge possessed by marketing and sales personnel. Faulty assumption 

concerning consumer needs is one of the primary reasons for missing shifts in the market 

that leads to eventual product failure or product rejection.  Some of the practical 

challenges to consumer preference integration involve the capture, prioritization and 

translation of consumer requirement into the product’s functional and quality 

requirements. The use of “fuzzy” terms in specifying consumer needs coupled with 

subjective product evaluation approaches often creates difficulty when seeking to specify 

quantitative design requirements.   

 

 For the past decades, Quality function Deployment (QFD) has been recognized as one of 

the most  effective integrative schemes used for capturing market requirements and 

translating them into technical product specifications (Yang, Jang et al. 2003), (Hung, 

Kao et al. 2008), (Chan and Wu 2002) . Variants of the QFD technique, such as a QFD-

based optimization approach proposed by (Yang, Jang et al. 2003), combines the QFD 

technique with multi-objective optimization to facilitate tradeoff between multiple 

customer objectives.  Combining of QFD technique with design structure matrix (DSM) 
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adds aspects of product design project planning with product quality as defined by the 

customer requirements (Hung, Kao et al. 2008).  This approach, although limited in its 

application to modular product, offers a clear linkage between the customer requirements 

and design planning activities with the inherent flexibility for real time planning 

adjustments (Hung, Kao et al. 2008).    

 In a recent study, (Smith and Ierapepritou 2009) proposed a systematic framework that 

accounts for the unique set of design considerations for the chemical-based consumer 

products and explicitly incorporate consumer preference. Such integrative strategy relies 

on a flexible approach that can adapt to changing and demanding consumer requirements 

as well as to a diverse consumer base.  

 

2.3.2 Product-Process Integration 

The emphasis on the integration of product and process design issues is a natural 

outgrowth of the industry’s transition towards high value-add structured or formulated 

products.   However, the simultaneous consideration of product and process design is one 

of the more established integrative practices in new product development or process 

synthesis. For example, in an earlier work (Jaksland and Gani 1996), utilized an 

integrated approach that relied on the relationship between the physico-chemical 

properties, process design and process control  to yield an efficient search strategy for the 

product design problem. The benefits of product-process integration were illustrated in a 

more recent study undertaken by  (Bernardo and Saraiva 2005). The design optimization 

of a cosmetic lotion example accounted for the product’s functionality, the consumer 
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specified quality attributes, the process operating and economic constraints (Bernardo 

and Saraiva 2005). In this example, the product-process integration optimization problem 

relied on quantifiable relationship between the product’s quality attributes (e.g. product’s 

viscosity) and the composition, as well as relationship between the product structure and 

composition and the process design.  The solution to the integrated product-process 

optimization problem yielded optimal product composition and process specifications 

values that were found to be superior to values obtained from a sequential approach of 

product design followed by  process design (Bernardo and Saraiva 2005).  Nonetheless, 

the challenges and issues concerning integrated product–process design applied to 

structured formulation are well documented in the literature (Gani 2004),(Eljack, 

Abdelhady et al. 2005).    

 

2.3.3 Integration of Business Decision Variables 

In acknowledging the widespread integration of biology into chemical engineering 

applications,(Ng 2004) questions whether the integration of  management science  will be 

the next frontier. New product portfolio strategy typically reflects the overall 

organizational strategy, and dictates resource allocation decisions within the research and 

development (R&D) function.  However, neither strategy provides much guidance to 

project level decision making or tasks management considerations. The methodology 

proposed by Ng (2004) offers a hierarchical business decision-making framework, 

wherein distinct decision-making levels correspond to specific length and time scales. 

Correspondingly, the decision-making within R&D reflects different levels associated 
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with specific length and time scales (Ng 2004).  While there exists logical steps leading 

progressively from corporate level strategy to marketing strategy, and ultimately to the 

specification of the process flowsheet, there is also intra-level interactions that are 

indicated by regions of length scale overlaps.  Such overlaps can be exploited to yield 

greater efficiency in product design. The area of product design project planning and 

scheduling offers opportunities for enhanced efficiency and better product portfolio 

coordination as reflected in  recent research studies undertaken by (Subramanian, Pekny 

et al. 2003). Furthermore, according to Georgiopoulos et al. (2005), technical product 

design should be positioned within an enterprise context in order that the firm reaps 

maximum economic value. A study to demonstrate linkage between technological 

decisions and business decisions  was undertaken by Georgiopoulos et al. (2005)  and 

was based on the assumptions that the firm’s profitability was a function of product 

design decisions (Georgiopoulos, Jonsson et al. 2005).   

 

By considering the expected economic utility of design decisions designers can 

appropriately adjust the design problem’s feasibility region in such a way that leads to 

better resource allocation decisions. However, this integration has not been well 

exploited, in part due to inherent disciplinary boundaries (Michalek, Feinberg et al. 

2005), as well as due to the challenge involving quantifying the relationship between 

business and engineering decisions as indicated by the absence of modeling approaches 

that suitably bridges both domains (Georgiopoulos, Jonsson et al. 2005).  The benefit of 

obtaining optimal product decisions was offered as the case for integrating marketing and 

engineering product design decisions (Michalek, Feinberg et al. 2005).  In their study, 
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Michalek et al. (2005) utilize the analytical target cascading (ATC) model to quantify the 

impact of technical engineering decisions on business decision making.  

 

The underlying assumption of domain dependence can be represented in the integrated 

formulation given in Figures 2.4 and 2.4b. In these formulations, optimal design 

decisions and investment decisions are obtained by combining technological and 

investment constraints appropriate for each chemical product category. 

 

 

 

 

Figure 2.4a:  Product- performance-focused Integrated Formulation :Adapated (Michalek, 

Feinberg et al. 2005) 

 

 

 

Figure 2.4b:  Business-performance-focused Integrated Formulation:  Adapted(Michalek, 

Feinberg et al. 2005) 

maximize             technical product performance ( functional or quality)
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The formulations given in Figures 2.4a and 2.4b link the business objective to the product 

design features and properties. Hence the firm’s profitability is dependent on product 

design decisions. Conversely, product design decisions are made within an enterprise 

context and are therefore weighted based on their utility to the firm (Georgiopoulos, 

Jonsson et al. 2005). The imposed constraints include resource availability, product and 

process performance specifications and applicable regulatory requirements. The 

assigning of economic value or utility to individual product performance objectives 

assumes an independent relationship between these objectives. Hence, this observation 

could limit the application of this approach to chemical product design problems wherein 

there exist dependent relationships among product properties.  Additionally, the recent 

survey study that was carried out among 15 chemical manufacturers identified 5 practical 

issues that impedes business linkages: 1) The lack of historical data to gauge market 

preference based on product attributes 2) The lack of common variables between the 

domains 3) Time-to-market demands undermine the need for full evaluation of product 

performance scenarios 4) Chronic shortage of resource and 5) Regulatory imposed 

restrictions limits flexibility to adapt. The success of any organization is largely 

determined by the quality of its product design execution at the level of project details. 

Consequently, the goal of the product design procedure is also to deliver a “more 

efficient and faster design of chemical products that are able to meet market 

demands”(Costa and Moggridge 2006).  Hence, appropriate application of integrative 

strategies can help to streamline product design activities that can lead to better resource 

utilization, cost avoidance and shorter product design lead time. 
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2.4 Conclusions 

The underutilization of domain knowledge within product development activities is a 

luxury that the chemical industry can no longer afford. The era of globalization has 

intensified competition and has generated strong market forces that are now at play 

within the chemical processing industry. In response to these market forces the chemical 

industry has transitioned from a portfolio dominated by bulk commodity chemicals to one 

of high value specialty chemicals. Resulting from these trends and challenges, the 

product design implications concerns technical product performance as well as product 

design project planning and management.   

 

The application of integrative product design solution strategies offer an innovative 

response to the increasing market demands for speed and value, while satisfying business 

need for efficient resource allocation.  Evaluation of the practices of 15 chemical 

manufacturers revealed varied levels of implementation of consumer voice integration, 

process models integration and the integration of business decisions within chemical 

product design activities.  However, the absence of credible modeling approaches has 

limited integrative application to ad hoc practices and sporadic implementation.  Hence, 

it would be useful to construct standard frameworks and mechanisms to facilitate such 

integration. 

 



  

 

44 

Chapter 3 

FRAMEWORK FOR CONSUMER 

INTEGRATED OPTIMAL PRODUCT 

DESIGN 

The need for rapid product design, resulting from time-to-market pressure, is 

accompanied by an increasing demand for product differentiation.  In order to meet these 

demands, firms are seeking more efficient ways to integrate consumers input into the 

product design process. Furthermore, appropriate integration of consumer influence 

yields the tangible benefit of increased probability of product acceptance in the 

marketplace. The objective of this chapter is to introduce a comprehensive framework 

that integrates consumer’s influence into the design space using a multi-objective 

optimization approach. We formulate the problem as a bi-objective mixed integer 

problem, for which the compromised solution is represented as a set of efficient points.  

A case study involving optimal design of an under eye cream product was used to 

illustrate the application of the framework.    
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3.1 Introduction 

The emergence of the global marketplace offers unique challenges to the engineering 

design community and to business decision makers; simultaneously forcing both groups 

to find innovative ways to respond to new product demands, while ensuring business 

competitiveness. The increasing need for rapid product design and development, brought 

on by the dynamics of the global marketplace, is matched by the need for product 

differentiation through greater product innovation. However, as competition increases 

firms are finding it even more difficult to differentiate their product’s performance and 

their product offerings. Furthermore, advancements in technology and consumer 

expectations have driven the development of more complex products with multi-

functional requirements (Charpentier and McKenna 2004; Gani 2004)
.
 With the 

convergence of the need for rapid product design and a greater need for product 

differentiation, firms are constantly seeking for efficient and flexible roadmaps for 

extracting and incorporating valuable consumer input into their design process.  

 

The chemical manufacturing industry, in particular, is experiencing a shift from the 

development and manufacture of bulk commodity chemicals to the design and 

manufacture of specialty high value-added chemical products(Cussler and Moggride 

2001). This shift to high value-added specialty products is fueled by an increasing 

consumer demand for products with specific end-use properties, and also by competitive 

pressures faced by the process companies (Charpentier and McKenna 2004). This 

emerging trend implies greater challenge to achieving the desired product quality while 

keeping cost at a minimum. In a recent study (Bagajewicz 2007) contended that the 
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expansion in the chemical industry to high value-added products, extends beyond 

molecular design to wider business aspects such as finance and microeconomics. Hence, 

the chemical-based consumer products (CBCP) design problem ought to incorporate such 

factors as consumer preference, economic considerations and specific product 

performance requirements. Furthermore, these design considerations are accompanied by 

some unique technical challenges, due in part to the (often) poorly understood physical 

phenomenon of the complex multiphase media, that’s inherent to many of these 

structured chemical-based products (Wibowo and Ng 2001). Moreover, the resulting 

absence of quantitative predictive theoretical models, and product performance 

evaluation measures, mandate the application of statistical rigor to quantify product 

performance and also to ensure the credibility of consumer’s subjective evaluation. Ng  et 

al. (2007) identified other prevailing issues concerning chemical product design; these 

include: 1) “the need to define a chemical product in terms of a set of desired properties 

2) determining a set of product candidates that define the search space in which the 

optimal product may be found 3) determining the process that can manufacture the 

desired product with the specified quality at the optimal cost and 4) the evaluation of 

product and process performance.” Gani, R.( 2004) further highlighted the need for 

multi-scale property models and a systems product design framework aimed at reducing 

design costs and cycle time. According to Hill, M. (2004) the perceived value of these 

chemical-based consumer products is derived from the product’s performance as 

evaluated by the consumer. Therefore, the consumer needs form the driving force for the 

product centered industry(Stephanopoulos 2003) and should play a critical part in the 

product design process. Consequently, the proposed systematic framework explicitly 
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integrates market requirements, in the form of consumer preference, with the firm’s 

economic objective while yielding the desired product’s performance. In so doing, the 

framework incorporates a flexible solution based on the selected multi-objective 

optimization approach. Furthermore, the framework offers a comprehensive approach to 

the design of the chemical-based consumer products that enhances efficiency and 

minimizes the selection of sub-optimal designs. In practical application, the integration of 

the varied aspects of the design problem forges multidisciplinary collaboration that leads 

to greater probability of product success and faster time to market. 

 

The chapter is organized as follows. First, a review of the unique set of design 

requirements for the chemical-based consumer product design problem is presented in 

sub-section 3.2.  A description of the consumer integrated product design framework is 

outlined in section 3.3 and followed by a case study illustration in section 3.4.  

 

3.2 Chemical-based Consumer Product Design 

In recent decades the global consumer market for chemical and related products has 

championed increased demand for improved product performance and shorter product 

life cycle (Tanguy and Marchal 1996; Pisano 1997; Viladsen 1997; Wintermantel 1999). 

Consequently, these industries are placing greater emphasis on product engineering in 

response to the greater market demands for value-added differentiated products 

(Westerberg and Subrahmanian 2000). In general, the chemical design problem starts 

with a basic definition of the product’s requirements and sets out to identify a chemical 

candidate that satisfies a specified set of properties and property values (Cussler and 
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Moggride 2001). The chemical product can be classified as a single chemical with 

specific properties or a formulation of active ingredients and additives(Ng, Gani et al. 

2007) for a specific application.  Typically, the chemical-based consumer products are 

mixtures of active ingredients that provide the functional product attribute, and inactive 

excipients that further enhance the product’s performance (Wibowo and Ng 2002). The 

design of chemical–based consumer products, such as specialty coatings, detergents, 

personal care products and cosmetics, can be largely characterized by efforts to satisfy a 

unique combination of factors. Table 3.1 summarizes the design factors along with their 

corresponding design considerations.   

 

Table 3.1:  Product Design Considerations for Chemical-based Consumer Products 

Chemical Based Consumer Products 

( CBCP) Factors 

Critical Product Design Considerations 

 End- use product application 

 Complex media 

 

 Subjective property estimation 

 Unavailability of mathematical 

models for estimating product 

properties 

 Low volume manufacture 

 Relatively short product life cycle 

 Large consumer base 

 Consumer pull 

 Consumer preference integration 

 Media micro structure and 

ingredients /Integrated design 

 Measurement source variability 

 Black box analysis applicable for 

specified system and experimental 

range 

 Inflexible process 

 Shortened design/development time 

 End-use application variability 

 Active consumer involvement 

 

  

The emphasis on end-use application implies the control of end-use property as a primary 

requirement for designing chemical-based consumer products (Charpentier 2002).  

According to (Ng, Gani et al. 2007), these end-use properties are obtained by controlling 

the microstructure of formation. Furthermore, the end-use properties of the structured 
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product are influenced by their rheological and interfacial properties, and therefore these 

properties must be controlled during the product design (Ng, Gani et al. 2007). 

