
Framework for Data Tracking across Data Controllers and Processors

Zhiyuan Lai
Brown University

Yanzhi Xin
Brown University

Atlas Yu
Brown University

Abstract
Privacy protection is an increasingly challenging problem
in the technology industry. While the advancement of the
internet has brought more convenience and efficiency to our
everyday lives, we also left unprecedented amount of personal
information online, which could be collected via web tracking
and used by various third-party entities for profit. However,
most users of those services are not fully aware of where their
personal data is sent to and there is no easy way to visualize
the whole process due to the sophistication of web tracking
technologies. Therefore, we would like to defend user privacy
by proposing a framework to help users and data controllers
to track and visualize how user data is distributed across third-
party web trackers.

1 Introduction

Web tracking, a method through which web service providers
and third party platforms obtains user activity data, has been
a double-edged sword on the internet. On one hand, web
tracking benefits online platforms by gathering user behaviors
on their site, which aids targeted advertising for greater prof-
its. For instance, Twitter uses user data to generate a list of
tailored audiences, advertisers whose ads might interest that
particular user, and the more accurate Twitter matches ads
with users, the higher it will profit. [9] The tailored ads based
business models have enabled many internet giants, such as
Google and Facebook, to provide most of their services for
free and made tremendous impacts on our society. On the
other hand, however, the lucrative fast-expanding online ads
business stimulates a sophisticated yet poorly regulated web
tracking echo system, which constantly threatens our personal
privacy. In 2019, Farhad Manjoo, a journalist from the New
York Times, participated in a privacy research study, which
monitored his digital activity online and how his data was
tracked by various web trackers.[7] The result of the study
was appalling. It turned out that Farhad’s activity was not only
monitored by the each website he visited, but a collection of

third-party trackers embedded on the site to trace every single
detail of his activity, including what he had looked at, how
long he stayed on each section of the page, which device he
used to browse each site, etc. By the end of the study, re-
searchers recorded more than a hundred trackers that obtained
Farhad’s online activities in one way or the other from 47 sites
he visited, not mentioning the entities behind these trackers
are able to figure out Farhad’s physical address, gender, age
etc through statistical analysis and digital finger prints, and to
associate these activities to the 10 digits identifier associated
with Farhad [7] Apparently, under-regulated online tracking is
sabotaging our privacy as a basic human right, causing more
harm than good to internet users.

Despite the advancement in data and privacy regulations
around the world, the battle against web trackers is still at
an early stage. One significant challenge is tracing who have
obtained user data through third-party trackers. So far, people
are able to identify and block most third-party trackers on
websites [3], but are not able to learn what subsequent data
processors the data has been forwarded to. To address this
issue, we propose a general framework based on gRPC system,
which is capable of identifying all the platforms consuming
data from certain web trackers.

2 Background

Third-party web trackers are scripts or objects embedded in
host website pages that act directly or assist in monitoring
user activities on the site. For instance, Google Analytics is a
popular tracker used by many websites to help gathering user
data on the site and generating insightful information for the
site owners to manage their business.[6] In addition to helping
site owners, many web trackers, such as Doubleclick (also
owned by Google), also collect user behaviors for targeted
advertisement and share the data with the other entities. [4]
To prevent these ads platforms from abusing user data and to
protect personal privacy, many data regulations were issued
across the world, the toughest of which is the General Data
Protection Regulation (GDPR).

1



2.1 GDPR
The General Data Protection Regulation (GDPR) is a data
protection regulation of the European Union (EU). The main
purpose of this regulation is to provide rights, protections and
give control to individuals (otherwise referred as data subject
in GDPR) over their personal data. GDPR takes effect since
25 May 2018 [2].

Since the enforcement of the GDPR, there have been three
hundred and forty violations and fines issued to individuals
and companies for a total of about hundred and fifty eight mil-
lion euros [10]. These companies includes multinational cor-
poration such as Google (multiple violations), British Airways
and Marriott. While there are many researches and systems
proposed / framework [1, 11] which aimed to help systems
to have the capabilities to be compliant to the GDPR, the
adoption rate is low for various reasons such as performance
impact, vast changes to current systems required and many
limitations. Furthermore, there is no such common framework
which helps both the data controllers and the data processors
to keep track of the usage of data subjects’ personal data.

