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E. P. Yu,1, ∗ T.J. Awe,1 K.R. Cochrane,1 K. C. Yates,2 T.M. Hutchinson,3 K.J. Peterson,1 and B. S. Bauer3

1Sandia National Laboratories, Albuquerque, New Mexico 87185
2Los Alamos National Laboratory, Los Alamos, New Mexico 87545

3University of Nevada, Reno, Reno, Nevada 89506

(Dated: March 20, 2020)

Using the analogy between hydrodynamic and electrical current flow, we study how electrical
current density j redistributes and amplifies due to two commonly-encountered inhomogeneities
in metals. First, we consider flow around a spherical resistive inclusion, and find significant j
amplification, independent of inclusion size. Hence, even µm-scale inclusions can affect performance
in applications by creating localized regions of enhanced Joule heating. Next, we investigate j
redistribution due to surface roughness, idealized as a sinusoidal perturbation with amplitude A and
wavelength λ. Theory predicts that j amplification is determined by the ratio A/λ, so that even
“smooth” surface finishes (i.e., small A) can generate significant amplification, if λ is correspondingly
small. We compare theory with magnetohydrodynamic simulation, to illustrate both the utility and
limitations of the steady-state theory.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Understanding how electrical current flows through
metal is essential to numerous current-driven applica-
tions, including magneto-inertial fusion [1–6], material
properties studies [7–11], X-ray generation [12, 13], labo-
ratory astrophysics [14–18], and electromagnetic power
flow through magnetically-insulated transmission lines
(MITLs). The problem is complicated by the inho-
mogeneity of metals, which include small (µm-scale),
volumetrically-distributed resistive inclusions (RI) [19]
and voids [20], as well as surface perturbations, such as
machining grooves. While small, these imperfections will
cause the current density j to redistribute and amplify,
thus resulting in locally enhanced Joule heating.

Non-uniform heating generally degrades performance
in applications. For instance, in microelectronics “cur-
rent crowding” and its associated enhanced heating re-
duces device lifetime (e.g., Refs. [21, 22]). At larger scale,
MITLs deliver multi-MA currents to a target (“load”),
and are also affected by non-uniform heating. Once elec-
trode surfaces heat to Td ∼ 700 K [23, 24], they thermally
desorb contaminants which ionize into plasma, leading
to an undesired consequence: current shunts across the
anode-cathode gap before reaching the load. In simulat-
ing cm-scale MITLs, it is not feasible to resolve µm-scale
surface imperfections, so modeling efforts [25–28] com-
monly assume a perfectly smooth metal surface. Hence,
it is important to understand if enhanced heating due to
RI and surface roughness allows metal to reach Td signif-
icantly earlier than an ideal surface.

More broadly, hot spots can potentially seed the elec-
trothermal instability [29–37], a Joule heating-driven in-
stability which, assuming vertical current flow, manifests

∗Electronic address: epyu@sandia.gov

as horizontal, overheated striations in metals. In ap-
plications involving magnetically-accelerated conductors,
striations are oriented so as to seed the virulent mag-
neto Rayleigh-Taylor instability (e.g., Refs. [30, 38–40]),
which amplifies surface deformations in-flight, reducing
the integrity of the conductor.

Recent experiments [19, 41] on Joule-heated metal rods
confirm the correlation between surface features and non-
uniform heating, but other possible causes exist. For
instance, high-energy plasma particles flow within and
along the MITLs, eventually striking the load and de-
positing their energy, resulting in non-uniform heating
[42]. In order to estimate the relative importance of dif-
ferent heating mechanisms, we need to develop a more
quantitative understanding of how metal inhomogeneities
drive j and temperature amplification. How does the am-
plification scale with the size of the perturbation? What
numerical resolution is required to accurately simulate
these perturbations?

To address these questions, we employ the analogy
between steady-state electrical current flow and incom-
pressible, potential fluid flow, which has been known for
some time [43]. In this work, we illustrate the analogy
by applying it to two idealized scenarios of physical rel-
evance. First, we consider flow around a non-conducting
sphere of radius R (playing the role of a void or RI), and
find that maximum j amplification is 3/2, independent of
size R. Second, we study flow over a sinusoidally-rippled
surface of amplitude A and wavelength λ (an idealiza-
tion of machining grooves) and find that j amplification
depends on the ratio A/λ, so that even small-amplitude
ripples drive significant amplification if λ is also small.
The large impact of small-scale features in driving local
field enhancements has also been noted in the study of
radio-frequency cavities (e.g., Refs. [44, 45]).