Consequently, an integrated product-process design approach is necessary to obtain the 

required physico-chemical properties of the chemical-based consumer product (Hill 

2004). The integrated approach represents a departure from the traditional design 

approach that follows a sequential path, whereby product design formulation precedes 

process design considerations and may involve a number of trials-and-error (Wibowo and 

Ng 2002).  This sequential approach sometimes yields sub-optimal design solutions.  The 

overall performance of the chemical-based consumer product depends on the properties 

of the product’s ingredients and its structural attributes resulting from the processing 

inputs (Wibowo and Ng 2002).   Furthermore, one can relate the ingredients composition, 

process operating condition and process design to the material properties and the product 

microstructure.  However, the challenge often lies in objectively quantifying the product 

performance as a function of the material properties or its structural properties.  Several 

authors have proposed the use of performance indices as a means of quantifying the 

relationship between the product performance and these properties (Cussler and 

Moggride 2001; Cussler and Moggridge 2001; Wibowo and Ng 2002; Ng, Gani et al. 

2007). The application of rigorous modeling to obtain theoretical predictive models is 

reserved for instances where the underlying physics behind the relationship is well 

understood (Wibowo and Ng 2002).  However, in many instances concerning the 

manufacture of chemical-based consumer products, such knowledge base is still quite 

limited (Wintermantel 1999)
 
and therefore detailed modeling could prove to be unfruitful 

(Wibowo and Ng 2002).  In such instances wherein the physical phenomena are poorly 
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understood, the black box process can be modeled empirically and the model specified 

for the given experimental range (Wibowo and Ng 2002).   Several examples of chemical 

product design approaches can be found in the literature (Cussler and Moggride 2001; 

Wibowo and Ng 2001; Wibowo and Ng 2002; Hill 2004; Solvason, 

Chemmangattuvalappil et al. 2009) that may include empirical modeling of product 

properties.   A slight modification to the product design model proposed by (Cussler and 

Moggride 2001) is presented in Figure 3.1. 

 

 

 

 

                            

 

 

 

 

Figure 3.1: Product Design Stages 

 

In general, the stepwise approach involves the capture and translation of consumer needs, 

the generation of product concepts based on consumer needs, the screening and selection 

of product candidates and the product manufacture (Cussler and Moggride 2001). 

However, the design problem formulation must facilitate designer flexibility, in that it 

allows design adjustments based on specific business or market situations.  In the 
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proposed framework market demands, requiring greater consumer involvement, are 

combined with business and technical design requirements to form two competing design 

objectives. 

 

3.3 Integrated Product Design Framework 

The proposed framework offers a comprehensive decision support for selecting an 

optimal product design. It specifically addresses the unique set of design considerations 

for the chemical-based consumer products, as outlined in Table 3.1. Furthermore, the 

framework explicitly incorporates the consumer preference and allows for designer 

flexibility. The stepwise approach outlined in Figure 3.2 utilizes principles of decision 

theory, experimental design methods and multi-objective mixed integer optimization 

techniques. 

 

 

 

 

 

 

 

Figure 3.2: Consumer Integrated Product Design (CIPD) Framework 
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3.3.1 Step 1: The Consumer Preference Identification 

The design of any consumer-based products requires greater emphasis on end-use 

product requirements throughout the design cycle (Charpentier and McKenna 2004). 

These end-use requirements are often identified as functional requirements and quality-

based product attributes. Such end-use emphasis warrants an effective mechanism for 

evaluating consumer preference and subsequently incorporating such evaluation to 

influence the selection of the optimally designed product.  There are many techniques for 

evaluating and integrating consumer preference found in the literature (Green and 

Srinivasan 1978; Bouchereau and Rowlands 2000; Forman and Gass 2001; Besharati, 

Azarm et al. 2002; Yang, Jang et al. 2003; See, Gurnani et al. 2004; Yoon and Kim 2006; 

Solvason, Chemmangattuvalappil et al. 2009). For example, quality function deployment 

(QFD) method is commonly used for capturing consumer needs and translating these 

needs into technical design requirements (Bouchereau and Rowlands 2000). Although 

widely used, QFD is very time consuming in its application, and according to (Yoon and 

Kim 2006), it is rather limiting in its ability to determine appropriate customer-oriented 

technical importance ratings (TIRs). Such limitation can lead to eventual consumer 

dissatisfaction with QFD-designed products (Yoon and Kim 2006).  

 

In reality, a firm’s ability to design and develop successful products depends on its ability 

to determine the multi-attribute design configuration that maximizes the consumer-based 

utility, while meeting cost constraints and design specifications. Furthermore, according 

to (See, Gurnani et al. 2004), some of the common challenges encountered in multi-

attribute design space include aggregating of the criteria, rating of the alternatives, 
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assigning weights to individual attributes and modeling the strength of the preferences in 

attribute. Consequently, a critical component of the design of chemical-based consumer 

products is the generation and selection of design alternatives that will maximize 

consumer utility.   (Li and Azarm 2000) claimed that there are two main stages in the 

design selection process: 1) the creation of competing design alternatives and 2) 

evaluation and selection of the design alternative. Most multi-attribute decision making 

(MADM) approaches use attributes weights in one form or another to take the decision 

maker preference into account and to create the utility for the design (Scott and 

Antonsson 2005).  However, one major limitation of explicit weight assignment is the 

assumption that all attributes are preferentially independent of each other (Sen 2001).  

 

In this study consumer preference is determined by consumer evaluation of individual 

product samples that represent an aggregate of design attributes. Moreover, by obtaining 

the overall rating of product samples in a well designed consumer study (Table 3.2), one 

can determine the influence (or weight) of each attribute from the resulting preference 

structure.   

   

Table 3.2: Consumer Study Data Structure              
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As shown in Table 3.2, there is a set of m distinct product samples, D= [d1…..dm], each 

of which is characterized by a unique combination of design attributes in an n-

dimensional attribute space, q= [q1... ...qn].  aij is the normalized or coded value of 

attribute j associated with product sample i (i=1……m; j=1….n).  pi is the mean of k 

ratings given by the k randomly selected consumers for the i
th

 product sample.  The 

ratings of the m discrete product samples are carried out by k consumers within a given 

market segment. By using metric measures to rate the set of product samples, one can 

perform a multivariate regression to obtain the statistical relationship between the product 

attributes and the mean score obtained for each product sample.   

The coefficient of the derived regression model provides an estimate of the weight w for 

the individual attribute for this study.  Measurement evaluation is followed as a standard 

procedure embedded in the design framework (Figure 3.2), to address the inherent data 

reliability concerns associated with the subjective evaluation of the product samples.   
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3.3.2 Step 2: Attribute-Based Models 

Figure 3.3 summarizes a generic model for specifying the competing objectives of the 

design problem. The model provides the basis for the design and economic evaluation of 

the single product candidate. 

 

 

 

 

 

 

 

 

 

                                                                                                                                     

Figure 3.3:  Single Product Integrated Design Model (Adapted: (de Weck 2006)) 

 

The single product design model shown in Figure 3.3 comprises the design input, the 

design operation and the design output segments. As depicted in Figure 3.3, the consumer 

input is integrated throughout all three segments of the design model via the 

incorporation of market needs and direct consumer evaluation. The activities of the 

design input segment involve the solicitation of market needs and the translation of these 

needs into technical requirements by design engineers. Also, within this segment, 

empirical product-process design models are generated to formalize the relationship 
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between the product attributes (q) and the product design variables (x).  Product attributes 

performance indices identified a priori provide a way to quantify the relationship 

between product attributes (q) and the design variables (x).  Product and process 

requirements, along with attributes performance specifications, help to define the feasible 

region for the subsequently formulated optimization problem. Solution of the multi-

objective optimization problem yields a pareto set of optimal product designs. Using this 

set, the designer undertakes further trade-off evaluation, compares and ranks the 

members in order to select the most preferred solution. 

 

3.3.3 Step 3: Problem Formulation 

The multi-objective problem formulation considers two criteria derived from the single 

product integrated design model shown in Figure 3.3. The general bi-objective problem is 

given as: 

1 2 ( ) [ ( ), ( )]

 :

( ) 0

( ) 0

T

l

Min F x f x f x

Subject to

h x

g x

x X R







 

            (3.1) 

Here 1 2[ ( ), ( )]f x f x is a vector function of real-valued linear or nonlinear objective functions; 

X is the set of feasible solutions in the decision space lR ; denoting the feasible set of 

equality constraints, h(x), and inequality constraints g(x) respectively.  There exists no 

solution that simultaneously optimizes both objective functions in problem (3.1).  

Consequently, the purpose here is to find acceptable trade-offs that yield an efficient 

solution set instead of a single optimal solution.   A feasible solution *x X  is said to be 
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efficient if and only if there exist no other feasible solution, x X , such that  *( ) ( )i if x f x  

with at least one
* 1,2( ) ( )i

i if x f x  (Steuer 1996; Arora 2004). 

 

3.3.4   Step 4: Multi-Objective Optimization 

Various methods are employed to determine the pareto front in a multi-objective 

optimization (MOO) problem.  Most commonly reported are parametric approaches that 

are based on “weighted scalarization” of the objective functions (Ehrgott and Gandibleux 

2002; Sayin and Kouvelis 2005). However, the weighted sum algorithms present a 

number of limitations, such as its inability to produce unsupported efficient solutions for 

non-convex objectives as is often encountered in multi-objective integer and mixed 

integer programming problems (Steuer 1996; Be´rube´, Gendreau et al. 2009).  Another 

common approach used to obtain the pareto front in a multi-objective optimization 

problem is called the  -constraint method.  In the  -constraint approach, one objective 

function is optimized using the second objective function as a constraint in the case of the 

bi-objective problem. The -constraint approach for the bi-objective problem is therefore 

modeled as follows: 

1

2

 (x)

Subject to:

( )   

(x)=0

g(x) 0

i

Min f

f x

h

x X







                (3.2)  
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By parametrically varying the right hand side (RHS) of the constraint (
i ) given in 

formulation 3.2, a series of  -constraint problems are generated and subsequently solved 

to yield a set of efficient (or pareto optimal) solutions.                                     

 

3.4 Case Study Illustration 

A case study to illustrate the proposed framework was conducted in collaboration with 

Private Label Cosmetics (PLC) Company, located in Fair Lawn, New Jersey. The 

company provided the necessary materials and technical support for this study. The 

consumer integrated product design (CIPD) approach was modeled as a “single level” 

multi-objective optimization problem in which the consumer utility and the development 

cost functions formed the two objectives.  

 

3.4.1 Product Design Problem Introduction 

The primary function of the under eye cream is to reduce periorbital lines and wrinkles 

by firming the areas of the skin around and under the eye.   Three other important product 

quality attributes identified by the consumer included 1) ease of product application (q1), 

2) brightness effect (q2) and 3) smooth feel or smoothness (q3).  These sensory product 

attributes are often characterized using subjective and qualitative evaluation techniques. 

Consequently, appropriate performance indices were used to obtain a quantitative 

measure of the product’s performance (Wibowo and Ng 2002).  Table 3.3 illustrates the 

required attributes along with their corresponding performance indices. 
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Table 3.3: Product Attributes Performance Indices 

 Ease of spread 

 ( q1) 
Brightness 

Effect (q2) 
Smooth Feel  

(q3) 

 

Performance 

Index 

 

 

 

Source 

 

 Application 

Viscosity,  


 Yield Stress, 

Pa 

 

 

 

Wibowo et al. 

(2002)(Wibowo and 

Ng 2002) 

Herh et al. 

(1998)(Herh, Tkachuk 

et al. 1998) 

 

 

Colorimetric 

Value 

L*a*b* value 

(L* 

Brightness) 

 

 

 Panel 

Evaluation 

 

 

 Droplet Size 

 

 

Wibowo et al. 

(2002)(Wibowo and 

Ng 2002) 

Bernardo et al.  

(2005)(Bernardo and 

Saraiva 2005) 

 

 

The base cream formulation containing the active ingredient, along with other inactive 

excipients, remained fixed, while concentrations of three independent ingredients; 

mineral oil (x1), titanium dioxide (x2) and deionized water (x3), were optimized during 

this study. The product attributes were formally modeled as a function of the three 

ingredients and mixing speed (x4). The optimal solutions identify the optimal design 

alternative and specify the proportions and value of the corresponding design variables.  
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3.4.2 Methodology 

3.4.2.1  The Consumer Preference – Attributes relative importance 

To assess consumer preference, a market survey was conducted to evaluate eight product 

design samples. The set of eight product design samples were formulated by product 

designers to represent a full factorial combination of the product design attributes 

obtained at two performance levels as shown in Table 3.4. The product samples were 

evaluated by a panel of five consumer judges with each consumer judge evaluating each 

sample. 

 

Table 3.4:  Consumer Study Design (coded units)                         

Product 

Sample 

q1 q2 q3 Mean  

Score,  

1 -1 -1 1 3.7 

2 1 1 -1 7.7 

3 1 -1 1 6.4 

4 -1 1 1 7.5 

5 -1 -1 -1 2.2 

6 1 -1 -1 5.3 

7 1 1 1 9.8 

8 -1 1 -1 7.8 

 

Regression analysis was used to obtain the statistical relationship between the consumer 

mean score and the three product attributes that characterized the product design samples. 

The coefficient of the multivariate regression provided an estimate of the relative 
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importance of each product attribute.  In this study intra-class correlation (ICC) statistical 

technique was used to assess the reliability of the judges rating. Estimate of the degree of 

measurement consistency is based on the analysis of variance (ANOVA) (Shrout and 

Fleiss 1979; McGraw and Wong 1996) results obtained by using Minitab ® statistical 

software.      

 

3.4.2.2. Attribute -Based Models 

A D-optimal designed experiment was generated in the mixture-process space using 

Design-Expert ® Software package.  The triangular layout shown in Figure 3.4 illustrates 

the location of the points in the mixture space in combination with the process variable 

levels. 

 

       

 

 

 

 

 

 

Figure 3.4: Experimental Design Space 

Ten additional experimental runs were included to allow for estimates of error. In this 

study, the mixture space is constrained by the general mixing rule, wherein the sum of all 

ingredients proportion is restricted to sum to one. There are no further restrictions on the 
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ranges of the ingredient components. The apexes illustrated in Figure 3.4 represent pure 

component blends, while the interior points represent ternary blends consisting 

proportion of mineral oil, titanium dioxide and deionized water.  The centroid point 

contains equal amounts of all three ingredients. The combined experimental approach 

results in running all blend points at the process variable levels as indicated in Figure 3.4. 

