Research Report 9/99

KARLSKRONA
RONNEBY

Performance Optimization using
Critical Path Analysis in
Multithreaded Programs on
Multiprocessors

by

Magnus Broberg, Lars Lundberg,
Hakan Grahn

Department of

Software Engineering and Computer Science
University of Karlskrona/Ronneby

S-372 25 Ronneby

Sweden

ISSN 1103-1581
ISRN HK/R-RES—99/9—SE

Performance Optimization using Critical Path Analysis in
Multithreaded Programs on Multiprocessors

by Magnus Broberg, Lars Lundberg, Hakan Grahn

ISSN 1103-1581
ISRN HK/R-RES—99/9—SE

Copyright © 1999 by Magnus Broberg, Lars Lundberg, Hikan Grahn

All rights reserved
Printed by Psilander Grafiska, Karlskrona 1999

Performance Optimization using Critical Path Analysis
in Multithreaded Programs on Multiprocessors

Magnus Broberg, Lars Lundberg, and Hakan Grahn

Department of Software Engineering and Computer Science
University of Karlskrona/Ronneby
Soft Center, S-372 25 Ronneby, Sweden
{Magnus.Broberg, Lars.Lundberg, Hakan.Grahn}@ipd.hk-r.se

Abstract
Efficient performance tuning of parallel programs is often hard. Optimization is often done
when the program is written as a last effort to increase the performance. With sequential pro-
grams each (executed) code segment will affect the total execution time of the program. Thus,
any code segment that is optimized in a sequential program will decrease the execution time.
In the case of a parallel program executed on a multiprocessor this is not always true. This is
due to dependencies between the different threads. As a result, certain code segments of the
execution may not affect the total execution time of the program. Thus, optimization of such
code segments will not increase the performance. In this paper we present a new approach to
perform the optimization phase. Our approach finds the critical path of the multithreaded pro-
gram and the optimization is only done on those specific code segments of the program. We
have implemented the critical path analysis in a performance optimization tool.

1. Introduction

Optimization of sequential programs is a well known technique to increase performance. Tradi-
tionally this optimization is performed when the program is already written. Today, several tools,
often referred to as profilers, support the developers in finding the code segments of the program
where the most time is spent. These code segments are then the target for the optimization efforts.,
l.e., the programmer rewrites these code segments in order to minimize the execution time. This
procedure has been used successfully for a long time.

The main reason for using multiprocessors is to achieve higher performance. As a part of
reaching this higher performance, traditional optimization is performed on programs designed for
multiprocessors. However, not all code segments of the program will affect the total execution
time.

It is often difficult to know which code segments of a multithreaded program that affect the
total execution time. Synchronizations are a major factor to decide whether a code segment of a
program contribute to the total execution time. Consider a thread that will produce the result long
before the result is needed. The thread does not share the processor it is executing on with any
other threads. Optimizing that thread wiibt affect the thread that use the result and, thus, the
total execution time. On the other hand, if the threads using the result where waiting for the result,
optimizing the thread producing the result will decrease the total execution time.

Also the actual number of processors affects which code segments that constrain the total exe-
cution time. For example, consider a program that includes a watchdog. The number of processors
are sufficiently large to allow the watchdog to execute on its own processor. Thus, there is no need
to optimize the watchdog. However, when having only one processor, the execution time for the
watchdog will affect the total execution time for the whole program.

Multithreaded programs may include hundreds of threads with thousands of different syn-
chronizations. Thus the need for a tool that indicates which code segments of the program that is
fruitful to optimize is crucial for effective optimization of multithreaded programs executing on a
multiprocessor. It is also crucial that the developer gets useful information about the code seg-
ments, i.e., function names, what fraction of a function contributes to the total execution time. In
this paper we present a tool that will give the developer information about which code segments
of the multithreaded program that are beneficial to optimize, we call thattibal path.

The paper is structured as follows: A definition and discussion of the critical path is presented
in Section 2. Section 3 describes the algorithm to calculate the critical path. In Section 4 we
present a working tool with the critical path analysis implemented and show in a practical exam-
ple in Section 5 for the need of such a tool. Discussion and related work is found in Section 6 and
we conclude the paper in Section 7.