It is our project’s aim is to explore and address this issue
by developing a common framework which can be used by
both the data controllers and processors to better track the
usage of personal data. This framework is not only beneficial
to data controllers and data processors but also to the data
subjects as they will have the high level and full picture of
where their personal data have been used so as to be able to
better understand the usage of their personal data and invoke
their rights more effectively.

2.2 gRPC

Figure 1: gRPC Diagram

For our proposed system, we use gRPC, an open source
remote procedure call system that can run on any environ-
ment, as the underlying structure of the framework. Due to
the unpredictable nature of operating systems types across

data controllers and data processors, our design requires a uni-
versal system across all computing platforms, which makes
gRPC a perfect candidate. gRPC is able to achieve univer-
sal communication among servers and clients of various OS
by using Protocol Buffers (PB), an open source mechanism
for serializing structured data, which is language and plat-
form neutral. Similar to XML, Protocol Buffers are verbose,
descriptive and human-readable, but, unlike XML, Protocol
Buffers are smaller, faster, and more efficient than other wire-
format protocols. [8] Any custom data type that needs to be
serialized will be defined as a Protocol Buffer in gRPC, which
gives greater flexibility for data controllers and processors to
share any kind of data in any format across any platforms.

In addition, gRPC heavily promotes the use of SSL/TLS
to authenticate and to encrypt all the data exchanged among
clients and servers, which prevents adversaries from eaves-
dropping and leaking user data from outside the network.

To facilitate data tracing across platforms, we defined a list
of API calls with gRPC in Table 3. We will dive into details
of each API call in the next section.

3 Design

We proposed a common framework which can be used on
existing systems with minimum changes. Our proposed frame-
work in essence produces graphs with version control that
tracks how data flows from the data subject to the data con-
troller / processor. The framework tracks incoming and out-
going (sharing of) data through interception on common web
services such as gRPC [5] protocols which are used by ex-
isting systems to collect and share data. This information
tracker works like a proxy where traffics are forwarded to the
intended receiving end. Figure 3 shows the overview of the
system architecture.

Figure 2: System Architecture

2



3.1 Components
There are 6 components in our proposed system and they are
as follows:

1. Data Subject - Data subject in this project refers to the
end users of the system. Users upload their personal
information to a data controller (i.e., a server) via gRPC
calls. User data is stored and processed across various
entities including different data processors.

2. Data Controller - Data controller is the entity that han-
dles upload requests from the user containing personal
information and stores user data, and is the source node
of the data flow graph. Data controllers may pass pro-
cessed user data to other servers.

3. Data Processor - Data processor refers to every entity
that stores user data passed from the data controller. It
can further process user data and pass to other entities.

4. Server Interceptor - Server interceptor is a proxy for
forwarding incoming requests to corresponding handler
methods. Requests from users and other servers are cate-
gorized and handled by separate helper methods.

5. Processing Module - Processing module is responsible
for processing user data within an entity and it imposes
version control by generating new hash values for every
processing / computation on user data.

6. Graph Module - Graph module within an entity is re-
sponsible for creating nodes and constructing edges of
the flow graph. Graph methods are called when there
relevant requests are being handled. It keeps track of the
flow of user data both within a server and to other servers.
It creates new nodes when new entities are introduced
to the flow graph, which could be a user node, a server
node, or a processing node. Internal edges between data
processing nodes are created when the user’s data is
passed between those nodes. External edges are created
when the server passes user data to other servers.

3.2 Functionalities
Creation of data node: Incoming data from for example, a
website, will be intercepted by our framework. Our framework
will create new nodes and incoming edges connected from the
newly created node to the data controller’s receiving system
node in the graph with the hash value as version control label.

Creation of edges between data and system nodes: Our
framework tracks any interactions / passing of the collected
personal data between the data controller’s systems. When
data are passed / used on other systems owned by the data
controller, our framework will generate an edge between the
data node and the system node to represent the usage of the
data by the system.