Sample batches of the under eye cream product were prepared using a Dayton mixer 

(Model # 12851) with an impeller to vessel diameter of 0.58. Samples colorimetric values 

were obtained using the color mouse device CM2S model fitted with the ColorMouse 

Trap application software version 1.04, while viscosity measurements were obtained 

using a Brookfield viscometer (Model LVT). A panel of five randomly selected judges 

evaluated each treatment for smoothness using a predefined metric scale. Smoothness 

measurement data was subsequently evaluated for measurement reliability using the 

intraclass correlation coefficient (ICC) statistical technique for subjective measurements.  

In this study we assume that the response can be adequately described by a polynomial 

in ix .  Data obtained from the sensory and analytic measurements are used to calculate 

Scheffe’s (1958)(Scheffe 1958)canonical polynomial for the mixture components. The 

first order model takes the form: 

i i

i

q x                                                                                                                   (3.3)                                                                                                                       

While the second order model takes the general form: 

 

i i ij i j

i i j

q x x x 


                                     (3.4) 
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Where q is the dependent product attribute variable, s  are parameter estimates for each 

main effect and interaction term for the prediction model. 

 

3.4.2.3 Problem Formulation and Optimization 

The generic single product integrated design model (Figure 3.3) provides a base for the 

design problem formulation. Furthermore, the appropriate formulation for the consumer 

integrated product design problem is referred to as a mixed 0-1 bi-objective problem that 

belongs to the class of multi-objective combinatorial optimization (MOCO) problems.   

In this formulation, the consumer influence is represented explicitly via the utility 

objective function. The utility for the i
th

 design alternative is expressed as: 

3

1

( ) j ji

j

U i w q


              (3.5) 

where wj
  
is the normalized weight of the j

th
 attribute based on consumer rating; ji

q  is the 

normalized value of the j
th

 attribute for design alternative i and is defined as: 

max

ji jo

ji

j jo

q q
q

q q





             (3.6) 

where the values of max

jq  and qjo are the threshold and reference values for attribute j 

respectively.  The bi-objective optimization for the chemical-based consumer mixture 

problem can be represented as:  
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1 1

2 2

 = ( ( ), , )

Min = ( ( ), , x)

. .

h (x,y)=0,i=1.....I

( , ) 0, 1....

(0,1)

i

j

Max f f q x y w

f f q x y

S T

g x y j J

Ax b

x X

y

 







            (3.7) 

Problem (3.7) corresponds to a mixed-integer linear or nonlinear problem with mixed-

integer (in)equality constraints. Here in this formulation  1 2, , lx x x x is the vector of 

design  variables, 1f  is the consumer utility function, 2f  is the cost function associated 

with the selected product attributes (ingredients, labor  and process operating variables 

cost) and  process design variables, y is the vector of binary integer variables  indicating 

the existence of a product attribute or the existence of an attribute above a predefined 

value, such that :
 

1 if q

0 if  q

j jo

j

j jo

q
y

q


 



              (3.8) 

where w is a vector of attribute weights such that 
1

1
n

j

j

w


  and 0w  ;  h (x,y)=0i  is the 

i
th

 equality constraints  representing either the mixing rules for product properties, the 

process models or process design specifications, ( , ) 0jg x y   is the j
th

 inequality 

constraints related to the product performance specification and/or environmental 

constraint and Ax b  refers to the product economic constraints. In problem (3.7), the 

integer variables represent the differentiating characteristics (or structural characteristics) 

of the product which is defined by the product’s unique set of attributes. Conversely, the 
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continuous variables determined the product’s operating characteristics as defined by the 

corresponding attributes levels (Mavrotas and Diakoulaki 2005). 

 

In this study we employed the   constraint method for producing efficient solutions in 

the bi-objective optimization problem, and adapted the strategy for exact solution of 

multi-objective combinatorial optimization (MOCO) problems proposed by Be´rube´ et 

al. (2009) (Be´rube´, Gendreau et al. 2009).  In the scheme proposed by (Be´rube´, 

Gendreau et al. 2009), a sequence of   constraint problems was generated based on a 

progressive reduction of i , which then utilize a branch and cut procedure to solve the 

inner problem for reducing values of 
i .  An alternate solution approach employed the 

branch and bound algorithm that was developed by (Mavrotas and Diakoulaki 2005) to 

find all the efficient points of the bi-objective problem for a reduced linear attribute 

model or first order attribute model problem.  The modified branch and bound algorithm 

deviates from conventional B&B approach by performing two optimizations for the bi-

objective problems at each node (Mavrotas and Diakoulaki 2005). The execution of this 

procedure encounters specific challenge related to the partitioning of the bi-objective 

problem (3.7).  However, such challenge is addressed in details in the work undertaken 

by (Mavrotas and Diakoulaki 2005) 

 

From the generated set of efficient solutions the product designer ranked the alternatives 

to select the most preferred efficient design alternative based on further evaluation.  
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3.4.2.4   Evaluation of the Product Design Alternative 

Physiochemical properties evaluation provided a more scientific basis for characterizing 

the under eye cream product.  As noted by (Pena, Lee et al. 1994), the rheological 

properties of a cream are determined by “the structure formed by its ingredients”. 

Furthermore, rheological behavior is directly related to a wide range of quality attributes 

such as ease of application, skin feel and product stability (Miller and Löffler 2006).  In 

this study, the flow and deformation behavior of the designed product was evaluated and 

compared to that of a commercially available product.  A Bohlin Gemini HR nano 

rheometer (Malvern Instruments), fitted with a 20mm parallel plate geometry system, 

was used to determine the viscoelastic behavior of the study materials.  Oscillatory 

experiments were performed to evaluate the under eye cream viscoelastic properties. 

Measurements of the storage (elastic) modulus G  and loss (viscous) modulus G  were 

also obtained and compared.  

 

3.5 Results & Discussion 

The regression coefficients of the performance attributes obtained from the consumer 

study are displayed in Table 3.5 along with the assigned attributes weights. 

 

Table 3.5: Estimated Coefficients and Weights for Mean Consumer Score (coded 

units) 

Performance Attributes 
(qj) 

Regression 

Coefficients 
( cj) 

Normalized 

Weights( wj) 

j

j

j

j

c
w

c



             

Ease of application (q1) 1.02 0.3 

Brightness  Effect (q2) 1.92 0.5 

Smooth  Feel (q3) 0.57 0.2 
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Reliability evaluation of the subjective consumer ratings yielded intra-class correlation 

coefficient (ICC) values of 0.7 for the individual rating and 0.92 for the averaged rating. 

These ICC values satisfy the generally agreed upon limit for satisfactory reliability 

coefficient(Shrout and Fleiss 1979; McGraw and Wong 1996; Pellis, Franssen-van Hal et 

al. 2003) (Futrell 1995)and indicate sufficient consistency among the judges rating for 

any given product sample.   Statistical models obtained from the mixture design study 

(Figure 3.4) define the utility and cost functions in the multi-objective formulation given 

in (3.7). 

 

The normally distributed attribute performance responses were fitted to canonical mixture 

models via least square regression and evaluated for their goodness of fit.  The reduced 

attributes models obtained for the specific experimentation range are summarized in 

Table 3.6:  

 

Table 3.6: Empirical Attribute Models 

Performance Index Statistical Relationship R-Sq. 

(Adj.) 

Ease of application ( q1) 

            - 

Application Viscosity 

 

 

=
1 2 3 1 41.39 1.68 0.38 0.9x x x x x    

 

 

92.5% 

Brightness effect (q2) 

            - 

L*a*b* value 

 

 

=
1 2 355.75 74.5 54.5x x x   

 

 

94.7% 

Smooth Feel ( q3) 

            - 

Panel evaluation score 

 

 

=
1 2 3 1 2 1 39.2 4.06 7.8 4 8x x x x x x x     

 

 

94.2% 
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The reported attribute models include only significant model terms at the 95% confidence 

level (p-value less that 0.05). Furthermore, the reduced statistical models for the three 

attribute responses have high adjusted R
2
 values, as indicated in Table 3.6. Analysis of 

model residuals proved normality and indicated no model bias over the range of 

experimental runs.  These empirical models are subsequently used to determine the utility 

and cost objective functions given in the optimization formulation (3.7).  Figures 3.5 and 

3.6 show the response surface contour plots for the unconstrained brightness and 

smoothness attributes response. The dependence of each attribute on the blend 

composition provides input into determining each attribute performance specification. 

 

                              

Figure 3.5: Contour Plot of Smoothness Model with Mixing Speed at 60 RPM 
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Figure 3.6: Contour Plot of Brightness Model with Mixing Speed at 60 RPM 

 

The set of efficient solutions was obtained using the  -constraint method as illustrated in 

Figure 3.7.  
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        Figure 3.7: Efficient Frontier - Under Eye Cream Formulation 
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The generation of the design alternatives (set of efficient solutions) is followed by the 

designer’s selection of the “most preferred” design based on critical design tradeoff 

considerations.   The Pareto front shown in Figure (3.7) indicates a gradual increase in 

the consumer utility with an increase in product investment. Beyond the critical cost of 

$7.00 /unit there is no appreciable increase in consumer utility value.  Consequently, 

further investment towards product design beyond this point would yield non-appreciable 

return and would be considered “wasted” product investment.  Such information would 

be very valuable input to the firm’s decision making process. The set of efficient 

solutions was further ranked based on their normalized cost/utility ratio in order to select 

the preferred design alternative. The values of the design variables and attribute set of the 

preferred design is given in Table 3.7.  

 

Table 3.7: Optimal Mixture Design for Preferred Design Alternative 

 Optimal 

Mixture 

Design 

Attributes 

[y1,y2,y3] 

Normalized 

Cost 

Utility Normalized 

Cost/Utility 

[0.25, 0.35, 

0.4] 

[ 1,  1, 1 ] 0.36 0.61 0.59 

 

The optimal design was obtained at an agitation rate of 60 rpm.  As shown in Table 3.7, 

the normalized cost/utility value of the select design is found to be 0.59, while designs 

requiring investments beyond the critical $7.00/unit value gave normalized cost/utility 

values ranging from 0.75 to 1.64.   The higher the normalized cost/utility value the lower 

the potential return on the design investment. Therefore, a normalized cost/utility ratio 

greater than 1 indicates a potential economic loss for the firm.  Such insight is easily 
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obtained by explicitly integrating the consumer input into the design process for technical 

and economic design considerations.  

 

Further evaluation of the select design was conducted, for validation, by comparing its 

rheological properties with similar properties of a (similar) commercially available 

product. The results of the comparative study are presented in the appendix section. 

 

3.6 Conclusions 

In this chapter, we present a simple and useful approach that is based on the generic 

single product integrated model for consumer-based product design shown in Figure 3.3. 

The consumer integrated product design (CIPD) framework facilitates the generation of 

efficient product design solutions via a mechanism that explicitly incorporates consumer 

input and economic criteria. Such explicit incorporation of two competing objectives, in a 

bi-objective formulation, ensures consumer influence in design tradeoff considerations.   

In an effort to accelerate the time-to-market and reduce costs, firms sometimes risk 

product failure in the marketplace by omitting consumer preference from final design 

considerations. Furthermore, efficient incorporation of consumer influence helps firms to 

create product differentiations that are truly valued by the consumer. This valued–add 

objective is achieved while ensuring viable economic investment towards product design 

efforts. 

 

The integrated framework specifically considers the unique set of challenges and design 

requirements associated with chemical-based consumer product (Table 3.1) by 
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incorporating consumer influence, empirical property models and subjective product 

evaluation.  In the case study example, the selected optimally designed under eye cream 

product exhibited the characteristics of predominant elastic behavior, shear thinning and 

low yield stress. These factors satisfy the primary requirements for the cosmetic cream 

product (Förster and Herrington 1998). Moreover, the selected design compares well in 

performance relative to the commercially available product as shown in Appendix 8.1. 
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3.7 List of Notations 

 aij                           The normalized value of attribute j associated with consumer rated sample i  

i   Right hand side (RHS) parameter of the i
th

 constrained objective function 

 F  Set of objective functions for the multi-objective optimization problem 

f1   The general consumer utility function 

 f2  The development cost function 

G   The storage (elastic) modulus 

G   The loss (viscous) modulus 

 ,jg x y  j
th

 inequality constraint 

 ,ih x y  i
th

 equality constraint 

I  Total number of equality constraint 

J  Total number of inequality constraints 

k  Number of consumer respondents 

m  Total number of product samples for consumer ratings 

n  Total number of attributes in the product design problem 

NDe  The Deborah number 

iP   Mean of k ratings for the i
th

 sample 

qj  The j
th

 product attribute 

max

jq   Threshold value set by product designer for the j
th

 attribute  

ji
q  The normalized value of the j

th
 attribute associated with the i

th
 design 

alternative 

qjo  Value of the j
th 

attribute that characterizes the base or reference product 

Ui  Consumer utility function for the i
th

 design alternative 

wj  Weight of the j
th

 attribute 

x  Vector of product design variables 

y  Vector of binary ( integer) variables 
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Chapter 4 

 

MODELING AND OPTIMIZATION OF 

PRODUCT DESIGN AND PORTFOLIO 

MANAGEMENT INTERFACE 

  

The chapter presents modeling and analysis of product design and product portfolio 

management (PD-PM) domains interaction using an integrated simulation-optimization 

model. To represent the interactions, the product design phase is modeled as a discrete-

scenario static system. The goal of this chapter is to develop a decision support 

framework that relies on product design – product portfolio management integration in 

order to aid product design planning and design execution. We utilize dependency matrix 

approach to illustrate domain relation between the product design and product portfolio 

management domains, and to facilitate their integration. Hence, the process integration 

model utilizes iterative effects, and their attendant processing duration and costs, to 

pattern domain interaction. An industrial case study is used to illustrate the application 

and utility of the proposed approach. 
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4.1 Introduction 

The product development process can be characterized by related sets of technological 

and business decisions that are made in-situ. The linking of these two sets of decisions 

facilitates complete and accurate project (product) valuation by ensuring consideration of 

both commercial and technical requirements (Georgiopoulos, Jonsson et al. 2005; 

Michalek, Feinberg et al. 2005). Furthermore, product developers have come to 

acknowledge that greater coordination and integration of specialized capabilities yield 

measurable improvement in product development cycle time and development cost 

(Sogomonian and C.S. 1993; Krishnan 1998; Bode, Schomacker et al. 2007).  However, 

while acknowledging the need for technological and business integration, researchers 

have also admitted that there is a real challenge in formalizing the relationship between 

the disciplines (Georgiopoulos, Jonsson et al. 2005; Michalek, Feinberg et al. 2005) and 

quantifying its impact.  According to (Michalek, Feinberg et al. 2005) the reasons for this 

absence of a coordinated framework can be traced to historical developments and 

perceptions of disciplinary boundaries. Nevertheless, a number of models have been 

proposed in the academic literature that seeks to quantify the interdependence of 

investment decisions and engineering performance decisions via analytical evaluation 

(Georgiopoulos, Fellini et al. 2002; Georgiopoulos 2003; Georgiopoulos, Jonsson et al. 