The paper is organized as follows: in Sec. II we de-
scribe the connection between hydrodynamic and electri-
cal current flow, focusing on the two cases of flow around
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FIG. 1: a) Current flow around a non-conducting sphere of
radius R, embedded in metal. The visualization plane cuts
through the center of the sphere; the full 3D solution is ob-
tained by rotating the 2D pattern about the z axis. Black
lines represent j streamlines. b) j(x) taken along the line L,
which lies in the equatorial plane.

an RI and flow over a rippled surface. In Sec. III, we
estimate the temperature perturbation arising from lo-
cal amplification in j and Joule heating. In Sec. IV we
compare the analytic solutions described in Sec. II with
magnetohydrodynamic (MHD) simulation. We conclude
our discussion in Sec. V.

II. ANALOGY BETWEEN ELECTRICAL AND
HYDRODYNAMIC FLOW

A. Current flow around a resistive inclusion (RI)

We first consider the idealized problem of steady-state
electrical current flow around a sphere of radius R and
zero electrical conductivity, embedded in metal (of infi-
nite extent) with conductivity σ0 (see Fig. 1a). Inside
the metal, Ohm’s law

j = σ0E, (1)

combined with

E = −∇φ−
∂A

∂t

∂
∂t

=0
→ −∇φ (2)

yields

j = −σ0∇φ = −∇φ̃, (3)

where φ̃ ≡ σ0φ. Also, in steady state, charge conserva-
tion demands ∇ · j = 0, so ∇2φ̃ = 0. Hence, we seek a
harmonic function φ̃ subject to the boundary conditions

j · ξ̂(ξ = R) = 0, or equivalently ∂φ̃
∂ξ (ξ = R) = 0, and

j(ξ → ∞) = j0ẑ, which leads to −
∂φ̃
∂z (ξ → ∞) = j0.

The above problem is exactly the same as its hydro-
dynamic counterpart: steady-state, incompressible, ideal
(i.e., viscosity ν → 0) flow around a sphere. Assuming
potential flow (i.e., ∇ × v = 0), the flow velocity satis-
fies v = −∇φ, and incompressibility ∇ · v = 0 demands

∇2φ = 0. At the boundary of the sphere v · ξ̂(ξ = R) = 0

(i.e., ∂φ
∂ξ (ξ = R) = 0), and as ξ → ∞, v attains its free-

stream value v(ξ → ∞) = v0ẑ (i.e., −∂φ
∂z (ξ → ∞) = v0).

Hence, j and v satisfy the same boundary conditions,
along with Laplace’s equation, thus establishing that the
hydrodynamic and electrical cases are the same. To ob-
tain the solution to the electrical problem, we simply
adopt the well-known hydrodynamic solution (e.g., Ref.

[46], pg 488) and substitute v → j, v0 → j0 to find

jξ = j0 cosα(1−
R3

ξ3
) (4)

jα = −j0 sinα(1 +
R3

2ξ3
), (5)

valid for ξ ≥ R.
We can quantify the current redistribution δj due to an

obstacle embedded in a uniform flow j0ẑ by computing
δj
j0

= |δj|
j0

≡
|j−j0 ẑ|

j0
. In the case of flow around a sphere,

δjsphere
j0

=
R3

ξ3
(cos2 α+

sin2 α

4
)1/2, (6)

which reaches its maximum value of unity at the poles
of the sphere (i.e., ξ = R;α = 0, π). Here δj exactly
cancels j0ẑ, so j(ξ = R;α = 0, π) = 0, in accord with
the fluid interpretation of the poles as stagnation points
(see Fig. 1a). Conversely, at the equator α = π

2 , δj
amplifies j, which reaches its peak value at ξ = R:
j(ξ = R,α = π/2) = 3

2j0. We note that Refs. [21, 33]
computationally studied a very similar perturbation, and
described δj qualitatively.
The solution for j, shown in Eqs. (4-5), obeys similar-

ity (e.g., pg. 57 of Ref. [47], as well as Refs. [48, 49]):
spheres with different R generate the same flow pattern
and amplification; R only determines how rapidly j ap-
proaches its asymptotic value j0, via the function R3/ξ3.
This observation has several important, albeit inconve-
nient, consequences: regardless of size, an RI generates
significant amplification jmax/j0 = 3/2. Furthermore, to
computationally model µm-scale RI properly, we must
include very fine resolution (i.e., dξ ≪ R) to capture the
rapid R3/ξ3 falloff.
Focusing on the case of hydrodynamic flow v, only

in the limit of ideal flow (where the Reynolds number
Re ≡ vR/ν → ∞) is the flow amplification fixed at
3/2, independent of R. However, a real fluid possesses
finite kinematic viscosity ν, representing shear stress due
to intermolecular forces and collisions. In this case, the
boundary condition determining the normal component