2. Overview of the Critical Path Analysis

The developer of a multithreaded program must have knowledge of which code segments of the
parallel program that are fruitful to optimize. In general terms, code segments that are fruitful to
optimize are called theritical path. We define theritical path as all the executed code segments

of a program that when reduced with & will also shorten the total execution time. Conse-
guently, all code segments ofsaquentiaprogram will be considered as part of the critical path.
This is because if we shortemy part of a sequential program it will result in a shorter total exe-
cution time.

In the case of a multithreaded program executing on a multiprocessor, not all code segments
of the program are included in the critical path. Consider the program in Figure 1. We assume that
all functions (a-d) take equal amount of time to execute and that signalling takes no (or negligible)
time.

When executing the program on a multiprocessor with 3 processors (or more) the execution
will look like in Figure 2. The critical path is (from the start) thread 1 execuéiQ)g, then thread
3 executinge() , thread 2 executind() , and finally thread 1 executire{) again. It is obvious
that shortening some code segment in the critical path will also decrease the total execution time.
Shorten, e.gh() will have no affect on the total execution time.

Thread 1: Thread 2: Thread 3:
Execute a() Execute b() Wait for event X
Signal for event X Wait for event Y Execute c()

Execute b() Execute d() Signal event Y
Wait for event Z Signal event Z Execute b()
Execute a() End End

End

Figure 1: A simple program with three threads.

Thread 12 < b a

Thread b d z

Thread 3 C Y b Time
| T T T >

Figure 2: The execution of the simple program on a multiprocessor with three processors.

Unfortunately, ordinary profiling tools, such as Quantify [7], does not consider the critical
path. They will indicate that the program spend most of the time in funttfpnand suggest that
function for optimization. This is indicated in Figure 3 where functagp tod() is found atthe
top, the other functions shown are only for internal use in the Solaris operating system. In fact, the
advice Quantify gives is the worst possible, due to the tool’s incapability to analyze the semantics
of the synchronizations within the program.

The need for a tool which consider the critical path is obvious in order to correctly optimize
multithreaded programs on a multiprocessor.

Quardhly Fusotien List

Figure 3: Quantify’s list of the functions to optimize.

3. The Critical Path Algorithm

In this section we will describe how the critical path algorithm works. First we describe the algo-
rithm to identify the critical path. Then we describe how we calculate how much time each func-
tion in the critical path executed during the whole execution. Both these parts are important in
order to give useful information about where to start optimize the code. Finally, we will show how
to calculate the critical path for multithreaded program with more runnable threads at the same
time than there are processors.

3.1. Finding the critical path in the optimal case

First we will look at the critical path algorithm under the condition that the program is executed

on a sufficient number of processor and thus no threads have to share a processor at any time. We
assume that explicitly synchronized events happens at the exact same time, such as one thread
releases another thread. This means that the thread starts exactly at the same moment as the othel
thread releases it. Unsynchronized events are assumed to occur at different times. Using a timing
device with high resolution will solve the assumptions above. These assumptions are realistic and
does not change the algorithm in principal. They are easily removed, but kept here in order to sim-
plify the presentation. The algorithm for finding the critical works as follows.

The algorithm starts at the end of the execution and follows the thread backwards until the
thread has been blocked for some reason. Then the algorithm finds the event that released the cur-
rent thread. The algorithm then continues to follow the releasing thread backwards until it also
becomes blocked. Thus, in that manner the algorithm continues until the start of the program. All
code segments of the program that the algorithm goes through are part of the critical path.

-3-

To illustrate the algorithm we use the example program with three threads in Figure 4. The
execution times for the different functions are illustrated in Figure 5 where also the execution of
the program on an optimal number of processors are illustrated.

Thread 1: Thread 2: Thread 3:
Execute a() Wait for event X Wait for event Y
Signal event X Execute c() Execute d()
Execute b() Signal event Y Wait for event Z
Signal event Z Execute a() Execute e()
Execute c() Wait for signal Y Signal event X
Wait for event X Execute d() Execute a()
Execute e() End Signal event Y
End Execute f()
End

Figure 4: A program with its three threads.

Thread 1 a0 b(<0 e0
Thread 2 Xy aQ Z X A—d‘L
Thread 3 v do e | a(Y fQ
— T T T T T T T T T T 1 o
0o | | | 5. | | | 10 Time
Number of 11203121 1/2 1! 2} 3 2 1

executing threads

Figure 5: The optimal execution of the program. The values irtalic indicates the number of executing threads.