2005; Michalek, Feinberg et al. 2005). Such models, in forging the linkage of the two 

disciplines may lead to improved portfolio decisions; however it may not address issues 

associated with inefficient coordination, therefore yielding less than optimal portfolio 

decisions. 
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Recently, (Ng 2004) offered a hierarchical framework that relied on distinctions in 

decisions length and time scales within a chemical enterprise. Such layered distinction 

provides the basis for linking business decision making to product and process design; 

wherein regions of overlap indicate the presence of interaction between levels of decision 

making.  Moreover, the number of iterations between the various levels is minimized 

when decisions are made in the order of decreasing length and time scales.  In 

recognizing the influence of dynamic market conditions and unpredictable changes in 

business conditions, this novel approach ignores the random nature of decision making in 

response to these uncertain conditions. In this study we assess interaction between 

technical and business domains based on recognized dependence relationship, while 

accounting for uncertainties that influence interactions. 

 

With a growing intensity in global market competition, firms within the chemical and 

related industries are forced to develop products at a rapid pace, while minimizing 

development costs and ensuring product quality (Smith and Ierapepritou 2009). Faced 

with such stark reality, firms must optimize their development process by eliminating 

inefficient practices such as wasteful iterations and ineffective communication during the 

product development process (Clark and Fujimoto 1991; Ulrich and Eppinger 2000; 

Browning and Eppinger 2002; Cho and Eppinger 2005; Wang and Lin 2009).  Such 

industry imperative warrants the application of a wide range of streamlining strategies; 

including efficient coordination across disciplinary boundaries. Other practices aimed at 

reducing product development cycle time include activity crashing, overlapping of 

activities and concurrent exploration of design alternatives (Graves 1989). A search of 
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the literature revealed a disproportionate focus on product design activities as targets for 

streamlining the product development process (Steward 1981a; Millson, Raj et al. 1992; 

Langerak and Hultink 2008; Langerak, Hultink et al. 2008).  (Steward 1981a) introduced the 

problem of managing product design activities by analyzing the flow of information 

embedded in the design of a given product.  In subsequent studies, (Eppinger, Whitney et 

al. 1994) introduced the design structure matrices (DSM) to enhance the capability for 

evaluating product design activities.   

 

According to (Roemer and Ahmadi 2004), the management of the development process 

may require coordination between design activities with complex information 

dependencies. However, such coordination must extend beyond the product design 

domain in order to realize maximum efficiency accompanying product development 

execution. Hence, in this study we have expanded the field for product design 

coordination beyond intra-design activities and explore opportunities for product 

development performance improvement by modeling the integration of product design 

domain and project section aspect of the product portfolio management domain, as shown 

in Figure 4.1.  
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Project 
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Business 
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design
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Business
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Application of DMM Modeling Framework  

Figure 4.1:  Linking Domains Decision Elements 

 

Monte Carlo simulation method was used to accommodate uncertainties via the 

generation and analysis of discrete random scenarios that characterized the domains 

interactions. The scenarios were used to model states of iterative effects between the 

product design and the product portfolio management domains. In the proposed 

computational framework, the output of the simulation model is directed to the 

optimization module to yield the optimal scenario and corresponding design decision 

variables. The simulation optimization problem for the stochastic system can be defined 

as: 

 ( , ) ( , )                                                                                              (4.1) 
y Y

Min F y E Z y 




 

       

where ( , )F y   is the expected performance obtained from the simulated output, 

Y defines the feasible region; E  is the expectation operator; y is the system’s decision 
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vector,   is the random vector defined on a select probability space; while ( , )Z y   is a 

random vector that represents the simulation outcome.  According to (Fu 2002) , the 

constraint set Y may be given explicitly or it may be implicitly defined. In general, 

objective functions of the form given in Equation (4.1) for simulation optimization 

problems must be estimated by taking an average of the observed simulation output over 

S independent and identically distributed (i.i.d) simulated observations, 
1 2, , , s    (Fu 

2002).  Hence, the approximate optimization problem is given as:  

1

1ˆ ( , ) ( , )                                                                                      (4.2)
S

s

y Y
s

Min F y Z y
S

 




 

        

The chapter is organized as follows: In the next section we review the approach for 

product design – product portfolio management integration. Section 4.3 outlines the 

domain dependencies that formed the basis of our integrative approach and has 

contributed to the development of the proposed computational framework. The problem 

description and model formulation is presented in section 4.4, followed by an industrial 

case study to illustrate the proposed framework in section 4.5, and concluding remarks in 

section 4.6.  

 

4.2 Product Design-Product Portfolio Management (PD-PM) Integration 

Process modeling, simulation and optimization techniques have been widely deployed to 

address product development performance concerns, such as the pressing need for cycle 

time reduction (Schmidt and Grossmann 1996; Schmidt, Grossmann et al. 1998; 
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Subramanian, Pekny et al. 2000; Varma, Pekny et al. 2008).   (Schmidt and Grossmann 

1996; Schmidt, Grossmann et al. 1998) are recognized as early contributors who have 

formalized the optimization of new product development process using mixed integer 

programming. 

 

However, according to (Wynn, Eckert et al. 2007), the modeling of product development 

process offers unique challenges due in part to the uncertainty that characterizes the 

design process – a  critical stage within product development. Among the factors 

contributing to the difficulty encountered in modeling product design process, (Wang and 

Lin 2009) cited the dependence of the process outcome on “the technical decisions that 

are made by examining the design in-situ. Furthermore, in contrasting manufacturing 

process to product development, they assert that the product development process is one 

of creativity and discovery and therefore lends itself to trial and error.  The creativity is 

further warranted by uncertainties due to technological risks (Varma, Pekny et al. 2008) 

shifting customer requirements and changing business conditions.  In part, such factors 

account for the iterative nature of the product development process evidenced by design 

tasks rework and repeated resource allocation.   According to (Chen and Lin 2003)  

difficulties encountered in designing complex products does not simply arise from their 

engineering complexity , but also stem from the organizational sophistication  necessary 

to manage the design process.  Hence, this study examines the interaction between 

aspects of product design and product portfolio management process with an aim to 

resolve some of these difficulties created by wastes and inefficiency. 
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4.2.1 Product Design and Portfolio Decisions 

The term product design refers to the detailed development that yields specification of 

design variables and parameters. Hence, the goal of the product design process is to 

create a detailed recipe for producing a product that will satisfy manufacturing, customer 

and business requirements. Consequently, meeting this goal necessitates active cross-

functional participation in order to ensure stakeholders satisfaction and optimal 

investment decision. For example, (Schmidt, Grossmann et al. 1998) noted that during 

the development of an agrochemical product, field trials outcome and toxicology profile 

information were combined with market assessment in making decision concerning 

future investment. Moreover, management investment decision relies on information 

from other products within  the product development pipeline and other market data 

(Schmidt, Grossmann et al. 1998).   

 

According to (Smith and Eppinger 1997) the absence of a proper decision strategy for 

cross–functional teams can lead to poor design and /or unnecessary iterations.  

Furthermore, many firms undertake product development efforts with unclear and 

undeveloped strategies for choosing and managing projects (Jalonen 2007). Such actions 

often lead to ill use of the firm’s resources, unnecessarily long development lead times,  

pipeline projects that are not aligned to the firm’s strategy and ultimately to the project 

failure. Product portfolio management involves active decision-making aimed at creating 

a product mix that returns maximum value for the firm (Georgiopoulos, Fellini et al. 

2002). These product development firms face the critical decisions involving the 
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selection of an optimal mix of products aimed at yielding maximum shareholder value 

over time.  According to (Cooper, Edgett et al. 1997) the new product development 

portfolio management is likely the most challenging decision making problem in modern 

business. The challenge in portfolio management lies in the fact that it relies on uncertain 

and unreliable information and operates in a dynamic environment wherein the project 

outlook is continuously changing. As noted by (Jiao and Zhang 2005) the product 

portfolio planning problem has largely concerned the marketing community and therefore 

has been commonly addressed from a marketing perspective. Nonetheless, product 

portfolio decisions have implications for engineering operations that concerns cost and 

complexity of interactions among products within the portfolio. Research and 

development (R&D) management decision making level takes the form of strategic 

optimal portfolio selection and tactical project evaluation and resource allocation.  The 

introduction of the Stage-Gate process (Cooper, Edgett et al. 1997) facilitates tactical 

ongoing project review at pre-determined decision points (gates) within the process. In 

general the project review may involve assessment of details concerning technical and 

manufacturing feasibility, as well as commercial feasibility in light of budgetary 

constraints. When approved, the design team is expected to pursue development such as 

product and process synthesis, product and process modeling and simulation, cost 

estimation and business feasibility assessment. In addition to these gate reviews, portfolio 

reviews are conducted on the entire portfolio of projects. Portfolio reviews and decision 

are also influenced by uncertainties caused by variability in macro-economic conditions, 

changing competitive landscape and changing business conditions. Hence, portfolio 

management decision making is characterized by embedded flexibilities (Varma, Pekny 
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et al. 2008) that lead to increased iterations in information flow with its attendant 

information processing time and costs. 

 

The process requirement for ongoing work and resource assignments, as a key 

management function within the product development process, warrants the 

understanding of interdependencies within and between domains by both engineers and 

business managers (Danilovic and Browning 2007).  Figure 4.2 summarizes the aspects 

of product design and product portfolio domain integration with their respective noise 

sources. 
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Figure 4.2: Integration of Product Design –Product Portfolio Management Domains 
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4.3 Underlying Dependencies Within the Modeling Framework 

The scope and focus of the product design efforts, for a given product, are influenced by 

product portfolio management level decisions. Resource allocation decisions made at the 

product portfolio management level are also influenced by technical product design 

requirements decisions. Hence, decision dependencies characterize the relationship 

between the product design and product portfolio management domains. In this study we 

formalize an approach for product design – product portfolio management (PD-PM) 

integration by utilizing a rectangular domain mapping matrix (DMM) developed by 

(Danilovic and Browning 2007). The DMM offers a modeling framework that allows us 

to elicit and capture the underlying relationship between the two domains, and further 

facilitates analysis of the domains interactions and interdependencies. The DMM consists 

of row and columns representing the elements of product design and product portfolio 

management decisions, respectively. Such matrix facilitates the examination of 

interaction across the extent of both domains. The use of the DMM in this manner creates 

situational visibility, thus improving coordination and information transfer between the 

product design and product portfolio management domains. The DMM is contrasted with 

the design structure matrix (DSM), in that, the DSM finds limited application in self-

mapping relationships among the elements of a system in a single domain (Chen, Ling et 

al. 2003).  

 

Other common modeling frameworks, such as quality function deployment (QFD) and 

engineering system matrix (ESM), developed by (Bartolomei 2007), are used to model 
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and represent complex systems in product development.  QFD  matrix is used as an 

integrative scheme for translating customer requirements into technical design 

requirements (Bode, Schomacker et al. 2007). More specifically, such domain mapping 

matrices have found wide application in project planning and analysis work (Chen, Ling 

et al. 2003; Bartolomei 2007; Danilovic and Browning 2007).  

 

For purposes of illustration, the interaction pattern between the product portfolio 

management and product design domains is represented by a directed graph and a 

corresponding mapping matrix as shown in Figures 4.3 and 4.4, respectively.  
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Figure 4.3: Digraph for Product Portfolio and Product Design Interaction 
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Figure 4.4:  Domain Mapping Matrix (DMM) for a Given Project 

 

Major categories of decision making associated with the product design and portfolio 

management domains are linked as indicated in Figure 4.3.  The directed arrows in Figure 

4.3 depict information flow between the two domains. In Figure 4.4 a domain mapping 

matrix (DMM) is used to represent existing dependencies between the two domains. To 

evaluate this dependency we assign a {0, 1} value to each ordered pairs of domain 

elements (i, j), where i is associated with a product and j with a product portfolio.  Hence, 

each non-empty cell indicates domains interaction and the potential of iterative flow and 

iterative processing of information. Therefore, from a project planning and management 

perspective, each non-empty cell represents time and cost to process information and to 

perform specific tasks as warranted by the associated decision (business or technical 
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decision). Furthermore, the modification or repetition of such decisions and subsequent 

actions results in additional consumption of time and resources.  

The set of product design and portfolio management decisions can be further classified 

as, independent, dependent and interdependent decisions to indicate the type and level of 

domain interactions for any given project within the product portfolio. These dependence 

structures are displayed in Figure 4.5, where P refers to the product portfolio domain and 

D refers to the product design domain. 

 

 

                   (a)                    (b)     (c) 

 

Figure 4.5: Topographies of Dependence Structures: (a) Independent (b) Dependent(c) 

Interdependent 

 

 Although independent decisions are not influenced by decisions taken in the alternate 
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and activities. In this study, DMM is also used as the basis for formulating resource 

utilization policies to mitigate against unnecessary iterations between the domains. For 
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4.6, enables the development of unique strategies aimed at streamlining the flow of 
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Pareto of the sum of portfolio decision elements and the sum of product design decision 

elements provide insight to the decision makers regarding the dominant interaction; thus 

enabling the assignment of mandatory requirements and prioritization of design efforts. 

Further processing of the DMM can be done to incorporate lean principles and 

approaches for identifying waste opportunities associated with the flow of information 

between the product design and portfolio management domains. 

                                

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Domain Mapping Matrix (classified) for a Given Project 
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two domains, the principal question now becomes how to obtain optimal interaction in an 

effort to avoid unnecessary project delays and cost while ensuring realistic resource 

allocations. Our goal in this study is to minimize the number of iterations between the 

domains by applying relevant streamlining policies and determining the optimal scenario 

for domains integration for a given set of projects that constitutes the design phase 

product portfolio.  

 

The following notations and formulations are used to characterize the relationship 

between decision elements of the product design domain i and portfolio domain j: 

ijky  = binary variable indicating dependent (interdependent) and iterative relationship 

between product design decision element i and product portfolio decision element j 

associated with project k. This variable exist for product and portfolio elements that are 

linked in the DMM (i.e. 1ijkn  ).
. 
 

ijk = number of iterations associated with individual cell element ijkn in the DMM of 

project k. 