Interaction between data controllers and data processors:
When (outgoing) data are passed from the data controllers to
data processors for processing, our framework will create an
outgoing edge from the source node to the processor node.
On the data processor’s end, a new node representing the
data passed in will also be created. This new node (source
node) will have an outgoing edge to the system node receiving
this data. Any interaction between systems within the data
processors will generate edges like mentioned above.

Generation of an overview graph for data subject: One of
our framework’s main goal is to help data subject understands
the overview of what and where their data have been passed
to. This was achieved by connecting all their data graph stored
on the data controller to the data processor (if any). This gen-
erated graph will allow the data subject to better understand
where their data have been processed so that they can better
make an informed decision to invoke their rights such as the
right to be forgotten or unconsent the use of their personal
data of the GDPR.

3.2.1 Data Transparency

Our system achieves data transparency among servers by
allowing the user to request any server in this system to gain
awareness of the whereabouts of its own personal information.
Within one server entity, every computation nodes that process
user data and every outgoing edge will be returned to present
a complete view of how this user’s data is being processed
by this server and where it flows outside of this entity. An
example of the graph returned by a data processor is shown
in Figure 5 below:

Figure 3: Visualization of the Data flow Representation on
Server 3, A Data Processor

3



3.2.2 Flow Graph Locality

In our proposed system, user can send requests to any server
in this system for the data flow graph of its own data. If
the requested server is the data controller to which this user
uploads its personal information to, it will return the user with
a complete graph containing every entity that has this user’s
personal data and corresponding edges indicating how its data
is being passed along among different servers. Figure 4 shows
an example of a complete graph returned by the data controller
to the data subject (user with an id of "test_user_id_1"):

Figure 4: Visualization of the result sent back to the user

If the requested server is a data processor that gets the user
data from the data controller or other data processors, it will
only return a sub-graph starting from the predecessor of the
processed user data to this server and all nodes / edges from
there. Data processor has no previous knowledge about how
user data flows.

Figure 5 shows the sub-graph starting from server 2 which
is a data processor. Server 2 receives test_user_id_1’s data
from the data controller which is test_server_id_1 (in Figure
5). When user test_user_id_1 request data flow graph from
server 2, it will only get the graph containing nodes and edges
starting from server 2. The requested server will return an
empty graph if it doesn’t have this user’s data.

Locality of flow graph protects user privacy by hiding pre-
vious paths of user data flow and only exposing the data flow
starting from this server.

Figure 5: Visualization of the Data flow Representation on
the Data Processor

3.2.3 Data Isolation

A server entity in the system can have multiple roles as it
may be the data controller for one user and data processor for
another user. In the case where there are more than one user
in this system, a server entity can have multiple user data and
process them separately with different computational nodes.

When a user requests flow graph from the server, the server
only returns nodes and edges related to this user specified by
the client user ID. Our system guarantees that the user only
has access to its own data flow graph and has no knowledge of
how other users’ data is being processed and passed to other
entities. Strict data isolation is imposed for every server in the
system. The API for generating flow graph of the user data is
only callable by the client with a specific user ID that ensures
its identity.

4 Implementation

Our current project prototype is written in Golang and based
on gRPC. Communication between two entities in the system
is done through gRPC calls. All functionalities related to data
flow construction / generation are implemented by the graph
module, which is separate from the application itself.

4.1 gRPC API

Communication between user and server (data subject with
data controller), server and server (data controller with data
processor or data processor with data processor) are imple-
mented with gRPC calls. Table 1 shows the gRPC calls im-
plemented in our prototype.

4.2 Graph Internal Data Structure

Each server entity has a graph data structure that contains
nodes / edges that represents user’s data flow information.
Table 2 shows a summary of the graph data structure used in
our prototype and what it represents.