Following the algorithm described above we start at the end of the execution, i.e., thread 3 at
time 11. Tracing thread 3 backward makes us go through funfion a() and finallye() . At
time 4 to 5 the thread was not executing, thus the thread was blocked. The thread (3) was waiting
for event Z. Thread 1 releases thread 3 at time 5, thus we continue the algorithm with thread 1.
Thread 1 executes through functib() anda() without being blocked until the start of the pro-
gram at time 0.

Thus the critical path for the program is thread 1 executing funa{®nandb() and thread
3 executing functiore() ,a() ,andf() .Itis easily verified that optimizing amytherpart of the
program will not affect the total execution time.

3.2. Calculating function times contributing to the critical path
In the previous section all the synchronization are done between the function calls. This is not
always the case, since synchronization could appear inside the functions as well. This gives some
complications when calculating the time spent in certain functions during the critical path. This
calculation is done when the critical path analysis is already done, thus we only concentrate our
effort on the parts that are in the critical path. We will calculate three vadudsnction
» The number of calls. This is the number of times the function was called during the critical
path.
* The total execution time. This time is the accumulated time, during the critical path, the pro-
gram was executing in the function.

 The total execution time including all descendant functions. This time is the accumulated
execution time for the function and its descendants, during the critical path both for the func-
tion and the descendants.
We will use the program illustrated in Figure 6 to show how the values are calculated. In Table
1 the information needed to perform the calculations of the program in Figure 6 is found. The
information in Table 1 is gathered by the tool described in Section 4. The events indicating a
thread entering or exiting a function are considered to take no time and thus are unimportant to
mark as part of the critical path. Basically the algorithm iterates over all rows in the table that is
marked as part of the critical path.

a() b() ﬁ() ﬁ() %7 Enter function x()
Thread 1 | | | | X()
%7 X Y ZF Exit function x()
c() c() X0
Thread 2 | | Time
| | | | | >

Figure 6: An example program with synchronization inside functions.

Table 1: The needed information for the analyze of the program shown in Figure 6.
The Category column will be discussed in Section 4.

Row Event Thread Start time Length Part of Critical Path Category
1 enter function a() 1 0.000000 - - C
2 executing 1 0.000000 3.894285 vyes B
3 enter function c() 2 0.000000 - - C
4 wait for event X 2 0.000000 0.001680 no A
5 enter function b() 1 3.894285 - - C
6 executing 1 3.894285 3.894284 yes B
7 signal event X 1 7.789474 0.000177 yes A
8 executing 2 7.789651 3.928914 no B
9 wait for event Y 1 7.789658 0.000196 no A
10 signal event Y 2 11.718565 0.000113 yes A
11 executing 2 11.718678 3.832353 no B
12 executing 1 11.718678 3.884579 yes B
13 exit function c() 2 15.551031 - - C
14 exit thread 2 15.551031 0.000038 no A
15 exit function b() 1 15.603257 - - C
16 executing 1 15.603257 3.8845719 yes B
17 exit function a() 1 19.487836 - - C
18 exit thread 1 19.487836 0.000054 vyes A

Each iteration first determines the thread’s function call stack. The first part of the critical path
in Table 1 (row 2) has the stae) . Now the algorithm first look whether the functia) has
been called. This is determined by comparing the time of the entering (row 1) and the start time of
the execution (row 2). Since they are equal the thread just entered the function and a counter for

-5-

the number of entrances for functiaf) is increased. The time the critical path has been execut-
ing in the function is kept in another counter, which simply is increased with the length of the
event (row 2). The total time the function has been executing, including its descendants, is kept
track of in a similar manner.

In order to illustrate the handling of the two different time counters, we will take a look at the
next part of the critical path (row 6). Now the staclki§ at the top anc() at the bottom. The
counter for execution time is only increased for the function at the top of the stack, i.e., function
b() . The counters for the execution time with descendents is increased for all functions in the
stack, i.e.p() anda() .

This is then repeated for all parts of the critical path. Recursive calls are also easily managed
since we keep only one set of counters per function, regardless of whether there are many occur-
rences of the function on the stack. Note, however, that the counters may only be updated once per
part of the critical path, regardless if they occur several times on the stack.

3.3. Finding the critical path with CPU constraints

In Section 3.1 we defined the algorithm for finding the critical path when a unlimited number of
processors are available. This is not always the case in real life, unfortunately. Thus, we need to
adjust the algorithm to fit whenever there are more runnable threads than there are processors.
This enforces that some threads at some times must be multiplexed by the scheduler on one pro-
cessor.

