
Research Report 9/99

Performance Optimization using
Critical Path Analysis in

Multithreaded Programs on
Multiprocessors

by

Magnus Broberg, Lars Lundberg,
Håkan Grahn

Department of
Software Engineering and Computer Science
University of Karlskrona/Ronneby
S-372 25 Ronneby
Sweden

ISSN 1103-1581
ISRN HK/R-RES�99/9�SE

Performance Optimization using Critical Path Analysis in
Multithreaded Programs on Multiprocessors

by Magnus Broberg, Lars Lundberg, Håkan Grahn

ISSN 1103-1581
ISRN HK/R-RES�99/9�SE

Copyright © 1999 by Magnus Broberg, Lars Lundberg, Håkan Grahn

All rights reserved
Printed by Psilander Grafiska, Karlskrona 1999

e

radi-
ools,
ogram
fforts.,
. This

art of
ed for
ution

the
nt of a
t long
ith any
the
esult,

al exe-
essors
need
r the
Performance Optimization using Critical Path Analysis
in Multithreaded Programs on Multiprocessors

Magnus Broberg, Lars Lundberg, and Håkan Grahn

Department of Software Engineering and Computer Science
University of Karlskrona/Ronneby

Soft Center, S-372 25 Ronneby, Sweden
{Magnus.Broberg, Lars.Lundberg, Hakan.Grahn}@ipd.hk-r.se

Abstract
Efficient performance tuning of parallel programs is often hard. Optimization is often done
when the program is written as a last effort to increase the performance. With sequential pro-
grams each (executed) code segment will affect the total execution time of the program. Thus,
any code segment that is optimized in a sequential program will decrease the execution time.
In the case of a parallel program executed on a multiprocessor this is not always true. This is
due to dependencies between the different threads. As a result, certain code segments of th
execution may not affect the total execution time of the program. Thus, optimization of such
code segments will not increase the performance. In this paper we present a new approach to
perform the optimization phase. Our approach finds the critical path of the multithreaded pro-
gram and the optimization is only done on those specific code segments of the program. We
have implemented the critical path analysis in a performance optimization tool.

1. Introduction

Optimization of sequential programs is a well known technique to increase performance. T
tionally this optimization is performed when the program is already written. Today, several t
often referred to as profilers, support the developers in finding the code segments of the pr
where the most time is spent. These code segments are then the target for the optimization e
i.e., the programmer rewrites these code segments in order to minimize the execution time
procedure has been used successfully for a long time.

The main reason for using multiprocessors is to achieve higher performance. As a p
reaching this higher performance, traditional optimization is performed on programs design
multiprocessors. However, not all code segments of the program will affect the total exec
time.

It is often difficult to know which code segments of a multithreaded program that affect
total execution time. Synchronizations are a major factor to decide whether a code segme
program contribute to the total execution time. Consider a thread that will produce the resul
before the result is needed. The thread does not share the processor it is executing on w
other threads. Optimizing that thread willnot affect the thread that use the result and, thus,
total execution time. On the other hand, if the threads using the result where waiting for the r
optimizing the thread producing the result will decrease the total execution time.

Also the actual number of processors affects which code segments that constrain the tot
cution time. For example, consider a program that includes a watchdog. The number of proc
are sufficiently large to allow the watchdog to execute on its own processor. Thus, there is no
to optimize the watchdog. However, when having only one processor, the execution time fo
watchdog will affect the total execution time for the whole program.
- 1 -

syn-
that is
n a
seg-

e. In
ents

nted
4 we
xam-
6 and

of the
ful to
ts
nse-
h.
e-

ments
e that
gible)

cution

time.
Multithreaded programs may include hundreds of threads with thousands of different
chronizations. Thus the need for a tool that indicates which code segments of the program
fruitful to optimize is crucial for effective optimization of multithreaded programs executing o
multiprocessor. It is also crucial that the developer gets useful information about the code
ments, i.e., function names, what fraction of a function contributes to the total execution tim
this paper we present a tool that will give the developer information about which code segm
of the multithreaded program that are beneficial to optimize, we call that thecritical path.