4



API Description
SubmitPersonalInfo (Sub-
mitRequest)

Invoked by user to submit per-
sonal info node

ProcessUserInfo (Process-
Request)

Invoked by server to process
user data

RequestEdges (EdgesRe-
quest)

Invoked by server to recur-
sively request edges

GetCombinedGraph (Get-
CombinedGraphRequest)

Invoked by user to get the
combined graph

Table 1: gRPC Calls

Variable
Name Type Description

id string server id

nodes map[string]*Node nodes related to a
user

owners map[string]*Node processor of a
node

predecessor map[string]*Node predecessor of a
node

outgoingEdges map[string][]*Node outgoing edges
from a node

successors map[string][]*Node successors from a
node

Table 2: Graph Internal Data Structure

4.3 Graph API

API Description
setPredecessor (userID
string, predecessor
*Node)

Set the predecessor of incom-
ing user data

setOwner (userID string,
controller *Node) Set the controller ID of a user

createNodeIfNotExists
(id string, label string)

Create a new node if given ID
doesn’t exist in the node list
of this graph

passData (srcID string,
dstID string)

Pass data within a server from
the source node to the desti-
nation node

receiveData (srcID
string)

Receives data from its prede-
cessor

sendToOtherServer (sr-
cID string, processorID
string)

Send data to servers outside
of this graph

combineAndSaveGraph
(id string)

Combine and generate multi-
ple graphs

Table 3: Graph API

Graph APIs are summarized and described at Table 3.

They’re used to keep track of internal and external data flow
and construct the overall data flow graph.

4.4 Data Version Control

Nodes that represent user data have unique hash values used
for version control within the system. Every read / write re-
quests on a designated user data block will result in a change
of hash value. When data is passed from one entity to another,
this hash value is also going to change. Essentially, any oper-
ation on user data creates new data nodes with a same user
ID and different hash value. User data nodes are identifiable
by user ID and hash value.

5 Future Work

We have implemented 4 gRPC APIs for client / server interac-
tion. They only provide limited functionalities for the moment
and user data flow is unidirectional. For future work, we may
extend gRPC calls to support more functionalities that enable
bidirectional user data exchange. For example, after a user
uploads its personal information to a data controller and it
passes this data to a data processor, the data processor can re-
turn the processed user data with a new hash value back to the
server. In addition, we would also like to use our framework
on existing servers to evaluate our framework.

6 Conclusion

In conclusion, we have presented our proposed framework for
data tracking across data controllers and processors. One of
the advantage of adopting our framework is that it is a "plug-
and-play" solution to existing applications. We designed and
implemented our idea as a framework in the form of a library
for users to adopt and use. It has several benefits to this de-
sign choice; 1) Existing applications only has to import our
library to incorporate our framework, 2) Application develop-
ers will only add codes (by invoking our framework’s APIs)
and no modifications to the application’s logic is required.
This ensures that the application works as it should while
benefiting from our framework. 3) Our framework can be
easily distributed where it would be easy for data controllers
and processors to adopt.

From the best of our knowledge, there is no other frame-
work like ours that helps the data controller and data processor
to keep track of data flow with the aid of graph visualization.
Moreover, our framework is innovative and serves great pur-
pose for data subjects as it allows data subjects to have an
overview of where their data are actually used and went.

5



Task Zhiyuan Lai Yanzhi Xin Atlas Yu
Project Proposal

Presentation Slides (contributed equally with
Yanzhi Xin)

(contributed equally with
Zhiyuan Lai) -

Project Code - APIs (contributed equally with
Yanzhi Xin)

(contributed equally with
Zhiyuan Lai) -

Project Servers and Clients for POC (contributed equally with
Yanzhi Xin)

(contributed equally with
Zhiyuan Lai) -

Project MongoDB Functionalities - -
Project Final Report

Table 4: Summary of contributions

Acknowledgment

We would like to thank Professor Malte Schwarzkopf for
his valuable guidance, insights, advice, encouragement and
recommendation on this work. We would also like to thank
Brown University and our classmates of this seminar class:
CSCI 2390 Privacy-Concious Computer Systems for their
insightful comments and feedback.

References

[1] Katriel Cohn-Gordon, Georgios Damaskinos, Divino
Neto, Joshi Cordova, Benoît Reitz, Benjamin Strahs,
Daniel Obenshain, Paul Pearce, and Ioannis Papagian-
nis. DELF: Safeguarding deletion correctness in online
social networks. In 29th USENIX Security Symposium
(USENIX Security 20). USENIX Association, August
2020.