We keep the example in Figure 5, but look at what happens if we only have two processors
available. The number of executing threads are indicated for each time unit as the figtais.in
The interesting parts are when the number of threads is larger than the number of processors. In
the example this is time 2 to 3 and time 8 to 9 where three threads are executing on the two avail-
able processors. One way of modeling the multiplexing without assuming any specific scheduling
algorithm is to regard the processors to run slower as the number of threads increases. The proces-
sors run at only 2/3 speed for time 2 to 3 and time 8 to 9, i.e., we assume that the scheduling is
ideal with infinitely small time slices and no scheduling overhead. This is not an unrealistic
assumption since some performance prediction tools has used that assumption with good result
[6] when compared with real scheduling.

First we identify the optimal critical path as described in Section 3.1. During time 2 to 3 in
Figure 5 the number of thread exceeds the number of processors, thus the three thread must be
multiplexed on the two processors. In practise time 2 to 3 will take 1.5 time units and thus
extended the total execution time with 0.5 time units. If we are able to optimize any thread during
time 2 to 3 we are interested in knowing which ones that will cut the total execution time. Thread
1 is already marked as part of the critical path. Optimizing thread 3 will make no difference since
€ is to be considered a small amount of time. This is because optimizing thread 3 at time 2 to 3
will only shift the execution at time 3 to 4 to the left, leaving time 2 to 3 still having 3 threads exe-
cuting simultaneously. Thread 2 can successfully be optimized, since€each will also cut the time
spent executing threads simultaneously. This is because thread 2 becomes blocked at time 3, and
thus no part of the execution will be shifted in its place.

The critical path algorithm looks for all threads that stop executing (either becomes blocked or
exits) at a time where there are more runnable threads than processors available. This, since a
thread that stops executing is the only one that not will shift in a later part in the time period where
there are more threads than processors as discussed above. After the algorithm has found one
thread ending, the critical path algorithm described earlier in Section 3.1 will be applied on the
thread from the time it was stopped. The algorithm in Section 3.1 will continue backwards since
any part of the critical path can make the thread end earlier and thus shorten the time that more
threads are runnable than processors. The algorithm in Section 3.1 continues until there are as

many threads as processors. A schematic view of this is found in Figure 7(a) assuming two pro-
cessors. The two processors will have three threads to execute during time 2 to 3, thus optimizing
thread 3 will shorten the period when the two processors have to execute three threads. The criti-
cal path algorithm can not continue to the time slot between time 1 and 2 since this will not
shorten the time the two processors will execute three threads. The result is that thread 2 execut-
ing functiona() is part of the critical path in the example in Figure 5.

The time 8 to 9 in Figure 5 will mark the second half of functef executed by thread 1 as
part of the critical path. However, when applying the critical path algorithm in Section 3.1 we can-
not stop when the algorithm reaches a time with as many threads as processors. Obviously, opti-
mizing any part of functiore() will make thread 1 end its execution earlier. This will make
thread 1 in executing functiog() part of the critical path. The reason is schematically shown in
Figure 7(b), again with two processors. It is obvious that shortening any part of thread 3 will
shorten the time that the two processors must execute the three threads. Thus, the critical path
algorithm may continue backward even if there are as many processors as threads. The difference
between Figure 7(a) and (b) is that thread 3 synchronize, i.e., releases, a thread at time 2 in
Figure 7(a). Thus the stop criteria must consider both these cases. The stop criteria is then defined
as to stop whenever the thread is synchronizing with another thread and the number of processors
is equal or greater than the number of runnable threads.

Thread 1 Thread 1
Thread 2 Thread 2 +_
Thread 3 Thread 3
T T T T 1™ T T 1T 1T 1=
0 5 0 5 Time
Number of T R T :

executing threads:1 1 2,312 1 11,232 1,
(a) (b)

Figure 7: Two principal sketches to illustrate the critical algorithm stop criteria.
The number of runnable threads during each time slot is shown iitalic.

4. Implementation of the Critical Path Algorithm

The critical path analysis has been implemented in a tool called VPPB (Visualization and Predic-
tion of Parallel Program Behaviour) [1, 2]. The tool already had much of the infrastructure to per-

form the critical path analysis. The critical path analysis fits well in this tool as it increases the

capacity of the tool in a natural way.