The paper is structured as follows: A definition and discussion of the critical path is prese
in Section 2. Section 3 describes the algorithm to calculate the critical path. In Section
present a working tool with the critical path analysis implemented and show in a practical e
ple in Section 5 for the need of such a tool. Discussion and related work is found in Section
we conclude the paper in Section 7.

2. Overview of the Critical Path Analysis

The developer of a multithreaded program must have knowledge of which code segments
parallel program that are fruitful to optimize. In general terms, code segments that are fruit
optimize are called thecritical path. We define thecritical pathas all the executed code segmen
of a program that when reduced with an will also shorten the total execution time. Co
quently, all code segments of asequentialprogram will be considered as part of the critical pat
This is because if we shortenanypart of a sequential program it will result in a shorter total ex
cution time.

In the case of a multithreaded program executing on a multiprocessor, not all code seg
of the program are included in the critical path. Consider the program in Figure 1. We assum
all functions (a-d) take equal amount of time to execute and that signalling takes no (or negli
time.

When executing the program on a multiprocessor with 3 processors (or more) the exe
will look like in Figure 2. The critical path is (from the start) thread 1 executinga() , then thread
3 executingc() , thread 2 executingd() , and finally thread 1 executinga() again. It is obvious
that shortening some code segment in the critical path will also decrease the total execution
Shorten, e.g.,b() will have no affect on the total execution time.

ε

Thread 1: Thread 2: Thread 3:
Execute a() Execute b() Wait for event X
Signal for event X Wait for event Y Execute c()
Execute b() Execute d() Signal event Y
Wait for event Z Signal event Z Execute b()
Execute a() End End
End

Figure 1: A simple program with three threads.

Thread 1

Thread 2

Thread 3

a

b

b

b

d

c

X

Y

Z

Time

Figure 2: The execution of the simple program on a multiprocessor with three processors.

a

- 2 -

ical

t, the
ntics

ize

lgo-
unc-
nt in

how
same

uted
me. We

thread
the other
timing

tic and
o sim-

til the
the cur-
also

m. All
Unfortunately, ordinary profiling tools, such as Quantify [7], does not consider the crit
path. They will indicate that the program spend most of the time in functionb() and suggest that
function for optimization. This is indicated in Figure 3 where functiona() to d() is found at the
top, the other functions shown are only for internal use in the Solaris operating system. In fac
advice Quantify gives is the worst possible, due to the tool’s incapability to analyze the sema
of the synchronizations within the program.

The need for a tool which consider the critical path is obvious in order to correctly optim
multithreaded programs on a multiprocessor.

3. The Critical Path Algorithm

In this section we will describe how the critical path algorithm works. First we describe the a
rithm to identify the critical path. Then we describe how we calculate how much time each f
tion in the critical path executed during the whole execution. Both these parts are importa
order to give useful information about where to start optimize the code. Finally, we will show
to calculate the critical path for multithreaded program with more runnable threads at the
time than there are processors.

3.1. Finding the critical path in the optimal case
First we will look at the critical path algorithm under the condition that the program is exec
on a sufficient number of processor and thus no threads have to share a processor at any ti
assume that explicitly synchronized events happens at the exact same time, such as one
releases another thread. This means that the thread starts exactly at the same moment as
thread releases it. Unsynchronized events are assumed to occur at different times. Using a
device with high resolution will solve the assumptions above. These assumptions are realis
does not change the algorithm in principal. They are easily removed, but kept here in order t
plify the presentation. The algorithm for finding the critical works as follows.

The algorithm starts at the end of the execution and follows the thread backwards un
thread has been blocked for some reason. Then the algorithm finds the event that released
rent thread. The algorithm then continues to follow the releasing thread backwards until it
becomes blocked. Thus, in that manner the algorithm continues until the start of the progra
code segments of the program that the algorithm goes through are part of the critical path.

Figure 3: Quantify’s list of the functions to optimize.
- 3 -

. The
on of

d 3 at

aiting
ad 1.

-

is not
some

This
te our

tical

pro-
To illustrate the algorithm we use the example program with three threads in Figure 4
execution times for the different functions are illustrated in Figure 5 where also the executi
the program on an optimal number of processors are illustrated.