The total number of iterations for project k is modeled as: 

 

 = ( , )

0,1   , ,

0        , ,

k k ijk ijk

ijk

ijk

y

y i j k

i j k

  



 

 
             (4.3) 

The total cost due to the iterations associated with project k is given as: 
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 

 =z ( , , ,  )    

0,1  , ,

, 0  , ,

k k ijk ijk ijk k

ijk

ijk ijk

z y

y i j k

i j k

  

 

 

 
           (4.4) 

where ijk represents the mean time taken to process each iteration in matrix cell ijkn of 

project k; k  is the mean resource cost rate for project k that accounts for labor and 

material costs.

 

 

 

In this work we also view the product design process as composed of a set of managerial 

decisions and a set of product design decisions that are linked via dependent 

(interdependent) relationship.  Iterations between the product design and product 

portfolio domains are modeled to represent patterns of interaction brought on by 

inadequate communication, market and business dynamics, as well as by changes in 

product design requirements.  According to (Wheelwright and Clark 1992) iterations 

increase project cost and completion time and are a major source of the length and 

expense of the development process.  The authors further went on to stipulate that 

minimizing the number of iterations is a good approximation for concurrently reducing 

the development time and cost.  In this work, iteration refers to a repeat of the flow of 

information between domains, repeated decision making efforts and tasks resulting from 

the decisions made. Hence it is assumed that a significant percentage of the resource cost 

is attributed to the labor component. Iterative efforts may take the form of any of the 

following: 
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 Revision of resource allocation decisions due to portfolio management interaction 

and complexities 

 Rework of technical product design tasks 

 Repeated preparation of business case for a given product design project due  to 

revised decisions in response to change in business strategy or market conditions 

 Repeated product design project  status review resulting from inadequate 

information for decision making 

 Iteration between the domains takes place among dependent and interdependent decision 

structures as indicated in Figure 4.7. 

 

  

 

  a) Dependent    b) Interdependent 

 

Figure 4.7: Iteration between Product Design and Portfolio Management Domains 

 

We consider that careful product design planning involves accounting for planned 

iteration that allows for controlled resource allocation and realistic budgeting. 
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In this work we make a distinction between the design of new products and the redesign 

of existing products by considering the preliminary data requirements and the necessary 

precursor steps in the proposed framework.  In the case of product re-design we rely 

mainly on historical performance data. However, in the case of new product design we 

rely on expert knowledge given the information of project type and the ordered pair of 

domain elements, (i, j), for the given product and product portfolio. In other instances we 

combine expert knowledge with performance data of similar products, to assess domain 

dependence relationship and determine initial parameter values.  

 

4.4 Simulation/Optimization Model 

In product design process execution, the number of any given type of iterations occurring 

between the product design and product portfolio management domains is uncertain. 

Hence, ijk  shown in Equations 3.4, 4.4 correspond to random variables.  Following the 

work of (Di Domenica, Lucas et al. 2007) we represent uncertainty in the form of discrete 

scenarios set denoted by { | 1 }S s s S   for which we estimate the system’s performance  

as indicated by Equation 4.2. 

 

4.4.1 System Description 

 The state of the system is characterized by a static set of product design 

projects,  A | 1ka k K  , that are present in the product design phase at varying 

degree of design progress. Associated with each project, ka , is a random network of 

information flow between the technical product design and the product portfolio 
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management domains; thus enabling discrete decision making concerning resource 

allocation and product design efforts. Iterative information flow between a set of product 

design decision elements i|{i=1……I }and a set of portfolio management decision 

elements j|{ j=1….. J} further characterizes the product design project execution. Hence, 

for any project ka there exists a configuration matrix based on the dual domain mapping 

matrix (DMM) with {0, 1} elements. Associated with each matrix configuration is a set 

of random number of iterations between the product design and the product portfolio 

management domains.  The action space, for the domains integration in any given state, 

is a set of intra-phase decisions that consume time and resource upon their execution.     

 

In this study we consider uncertainties by utilizing a discrete-scenario stochastic 

approach that allows independent estimate of the cost associated with a given scenario. 

Monte Carlo simulation algorithm is used to generate uncertain scenarios that 

characterize the product design–product portfolio interactions.  

 

4.4.2 Problem Simulation 

The simulation model (Equation 4.4) transform the vector of input parameters, specified 

over the feasible region defined for each project k, into a vector of stochastic output 

parameters,  1 2( , ), ( , ), , ( , )kz y z y z y   .  We define the product portfolio function 

( , )Z y  as the summation of ( , )kz y   that combines the k output variables into one 

stochastic output performance measure: ( , ) ( , )kk
Z y z y  .  The simulation 
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optimization framework seeks to find optimal settings of the input parameters that 

optimize the output parameter.  

 

The Monte Carlo method used in this study relied on repeated sampling and statistical 

analysis to determine the simulated stochastic response and distribution statistics, 

respectively. The proposed framework relied on the realization that the solution to 

general simulation optimization problem (4.1) cannot be obtained analytically, and 

therefore must be estimated via discrete scenario simulation. Such simulation outcome is 

guided by specific input parameters and assumed probability function. From the product 

portfolio perspective, a random scenario constitutes a set of product design projects 

(products), each with a potential number of iterations with associated time duration and 

cost. Hence, the simulation module provides the distribution of scenarios (random 

outcomes) for the different realization of the number of iterations along with derived 

input parameters values.  Uncertainties concerning the number of iterations between the 

product design and product portfolio management domain are modeled with suitable 

probability distributions in the simulation module. Furthermore, the probability of the 

scenarios is assumed to be independent. The output from the simulation problem can be 

described as a unique combination of realization of iteration uncertainties that advances 

to the optimization module as shown in the integrated model framework (Figure 4.8). 
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4. 4.3 Simulation /Optimization Framework 

This study integrates both simulation and optimization in a computational framework as 

indicated in Figure 4.8. 
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Figure 4.8: Framework for the Integrated Model 

 

The computational framework utilizes Monte Carlo simulation to generate scenarios for 

the mathematical programming module.  The cost based scenario distribution value for 

iterative effects are used as input parameters to the mathematical programming model.   

Hence, the general objective of the proposed framework is to identify a scenario that 

minimizes the objective cost function. 
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According to (Carson and Maria 1997), simulation optimization provides a structured 

approach to identifying the optimal output variable values without the need for explicit 

evaluation of all possibilities.  Hence, simulation optimization delivers the dual benefit of 

resource minimization while utilizing simulation to maximize information about the 

system (Carson and Maria 1997).  These simulation models are used both as objective 

function and /or constraint function in optimization of complex systems (Azadivar 1999). 

However, there are unique challenges associated with simulation optimization approaches 

that mainly relate to the stochastic nature of the objective function and the absence of an 

exact closed form solution.  According to (Fu 2002), the computational burden in solving 

optimization for simulation problems lies in estimating the objective function whereas in 

the deterministic case the search of the feasible region accounts for the major 

computational burden.  Furthermore, (Fu 2008) noted that one of the primary challenges 

in performing simulation optimization involves making the trade-off between the 

allocations of computational resources for searching the solution space versus conducting 

additional simulation replications for better estimating the system’s performance. The 

authors further noted that the trade-off consideration takes on even greater significance 

when the fidelity of the system warrants a computationally expensive simulation. An 

intractable situation cited by (Fu 2008) involves stochastic simulation that generates 

millions of random variable, a mathematical programming model with millions of 

decision variables and an objective function involving a quantity that must be estimated 

using simulation. These and other challenges are well documented in detailed discussions 

that compares simulation optimization problems to nonlinear programming problems 

solution approaches in simulation literature (Azadivar 1999; Swisher, Jacobson et al. 
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2000; Fu 2002). Common approaches used to solving single objective simulation 

optimization problems include gradient based search methods, stochastic approximation 

(SA) method, response surface method (RSM), sample path method and heuristic search 

methods. While comprehensive reviews of these methods can be found in the literature 

(Alrefaci and Andradóttir 1995; Azadivar 1999; Swisher, Jacobson et al. 2000; Fu 2002; 

Fu 2008), we highlight two important requirements for such approaches in addressing the 

stochastic problem: 

1) The approach should be both iterative and integrative: Requiring search and 

comparison  that leads to finding the optimal decision variable value 

2) The approach provides an estimation of the  optimal value of the objective 

function 

Simulation optimization approaches are developed for single objective optimization 

applications, multiple-objective applications as well as applications with non-parametric 

objectives  (Carson and Maria 1997).   (Artiba and Riane 1998) applied a multi-model 

system that integrates discrete event simulation, optimization algorithm and heuristics to 

support production planning and scheduling decision making within the chemical 

industry.  A simulation based optimization framework developed by (Subramanian, 

Pekny et al. 2000) provided decision support for product portfolio selection and project 

task scheduling that captures the system’s uncertainty via discrete event simulation.  In 

more recent work, (Jung, Blau et al. 2004) applied a gradient based simulation 

optimization approach in addressing demand uncertainties encountered in the planning 

and scheduling  operations within the chemical process industry.   

 



  

 

98 

Increasing development in operation research / computer science interface, resulting from 

increased computational power, has led to significant growth in commercial 

implementation of simulation optimization techniques for a wide set of industry 

applications (April, Glover et al. 2003).   Such commercial software offers greater utility 

for real world situations, and as a consequence more software developers are enhancing 

the efficiency and program reliability in locating optimal or near optimal solutions 

(Carson and Maria 1997).  One such commercial software is a package called OptQuest® 

that combines Monte Carlo simulation with intelligent scatter search that utilizes past 

evaluations. The OptQuest® package also facilitates a mixed integer problem formulation 

and utilizes neural network procedure as a screening tool(Fu 2002). Such screening 

capability, along with the incorporation of risk threshold level for objective function 

evaluation, is highly desirable features of the OptQuest package. Such output analysis 

techniques facilitate the control of the variance of the stochastic system’s response and is 

considered an advantage offered by such simulation optimization approach (Azadivar 

1999). 

4.4.4 Stochastic Problem Formulation 

Based on the definition of ( , )Z y   given in section 4.2, problem 4.2 can be rewritten as 

follows: 

1

1ˆ ( , ) [ ( , )]                                                                                    (4.5)
S

s

k

s k

F y Min z y
S

 


 
  

 
 
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In this problem formulation we also add the cost of design for each project k by defining: 

( , ) ( )                                                                                                             (4.6)k k k kz x t C x t  

      

where: ( , )kz x t  is  the basic product design cost function for project k ; x is the product 

design material decision variable; 
kt  is  design time decision variable for project k; 

( )kC x is material cost function for project k.  We combine the cost of iterations (Eq4.5) and 

the basic product design cost (Eq4.6) to yield the following product portfolio cost 

minimization problem: 

 
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where yk is the vector of binary decision variable indicating the existence of domain  

dependence and iteration;  ( )mkh x  and g (x)rk are equality and inequality product 

design constraints respectively specifying quality and/or  materials requirements; R refers 

to the number of inequality constraints while M  refers to the number of equality 

constraints for the given problem; ( , )  k k kG z z B  is the budgetary constraint for project k 
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and t  tL

k k kT  specifies the product design time constraint for product k; the constraint 

( ) 0 kf y   indicates planned  iteration for the product design project k due to dependence 

relationship. Figure 4.9 summarizes the integrated approach.  
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Figure 4.9: PD-PM Integration Methodology Flowchart 
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4.5 Industrial Case Illustration 

The implementation described in previous sections is demonstrated via an industrial case 

based on a personal care product portfolio operation.  Product development efforts within 

the personal care industry is characterized by active communication between the 

enterprise’s management and the research and development (R&D) community, resulting 

mainly from intense market dynamics due to increasing competition and regulatory 

changes.  Rapidly changing industry trends combined with ongoing market demand for 

greater product differentiation are dominant drivers for iterative effects encountered 

during the product design phase. The case study comprises a product portfolio of four 

product design projects (products) from the same product family as shown in Table 4.1. 

 

Table 4.1: Personal Care Product Portfolio 

Project 

(ak) 

Product name Unique product functionality 

a1 Hand and body lotion All skin type moisturizer 

a2 

 

Elastin collagen cream Moisture restoration 

a3 Liposome environmental cream Environmental protection 

a4 Rejuvenating cream Anti-ageing 
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The proposed domain integration approach illustrated in Figure 4.1 has been applied to 

the case study with an objective to provide decision support to product design planning 

and execution.  A preliminary step in this procedure involves the linking of the product 

design domain and the product portfolio management domain by utilizing the DMM 

structure to connect the decision considerations that govern each domain activities. 

A set of the product design and product portfolio decision elements for the personal care 

product line is summarized in Tables 4.2 and 4.3 respectively: 

 

Table 4.2: Set of Product Design Decision Elements 

Design 

Decision 

Elements 

{ 1, ,5}i   

Description of product design decision elements 

i=1 Selection of raw material components to yield desired functional requirements 

and quality attributes at lowest cost 

i=2 Selection of the critical quality factors (e.g. Scent, ease of application) 

i=3 Selection of  suitable processing and application technology 

i=4 Product design alternative selection 

i=5 Product testing range and method 
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Table 4.3: Set of Product Portfolio Decision Elements 

Portfolio 

Decision 

Elements 

{ 1, ,4}j   

Description of product portfolio decision elements 

j=1 Trend: Strategic shift to natural organic products and green technology  

j=2 Growth strategy: Major focus on growth of premium products in the male 

demographic market segment 

j=3 Manufacturing operations:  Cost reduction and pipeline productivity goal 

and measure 

j=4 Production: Transition the manufacturing of some products portfolio to 

offshore production facilities  

 

The characteristic set of decisions made during the product design process relies on 

market condition and business direction, in addition to customer requirements.  

Agreement between these requirements and the product design specifications is a critical 

project review and product portfolio management decision criterion.  Also, we note that 

business decisions that falls under the categories of industry trend, growth strategy, 

manufacturing operations and production require a decision response from the technical 

design community. The DMM presented in Figure 4.10 indicates the dependent 

(interdependent) relationship between decisions of the product design and product 

portfolio management domains for the chosen product line. 
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Figure 4.10: DMM for the Personal Care Product Line 

 

The domain linkage via DMM ensures early and direct access to information concerning 

the company’s influencing strategies and tactics, thus ensuring strategic alignment while 

enabling product designers to make important tradeoff decisions that balance the voice of 

the customer (VOC) with the voice of the business (VOB).  For example, in this case 

study, early knowledge of a strategic emphasis on “natural products” combined with 

specific focus on cost reduction, has guided the product design efforts in material 

selection and prioritization of design focus.  Hence, the application of the integrated 

framework reduces the risk of incurring unnecessary iterations and project cancelations 

that result in wasted sunk cost. A comparison of the DMM for project a2 with that of  

projects a1, a3 and a4 respectively, indicates a unique influence of the growth strategy on 

the design considerations of project a2; thus, enabling the design community to make 

appropriate decision concerning budgeting and resource allocation. 
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Development and analysis of the DMM led to the establishment of streamlining policies 

and actions to mitigate against unnecessary iterations between the product design domain 

and the product portfolio domain. Furthermore, we apply the outcome of the product’s 

DMM (
,

0ij

i j

n  ) to defining the lower and upper bounds of the random parameter and the 

decision variable in the subsequent simulation optimization problem. 