4.1. Short description of the VPPB tool and the environment

VPPB is a tool for performance optimization of multithreaded programs written in C/C++ on the
Solaris 2.X operating system. This is an environment common in both academea as well as in
industry. The VPPB tool combines two things: visualization of a multithreaded program’s behav-
iour, and prediction of how the program will execute on a multiprocessor.

The tool traces the execution of a multithreaded program on a uni-processor workstation. The
tracing is performed by wrapping the thread and synchronization library available in Solaris 2.X
and record the all the calls made by the program. The recorded information includes data about
when, by which thread, with what parameters, etc., the call was issued. The recorded information

is stored on file upon program exit. Thus, the behaviour of the program is traced. Additional infor-
mation about the pre-emptive scheduling of the LWPs (Light Weight Processes) [10] is also col-
lected with a Solaris system command callptex [2]. The recorded information results in the
rows categorized as A in Table 1. Based on that information the rows categorized as B can be
computed. The next step is to simulate the recorded information. The Simulator mimics a multi-
processor with any number of processors, the Solaris scheduling model, and different configura-
tions of the threads [1].

The simulated execution is then displayed graphically with two graphs. The first graph shows
the amount of parallelism over time, as well as the amount of waiting threads, i.e., the number of
threads ready to execute but with no processor available. The second graph shows the execution as
a Gant diagram based on the threads, with all synchronization (semaphores, mutexes, etc.) as
symbols through the execution. It is possible to get more information about a single event (such as
signal on a semaphore at a given time) including the source code line that made the call. With this
the developer can easily detect and identify performance bottlenecks.

4.2. Introducing critical path analysis

The introduction of critical path analysis requires that all the function entrances as well as exits
must be traced as well. This corresponds to the rows categorized as C in Table 1. The insertion of
function probes is done as a stage in the compilation phase of the program. Previously, there was
no need for any re-compilation or special compilation. The compilation is now done in three
stages for each source code file. The first stage is to compile the source code into assembler code,
this is done by the ordinary C/C++ compiler with the ‘-S’ option. The assembler code is then
parsed in the next stage and for each function entrance/exit probes are inserted to record the
events. We use the same kind of recording probes, TNF [2], as previously used in the tool. The
parser assumes that the compiler uses no optimization flags, since, e.g., optimization flags may in
line functions instead of making explicit calls. The third step is then to compile the modified
assembler code into ordinary object code. This stage is performed by the ordinary C/C++ com-
piler. The probes keeps count of the function call depth for each thread. The developer may set a
function call depth limit where the function calls are not longer recorded. This, in order to avoid
recursive algorithm to generate large amounts of recorded data. Upon execution all entrances and
exits are recorded, corresponding to the rows categorized as C in Table 1.

The Simulator is extended with the algorithms discussed in Section 3. The different synchro-
nizations in Solaris 2.X thread library includes semaphores, mutexes, read/write locks, and condi-
tion variables. The synchronization directly between threads are also supported, the obvious one
is that one thread joins another thread, i.e., one thread wait for another thread to exit. Thread cre-
ation is also handled as a synchronization. A thread that start is dependent on the thread that
issued the creation.

The Simulator is used to obtain the optimal execution of the program, by simply simulating a
multiprocessor with as many processors as there are threads within the program. After the optimal
(simulated) execution is obtained the critical path algorithm can be applied with any number of
processors as argument, as discussed in Section 3.3, and the result is displayed on a function level
as discussed in Section 3.2.

5. A Small Practical Example

To illustrate the critical path analysis we use a multithreaded integer sorting program. The pro-
gram works in the following way. The program starts 7 threaniis @ata) for reading ran-

dom integers from a fileréad_wrapper). When one of the threads has read its portion of the
numbers it starts a new thredoupble_sort) that does the actual sorting, using a the bubble
sort algorithm. The file is locked using a mutex to ensure that only one thread reads the file at

-8-

once. When all threads that read the values from the file are finished, 7 new threags | are

started. Their task is to merge one of the sorted lists (foutble_sort) with a global list,

which will contain the sorted list of all integers. The global list is protected by a semaphore.
Intuitively, we assume that the easiest optimization effort should be to replace the bubble sort

with a faster sorting algorithm such as quick sort. This is also what the Thread Andhegr0]

suggest, see Figure 8(a), and Quantify, see Figure 9(a).