Following the algorithm described above we start at the end of the execution, i.e., threa
time 11. Tracing thread 3 backward makes us go through functionf() , a() and finallye() . At
time 4 to 5 the thread was not executing, thus the thread was blocked. The thread (3) was w
for event Z. Thread 1 releases thread 3 at time 5, thus we continue the algorithm with thre
Thread 1 executes through functionb() anda() without being blocked until the start of the pro
gram at time 0.

Thus the critical path for the program is thread 1 executing functiona() andb() and thread
3 executing functione() , a() , andf() . It is easily verified that optimizing anyotherpart of the
program will not affect the total execution time.

3.2. Calculating function times contributing to the critical path
In the previous section all the synchronization are done between the function calls. This
always the case, since synchronization could appear inside the functions as well. This gives
complications when calculating the time spent in certain functions during the critical path.
calculation is done when the critical path analysis is already done, thus we only concentra
effort on the parts that are in the critical path. We will calculate three valuesper function:

• The number of calls. This is the number of times the function was called during the cri
path.

• The total execution time. This time is the accumulated time, during the critical path, the
gram was executing in the function.

Thread 1: Thread 2: Thread 3:
Execute a() Wait for event X Wait for event Y
Signal event X Execute c() Execute d()
Execute b() Signal event Y Wait for event Z
Signal event Z Execute a() Execute e()
Execute c() Wait for signal Y Signal event X
Wait for event X Execute d() Execute a()
Execute e() End Signal event Y
End Execute f()

End

Figure 4: A program with its three threads.

0 105 Time

X

Y
Z X

Y

a() b() c()

d()

c() d()

e()

a()

f()

e()

Thread 3

Thread 1

Thread 2
a()

1 3 2 1 2 1 2 3 2 12

Figure 5: The optimal execution of the program. The values initalic indicates the number of executing threads.

Number of
executing threads:
- 4 -

lated
func-

able
The

ing a
ant to
at is

path

me of
ter for
• The total execution time including all descendant functions. This time is the accumu
execution time for the function and its descendants, during the critical path both for the
tion and the descendants.

We will use the program illustrated in Figure 6 to show how the values are calculated. In T
1 the information needed to perform the calculations of the program in Figure 6 is found.
information in Table 1 is gathered by the tool described in Section 4. The events indicat
thread entering or exiting a function are considered to take no time and thus are unimport
mark as part of the critical path. Basically the algorithm iterates over all rows in the table th
marked as part of the critical path.

Each iteration first determines the thread’s function call stack. The first part of the critical
in Table 1 (row 2) has the stacka() . Now the algorithm first look whether the functiona() has
been called. This is determined by comparing the time of the entering (row 1) and the start ti
the execution (row 2). Since they are equal the thread just entered the function and a coun

Table 1: The needed information for the analyze of the program shown in Figure 6.
The Category column will be discussed in Section 4.

Row Event Thread Start time Length Part of Critical Path Category

1 enter function a() 1 0.000000 - - C

2 executing 1 0.000000 3.894285 yes B

3 enter function c() 2 0.000000 - - C

4 wait for event X 2 0.000000 0.001680 no A

5 enter function b() 1 3.894285 - - C

6 executing 1 3.894285 3.894284 yes B

7 signal event X 1 7.789474 0.000177 yes A

8 executing 2 7.789651 3.928914 no B

9 wait for event Y 1 7.789658 0.000156 no A

10 signal event Y 2 11.718565 0.000113 yes A

11 executing 2 11.718678 3.832353 no B

12 executing 1 11.718678 3.884579 yes B

13 exit function c() 2 15.551031 - - C

14 exit thread 2 15.551031 0.000058 no A

15 exit function b() 1 15.603257 - - C

16 executing 1 15.603257 3.884579 yes B

17 exit function a() 1 19.487836 - - C

18 exit thread 1 19.487836 0.000054 yes A

Figure 6: An example program with synchronization inside functions.