 

The simulation- optimization problem concerns the selection of a random optimal project 

portfolio (scenario) with corresponding decision variables, x, y and t to minimize cost 

associated with the design of the portfolio of products present within the design phase.   

Commercially available simulation module (Crystal Ball ®) was used in this study to 

randomly generate values of the uncertain variables and to guide a set of simulation 

scenarios to an optimization module.  We assume a normal probability distribution 

function to represent the random variables used in the cost simulation model. Hence, a 

simulation calculates the model objective by repeatedly selecting values of the random 

variables from the given distribution.  

 

OptQuest ® software package provided the optimization procedure that uses the output 

from the simulation model. The optimization module uses an intelligent search procedure 

to search the feasible space. The package also evaluate the statistical output from the  

simulation model and compare the statistic of current run with prior run to determine a 

new set of values for the decision variables . This is an iterative process that improves the 

objective value over time according to the problem formulation given in Equation 4.8.   
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In this case study the design variables x correspond to the vector of raw material 

components used in the product formulation. Hence, xp is the p
th

 raw material component 

and  , 100p k

p

x   represents the mixing rule governing each product’s material 

composition; N is the sum total of DMM cell elements, 
, ,

ijk

i j k

N n , for all projects  in the 

portfolio. The DMM presented in Figure 4.10 illustrates the dependent (interdependent) 

relationship and therefore the need for deliberate alignment between the product design 

domain and the product portfolio domain given by 
,

0,ijki j
n k  .  Furthermore, the 

formulation given in (4.8) constrains the number of iterations while restricting iterations 

to occur between the dependent elements based on the DMM framework. 

 

As indicated in procedure outlined in Figure 4.9, analysis of the DMM has led to the 

identification of specific resource utilization policies aimed at streamlining the product 
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design planning process. The set of resource utilization policies identified in this case 

study are summarized in Table 4.4. 

Table 4.4 : Resource Utilization Policies 

1. Value-based work requires that product designers give priority to design efforts 

that align with the business direction as indicated by the DMM 

2. Re-use of DMM and knowledge gained for product line extensions projects, 

product repositioning projects and  incremental product improvement efforts 

3. DMM outcome provides a basis for assessing work demand  versus available 

capacity 

 

Further DMM assessment led to recommendations for early integration of raw material 

suppliers into the product design process for similar products and enhanced bench-scale 

testing to reduce prototype testing and pilot scale production.  Figure 4.11 displays the 

probability and frequency distribution for the simulated product portfolio cost obtained 

for the case study. 

 

 

 

 

Figure 4.11: The Distribution of Total Product Design Cost Value 

Objective Cost Value ( Total cost)
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The simulation-optimization procedure yielded an optimal mean cost value of $52,788.1 

for the portfolio of projects at a 95% confidence level. The cost contributions as 

displayed and compared in Table 4.5 indicate the mean design cost for each project and 

the percent of the total cost that is due to iterative effects.  

 

Table 4. 5:  Product Design Cost Estimate 

Products Mean  

Design  

Cost $ 

Coefficient 

of variation 

Iterative 

Cost $ 

% Iterative 

Cost  

a1 8765.68 7.821e-04 46.57 

 

0.5% 

a2 8478.25 8.6739e-04 74.69 

 

0.9% 

a3 14,838.36 0.0010 127.8 0.9% 

a4 19,906.05 0.0035 552.36 

 

2.7% 

Project 

Portfolio 

51,988.34 3.03e-04 799.80 1.5% 
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Figure 4.12: Distribution of Product Design Iteration-based Cost Value 

 

As shown in Table 4.5, the isolated iterations cost ranged from 0.5 to 2.78% of the total 

product design cost for individual projects.  As depicted in Table 4.5 product a4 has the 

highest coefficient of variation and records the greatest percent of iterative cost. This 

variability results from uncertainty encountered during product design execution as 

outlined in Figure 4.2.  Optimal decision variables values obtained for each product 

(project) ka  are summarized in Table 4.6. 

 

 

 

Product 3 –Iterative Costs $

Product 1 –Iterative Costs $

Product 4 –Iterative Costs $

Product 2 –Iterative Costs $
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Table 4.6: Optimal Product Design Values                                                     

                                     Product Design Decision Variables 

Projects x1 x2 x3 x4 t  

( hours) 

Number 

of 

iterations 

ijk

ij

y  

a1 87.69 4.05 0.162 8.1 291.6 10 

a2 69.89 4.86 5 20.25 423 15 

a3 64 14.13 0.81 21.06 423 14 

a4 72.3 4.86 5.3 17.56 567 12 

                                                                                                 

 

The optimal design variables obtained from the feasible set are used to satisfy the 

technical and economical requirements for each product design projects; thus minimizing 

the risk of project gate reviews rejection and project delays, due to unnecessary trial and 

error testing and evaluation. In the case study we have found a mean iterative cost of 

$799.8 which is equal to 1.5% of the mean cost for the studied portfolio of projects.  The 

iterative cost, as a percent of the portfolio budget, serves as an indicator for the 

implementation of the resource utilization policies identified via the DMM. In this study, 

an iterative cost representing 1.5% of the portfolio budget falls well within the standard 

deviation of the portfolio cost value and is considered statistically insignificant. However, 

over time such cost has practical significance to the business operations and therefore 

warrants the implementation of the resource utilization policies. Furthermore, by 

obtaining an estimated mean iteration-based cost value, firms can make more realistic 
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budget allocation towards product design efforts by accounting for hidden iteration-based 

costs.   

4.6 Conclusions 

In this work we offer a formalized approach to modeling and quantifying the interaction 

between the product design domain and the product portfolio management domain, with 

the aim to provide decision support to the product design community.  

 

The application of the proposed procedure secures a priori alignment of product portfolio 

management level considerations to product design activities, and subsequently makes 

allowance for iterative effects that may accompany such interactions. The combined 

implementation of product design streamlining policies and processed iterations provides 

meaningful support to the technical design community by enabling intelligent trade-off 

decisions making while limiting iterations during design execution. Furthermore, the 

proposed procedure provides greater control over budget and people resource allocation 

by establishing early priorities through the alignment of product design decision making 

to portfolio management level considerations. 
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4.7 List of Notations  

ka   = k
th

 product design project 

Bk    
 
= Product design budget constant for project k 

( )kC x   = Basic product design cost function for project k 

D      = Product design domain symbol 

E       = Expectation operator 

( , )F y     = Expected portfolio performance obtained from the simulated outcome 

ˆ ( , )F y   = Approximated product portfolio performance measure 

( ) 0 kf y 
  = Constraint for planned iteration between product design i and product   

                             portfolio elements j for project k 

 k    = Mean resource cost rate for product k 

 ( , )k kG z z   = Budget cost function for project k  

I                = Set of product design decision elements 

J                 = Set of product portfolio decision elements 

K        = Set of product design projects in the product design portfolio 

k   = Function for the number of iterations between the product design 

                            portfolio domains for project k 
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ijn   = Binary value indicating dependence between DMM element i and j 

ijk
n

  = 
Binary value indicating dependence between DMM element i and j for  

                            project k 

N  = Total count indicating dependence for all projects within the portfolio 

M  = Total number of design equality constraints 

p  = product design material component 

R  = Total number of product design inequality constraints 

S  = Vector of portfolio scenario 

tk  = design time decision variable for project k 

Tk  = Time horizon for project k 

x  = design material decision variable 

    = random variable vector that represents the number of iterations 

y  = binary decision vector  

yijk  = binary variable indicating the existence of dependence and iteration 

   between decision elements i and j of project k 

yk  = binary decision variable indicating the existence of  dependence and 

                           iteration 
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kz   = Iterative product design cost function for product k 

kz   = Basic design cost function for product k 

( , )Z y    = random vector that represents the simulation outcome 
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Chapter 5                                               

SENSITIVITY-BASED PRODUCT 

PORTFOLIO AND DESIGN 

INTEGRATION  

In this study we present a novel integration between product portfolio management 

evaluation criteria and product design decisions involving the design of chemical-based 

configured consumer products. We consider the variance contribution made by the 

product’s quality characteristics to the product’s economic performance that is measured 

via its net present value (NPV). The sensitivity-based time constrained selection problem 

(STCSP) is modeled as a static deterministic problem, solved with the objective of mean 

cost minimization. The STCSP model utilizes a hybrid approach involving the 

application of Monte Carlo simulation, heuristics and algorithmic processing to optimize 

the product design planning process. In this approach, product design activities 

dependencies are modeled as linear inequalities constraints. An industry based case study 

is used to evaluate the proposed approach.  
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5.1 Introduction 

Increasingly, the survival of most firms depends on their ability to innovate, design and 

develop discrete products at a rate faster than their competitors (Rungtusanatham and 

Forza 2005). Needless to say, this reality places tremendous pressure on the product 

design community in particular; requiring them to better plan and manage design 

activities in order to ensure rapid and cost-effective product introduction. New product 

introductions are critical to the firm’s health and sustained profitability(Clark and 

Fujimoto 1991).  According to (Hoyle and Chen 2007), as much as 75% of committed 

manufacturing cost can be attributed to decisions made during the product design phase.   

 

However, it is also well recognized that product design is a rather complex process 

involving cross-functional team participation(Westerberg and Subrahmanian 2000), 

inherent product complexity and managerial challenges(Aoussat and Christofol 2000).  

Past and current emphasis on cross-functional coordination via approaches such as 

concurrent engineering (Koufteros, Vonderembse et al. 2001) indicate a wide recognition 

of these challenges and complexities.  Hence, the utilization of such coordinated 

approach seeks to guarantee commercial and technical feasibility - such as ensuring the  

designed product is fit for manufacturing(Tanguy and Marchal 1996; Whitfield, Coates et 

al. 2000).   

 

Nonetheless, in spite of these efforts the challenge for product designers remains 

daunting in the face of increasing market uncertainties, rising demand for product variety, 
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and the demand for shorter development cycle time.  In response to the market pressures, 

many firms steer their product development efforts towards less risky new product 

categories such as product line extensions and product modifications. According to 

Cooper, R. (1996) the two most risky product categories of “new-to-the-world” and 

“new-to-the-firm” represent only 30% of new product launches.  The adoption of this less 

risky strategy does not eliminate delays and cost overruns that result sometime from poor 

product design planning. Irrespective of the new product category, design engineers have 

long recognized that in-process design decisions contribute significantly to the final 

design success (Lewis, W. et al. 2006).  To aid the design planning and decision process, 

designers have commonly established engineering priorities by ranking the customer 

requirements solicited early in the product development process. However, customer 

requirements captured via voice of the customer (VOC) studies are sometimes 

misleading, as they do not always reflect the true valuation of product attributes as would 

be indicated by the customers’ purchasing intent. Furthermore, such approach fails to 

address the dynamic nature of customer requirements resulting from technological 

advances and other dynamic market forces.  Hence, despite early efforts to incorporate 

customer requirements, there exists a need for greater focus on the product design 

planning process as evidenced by the occurrence of costly design iterations, time 

consuming and costly non-value add design efforts, as well as costly product failure due 

to improper tradeoff between speed and product quality.   

 

According to (Hoyle and Chen 2007) it is very important that product design decisions 

are consistent with the firm’s objectives.  In general, active product design decisions may 
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include: 1) the selection of a preferred design alternative; 2) the determination of an 

appropriate design experimentation strategy; 3) identification and selection of product 

quality characteristics for robust enhancement; 4) specifying robust enhancement 

strategies; and 5) the selection of product quality characteristics for performance 

enhancement and validation. Numerous studies have examined the linkage between 

product design and business decision-making (Georgiopoulos, Jonson et al. 2005; Kumar, 

Chen et al. 2009) with a bias towards enabling business decision making.  

 

The overall objective of this study is to develop novel decision support systems that 

provide valuable insight to product designers, therefore enabling optimal product design 

decision making that leads to efficient product design undertaking. New product portfolio 

management is a critical business decision making process that determines research and 

development (R&D) investments, and ultimately decides the firm’s performance. The 

approach also relies on the design independence of unique product attributes. Hence, we 

apply this approach to the design of specific chemical-based configured consumer 

products because aspects of their product requirements can be achieved and measured 

independently. Such products may combine several technology platforms into a single 

product for specific market application.  Furthermore, the proposed approach exploits the 

interdependence between product design decisions and product portfolio management 

decisions making in an effort to streamline product design activities. In so doing we 

examine the sensitivity of a critical portfolio management decision factor in order to 

specify the initial feasible state of the product design planning problem. A two stage 
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processing-optimization model is employed to: 1) select a feasible set of design 

operations and 2) to specify an optimal performance-based product design plan. 

 

5.2 Background  

In this section the relevant literature is reviewed focusing on the integration of decision 

support tools. In recent decades business process reengineering has been the subject of 

numerous research studies aimed at achieving optimal cross-functional 

performance(Tanguy and Marchal 1996).  The increasing development and application of 

integrated decision support models in areas such as supply chain (Rimal, Moon et al. 

2008) and research and development (R&D) (Nihtila 1999) are examples of such studies. 

Moreover, integrated concepts such as concurrent engineering and integrated product 

development (IPD) have found wide application in new product development efforts 

across multiple industry sectors (Nahm and Ishikawa 2004). The concurrent product 

development framework facilitates early interdisciplinary collaboration that ultimately 

leads to an overall reduction in the development cycle time. Hence, research in 

concurrent engineering seeks to challenge the sequential linking of functional disciplines, 

such as R&D, marketing, and manufacturing, while highlighting the productivity benefits 

realized from a collaborative approach (Tanguy and Marchal 1996; Koufteros, 

Vonderembse et al. 2001; Yan and Xu 2007). Most of the studies have limited the 

integration to two disciplines, such as marketing and manufacturing (Sherman, Berkowitz 

et al. 2005; Michalek, Ceryan et al. 2006; Kumar, Chen et al. 2009) or product design and 

manufacturing (Nihtila 1999), commonly referred to as the design for manufacturing 
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(DFM) approach.  (Rungtusanatham and Forza 2005) proposed a three dimensional 

concurrent engineering approach that simultaneously coordinates the product design, 

manufacturing and supply chain decision.  However, the prevailing realities of intense 

consumer demand for product variety, coupled with the market demand for speed, have 

rendered these integrated strategies inadequate.  While the benefits of concurrent 

engineering have long been documented in the literature, more recent research studies 

have considered the effects of integrating aspects of product development with the 

business decisions making process (Ng 2004; Georgiopoulos, Jonson et al. 2005).   The 

real driver of a firm’s competitive advantage, and therefore its survival, is derived from 

its ability to satisfy its customer and its shareholders.  Hence, a technique such as quality 

function deployment (QFD) that is used to link customer requirements to product design 

decision has proven to be very valuable to the firm’s success.  Likewise, it is critically 

important to ensure that R&D efforts are directly linked to business strategies and reflect 

existing business priorities. (Ng 2004) noted that the technical objectives of product and 

process design should be set with the business performance measures in mind.  He further 

went on to propose a hierarchical decision framework that relates business decision-

making to the design and development of product and processes.  Such framework 

exploits the difference in scale and length of R&D decisions to yield a hierarchical 

decision-making structure, wherein regions of scale overlap indicate interaction between 

the levels.  