T Procedure—level Profile i riEJ Procedure—level Profile -
Thread Function Walue Percent Thread Function Yalue Percent
Total 7.017 N Total 4.213 N
thread 10 bubble_sort 0.540 2% thread 19 merge 0.400 9%
thread 7 bubble_sort 0.530 8 | - thread 20 merge 0.320 % | -
thread 11 bubbhle_sort 0.510 [thread 3 read_wrapper 0.280 s
thread 13 bubble_sort 0.480 % thread 0 read_wrapper 0,250 B%
thread 3 bubble_sort 0.480 % thread & read_wrapper 0.250 B%
thread 13 merge 0,390 B% thread 1 read_wrapper 0.240 B%
thread & bubble_sort 0.360 5% thread 5 read_wrapper 0.220 5%
thread 12 bubhle_sort 0.340 5% thread 4 read_wrapper 0.220 5%
thread 5 read_wrapper 0.310 4% thread 2 read_wrapper 0.210 5%
thread 20 merge 0,300 4% thread 0 init_data 0.200 5%
thread 2 read_wrapper 0.270 4% thread 5 init_data 0.130 5%
thread 4 read_wrapper 0.240 % thread 4 init_data 0.170 4%
thread 1 read_wrapper 0.230 3% thread 2 init_data 0.160 4%
thread 0 read_wrapper 0.200 3% thread B init_data 0.140 3%
thread 3 init_data 0.190 % thread 3 init_data 0.120 3%
thread 3 read_wrapper 0.130 3% thread 16 merge 0,110 3%
thread 2 init_data 0.180 % thread 17 merge 0.110 %
thread & read_wrapper 0.180 % thread 15 merge 0.100 2%
thread 0 init_data 0.140 2% thread 1 init_data 0.090 2%
thread 1 init_data 0.130 2% thread 3 guick_sort 0.0BD 1%
thread 4 init_data 0.120 2% thread 10 gquick_sort 0.080 1%
thread & init_data 0.120 2% thread 11 guick_sort 0.050 1%
thread 5 init_data 0.120 2% thread 12 guick_sort 0.050 1%

| [throad 1R meros 0110 e | [thraad 7 anick snrt 0 N4n 1% |

(@) (b)

Figure 8: Data output from tha when analyzing the sort program. Bubble sort
(bubble_sort) to the left and quick sort Quick_sort) to the right.

However, when running this application with 14336 integers (that is 2048 integers per thread)
on an 8 processors Sun Enterprise 4000 we will gain nothing. Measurements have shown that the
difference in execution time between the bubble sort version and the quick sort version is about
0.3%, which we consider is due to variations in load, paging, network traffic, etc., on the Enter-
prise 4000. The impact of the sorting (now caltpdck_sort), though, has dropped as can be
seen in Figure 8(b) and Figure 9(b).

Guant|fy Functlom List GQuantly Function List
Fim VYew Windoem Fim VYew Windoem

ANED Niss i maksh ™.
Parafipn |ives (% 0F food |

ANED Niss i maksh ™.
Parafipn |ives (% 0F food |

| Ford in lums lign il ™

S hoew Porciion Do bl

(b)

Figure 9: Data output from Quantify when analyzing the sort program. Bubble sort
(bubble_sort) to the left and quick sort Quick _sort) to the right.

Obviously, the critical path does not include the bubble sort threads. Using the enhanced ver-
sion of VPPB with the critical path analysis we find that theubble_sort threads are not
part of the critical path. Thus, if we instead had used VPPB in the first place, we had focused our
efforts on the initiation and merging stage, since they in practice must be performed in sequential.
This is shown in Figure 10.

EEg Critical Path Information K
Execution time (%) Total Time (%) #of Calls Functions:
1.025768 (98.98%) 1025768 (98,98%) 1 rerge [sorter.c ling 113] j
0434737 (24.83%) 0434731 (24,538 57337 read_wrapper [sorter.c line 1439.]
0.281087 (16.05%) 0.723497 (41.32%) 1 init_data [sorter.c line 152.] .W
0007673 (0.44%) 000757 T (0.445%) 2048 atoi_wrapper [sorter.c line 144.]
0.001483 (0,08%) 0001483 (0.08%) 1 main [sorter.s, line 201.]
0000133 (0.01%) 0723636 (41.335%) 1 initThr [sorter.c, line 186.]
0.000003 (0.00%) 1.025777 (58.58%) 1 thrMerae [sorter.c, line 136.]

=l

Figure 10: The critical path information given by the VPPB tool.