of v at the surface of the sphere, v · ξ̂(ξ = R) = 0, must
be supplemented with the “no-slip” condition on the tan-
gential component of velocity v · α̂(ξ = R) = 0, i.e., the
fluid molecules “stick” to the stationary surface of the
sphere. Now consider flow amplification in the limit of
vanishing R: R → 0 implies Re → 0 (for finite ν), so
the fluid is no longer ideal. In this limit, solution of the
Navier-Stokes equation, incorporating the no-slip condi-
tion, reveals that there is no flow amplification (e.g., pg
60 of Ref. [47]).
Returning to electrical current j, one might ask

whether a similar effect occurs for sufficiently small R,
due to an electrical analog of the fluid viscosity. In a
conductor, electron-electron collisions indeed result in
an electron viscosity νe. However, in a conventional
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FIG. 2: a) Cross-sectional view of fully-diffused flow of j
over sinusoidally-perturbed rod, with outer boundary defined
by r = r0 − A sin(2πz/λ). b) In a perfectly-conducting,
sinusoidally-perturbed rod, surface current K is restricted to
a skin depth δ ≪ A, λ.

metal, νe → 0 because the electron-electron collision
rate is dwarfed by electron collisions with the station-
ary ionic lattice. The scattering of electrons due to the
lattice, driven primarily by lattice vibrations (phonons)
and impurities, constitute the metal’s electrical resistiv-
ity η ≡ 1/σ, which is accounted for in Ohm’s law, Eq. (1).
In this case of a resistive metal, to the best of our knowl-
edge there is no equivalent of the no-slip condition on
electrons flowing past a non-conducting boundary. Con-
sequently, we only specify the normal component of j

on the RI’s surface (i.e., j · ξ̂(ξ = R) = 0), and cur-
rent flow in a resistive metal is equivalent to ideal fluid
flow, as shown at the beginning of this section. Conse-
quently, so long as we avoid quantum effects by restrict-
ing R ≫ λd (the electron de Broglie wavelength ≤ 1 nm
for aluminum), we expect maximum flow amplification
to satisfy jmax/j0 = 3/2.
In ultraclean materials (e.g., graphene), conditions

can be achieved where the situation described above re-
verses: electron-lattice scattering occurs so infrequently
that electron-electron interactions dominate, giving rise
to non-negligible electron viscosity νe. In this regime,
electrons indeed behave as a viscous fluid, and Eq. (1)
must be replaced by a Navier-Stokes-like equation [50].
Experiments have demonstrated signatures of viscous
electron flow, e.g., parabolic-shaped Poiseuille flow (char-
acteristic of viscous flow through pipes) [51] and vortex
formation [52]. Furthermore, simulations predict that
flow around an obstacle generates vortex shedding [53],
just as in a fluid. However, in this work we focus on con-
ventional metals, where Ohm’s law and the ideal fluid
analogy apply.
Before closing this section, we note that when we allow

finite electrical conductivity σ in the RI, the problem
is still analytically tractable. The boundary condition

j · ξ̂(ξ = R) = 0 is replaced by continuity of jξ and φ

across the RI surface: j · ξ̂(ξ = R−) = j · ξ̂(ξ = R+)
and φ(ξ = R−) = φ(ξ = R+). In this case, the fluid
analogy of flow around an impenetrable sphere fails, but
is replaced by the analogy with fields in a linear dielectric,
as demonstrated in §7.5 of Ref. [54].

B. Current flow over rippled surface

The hydrodynamic analogy applies not only to resistive
objects embedded in the metal, but also deformations of
the metal surface. The surface finish of metal rods com-
monly exhibit periodic grooves as a result of the fabrica-

tion process (e.g., Ref. [55]), which may be idealized with
a sinusoidally-perturbed surface rs = r0 −A sin(2πzλ ), as
illustrated in Fig. 2a. Assuming fully-diffused, steady-
state j, within the metal ∇ · j = 0 ⇒ ∇2φ̃ = 0, just
as in the discussion in Sec. II A. At the metal/vacuum
boundary, j · n = 0, where n is the normal vector at
the boundary (see Fig. 2a). As we shall see below, the
characteristic radial scale length of the solution is λ, so
the unperturbed current density j0 is reached as r0−r

λ

increases: j( r0−r
λ → ∞) = j0ẑ.