Thread 1

Thread 2

a()a() b()b()

c() c()
Time

X Y

Enter function x()

Exit function x()

x()

x()
- 5 -

ut-
the

s kept

the

ction
n the

aged
occur-
ce per

r of
eed to
essors.
ne pro-

ssors

ors. In
avail-
uling

proces-
ling is
listic

result

3 in
ust be

thus
uring
read
ince

2 to 3
xe-
time
3, and

ed or
since a
here
nd one

n the
since
t more
are as
the number of entrances for functiona() is increased. The time the critical path has been exec
ing in the function is kept in another counter, which simply is increased with the length of
event (row 2). The total time the function has been executing, including its descendants, i
track of in a similar manner.

In order to illustrate the handling of the two different time counters, we will take a look at
next part of the critical path (row 6). Now the stack isb() at the top anda() at the bottom. The
counter for execution time is only increased for the function at the top of the stack, i.e., fun
b() . The counters for the execution time with descendents is increased for all functions i
stack, i.e.,b() anda() .

This is then repeated for all parts of the critical path. Recursive calls are also easily man
since we keep only one set of counters per function, regardless of whether there are many
rences of the function on the stack. Note, however, that the counters may only be updated on
part of the critical path, regardless if they occur several times on the stack.

3.3. Finding the critical path with CPU constraints
In Section 3.1 we defined the algorithm for finding the critical path when a unlimited numbe
processors are available. This is not always the case in real life, unfortunately. Thus, we n
adjust the algorithm to fit whenever there are more runnable threads than there are proc
This enforces that some threads at some times must be multiplexed by the scheduler on o
cessor.

We keep the example in Figure 5, but look at what happens if we only have two proce
available. The number of executing threads are indicated for each time unit as the figures initalic.
The interesting parts are when the number of threads is larger than the number of process
the example this is time 2 to 3 and time 8 to 9 where three threads are executing on the two
able processors. One way of modeling the multiplexing without assuming any specific sched
algorithm is to regard the processors to run slower as the number of threads increases. The
sors run at only 2/3 speed for time 2 to 3 and time 8 to 9, i.e., we assume that the schedu
ideal with infinitely small time slices and no scheduling overhead. This is not an unrea
assumption since some performance prediction tools has used that assumption with good
[6] when compared with real scheduling.

First we identify the optimal critical path as described in Section 3.1. During time 2 to
Figure 5 the number of thread exceeds the number of processors, thus the three thread m
multiplexed on the two processors. In practise time 2 to 3 will take 1.5 time units and
extended the total execution time with 0.5 time units. If we are able to optimize any thread d
time 2 to 3 we are interested in knowing which ones that will cut the total execution time. Th
1 is already marked as part of the critical path. Optimizing thread 3 will make no difference s

is to be considered a small amount of time. This is because optimizing thread 3 at time
will only shift the execution at time 3 to 4 to the left, leaving time 2 to 3 still having 3 threads e
cuting simultaneously. Thread 2 can successfully be optimized, since each will also cut the
spent executing threads simultaneously. This is because thread 2 becomes blocked at time
thus no part of the execution will be shifted in its place.

The critical path algorithm looks for all threads that stop executing (either becomes block
exits) at a time where there are more runnable threads than processors available. This,
thread that stops executing is the only one that not will shift in a later part in the time period w
there are more threads than processors as discussed above. After the algorithm has fou
thread ending, the critical path algorithm described earlier in Section 3.1 will be applied o
thread from the time it was stopped. The algorithm in Section 3.1 will continue backwards
any part of the critical path can make the thread end earlier and thus shorten the time tha
threads are runnable than processors. The algorithm in Section 3.1 continues until there

ε

ε

- 6 -

o pro-
mizing
e criti-
l not
xecut-

can-
y, opti-
e
in
will

al path
erence
e 2 in
defined
essors

redic-
per-
the

the
l as in
hav-

. The
2.X

about
ation
many threads as processors. A schematic view of this is found in Figure 7(a) assuming tw
cessors. The two processors will have three threads to execute during time 2 to 3, thus opti
thread 3 will shorten the period when the two processors have to execute three threads. Th
cal path algorithm can not continue to the time slot between time 1 and 2 since this wil
shorten the time the two processors will execute three threads. The result is that thread 2 e
ing functiona() is part of the critical path in the example in Figure 5.