The overhead for recording all the information is of concern. The intrusion must not be too
large, since this may change the critical path of the program. Using the program described in Sec-
tion 5 we get the execution times found in Table 2. As can be seen VPPB has significantly lower
overhead thatha and is close to Quantify.

Table 2: Normalized execution times for the same program using different tools
(middle value of 5 consecutive executions).

Tool Time

Without any data collectiorj 1.0

tha 3.4
VPPB 1.3
Quantify 1.1

-10 -

6. Discussion and Related Work

The critical path analysis is a well known technique, e.g., in combinatorial circuit design, such as
we have in [3]. However applying the critical path to multithreaded programs is not very common.
We have only found one case that has made use of critical path analysis [5] in the software area.
The critical path analysis was applied on video applications, such as MPEG-3 decoders. The issue
for the paper was to decide the critical path at the assembler level of sequential program executing
on processors with an unlimited amount of ILP (Instruction Level Parallelism). Thus the effort
was on breaking the dependencies found in the program at the ILP level.

Other optimization tools lack the possibility to identify the critical path. The Solaris program
tha [9]is designed to work agrof [8] with the difference that the information collected is on a
per thread basisTha collectsprof information per thread and yields correct information per
thread. However, there is no information about the execution flow and dependencies between the
threads. Simply adding all threads’ accumulated execution times for a given function would yield
the same information as in Quantify [7]. Whillea supports better information it also has some
major drawbacks [9], e.qg, it is not possible to use the standard C++ 1/0O primitives.

An issue for future work is how to visualize the critical path for the developer. As the VPPB
tool do today, the critical path is shown as thicker lines in the execution flow graph. The informa-
tion about different functions is simply a metric per function. The use of a function call graph
found in many tools, e.g., Quantify [7] is not directly applicable, since the critical path may move
from one thread to another due to synchronization. The synchronizations may be placed deep
down in the functions and thus the critical path jumps from a function called deep down in one
thread to another function deep down on another thread. The simple call graph will not cope with
this kind of jumps.

Another way of presenting the performance problems of multithreaded programs is based on
contention, as in Tmon [4]. The contention is based on locks and context switching overhead.
Tmon use two uni-processors, one to execute the multithreaded program, and the other to gather
the recorded data. The data is analyzed, to some extent, in real time. This set-up requires a fast
interconnection between the uni-processors. The applicability of Tmon on multiprocessors is not
addressed in [4].

7. Conclusion

Traditional performance optimization is done when the program is written. The main goal is to
increase the performance of the application. The existance of a number of commercial profiling
tools [7, 8, 9], shows the importance of the optimization task. Multiprocessors are used for the
same reason, i.e., to increase performance. Performance optimization for programs designed for
multiprocessors is at least as improtant as optimizations of sequntial programs, because tough
performancd requirements are often a major reason for using multiprocessors in the first place.

In the case of a multithreaded program executing on a multiprocessor it is not certain that all
executed code segments will add to the total execution time. A simple example is a watchdog,
which in the uni-processor case will be a part of the total execution time. However, on a multipro-
cessor, the watch dog may execute on its own processor. The watchdog will then not affect the
total execution time of the program.

Traditional profilers, such as Quantify [7], give misleading information about where in the
code to concentrate the optimization efforts. In some cases Quantify will actually give the worst
possible indications. The reason why these kind of tools gives misleading information is that they
assume that all executed code segments contributes to the total execution time.

Some of the problems found in Quantify have been addressi if9]. The data collected
Is presented on a thread level basis, instead of at the program level as in Quantify. This, however,

-11 -

is not good either as we have shown in this paper. The reason iththaassumes that all exe-
cuted code segments contribute to the total execution time.

To perform efficient performance optimization we must concentrate the efforts on the critical
path. The critical path is heavily dependent on the synchronizations behaviour in the multi-
threaded program and also the number of processors contribute. In this paper an algorithm to find
the critical path has been presented. The algorithm does not only manage an ideal situation with
an unlimited number of processors, but also realistic scenarios when there are a limited number of
processors.

The need for the developer to connect the critical path to which functions that are involved is
essential. We have presented an algorithm that does so. The algorithm aslo shows the amount of
time spent in the functions during the critical path.

This method has been implemented in a performance optimization tool called VPPB. The tool
pinpoints what parts of the code to optimize. A practical example shows that neither Quantify, nor
tha can support the developer with correct information. VPPB, on the other hand, gives the cor-
rect information to support the developer in the optimization efforts.