In the limit λ ≪ r0, the problem is quasi-planar, i.e.,
spatial variations in j are confined to a radial region
∆r ∼ λ, and if r0/∆r ≫ 1, we can ignore the rod curva-
ture. In this case, we can use the planar hydrodynamic
solution for steady-state, incompressible, potential flow
over an impermeable sinusoidal wall. As before, the hy-
drodynamic velocity v = −∇φ satisfies the same equa-
tion (i.e., ∇2φ = 0) and boundary conditions as the elec-
trical problem. A perturbation solution exists (e.g., Ref.
[56], pg. 353), correct to first order in perturbation pa-
rameter A

λ ≪ 1, so we consider small “waviness”. As in
Sec. II A, this directly yields the corresponding electrical
flow solution:

jr/j0 = −kA cos(kz)e−k(r0−r), (7)

where k = 2π/λ, and

jz/j0 = 1 + kA sin(kz)e−k(r0−r) ≡ 1 +
δjz
j0

. (8)

Note j =
√

j2r + j2z satisfies

j/j0 ≃ 1 + kA sin(kz)e−k(r0−r) = 1 +
δjz
j0

, (9)

reaching a maximum at the valleys of the rod surface

jmax/j0 ≃ 1 + kA = 1 +
2πA

λ
, (10)

and a minimum in the bulges

jmin/j0 ≃ 1− kA = 1−
2πA

λ
, (11)

as illustrated in Fig. 2a. The current perturbation expo-
nentially decays as we move away from the rod surface,
with characteristic length scale λ/2π, similar to the so-
lution for deep water gravity waves (e.g., §18.18 of Ref.
[56]). The j amplification expressed in Eq. (10) may
help explain earlier-than-expected plasma formation in
experiments on current-driven rods in Ref. [57].
We can also consider current amplification in the limit

of a perfectly conducting rod, again with radius rs = r0−
A sin(2πzλ ), but now the current skin depth δ ≪ A, λ (see
Fig. 2b). The perfect conductor assumption is commonly
used in magneto Rayleigh-Taylor (e.g., Ref. [38]) and
MHD (e.g., Ref. [58]) instability analysis. As before,
we consider the small amplitude limit A

λ ≪ 1, A
r0

≪ 1.
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Applying Ampère’s law at the rod surface, we find B(r =

rs) = Bθ(rs)θ̂, where

Bθ(rs) =
µ0I

2π(r0 −A sin(kz))
≃ B0(1+

A

r0
sin(kz)), (12)

and B0 = µ0I
2πr0

. This expression, valid in both the

perfectly-conducting (Fig. 2b) and fully-diffused (Fig.
2a) limits, shows that small amplitude ripples generate a
correspondingly small perturbation in B.
In a perfect conductor, we can compute the surface

current K through the boundary condition

µ0K = n×B(rs), (13)

where the normal vector n satisfies

n = r̂ + kA cos(kz)ẑ. (14)

Combining Eqs. (12-14) we obtain the surface current,
valid to first order,

K

K0
≃ −r̂kA cos(kz) + ẑ(1 +

A

r0
sin(kz)), (15)

where K0 = B0/µ0 is the unperturbed surface current.
The maximum surface current is reached in the valley

Kmax

K0
≃ 1 +

A

r0
, (16)

so that for typical values of A and r0 satisfying A/r0 ≪ 1,
K amplification is negligible in a perfect conductor, as is
the perturbation in B (see Eq. (12)).
In contrast, the solution for fully-diffused j in Eqs. (7-

8) resolves the bunching and expansion of j streamlines as
they travel over the rippled surface, as illustrated in Fig.
2a. Consequently, j amplification depends on A

λ (rather

than A
r0
), so even “small” A satisfying A/r0 ≪ 1 can gen-

erate significant j amplification (if λ is correspondingly
small), unlike the perfectly conducting limit.
We now estimate current amplification due to surface

roughness and RI. Consider the beryllium liners studied
in Ref. [55], machined to obtain a high-quality surface
finish: root-mean-square roughness A ∼ 0.175µm, λ ∼3
µm. The skin depth will rapidly exceed A and λ, inval-
idating the perfect conductor assumption. In this case,
Eqs. (7-8) are more applicable, so jmax

j0
∼ 1+ 2πA

λ ∼ 1.37,

i.e., non-negligible and fairly close to the peak jmax

j0
∼ 1.5

due to the RI. However, for similarly-machined (smooth)
aluminum rods studied in Ref. [59], A ∼ 0.01µm,

λ ∼1.25 µm, jmax

j0
∼ 1.05, significantly smaller than that

due to RI.

C. Applicability of hydrodynamic analogy

The connection between electrical and hydrodynamic
flow was established under the assumption of steady-state

conditions. However, when current I(t) is applied to a
metal, magnetic field B and j gradually diffuse through
the surface, thus introducing both temporal and spatial
dependence into j(r, t) (r is the radial coordinate, as in
Fig. 2). More specifically, Eq. (3) now generalizes to

j = −σ0

(

∇φ+
∂A

∂t

)

. (17)

The inductive component of electric field ∂A
∂t generates

eddy currents resisting the penetration of field into metal,
as well as introduces “vorticity”

∇× j = −σ0
∂B

∂t
. (18)

We can understand the physical meaning of Eq. (18) by
using Ampère’s law ∇× B = µ0j to obtain the familiar
magnetic diffusion equation