 

Other studies have used the overlapping of different functional activities as a time saving 

mechanism  (Krishman, Eppinger et al. 1997; Blacud, Bogus et al. 2009). The forging of 
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inter-functional coordination is only one of the many approaches adopted in new product 

development industries for speeding up the development efforts. In a recent study, 

(Langerak and Hultink 2008), investigated nine accelerated approaches applied for 

reducing development cycle time in 233 manufacturing industries.  Among the 

approaches studied, they have found that improving the speed of tasks or activities was 

one of the more effective strategies for reducing the development cycle time. (Millson, 

Raj et al. 1992) in an earlier study also identified the elimination and alignment of new 

product development activities as important contributing factors to reducing the 

development cycle time. (Gonzales and Palacios 2002) noted that acceleration of 

development continues to carry significant strategic importance for the firm. (Poolton and 

Barclay 1998) further expanded that improved efficiencies in the launching of new 

products hold the greatest potential for overall improvement. In a recent study, (Meier, 

Yassine et al. 2007) stressed the importance of appropriate design activities sequencing 

and utilizes a design structure matrix (DSM) to streamline information between product 

design activities. 

 

In other studies, (Ni, Luh et al. 2008) addressed the design scheduling problem by 

explicitly modeling tasks dependencies along with analysis of related communication 

activities.  The unique project scheduling problem was formulated as a deterministic 

model that utilizes Lagrangian relaxation and applied heuristics.  Other application of 

Lagrangian relaxation in project scheduling has been shown to combine stochastic 

dynamic programming in order to handle uncertainties in task duration (Luh, Chen et al. 

1999) . Although limited in its application, deterministic approaches such as branch-and-
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bound (Nazareth, Verma et al. 1999; Heilmann 2003) and genetic algorithms (Hartman 

1998; Meier, Yassine et al. 2007) have found wide application in project scheduling 

problems. Furthermore, although computationally efficient, the application of heuristic 

procedure by itself jeopardizes the quality of the results (Ni, Luh et al. 2008). However, a 

combined heuristic-optimization procedure offers a more realistic tradeoff between the 

practicality and the accuracy of the method. In other studies the combination of 

simulation and mathematical programming techniques have been used to assess 

uncertainty encountered in R&D pipeline and further led to control of the corresponding 

risks (Subramanian, Pekny et al. 2000).   

 

In this study we have expanded the concept of sensitivity in design to investigate the 

product design–portfolio management interface. In so doing we apply a hybrid 

computational architecture that utilizes priority rule-based procedure in an effort to 

streamline product design operations.  The procedure may employ a serial or parallel 

scheme to schedule the product design activities. 

 

 This chapter is structured as follows.  A general overview of the product design planning 

problem is first outlined. This is followed by a system description and a description of the 

solution’s approach used to solve the integrated problem in sections 5.4 and 5.5, 

respectively. The problem formulation is presented in section 5.6.  An industrial case 

study is considered in section 5.7 to illustrate the application of the proposed approach.  
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5.3 The Product Design Planning Problem Description 

The deterministic product design planning problem involves the prioritization of product 

design objectives and the assignment of product design activities. Such assignment is 

governed by appropriate precedence and resource constraints. In this study, the 

application of product design activities towards a performance-based design objective is 

defined as a design operation.  For a given product design problem, all such design 

operations must be undertaken within a pre-determined time span.  The optimization 

problem is therefore a time constrained selection problem (TCSP).  The proposed study 

utilizes the simulated product performance to obtain the sensitivity relationship between 

the product performance attributes (product design domain) and the product economic 

value (portfolio management domain) to determine the feasible set of product design 

operations.  Hence, the impact of product’s quality performance variability on changes in 

product valuation is obtained as a sensitivity measure.  

A schematic diagram representing the flow of information between the product design 

and product portfolio management domains is presented in Figure 5. 1. 

Product
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Figure 5.1: Schematic of Product Design- Portfolio Integration 
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In practice, the product design problem involves the translation of consumer and business 

requirements into optimal product design specifications. However, the design planning 

aspect ensures adequate resource assignments to the various product design operations 

necessary to obtain the optimal design specifications.  Ultimately, the optimal design 

specification, along with its accompanying business case, advances for review and 

selection consideration within a new product portfolio context. Given a set of product 

design projects and limited resources, decisions are made concerning individual projects 

whether to advance, recycle (re-worked) or stop all product development efforts.  Hence, 

advanced and recycled projects are assigned resources in order to pursue further 

development or repeat prior design efforts respectively.  Such design iterations represent 

an inefficient use of the firm’s resources and can lead to cost and schedule overruns for 

the specific project as well as other projects within the design phase.  Among the critical 

portfolio management decision considerations is the potential economic value (net 

present value) of individual product design projects.  Appropriate alignment of the two 

domains, based on this portfolio metric, provides insights that influence product design 

decision considerations and ultimately leads to identifying the optimal set of product 

design operations.   

 

Product design operations feasibility and rearrangement policy are based on the 

sensitivity analysis result obtained from modeling the economic value as a function of the 

product quality characteristics. The rearrangement objective is to reduce product design 

cost and lead time by focusing first on the most critical product quality performance 

characteristics.  In this study, combined measures of the product quality characteristics 
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are used to assess the overall product’s performance. Monte Carlo simulation of the 

product’s economic performance generates product performance scenarios for which 

economic values are obtained. Uncertainties in the product’s economic performance due 

to market variability are assumed to be directly linked to variability in product’s 

performance. The integrated product design planning problem is modeled as a discrete 

event that interfaces with the product portfolio management process. In this instance, a 

single cycle (static) system illustrates the interaction of the two domains at their interface.  

The underlying assumption in this study is that better understanding of the relative 

importance of quality characteristics enables appropriate prioritization that leads to the 

devising of appropriate experimentation, testing evaluation and robust design strategies to 

enhance design performance. A standard sensitivity analysis study to indicate the 

variance contribution of the product quality characteristics to the product’s economic 

value (NPV) forms the criterion for defining and prioritizing the product design 

decisions.  

 

5.4 Model Description 

In this chapter we consider the design of a single product that takes place within a finite 

time period T.  The state of the design is characterized by a set of discrete design 

activities,  | 1,iA a i n  , and product design performance objectives evaluated via a 

set of product quality characteristics, { | 1, }jQ q j m  . These product design performance 

objectives are subsequently prioritized and may undergo preliminary screening to yield 

an indexed set N such that N Q .   The application of a set of design activities to a set of 
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product quality characteristics defines the set of design operations, U. The initial state of 

the product design planning problem, as specified by the new product category, comprise 

the full set of all potential product design performance objectives. We assign a {0,1} 

value to indicate the existence of a design operation. Hence, each ordered pair {i ,j} for 

the initial design planning problem assumes the value 1 in this instance. The set F is the 

processed set of product quality characteristics such that F U .  Furthermore, sensitivity-

based priority rule govern the sequence of these design operations.  The product design 

problem is decomposed into design sub-problems that can be solved independently to 

obtain specific product performance objectives (product quality characteristics measures), 

subject to a deterministic time constraint.    

 

The overall objective of the product design planning process is to streamline product 

design operations in such a way that minimizes the total design costs while satisfying 

potential market preference. The streamlining of design operations also implies reduction 

in possible sunk cost in the event that the project is later canceled. Conversely, reduction 

in cycle time, resulting from the elimination of non-value add design operations, leads to 

greater revenue generation over the life cycle of the product in the event the product 

survives to market launch. The proposed approach assumes there exists no limitation on 

the availability of skilled resource necessary for carrying out the design operations within 

the specified time span.  The time span T assigned for the design of the single product is 

estimated based on the initial feasible state matrix of the product design operation 

coupled with product designer’s knowledge of the development of similar product within 
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the product line or within the market.  An illustration of the system’s execution structure 

is presented in Figure 5.2. 
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Figure 5.2: Design Operation Architecture 

The approach assumes linearly independent, sequentially ordered design operation that 

targets specific design objective. However, such approach is further constrained by 

inherent design activity dependence or mandatory requirements. The magnitude of the 

connection is characterized by the expected time duration, tij, in which a given activity i is 

applied to quality performance characteristic j. Hj denotes an upper bound on the design 

time necessary to yield the specifications for product quality characteristic j. 

 

5. 5 The Solution Approach 

The proposed two-stage processing-optimization model prioritizes and streamlines 

product design operations in an effort to reduce overall design cost and cycle time.  

Vector set S represents the set of product performance scenarios (measured via quality 

characteristics values) generated randomly using Monte Carlo simulation technique. 
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Sensitivity analysis yielded the relative variance contribution of each quality 

characteristics to the net present value (NPV), thus providing the basis for prioritization.  

We utilize a mapping scheme wherein each quality characteristic j is assigned a unique 

dummy value rj to denote its priority position deduced from its relative variance 

contribution. The remaining processing actions in stage 1 involve establishing an initial 

feasible set of design operations for the second stage optimization problem.  The 

computing architecture for the sensitivity-based time constrained selection problem 

(STCSP) is given in Figure 5.3.  
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Figure 5.3: Schema of   the Solutions Approach 

 

According to (Kolisch 1996) there are two components of the priority based scheduling 

scheme approach: 1) the schedule generation scheme and 2) a priority rule. Such schedule 

generation scheme may follow a serial path or a parallel path.  We begin the product 

design problem planning problem with a pre-determined set of product quality 

characteristic.  The set of first stage operations in the solution approach (Figure 5.3) yield 
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a priority indexed set of product quality characteristics obtained by applying a priority 

rule that assigns higher priority to quality characteristics associated with greater variance 

contribution. The model allows for product design planning flexibility in that it allows 

designers to reduce the ―initial state space‖ by applying a variance contribution threshold 

value B. The variance threshold value B specifies the lower bound of the quality 

characteristics variance contribution such j B   for all j. However, such screening of 

quality characteristics would be subjected to technical product performance requirements.  

In this study we adopted and modified the serial approach first proposed by (Kelley 

1963). We proposed a nested selection procedure with an objective to select a set of 

product design operation that satisfies the priority rule and the set of design activities 

constraints. We specify the selection problem by denoting a maximum number of m 

stages, such that k=1…..m, and each stage k accompanies the selection of a product 

quality characteristic j from the indexed set N.  The selection of the product quality 

characteristic is done based on assigned priority value ( rj ) and is followed by assignment 

of product design activities according to the activity relationship and resource constraints.  

Associated with each stage is a processed set of product design objectives Fk   and an 

unprocessed set Yk of relatively lower prioritized design objectives member. The 

algorithm selects the product quality characteristic from the set Yk and assigns design 

activities until all members are assigned or until resources are depleted. Figure 5.4 

summarizes the algorithm used for stage 2 in the proposed framework. 
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Figure 5.4: Algorithm for Stage 2 of STCSP 
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5. 5. 1 Product Economic Performance Sensitivity 

In this study we relate the product performance attributes (product quality characteristics) 

to the product economic value in order to assess variance contribution and subsequently 

assign priority to individual product performance objective. This approach exploits the 

underlying link between customer preference and the product’s attributes that are 

specified during product design.  Theoretical basis for this relationship can be found in an 

earlier work (Oliva, Oliver et al. 1992) in which it was demonstrated that consumer 

demands depend on the level of product performance. Consequently, we express the 

estimated product’s profit, P as a function of the market demand, which in turn is given 

as a function of the product performance product quality characteristics such that  

  
( )P P D        (5.1) 

where D  is the product demand 

 

We apply a simple linear demand model developed by (Cook and Wissmann 2007) for 

the single product:  

( ( ) )D K V q p        (5.2) 

where, K is the absolute elasticity of demand and V(q) is the product value; q is the 

product quality characteristic. A slightly modified expression for product value (de Weck 

2006) is made to omit product option :             

           1 2 1 2V( ,   ) =V ( ) ( ) ( ) m o mq q q v q v q v q       (5.3) 
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where Vo represents the value of the baseline or average product in a given market 

segment; ( )jv q is given as the value curve for the j quality characteristic which is  defined 

as follows:  

  

0.5
2 2

2 2

( ) ( )
( )

( ) ( )

c ideal j ideal

j

c ideal o ideal

q q q q
v q

q q q q

   
  

    
    (5.4) 

where cq  is assigned the critical threshold value. Hence the market demand depends on 

the product value which effectively indicates the distance between the firm’s product 

quality characteristic and the ideal level in terms of customer preference.   

 

The variation in the product quality characteristics is modeled by mapping the product 

attribute space to the product economic value space by employing the Monte Carlo 

simulation method.  An appropriate probability distribution, based on historical data or 

expert knowledge was assigned to each input quality characteristic variable. Such 

mapping utilizes the functional form of the product performance economic value given 

as:

 

 

( , )

1

t

t

P p D
NPV

r





     (5.5) 

where NPV is the net present value, Pt is the net cash flow (profit) at time t,  t is the time 

of the cash flow and  r is the discount rate. Sensitivity analysis was performed to assess 

the impact of the variation of the product quality characteristic on the product economic 

performance by calculating a multi-year NPV.  
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5.6 Optimization Problem Formulation 

In this section we introduce the notations and the deterministic optimization model for 

the cost minimization problem.  In this formulation it is assumed that time resource 

associated cost is the major cost contribution during this development phase. With the 

product requirements defined, the product design activities ia A  can be grouped into 

the following categories: 

1. Modeling of product performance 

2. Design optimization 

3. Testing or validation of product’s performance 

4. Control of product performance 

In this study the actual product performance is obtained by evaluating the set of product 

quality characteristics, { | 1, }jQ q j m  that provides a quantitative measure. The 

product design planning process involves assigning design activities aimed at specific 

product performance objective and ensure that such activities are undertaken and 

completed within a given time allocation. The time allocation is determined based on 

historical knowledge or product designer’s estimation. In this study such activity 

assignment is influenced by the sensitivity-based priority associated with the product 

performance objective.  A general form of the optimization problem is given as follows:  
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
             (5.6) 

  

where: ijc  is the cost incurred when activity i is applied to quality characteristic j; ijw  

corresponds to the binary decision variable which is 1 if activity i is applied to quality   

characteristic j, 0 otherwise, ijt = is the time duration of activity i when applied to quality 

characteristics j; jH is the time resource allocated for quality characteristic j with 

0jH  , and T is the total time horizon for the overall design problem. 