References
[1] M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A Visualization and Performance Prediction Tool
for Multithreaded Solaris ProgramdPyoc. 12th Int’l Parallel Processing Sympmp. 770-776, 1998.

[2] M. Broberg, L. Lundberg, and H. Grahn, “Visualization and Performance Prediction of Multi-
threaded Solaris Programs by Tracing Kernel Threa@sjc. 13th Int’l Parallel Processing Symp.
(to appear) 1999.

[3] H-C Chen, D. H-C Du, and L-R Liu, “Critical path selection for performance optimizatiBrgt.
28th ACM/IEEE Design Automation Caqrgdp. 547-550, 1991.

[4] M. Ji, E. Felten, and K. Li, “Performance Measurements for Multithreaded Progr&er$grmance
Evaluation Revieywol. 26, no. 1, pp. 161-170, Jun. 1998.

[5] H.Liaoand A. Wolfe, “Available Parallelism in Video Applicationgltoc. 30th Annual IEEE/ACM
Int'l Symp. on Microarchitecturepp. 321 -329, 1997.

[6] L. Lundberg and M. Roos, “Predicting the Speedup of Multithreaded Solaris ProgrBros,” 4th
Int’l Conf. on High-Performance Computingp 386-392, 1997.

[7] Rational, “Quantify version 4.2fittp://www.rational.com/products/quantify
[8] Sun Man Pages, “prof,” Sun Microsystems Inc., 1993.
[9] Sun Man Pages, “tha,” Sun Microsystems Inc., 1996.

[10] SunSoft, “Solaris Multithreaded Programming Guid&rgntice Hall 1995.

=12 -

	Performance Optimization using Critical Path Analysis in Multithreaded Programs on Multiprocessors
	Magnus Broberg, Lars Lundberg, and Håkan Grahn
	Department of Software Engineering and Computer Science University of Karlskrona/Ronneby Soft Cen...

	Abstract
	1. Introduction
	2. Overview of the Critical Path Analysis
	Figure 1: A simple program with three threads.
	Figure 2: The execution of the simple program on a multiprocessor with three processors.
	Figure 3: Quantify’s list of the functions to optimize.

	3. The Critical Path Algorithm
	3.1. Finding the critical path in the optimal case
	Figure 4: A program with its three threads.
	Figure 5: The optimal execution of the program. The values in italic indicates the number of exec...

	3.2. Calculating function times contributing to the critical path
	Figure 6: An example program with synchronization inside functions.
	Table 1: The needed information for the analyze of the program shown in Figure�6. The Category co...

	3.3. Finding the critical path with CPU constraints
	Figure 7: Two principal sketches to illustrate the critical algorithm stop criteria. The number o...

	4. Implementation of the Critical Path Algorithm
	4.1. Short description of the VPPB tool and the environment
	4.2. Introducing critical path analysis

	5. A Small Practical Example
	Figure 8: Data output from tha when analyzing the sort program. Bubble sort (bubble_sort) to the ...
	Figure 9: Data output from Quantify when analyzing the sort program. Bubble sort (bubble_sort) to...
	Figure 10: The critical path information given by the VPPB tool.
	Table 2: Normalized execution times for the same program using different tools (middle value of 5...

	6. Discussion and Related Work
	7. Conclusion
	References
	[1] M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A Visualization and Performance Prediction Too...
	[2] M. Broberg, L. Lundberg, and H. Grahn, “Visualization and Performance Prediction of Multithre...
	[3] H-C Chen, D. H-C Du, and L-R Liu, “Critical path selection for performance optimization,” Pro...
	[4] M. Ji, E. Felten, and K. Li, “Performance Measurements for Multithreaded Programs,” Performan...
	[5] H. Liao and A. Wolfe, “Available Parallelism in Video Applications,” Proc. 30th Annual IEEE/A...
	[6] L. Lundberg and M. Roos, “Predicting the Speedup of Multithreaded Solaris Programs,” Proc. 4t...
	[7] Rational, “Quantify version 4.2,” http://www.rational.com/products/quantify.
	[8] Sun Man Pages, “prof,” Sun Microsystems Inc., 1993.
	[9] Sun Man Pages, “tha,” Sun Microsystems Inc., 1996.
	[10] SunSoft, “Solaris Multithreaded Programming Guide,” Prentice Hall, 1995.