∂B

∂t
=

1

µ0σ0
∇2B. (19)

The solution of Eq. (19) (e.g., Ref. [60]) shows that
as j(r, t) diffuses into the metal, the spatial scale on
which it varies is the skin depth δ, which generally in-
creases with time (e.g., δ ∼ 2

√

t/µ0σ0 for I = const).
Focusing on the RI case, the complication of a spa-
tially and temporally-varying j contradicts the assump-
tion of a sphere immersed in a spatially-uniform, time-
independent flow. However, in the limit δ ≫ R, j varies
slowly enough relative to the RI spatial scale that we can
view the RI as immersed in an approximately uniform
flow, thus recovering the analogy between hydrodynamic
and electrical flow.
In the time-varying case, we must also consider the

time-dependent form of charge conservation: ∇ · j =

−
∂ρq

∂t , where ρq is the electric charge density. Combining

this with Ohm’s law (1) and Gauss’s law ∇ ·E =
ρq

ǫ0
, we

obtain

σ0

ǫ0
ρq = −

∂ρq
∂t

, (20)

with solution ρq = ρq(0)e
−

σ0

ǫ0
t
, i.e., charge in the conduc-

tor will dissipate, by running to the metal boundary, on
very fast time scale ǫ0

σ0

∼1e-18 s, for σ0 ∼ 1e7(Ωm)−1.
This time scale is sufficiently fast that for most applica-
tions, we can assume ρq ∼ 0 and ∇ · j = 0, so the steady
state condition is recovered. In obtaining Eq. (20), which
is commonly derived in textbooks (e.g., Ref. [61]), we
have assumed σ = σ0 is constant. This approximation
only holds when Joule heating is sufficiently low so as to
not alter σ through σ(T ) dependence, and will be relaxed
in the following section.

III. TEMPERATURE PERTURBATION

To understand the effect of the current perturbation
δj ≡ j − j0 on the corresponding temperature perturba-
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5

tion, we first note

j2 = j20 + 2j0 · δj+ δj2 = j20 + 2j0δjz + δj2, (21)

where in the last equality we assume j0 = j0ẑ. Plugging
this into the the energy equation, we obtain

ρcV
∂T

∂t
= η(T )j2 = η(T )j20

(

1 + 2
δjz
j0

+
δj2

j20

)

, (22)

where ρ, cV , T, η ≡ 1/σ correspond to the density, specific
heat, temperature, and resistivity, respectively. In Eq.
(22) we have ignored thermal conduction for simplicity.
In order to integrate Eq. (22), we employ the convenient
and commonly-used approximation for the pre-melt tem-
perature dependence of resistivity η(T ) ≃ dη

dT T , where
dη
dT is a constant [31, 60, 62]. Then assuming ρ, cV , j0, δj
all constants in time (for illustrative purposes), Eq. (22)
predicts exponential growth:

T (x, t) = Tie
γt

(

1+2 δjz
j0

+ δj2

j2
0

)

, (23)

where Ti = T (t = 0) and γ =
dη
dT

j2
0

ρcV
is the electrothermal

instability growth rate for striations [30, 31]. Further-
more, locations with δjz(x) > 0 will grow at an effectively

faster growth rate γ(1 + 2 δjz(x)
j0

+ δj(x)2

j2
0

).

To illustrate the importance of current redistribution
δj, we first consider the case where δj = 0, but we al-
low an initial temperature perturbation δTi > 0. The
temperature in the initially hotter region will follow
Th = (Ti + δTi)e

γt, whereas the temperature in the
ambient metal obeys T0 = Tie

γt. Hence, the temper-
ature difference ∆T ≡ Th − T0 = δTie

γt grows expo-
nentially. However, the relative temperature difference
∆T/T0 = δTi/Ti is fixed at the initial value and shows
no growth, as discussed in Ref. [37].
In contrast, current redistribution does allow a grow-

ing ∆T/T0. To show this, we assume no initial tem-
perature perturbation (δTi = 0), but we allow δjz > 0.
The temperature in the region with amplified j obeys

Th = Tie
γt(1+2 δjz

j0
+ δj2

j2
0

)
, while the temperature in the am-

bient metal again follows T0 = Tie
γt. Hence, in the limit

δj
j0

≪ 1,

∆T/T0 ≃ e
2γt δjz

j0 − 1, (24)

i.e., the relative temperature difference grows at the ef-
fective growth rate γeff = 2γ δjz

j0
.

The foregoing discussion ignores an important physical
effect: the enhanced Joule heating associated with a re-
gion with δjz > 0 results in larger T , as well as η (owing
to the η(T ) dependence), which in turn causes further
j redistribution out of this region. Due to this feedback
loop, which has been studied in 1D in the nonlinear mag-
netic diffusion problem [60, 62, 63], the assumption of
j(x) fixed in time is an oversimplification to the true sce-
nario where j(x) and η(x) are ever-changing. We have
studied this 3D process in detail, and will report on it in
the follow-on publication.