The time 8 to 9 in Figure 5 will mark the second half of functione() executed by thread 1 as
part of the critical path. However, when applying the critical path algorithm in Section 3.1 we
not stop when the algorithm reaches a time with as many threads as processors. Obviousl
mizing any part of functione() will make thread 1 end its execution earlier. This will mak
thread 1 in executing functione() part of the critical path. The reason is schematically shown
Figure 7(b), again with two processors. It is obvious that shortening any part of thread 3
shorten the time that the two processors must execute the three threads. Thus, the critic
algorithm may continue backward even if there are as many processors as threads. The diff
between Figure 7(a) and (b) is that thread 3 synchronize, i.e., releases, a thread at tim
Figure 7(a). Thus the stop criteria must consider both these cases. The stop criteria is then
as to stop whenever the thread is synchronizing with another thread and the number of proc
is equal or greater than the number of runnable threads.

4. Implementation of the Critical Path Algorithm

The critical path analysis has been implemented in a tool called VPPB (Visualization and P
tion of Parallel Program Behaviour) [1, 2]. The tool already had much of the infrastructure to
form the critical path analysis. The critical path analysis fits well in this tool as it increases
capacity of the tool in a natural way.

4.1. Short description of the VPPB tool and the environment
VPPB is a tool for performance optimization of multithreaded programs written in C/C++ on
Solaris 2.X operating system. This is an environment common in both academea as wel
industry. The VPPB tool combines two things: visualization of a multithreaded program’s be
iour, and prediction of how the program will execute on a multiprocessor.

The tool traces the execution of a multithreaded program on a uni-processor workstation
tracing is performed by wrapping the thread and synchronization library available in Solaris
and record the all the calls made by the program. The recorded information includes data
when, by which thread, with what parameters, etc., the call was issued. The recorded inform

0 5
Time

Thread 1

Thread 2

1 3 2 12

Thread 3

0 5 Time

Thread 1

Thread 2

Thread 3

(a)

Figure 7: Two principal sketches to illustrate the critical algorithm stop criteria.
The number of runnable threads during each time slot is shown initalic.

(b)
1 3 2 12

Number of
executing threads:
- 7 -

nfor-
col-

an be
ulti-

figura-

hows
er of

ution as
tc.) as
ch as

th this

exits
tion of
re was
hree
r code,

then
rd the

l. The
may in
ified
com-

y set a
void
es and

chro-
condi-
us one
d cre-
d that

ng a
ptimal
er of
on level

pro-

he
le
file at
is stored on file upon program exit. Thus, the behaviour of the program is traced. Additional i
mation about the pre-emptive scheduling of the LWPs (Light Weight Processes) [10] is also
lected with a Solaris system command calledprex [2]. The recorded information results in the
rows categorized as A in Table 1. Based on that information the rows categorized as B c
computed. The next step is to simulate the recorded information. The Simulator mimics a m
processor with any number of processors, the Solaris scheduling model, and different con
tions of the threads [1].

The simulated execution is then displayed graphically with two graphs. The first graph s
the amount of parallelism over time, as well as the amount of waiting threads, i.e., the numb
threads ready to execute but with no processor available. The second graph shows the exec
a Gant diagram based on the threads, with all synchronization (semaphores, mutexes, e
symbols through the execution. It is possible to get more information about a single event (su
signal on a semaphore at a given time) including the source code line that made the call. Wi
the developer can easily detect and identify performance bottlenecks.

4.2. Introducing critical path analysis
The introduction of critical path analysis requires that all the function entrances as well as
must be traced as well. This corresponds to the rows categorized as C in Table 1. The inser
function probes is done as a stage in the compilation phase of the program. Previously, the
no need for any re-compilation or special compilation. The compilation is now done in t
stages for each source code file. The first stage is to compile the source code into assemble
this is done by the ordinary C/C++ compiler with the ‘-S’ option. The assembler code is
parsed in the next stage and for each function entrance/exit probes are inserted to reco
events. We use the same kind of recording probes, TNF [2], as previously used in the too
parser assumes that the compiler uses no optimization flags, since, e.g., optimization flags
line functions instead of making explicit calls. The third step is then to compile the mod
assembler code into ordinary object code. This stage is performed by the ordinary C/C++
piler. The probes keeps count of the function call depth for each thread. The developer ma
function call depth limit where the function calls are not longer recorded. This, in order to a
recursive algorithm to generate large amounts of recorded data. Upon execution all entranc
exits are recorded, corresponding to the rows categorized as C in Table 1.