[2] European Commission. Reform of eu data protec-
tion rules, May 2018. https://eur-lex.europa.
eu/legal-content/EN/TXT/HTML/?uri=CELEX:
32016R0679&from=EN.

[3] Tadayoshi Kohno Franziska Roesner and David Wether-
all. Detecting and defending against third-party tracking
on the web. the 9th USENIX Symposium on Networked
Systems Design and Implementation, 2012.

[4] Joanna Geary. Doubleclick (google): What is
it and what does it do?, 04 2012. https://
www.theguardian.com/technology/2012/apr/23/
doubleclick-tracking-trackers-cookies-web-monitoring.

[5] Joshua Harry George, gRPC Specification, Anees
Shaikh, and Jayant B. Kolhe. Use cases for grpc in
network management. 2017.

[6] Kristi Hines. The absolute beginner’s guide to
google analytics, 06 2015. https://moz.com/blog/
absolute-beginners-guide-to-google-analytics.

[7] Farhad Manjoo. I visited 47 sites. hundreds
of trackers followed me., 08 2019. https:
//www.nytimes.com/interactive/2019/08/
23/opinion/data-internet-privacy-tracking.
html?smtyp=cur&smid=tw-nytimes.

[8] Janakiram MSV. Google’s grpc: A lean and
mean communication protocol for microser-
vices, 09 2016. https://thenewstack.io/
grpc-lean-mean-communication-protocol-microservices/.

[9] Miranda Wei University of Washington / University of
Chicago; Madison Stamos, Sophie Veys University
of Chicago; Nathan Reitinger, and Justin Goodman Uni-
versity of Maryland; Margot Herman University of
Chicago; Dorota Filipczuk University of Southamp-
ton; Ben Weinshel University of Chicago; Michelle L.
Mazurek University of Maryland; Blase Ur University of
Chicago. What twitter knows: Characterizing ad tar-
geting practices, user perceptions, and ad explanations
through users’ own twitter data. Proceedings of the 29th
USENIX Security Symposium., 08 2020.

[10] Help Net Security. 340 gdpr fines for a to-
tal of C158,135,806 issued since may 2018, July
2020. https://www.helpnetsecurity.com/2020/
07/16/gdpr-fines/.

[11] Supreeth Shastri, Vinay Banakar, M. Wasserman, Arun
C. S. Kumar, and Vijay Chidambaram. Understanding
and benchmarking the impact of gdpr on database sys-
tems. Proceedings of the VLDB Endowment, 13:1064 –
1077, 2020.

6

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN
https://www.theguardian.com/technology/2012/apr/23/doubleclick-tracking-trackers-cookies-web-monitoring
https://www.theguardian.com/technology/2012/apr/23/doubleclick-tracking-trackers-cookies-web-monitoring
https://www.theguardian.com/technology/2012/apr/23/doubleclick-tracking-trackers-cookies-web-monitoring
https://moz.com/blog/absolute-beginners-guide-to-google-analytics
https://moz.com/blog/absolute-beginners-guide-to-google-analytics
https://www.nytimes.com/interactive/2019/08/23/opinion/data-internet-privacy-tracking.html?smtyp=cur&smid=tw-nytimes
https://www.nytimes.com/interactive/2019/08/23/opinion/data-internet-privacy-tracking.html?smtyp=cur&smid=tw-nytimes
https://www.nytimes.com/interactive/2019/08/23/opinion/data-internet-privacy-tracking.html?smtyp=cur&smid=tw-nytimes
https://www.nytimes.com/interactive/2019/08/23/opinion/data-internet-privacy-tracking.html?smtyp=cur&smid=tw-nytimes
https://thenewstack.io/grpc-lean-mean-communication -protocol-microservices/
https://thenewstack.io/grpc-lean-mean-communication -protocol-microservices/
https://www.helpnetsecurity.com/2020/07/16/gdpr-fines/
https://www.helpnetsecurity.com/2020/07/16/gdpr-fines/

	Introduction
	Background
	GDPR
	gRPC

	Design
	Components
	Functionalities
	Data Transparency
	Flow Graph Locality
	Data Isolation


	Implementation
	gRPC API
	Graph Internal Data Structure
	Graph API
	Data Version Control

	Future Work
	Conclusion