FIG. 3: a) Current I(t) used to drive MHD simulation. b)
Doubly-periodic wedge used to model r0 = 500 µm Al rod,
with hemispherical resistive inclusion (RI) embedded on outer
face. Also shown are visualization planes FRONT, viewing
the outer surface of the rod from along the radial r̂ direction,
and TOP, viewing the axial midplane zm = 35µm (bounded
by the blue dotted lines).

FIG. 4: a) Front view of 3D MHD simulation with R = 3µm
inclusion, at outer radius r = 500µm and t=75 ns. This
simulation is run without hydrodynamics and is driven by
constant I=6 kA current. b) Top view, showing equatorial
plane. c) Comparison of j along the line L in a), for R = 3µm
and R = 6µm inclusions, with theoretical predictions. Blue
dots are from a lower resolution simulation.

IV. COMPARISON WITH MHD SIMULATION

A. Hemispherical resistive inclusion (RI)

This work was motivated by experiments described in
Ref. [19], in which a current pulse (see Fig. 3a) was ap-
plied to aluminum rods of radius r0 =500 µm. Hence,
MHD simulations of this scenario, run using the code
Alegra [64], will serve as our testbed for comparison to
theory. We use a SESAME equation of state [65], includ-
ing material strength (elastic-plastic constitutive model
combined with Steinberg-Guinan-Lund yield model), to
simulate the Al rod, which is initialized at room temper-
ature T=294 K (all units are SI). Electrical and thermal
conductivities are provided by the Lee-More-Desjarlais
model [66]. Simulations assume ion and electron tem-
peratures are equal (Ti = Te ≡ T ) and do not account
for radiative transport or losses. To keep the (Eulerian)
computational domain tractable, we only model a small
section of the rod, using the 3D wedge geometry shown
in Fig. 3b. We assume periodic boundary conditions
in both the axial (z) and azimuthal (θ) directions. As
shown in Fig. 3b, on the outer face of the rod, we embed
a hemispherical RI of radius R = 3µm. For simplicity,
we model the RI as Al, with electrical and thermal con-
ductivity reduced by 1e6, to simulate the non-conducting

FIG. 5: a) Front view of 3D MHD simulation with R = 3µm
inclusion, at outer radius r = 500.25 µm and t=30 ns. This
simulation is driven by I(t) and allows hydrodynamic expan-
sion. b) Top view. c) Comparison of j(t=30 ns) along the line
L with theoretical prediction. d) Same, but taken along the
radial lineout L′. e) Same as c), but showing the results of 3
different values of R. f) same as d), but showing 3 different
values of R, in addition to an unperturbed simulation (i.e.,
RI is absent).
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FIG. 6: a) Cross-sectional view of 2D simulation of
sinusoidally-perturbed rod, run without hydrodynamics and
driven by I=6 kA, at t =75 ns. b) Comparison of simulation
and theory along radial lineouts through the hill and valley
for λ = 6µm, A=0.25 µm. c) Same for λ = 12µm, A=0.5 µm,
demonstrating similarity. d) Same for λ = 6µm, A = 0.5µm,
illustrating discrepancy between theory and simulation. e)
Same for λ = 6µm, A = 1µm.

FIG. 7: a) j(t = 30 ns) from simulation driven by I = I(t) and
run with hydrodynamics, for λ = 6µm, A = 0.5µm. Magenta
curve shows j0(r) from a rod with no sinusoidal perturbation.
b) Same as a), but adding results from 2 other simulations,
to test similarity.

material assumed in the theory. Note that the solution
for flow around a sphere is still applicable to our hemi-
spherical scenario, since the 3D solution described in Sec.
II A is symmetric about a plane cutting through the cen-
ter of the sphere.

As described in Sec. II C, the steady-state assumption
of hydrodynamic theory is inconsistent with the time-
varying magnetic diffusion solution. However, if the cur-
rent skin depth δ ≫ R, then the hydrodynamic theory is
approximately valid. To provide the most favorable con-
ditions for comparison between theory and simulation,
we first consider constant I = I0 =6 kA (rather than
I(t) in Fig. 3a) and wait sufficiently long time τ so that
δ ≫ R. We choose sufficiently low value of I0 so that on
the time scale τ , Joule heating remains negligible, thus
avoiding the feedback loop described in Sec. III. Low I0
results in negligible expansion (through Joule heating)
and compression (through j×B force). Nevertheless, we
suppress hydrodynamics in these simulations, again in
the interest of best matching the assumptions of theory.