The Simulator is extended with the algorithms discussed in Section 3. The different syn
nizations in Solaris 2.X thread library includes semaphores, mutexes, read/write locks, and
tion variables. The synchronization directly between threads are also supported, the obvio
is that one thread joins another thread, i.e., one thread wait for another thread to exit. Threa
ation is also handled as a synchronization. A thread that start is dependent on the threa
issued the creation.

The Simulator is used to obtain the optimal execution of the program, by simply simulati
multiprocessor with as many processors as there are threads within the program. After the o
(simulated) execution is obtained the critical path algorithm can be applied with any numb
processors as argument, as discussed in Section 3.3, and the result is displayed on a functi
as discussed in Section 3.2.

5. A Small Practical Example

To illustrate the critical path analysis we use a multithreaded integer sorting program. The
gram works in the following way. The program starts 7 threads (init_data) for reading ran-
dom integers from a file (read_wrapper). When one of the threads has read its portion of t
numbers it starts a new thread (bubble_sort) that does the actual sorting, using a the bubb
sort algorithm. The file is locked using a mutex to ensure that only one thread reads the
- 8 -

.
e sort

read)
hat the
about
nter-
e

once. When all threads that read the values from the file are finished, 7 new threads (merge) are
started. Their task is to merge one of the sorted lists (frombubble_sort) with a global list,
which will contain the sorted list of all integers. The global list is protected by a semaphore

Intuitively, we assume that the easiest optimization effort should be to replace the bubbl
with a faster sorting algorithm such as quick sort. This is also what the Thread Analyser (tha) [9]
suggest, see Figure 8(a), and Quantify, see Figure 9(a).

However, when running this application with 14336 integers (that is 2048 integers per th
on an 8 processors Sun Enterprise 4000 we will gain nothing. Measurements have shown t
difference in execution time between the bubble sort version and the quick sort version is
0.3%, which we consider is due to variations in load, paging, network traffic, etc., on the E
prise 4000. The impact of the sorting (now calledquick_sort), though, has dropped as can b
seen in Figure 8(b) and Figure 9(b).

Figure 8: Data output from tha when analyzing the sort program. Bubble sort
(bubble_sort) to the left and quick sort (quick_sort) to the right.

(a) (b)
- 9 -

d ver-

d our
ential.

too
n Sec-
lower
Obviously, the critical path does not include the bubble sort threads. Using the enhance
sion of VPPB with the critical path analysis we find that the 7bubble_sort threads are not
part of the critical path. Thus, if we instead had used VPPB in the first place, we had focuse
efforts on the initiation and merging stage, since they in practice must be performed in sequ
This is shown in Figure 10.

The overhead for recording all the information is of concern. The intrusion must not be
large, since this may change the critical path of the program. Using the program described i
tion 5 we get the execution times found in Table 2. As can be seen VPPB has significantly
overhead thantha and is close to Quantify.

Table 2: Normalized execution times for the same program using different tools
(middle value of 5 consecutive executions).

Tool Time

Without any data collection 1.0

tha 3.4

VPPB 1.3

Quantify 1.1

(b)
Figure 9: Data output from Quantify when analyzing the sort program. Bubble sort

(bubble_sort) to the left and quick sort (quick_sort) to the right.

(a)

Figure 10: The critical path information given by the VPPB tool.
- 10 -

ch as
on.
area.

e issue
cuting
ffort

am
a
er
en the
yield
e

PB
rma-
aph
ove
deep
one
with

ed on
head.
gather
a fast

is not

is to
filing
r the

ned for
tough

ace.
at all
hdog,
ipro-
ct the

the
orst

t they

wever,
6. Discussion and Related Work

The critical path analysis is a well known technique, e.g., in combinatorial circuit design, su
we have in [3]. However applying the critical path to multithreaded programs is not very comm
We have only found one case that has made use of critical path analysis [5] in the software
The critical path analysis was applied on video applications, such as MPEG-3 decoders. Th
for the paper was to decide the critical path at the assembler level of sequential program exe
on processors with an unlimited amount of ILP (Instruction Level Parallelism). Thus the e
was on breaking the dependencies found in the program at the ILP level.