 

The design planning problem is further constrained by design activity relationship 

requirements along with quality characteristics priority index. 

 

There are product design activities whose execution is dependent on the existence of 

another. This requirement is accounted for in the formulation problem by specifying the 

following: 
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1         

0 
id
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,
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ij dj i id

ij i j

w w

w

   

 
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The mandatory design activity is specified in the problem formulation as follows : 

 

1          

0 
ij

if activity i for the j quality characterisic is mandatory
M

otherwise


 


  

  0  0ij ijw where M         (5.8) 

The sensitivity analysis provides the basis for the priority policy governing quality 

characteristic precedence. 

     

If there are design operations that occur and are mutually exclusive, the following 

constraint is enforced; 

,

1ij

i j

w


                    (5.9) 

where   is a set of mutually exclusive design operations.   
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5.7 Industrial Case Illustration  

Unique performance requirements for the pressure sensitive adhesive (PSA) label product 

can be determined via discrete and independent development that may require specialized 

resource allocation.  The multi-lamination PSA product consists of an adhesive layer 

applied to a polymeric film backing and a release liner coated with silicone release 

agents. The PSA label product is designed for personal care consumer products labeling 

application, with discrete performance requirements, and is therefore classified as a 

chemical-based configured consumer product. The product design problem involves the 

evaluation and specification of individual layer or composition properties such as 

mechanical strength property, ink adhesion property, adhesive bond strength and label 

aesthetic properties.  We provide an example illustration of the sensitivity-based time 

constraint selection approach (STCSP) by exploiting the decomposable performance-

based construction of the PSA label product.  

  

The quality of the product is defined by a set of discrete measurable characteristics of 

quality, { | 1, 7}jQ q j  . The ultimate objective of this design effort therefore is to 

independently optimize the quality characteristics by performing a set of design 

activities  | 1, 4iA a i  . The design activities may involve robust enhancement, pilot 

scale and manufacturing scale evaluation as well as unique or extended field trial 

evaluation. Such targeted design efforts consumes resources in the form of additional 

materials and people resources. Hence, the design planning problem yields the optimal 

set of design operations with their corresponding expected costs and time duration.  
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5.7.1 Monte Carlo Simulation and Sensitivity Analysis 

Each product quality characteristic has estimates of statistical parameters and assumed 

normal probability function.  The product quality characteristics are unique measures of 

independent layer sub-system that delivers unique functional and aesthetic performance. 

Table 5.1 summarizes the base values and statistic used in the Monte Carlo simulation 

Table 5.1: Basic Performance Values 

Product 

Quality 

Characteristics 

Mean Values  Standard 

Deviation  

q1  3.2  0.3 

q2 16500  1650 

q3 0.03 0.003 

q4 35  3.5 

q5 50  5 

      q6 0.83 0.08 

      q7 3000  300 

   

 

Monte Carlo simulation process occurs by random sampling probability distribution 

functions (pdfs) using random number generation to create artificial history of product 

performance data.  Commercially available simulation module (Crystal Ball) performed a 

fixed simulation of a length of 1000 trials. The random numbers generated were used to 

calculate the NPV output values.   
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 Sensitivity analysis is performed to evaluate the relative variance contribution of each 

product quality characteristic as shown in Figure 5.5, with the range of uncertainty 

associated with each quality measure. 
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Figure 5.5: Product Quality Characteristic Variance Contribution 

 

The product quality characteristics are prioritized to differentiate their impact on the 

product economic value (NPV).  Hence, the heuristics derived from this analysis specify 

that product quality characteristics should be prioritized based on the corresponding NPV 

sensitivity value.  The model uses a normalized function for which linear weights are 
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assigned to each quality characteristics such that qj is associated with a value rj, where 

1

1
m

j

j

r


  as given in Table 5.2. 

 

        Table 5.2: Sensitivity Based Assigned Priority of Quality Characteristics 

qj q1 q2 q3 q4 q5 q6 q7 

rj 0.1 0.002 0.2 0.26 0.068 0.36 0.03 

Priority 

Assignment 

4 7 3 2 5 1 6 

 

                                                                                            

Figure 5.5 illustrates the relative impact of the quality characteristics on the portfolio 

decision criteria measure (NPV) for the given probabilistic assumptions with a base case 

of $44,000.00.  The relative sensitivity values are used to assign a priority index to the 

quality characteristics in an effort to streamline design operations. Although widely used, 

economic models such as NPV have limited utility in assessing the value of products of 

all new product categories. Consequently, such models are considered to be most relevant 

for line extension and product modification projects for which some familiarity exist  

(Cooper, Egdett et al. 2001). Therefore, since the sensitivity-based optimization 

framework utilizes such economic model, similar limitations apply. Nonetheless, this 

approach provides valuable insight into the relative importance of design actions and 

therefore enable better planning within the given time horizon.   
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5.7.2 Optimization Problem 

For a given un-ordered set of design activities, priority indexed product quality 

characteristics and corresponding expected design operations time duration and cost, we 

solve a linear programming (LP) optimization problem for the incremental product 

design  determine as given in  problem 5.10. 

 
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        (5.10)

 

The optimization problem was constrained by a set of linear inequality constraints that 1) 

established activity precedence for the set of design activities (2 accounted for mandatory 

requirements and 3) accounted for activity precedence requirements. To highlight the 
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effect of the proposed approach we compare a worse case product design effort, wherein 

all product design operations were executed such that,  1 ,   ,ijw i j   . 

It is the authors’ viewpoint that the worse case approach is likely the most commonly 

practiced in industry due to the inability to make intelligent prioritization of design 

criteria. 

 

The optimal set of product design operation given in Table 5.3 yield a total expected cost 

of $29,540.00 and time duration of 2 months.  This compares with the worse case of 3.2 

months duration and a corresponding cost of $42,460.00.  This value of 3.2 months is a 

conservative estimate as it does not account for time taken for iterations between design 

tasks. The ability to determine critical quality characteristics based on their value 

contribution, enables efficient resource allocation that results in important cost savings.  

Conversely, there is a high probability to ―over-design‖ a product offering in absence of 

clear alignment of design attributes to purchasing intent. Hence, R& D organizations 

expend significant resources in pursuing non value-add or limited value-add activities 

that yield little or no return on investment (ROI). 
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Table 5.3: Optimal set of Design Operations 

 a1 a2 a3 a4 

q1 1 1 1 0 

q2 1 0 0 0 

q3 1 1 1 1 

q4 1 1 1 1 

q5 1 0 1 0 

q6 1 1 1 1 

q7 1 0 0 0 

 

 

5. 8  Conclusions 

The sensitivity-based design operation selection framework presented in this chapter 

provides an efficient platform for design planning.  By utilizing the sensitivity relation 

between the product design domain and the portfolio management domain, appropriate 

focus was directed towards optimizing the more critical product performance objectives.  

Hence, minimizing the cost and time allocated to non-value add product design 

operations. 
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Furthermore, this approach enables product designers to integrate the voice of the market 

directly into the product design process based on the more reliable indicator of 

purchasing intent. Also, early and deliberate collaboration between the technical 

community and marketing facilitate greater market acceptance at the point of product 

launch and therefore increases the probability of product success. Altogether, the 

presented results underline the potential of the STCSP approach to aid product design 

planning problem for real world application. 

.  
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5. 9 List of Notations  

A  = Set of product design activities 

ai  = Product design activity i 

id  = Indicate dependence of activity i on activity d 

B  = Assigned lower bound variance contribution index ( product design  

                            objectives with variance contribution below this value may not be  

    assigned design activity resources) 

C  = Product variable cost 

cij  = Cost incurred when activity i is applied to quality characteristic  j 

D  =Set of NPV sensitivity coefficients 

D   = Product demand 

j   = NPV sensitivity coefficient for quality characteristic j 

F  = Set of processed product design objectives 

Fk  = Set of process product design objective associated with stage k 

Hj  = Upper bound on design time assigned to quality characteristic j 

i  = Index for product design activity 

j  = Index for product quality characteristic 
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k = Quality characteristic selection stage in the recursive solution approach 

of  the STCSP 

K = The absolute elasticity of demand 

m  =Maximum number of product quality characteristic and number of    

                           selection stages of quality characteristic 

Mij  = Indicate whether activity i is mandatory for quality characteristic j 

N  = Priority indexed set of product design objectives 

n  = Number of product design activities 

P  = Product profit 

p  = Product price 

Pt  =The net cash flow at time t,   

Q  =Set of product design objective or quality characteristics 

qj  = j
th

 quality characteristic  

cq
  = Assigned as a critical threshold value 

r  =Discount rate 

rj  = Assigned priority value to product quality characteristic j 

S  = Simulated scenario of product performance 
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t  =The time of the cash 

ijt
  

= The time duration of activity i when applied to quality characteristics j 

T  =Product design time horizon 

U  = Set of product design operations 

V(q)  =The product value 

Vo   =The value of the average product in a given market segment
  

( )jv q
  

=The value curve for the j quality characteristic 

wij = Binary decision variable that indicate the application of design activity i  

to product quality characteristic j 

Yk  =Unprocessed set of product quality characteristics 

z  = Cost objective function 
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Chapter 6 

 

SUMMARY AND FUTURE WORK 

 

The development and application of novel decision support models to enable efficient 

product design planning, selection and execution, is the unique contribution of this work.   

The uniqueness of the proposed methodologies relates to the application of 

multidisciplinary integration and the exploitation of the implicit relationship between the 

product design and product portfolio management domains in particular. Hence, we have 

expanded product design interaction beyond the interplay of design activities to the 

integration of functional domains for greater effects. 

In this study we use the dependency matrix approach to illustrate domain relation 

between the product design and product portfolio management domains, and to facilitate 

their integration. Moreover, the solution approach integrates the stochastic effects by 

simulating random patterns of integration that characterizes the product design-product 

portfolio interaction. In other application, we consider the variance contribution made by 

product quality characteristics to the product’s economic performance as the basis for the 

domains integration.  The sensitivity relation enables product designers to prioritize their 

independent product design objectives resulting in improved resource utilization.   

In addition to the primary objective of achieving efficient operation, chemical producers 

must ensure that the designed product delivers consumer value. We offer a novel 

consumer integrated product design (CIPD) framework to facilitate the generation of 
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efficient product design solutions via mechanism that explicitly incorporates consumer 

input and economic criteria. Such explicit incorporation of two competing objectives, in a 

bi-objective formulation, ensures consumer influence in design tradeoff considerations. 

The application of such integrative product design solution approaches offers an 

innovative response to the increasing market demands for speed and value, while 

satisfying business need for efficient resource allocation. Included in the features of these 

novel support systems are inherent designer flexibility to allow for discretionary selection 

of product design activity along with limited scalability of the proposed approaches. 

 

In this work, we have treated the modeled systems as a static system to focus on the 

interfacial interactions.  For future study we proposed the modeling of a dynamic system 

representing multiple time periods of the product design process integration. The 

application of more rigorous stochastic models would necessarily accompany such 

dynamic process as a critical component of future work. Future work will include the 

models to include parallel scheduling scheme for enhanced process efficiency. 
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Chapter 8 

 

APPENDICES 

8.1 Performance Validation of Optimal Product 

Figure 8.1 compares the flow curves of the commercially available formulation with that 

of the optimally designed product.  In Figure 8.1 it is shown that both samples exhibited 

shear thinning behavior, with the optimally designed product yielding a slightly higher 

viscosity over the shear rate range. The commercially available product and the optimally 

designed product exhibited similar response in flow properties over the specified range of 

shear rate. At an application shear rate of 1027s
-1

 viscosity values of 0.44 Pa.s and 0.35 

Pa.s were obtained for the optimally designed product and the commercial product 

respectively.  Viscosity value of 0.025 Pa.s has been reported for cream cosmetic product 

at the much higher shear rates of 5000 s
-1

 and at shear rate of 1000 s
-1

 for less viscous 

lotion products (Wibowo and Ng 2001).  According to (Herh, Tkachuk et al. 1998), the 

flow properties of cosmetic product strongly influences its acceptance. Furthermore, a 

product’s flow curve provides important information about its storage stability, 

processing conditions as well as its end-use application (Herh, Tkachuk et al. 1998). 
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Figure 8.1: Comparison of Flow Curves 

In addition to studying the products flow properties, dynamic oscillation testing was also 

undertaken to compare the underlying microstructure of the under eye cream products. 

Initial strain sweep was used to determine the viscoelastic region for the under eye cream 

products. Figures 8.2 and 8.3 compared frequency sweep performed in the linear 

viscoelastic region for the optimally designed product and the commercial product 

respectively. 
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Figure 8.2: Frequency Sweep of the Optimally Designed Product 
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Figure 8.3: Frequency Sweep of Commercially Available Product 

A comparison of the two cream products revealed a difference in their underlying 

microstructure.  The commercially available cream has higher storage and loss modulus 

when compared to the optimally designed product. The difference in internal network 

structure can be due to difference in compositional variables. The Deborah number (NDe), 

which provides an indication of the material’s viscoelastic property (Wibowo and Ng 

2001) is determined as the ratio of the two moduli (Reiner 1964).  The viscoelasticity 

measured as the ratio of G  (the storage modulus) to G  (the loss modulus) were found to 

be 4.9 and 6.8 for the optimally design product and commercial product respectively.  

Hence, both products exhibited greater elastic like behavior over the frequency sweep 

range with values similar to those reported in the literature (Wibowo and Ng 2001). 
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8.2 Intraclass Correlation (ICC) Reliability for Subjective Measurement 

The follow statistical analysis was performed for the subjective consumer rating of the 

under eye cream product. 

 

Table 8.1: Subjective Measure Reliability Statistics 

No. of judges (k)=5

No. of samples (n)=8 SS DF Mean Square Components

Judges 38.35 4.00 9.59 JMS

Between Samples 259.82 7.00 37.12 BMS

Total 358.29 39.00 9.19

Within Samples 98.47 32.00 3.08 WMS

Error 60.12 28.00 2.15 EMS  

 

ICC Reliability-Individual 

 

ICC Reliability -Average  

 

Both ratings meet the reliability index requirement of 0.7  
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8.3 Transformation of Non-Normal Data 

Transformation of the dependent variables was undertaken prior to model generation to 

ensure adherence to underlying assumptions (for the regression model) of normally 

distributed residuals with constant variance. 
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Figure 8.4: Johnson Normality Transformation for Viscosity Data 
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