Simulation results in Figs. 4a,b illustrate j amplifica-
tion around the equator of the RI, in qualitative agree-
ment with the theoretical solution in Fig. 1. Further-
more, as seen in the top view in Fig. 4b, by t = 75 ns the
radial variation in j due to magnetic diffusion is weak:
other than the red annulus due to the RI, j is approx-
imately uniform. Hence, enough time has passed that
δ ≫ R, validating the approximation of an RI embedded
in a uniform flow j = j0ẑ.

In Fig. 4c, we quantitatively compare j from simu-
lation (black line, labelled R = 3µm), taken along the
azimuthal lineout L shown in Fig. 4a, with the theoret-
ical prediction (dashed green line). For this simulation,
which uses fine resolution (δx ∼ 0.1µm) in the vicinity of
the RI, we find close agreement. However, a lower resolu-
tion case using δx ∼ 0.5µm (see blue dots in Fig. 4c) does
not possess sufficient resolution to capture the peak of the

rapidly-varying solution j = j0(1 +
R3

2x3 ). This illustrates
the challenge of computationally modelling µm-scale RI:

we must use resolution δx ≪ R to capture the solution.
On the other hand, as mentioned in Sec. II A, similar-

ity suggests we can explore current redistribution around
µm-scale RI, which are difficult to experimentally diag-
nose owing to their small size, by studying a larger, more
easily-diagnosable RI. This principle is illustrated in Fig.
4c: simulation of a R = 6µm RI (solid black line) gen-
erates the same j amplification as the R = 3µm RI, in
agreement with theory (red line); larger R only increases
decay length.
Thus far, we have restricted simulation conditions to

best match the assumptions of theory. In the simula-
tions shown in Fig. 5, we relax these constraints, al-
lowing time-dependent I(t) (see Fig. 3a) and full MHD
physics, including hydrodynamic expansion. However,
we compare simulation and theory at early time t =30
ns, before Joule heating results in significant heating and
modification of the σ(r) profile. As seen in Fig. 5a,c the
simulation and theory still match closely on the outer
face of the rod. However, in Fig. 5b, the time-varying
I(t) results in skin depth δ ∼ R, as reflected in the notice-
able radial variation in j(r), in contrast to the constant
I case in Fig. 4b. Hence, the assumption of a sphere
placed in a uniform flow j = j0ẑ is broken, resulting in
the discrepancy in theory and simulation in Fig. 5d.
Continuing our investigation of simulations including

time-varying I(t), resistive diffusion, and hydrodynamic
expansion, we now address the validity of similarity,
which was derived under the assumption of steady-state
conditions. In Fig. 5e, we reproduce the azimuthal li-
neout from Fig. 5c, but also include results from two
simulations with larger RI. The profiles again show sim-
ilarity: jmax (i.e., maximum j amplification) is indepen-
dent of R, which only determines the decay scale length.
In Fig. 5f, we reproduce the radial lineout j(r) from Fig.
5d, but now include the R = 6, 12µm results, as well as
j0(r), representing j(r) in the absence of the RI (ma-
genta curve). Now jmax does depend on R, thus break-
ing similarity. Also, somewhat non-intuitively, smaller

R generates larger jmax at the back of the RI. Figure 5f
suggests that j amplification occurs relative to the un-
perturbed value j0(r) at the back of the RI. Hence, the
largest RI (i.e., R = 12µm) penetrates deepest into the
metal, thus sampling the lowest value of j0(r) and pro-
ducing the lowest jmax. Conversely, the smallest RI (i.e.,
R = 3µm) samples the largest value of j0(r), close to the
surface of the rod, and generates the largest jmax.

B. Sinusoidally-perturbed surface

In Fig. 6a we show a 2D (r, z) simulation of an Al rod
with a sinusoidal perturbation of amplitude A and wave-
length λ applied to the outer surface: r = r0+A sin(2πλ z),
with r0 = 500 µm. For computational savings, we only
model a single wavelength λ, and apply periodic bound-
ary conditions in the axial direction. As in the previous
discussion in Sec. IVA, we initially consider simulations
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with constant I =6 kA and no hydrodynamics, to most
closely satisfy the assumptions of the theory in Sec. II B.
In Fig. 6b, we consider the case λ = 6µm, A = 0.25µm
(comparable to experimental values in Ref. [55]), and
sample the simulation along two radial lineouts, located
in the valley and hill of the perturbed surface (see Fig.
6a). Both lineouts show close agreement with theory (see
Eq. (9)). In Fig. 6c, we show the same comparison for
the case where both λ and A are doubled: λ = 12µm,
A = 0.5µm. In accord with theory, this simulation ex-
hibits longer decay length than Fig. 6b, but the same j
amplification, thus verifying the similarity principle.