Other optimization tools lack the possibility to identify the critical path. The Solaris progr
tha [9] is designed to work asprof [8] with the difference that the information collected is on
per thread basis.Tha collectsprof information per thread and yields correct information p
thread. However, there is no information about the execution flow and dependencies betwe
threads. Simply adding all threads’ accumulated execution times for a given function would
the same information as in Quantify [7]. Whiletha supports better information it also has som
major drawbacks [9], e.g, it is not possible to use the standard C++ I/O primitives.

An issue for future work is how to visualize the critical path for the developer. As the VP
tool do today, the critical path is shown as thicker lines in the execution flow graph. The info
tion about different functions is simply a metric per function. The use of a function call gr
found in many tools, e.g., Quantify [7] is not directly applicable, since the critical path may m
from one thread to another due to synchronization. The synchronizations may be placed
down in the functions and thus the critical path jumps from a function called deep down in
thread to another function deep down on another thread. The simple call graph will not cope
this kind of jumps.

Another way of presenting the performance problems of multithreaded programs is bas
contention, as in Tmon [4]. The contention is based on locks and context switching over
Tmon use two uni-processors, one to execute the multithreaded program, and the other to
the recorded data. The data is analyzed, to some extent, in real time. This set-up requires
interconnection between the uni-processors. The applicability of Tmon on multiprocessors
addressed in [4].

7. Conclusion

Traditional performance optimization is done when the program is written. The main goal
increase the performance of the application. The existance of a number of commercial pro
tools [7, 8, 9], shows the importance of the optimization task. Multiprocessors are used fo
same reason, i.e., to increase performance. Performance optimization for programs desig
multiprocessors is at least as improtant as optimizations of sequntial programs, because
performancd requirements are often a major reason for using multiprocessors in the first pl

In the case of a multithreaded program executing on a multiprocessor it is not certain th
executed code segments will add to the total execution time. A simple example is a watc
which in the uni-processor case will be a part of the total execution time. However, on a mult
cessor, the watch dog may execute on its own processor. The watchdog will then not affe
total execution time of the program.

Traditional profilers, such as Quantify [7], give misleading information about where in
code to concentrate the optimization efforts. In some cases Quantify will actually give the w
possible indications. The reason why these kind of tools gives misleading information is tha
assume that all executed code segments contributes to the total execution time.

Some of the problems found in Quantify have been addressed intha [9]. The data collected
is presented on a thread level basis, instead of at the program level as in Quantify. This, ho
- 11 -

itical
ulti-

to find
n with
ber of

ed is
ount of

e tool
y, nor

cor-

ool

lti-
is not good either as we have shown in this paper. The reason is thattha assumes that all exe-
cuted code segments contribute to the total execution time.

To perform efficient performance optimization we must concentrate the efforts on the cr
path. The critical path is heavily dependent on the synchronizations behaviour in the m
threaded program and also the number of processors contribute. In this paper an algorithm
the critical path has been presented. The algorithm does not only manage an ideal situatio
an unlimited number of processors, but also realistic scenarios when there are a limited num
processors.

The need for the developer to connect the critical path to which functions that are involv
essential. We have presented an algorithm that does so. The algorithm aslo shows the am
time spent in the functions during the critical path.

This method has been implemented in a performance optimization tool called VPPB. Th
pinpoints what parts of the code to optimize. A practical example shows that neither Quantif
tha can support the developer with correct information. VPPB, on the other hand, gives the
rect information to support the developer in the optimization efforts.

References

[1] M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A Visualization and Performance Prediction T
for Multithreaded Solaris Programs”,Proc. 12th Int’l Parallel Processing Symp., pp. 770-776, 1998.