Unlike the exact solution in Sec. II A, the solution for
flow over a rippled surface is only valid for ǫ ≡ A/λ ≪ 1.
This condition is well-satisfied for the case in Fig. 6b
(ǫ = 1/24), resulting in close agreement between simula-
tion and theory. In Fig. 6d we show results of an identical
simulation, except A is doubled, resulting in discrepancy
between theory and simulation. In Fig. 6d, we further
increase A so that kA ∼ 1, at which point we are clearly
outside the bounds of linear theory, since the j perturba-
tion in Eqs. (10-11) is equal to the unperturbed value.

Theory is also limited by the steady-state assumption.
Figure 7a shows results of a simulation in which we re-
lax this constraint, running with I(t) shown in Fig. 3a,
and allowing for hydrodynamic expansion. As was dis-
cussed in Sec. IVA, the skin depth δ associated with
the time-varying I(t) does not satisfy δ ≫ λ, resulting in
a spatially-varying background flow j0(r) (see magenta
curve in Fig. 7a), obtained from a 1D (i.e., unperturbed)
simulation. This discrepancy with the theoretical as-
sumption j0=const results in the differences between the-
ory and simulation shown in Fig. 7a.

Nevertheless, theory is still useful in estimating the
maximum j amplification through Eq. (10): jmax/j0 ≃

1+2πA/λ = 1+2π(0.5/6) ∼ 1.5. Here, j0 is the constant,
unperturbed value of j assumed in the theory, which isn’t
well-defined in the time-dependent I(t) case, due to spa-
tial variation in j0(r). However, if we approximate j0
with its value at the rod surface ∼1.4e11 (see magenta
curve in Fig. 7a), then the maximum j amplification
in simulation is jmax/j0 ∼ 2/1.4 ∼ 1.4, in close agree-
ment with theory (i.e., 1.5) and confirming that small-
amplitude ripples can drive significant jmax/j0. We con-
trast this estimate with that from perfectly conducting
theory: Kmax/K0 ∼ 1 +A/r0 ∼ 1 + 0.5/500 = 1.001.

Continuing our study of simulations driven with time-
dependent I(t) and allowing hydrodynamic expansion,
we consider the robustness of similarity. Figure 7b shows
j(t=30 ns) from three simulations varying (A, λ) but
keeping the similarity parameter ǫ ≡ A/λ fixed; thus, in
the steady-state limit λ ≪ δ, we expect jmax to remain
invariant. Figure 7b illustrates that even in the time-
varying case, simulations demonstrate approximate simi-
larity: jmax varies weakly (∼ 10%) despite (A, λ) varying
by a factor of 16. As in the case of the RI, smaller (A, λ)
results in larger jmax, and we offer the same explanation:
smaller A samples larger values of j0(r), closer to the rod

surface, thus producing larger jmax.
In Ref. [59], researchers applied 20 MA to Al rods

with pre-machined sinusoidal perturbations, in which
(A, λ) were varied, while keeping ǫ fixed. Later-time
radiography between the λ = 200µm,A = 5µm and
λ = 400µm,A = 10µm cases did not show similarity,
with the smaller λ exhibiting enhanced heating and ex-
pansion, in qualitative agreement with Fig. 7b. We
anticipate that smaller values of λ will better satisfy a
key requirement for similarity (i.e. λ ≪ δ), and indeed
λ = 25, 50, 100µm do show evidence for similarity in Fig.
8a of Ref. [59]. Further investigation is required.

V. CONCLUSION

We have used hydrodynamic solutions to understand
electrical current flow around obstacles and surface fea-
tures. We focused on two simple, idealized scenarios (i.e.,
spherical RI and sinusoidal surface roughness), but the
vast collection of hydrodynamic solutions allows consid-
eration of more complicated perturbations, such as ellip-
soidal RI. While the theory is derived under very strin-
gent assumptions (e.g., steady-state, spatially-constant
background flow j0) that are not generally satisfied in
the electrical problem, in Sec. IV we show approxi-
mate agreement with MHD simulation even in the time-
varying case. In particular, simulations confirm a main
finding of the theory: even physically small perturbations
can drive significant j amplification.
In the simulations in Sec. IV, we have avoided the

case where j is sufficiently intense so as to drive appre-
ciable increase in temperature δT . As described in Sec.
III, due to the temperature dependence of electrical con-
ductivity σ(T ), a local increase δT results in δσ < 0,
which causes j and Joule heating to redistribute, driving
a newly-overheated region and further j redistribution.
Consequently, the “topography” σ and flow j are con-
stantly evolving, allowing our original perturbation (e.g.,
spherical RI) to grow in size and transform structurally
with time. This dynamical process will be covered in
a future paper; we will find that even in this complex
scenario, the hydrodynamic analogy still proves useful.
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