[2] M. Broberg, L. Lundberg, and H. Grahn, “Visualization and Performance Prediction of Mu
threaded Solaris Programs by Tracing Kernel Threads”,Proc. 13th Int’l Parallel Processing Symp.
(to appear), 1999.

[3] H-C Chen, D. H-C Du, and L-R Liu, “Critical path selection for performance optimization,”Proc.
28th ACM/IEEE Design Automation Conf., pp. 547-550, 1991.

[4] M. Ji, E. Felten, and K. Li, “Performance Measurements for Multithreaded Programs,”Performance
Evaluation Review, vol. 26, no. 1, pp. 161-170, Jun. 1998.

[5] H. Liao and A. Wolfe, “Available Parallelism in Video Applications,”Proc. 30th Annual IEEE/ACM
Int’l Symp. on Microarchitecture, pp. 321 -329, 1997.

[6] L. Lundberg and M. Roos, “Predicting the Speedup of Multithreaded Solaris Programs,”Proc. 4th
Int’l Conf. on High-Performance Computing, pp 386-392, 1997.

[7] Rational, “Quantify version 4.2,”http://www.rational.com/products/quantify.

[8] Sun Man Pages, “prof,” Sun Microsystems Inc., 1993.

[9] Sun Man Pages, “tha,” Sun Microsystems Inc., 1996.

[10] SunSoft, “Solaris Multithreaded Programming Guide,”Prentice Hall, 1995.
- 12 -

	Performance Optimization using Critical Path Analysis in Multithreaded Programs on Multiprocessors
	Magnus Broberg, Lars Lundberg, and Håkan Grahn
	Department of Software Engineering and Computer Science University of Karlskrona/Ronneby Soft Cen...

	Abstract
	1. Introduction
	2. Overview of the Critical Path Analysis
	Figure 1: A simple program with three threads.
	Figure 2: The execution of the simple program on a multiprocessor with three processors.
	Figure 3: Quantify’s list of the functions to optimize.

	3. The Critical Path Algorithm
	3.1. Finding the critical path in the optimal case
	Figure 4: A program with its three threads.
	Figure 5: The optimal execution of the program. The values in italic indicates the number of exec...

	3.2. Calculating function times contributing to the critical path
	Figure 6: An example program with synchronization inside functions.
	Table 1: The needed information for the analyze of the program shown in Figure�6. The Category co...

	3.3. Finding the critical path with CPU constraints
	Figure 7: Two principal sketches to illustrate the critical algorithm stop criteria. The number o...

	4. Implementation of the Critical Path Algorithm
	4.1. Short description of the VPPB tool and the environment
	4.2. Introducing critical path analysis

	5. A Small Practical Example
	Figure 8: Data output from tha when analyzing the sort program. Bubble sort (bubble_sort) to the ...
	Figure 9: Data output from Quantify when analyzing the sort program. Bubble sort (bubble_sort) to...
	Figure 10: The critical path information given by the VPPB tool.
	Table 2: Normalized execution times for the same program using different tools (middle value of 5...

	6. Discussion and Related Work
	7. Conclusion
	References
	[1] M. Broberg, L. Lundberg, and H. Grahn, “VPPB - A Visualization and Performance Prediction Too...
	[2] M. Broberg, L. Lundberg, and H. Grahn, “Visualization and Performance Prediction of Multithre...
	[3] H-C Chen, D. H-C Du, and L-R Liu, “Critical path selection for performance optimization,” Pro...
	[4] M. Ji, E. Felten, and K. Li, “Performance Measurements for Multithreaded Programs,” Performan...
	[5] H. Liao and A. Wolfe, “Available Parallelism in Video Applications,” Proc. 30th Annual IEEE/A...
	[6] L. Lundberg and M. Roos, “Predicting the Speedup of Multithreaded Solaris Programs,” Proc. 4t...
	[7] Rational, “Quantify version 4.2,” http://www.rational.com/products/quantify.
	[8] Sun Man Pages, “prof,” Sun Microsystems Inc., 1993.
	[9] Sun Man Pages, “tha,” Sun Microsystems Inc., 1996.
	[10] SunSoft, “Solaris Multithreaded Programming Guide,” Prentice Hall, 1995.

