3 Database Services
f

l

CERN IT Department
CH-1211 Geneva 23
Switzerland

www.cern.ch/it

CERNIT

Execution plans and tools

Dawid Wojcik

Department

CERNIT

Department

- Execution plan 55
— Text or graphical representation of steps
Oracle server takes to execute specific SQL

— EXecution plan is a tree in which every node ==
IS a DB server operation

— Prepared during hard parsing of a statement and kept
Inside library cache
— There can be multiple execution plans for the same query
* Depending on bind variables
* Depending on statistics
» Depending on hints

» Plans may change when they age out of library cache (new
hard parse required)

* An explain plan might be different than actual execution plan

TTTTT
CCCCCCCCCC

Cgls-'\llgfggsgxgezn; /@Datab aSe Y

Switzerland
www.cern.ch/it %‘ PEEYICES <7/

CERN IT Department
CH-1211 Geneva 23
Switzerland

www.cern.ch/it

. . . CERNIT
Viewing execution plans Departient

i

When designing a query ./ .

— explain plan for select .. h\

— select * from table (dbms xplan.display()); \

Viewing an existing cursor’s plan (sql_id is known)
— select * from
table (dbms_xplan.display cursor(‘'sql_id', cursor_ id, 'all'));

Viewing all plans from AWR (Automatic Workload Repository)

— select * from
table (dbms_ xplan.display awr('‘'sql_id',6null,null, 'all'));

If you suspect statistics or cardinality estimation problem

— select /*+ gather plan statistics */ .

— select * from table(dbms xplan.display cursor(null, null,
'"ALLSTATS LAST'));

— see (Google ;)) Cardinality Feedback Tuning by Wolfgang Breitling

See Oracle documentation for details

http://docs.oracle.com/cd/E14072_01/appdev.112/e10577/d_xplan.htm

CERNIT

Department

‘! Reading execution plans

* Few simple rules of reading execution plans

— Parent operations get input only from their children (data
sources)

— Data access starts from the first line without children

— Rows are “sent” upwards to parent data sources in
cascading fashion

select d.dname, d.loc, e.empno, e.ename from emp e, dept d where e.deptno = d.deptno
and d.dname = 'SALES' and e.ename between 'A%' and 'X%‘' order by e.deptno;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | SELECT
__ STATEMENT
| 0 | SELECT STATEMENT I | 5| 315 | 8 (25)] 00:00:01 |
| 1| SORT ORDER BY I | 5| 315 | 8 (25)] 00:00:01 |
|* 2 | HASH JOIN | | 5| 315 | 7 (15)] 00:00:01 | SORT

ORDER BY
|* 3| TABLE ACCESS FULL| DEPT | 1| 30 | 3 (0)| 00:00:01 |
1* 4| TABLE ACCESS FULL| EMP | 4| 462 | 3 (0)] 00:00:01 |

HASH JOIN
Predicate Information (identified by operation id)

TABLE TABLE

2 - access("E"."DEPTNO"="D"."DEPTNO")
3 - filter("D"."DNAME"='SALES')
4 - filter("E"."ENAME">='A%' AND "E"."ENAME'"<='X%')

ACCESS FULL ACCESS FULL
(DEPT) (EMP)

CERN IT Department

CH-1211 Geneva 23
Switzerland

www.cern.ch/it

Reading execution plans sl

Department

select name as "name", coalesce (sum("pending"),0) "pending", coalesce(sum("running"),0) "running", coalesce (sum("unknown"),0) "unknown",

coalesce (sum("terminated"),0) "terminated", coalesce(sum("done"),0) "done", coalesce (sum("canc"),0) "cancelled", coalesce (sum("abort"),0)
"aborted", coalesce (sum("apps"),0) "app-succeeded" , coalesce (sum("applic-failed"),0) "applic-failed",coalesce(sum("site-failed"),0) "site-
failed",coalesce (sum("user-failed"),0) "user-failed",coalesce (sum("unk-failed"),0) "unk-failed", coalesce (sum("site-calc-failed"),0) "site-calc-

failed", coalesce(sum("NEvProc"),0) "events", coalesce (sum("ExeCPU"),0) "cpu", coalesce (sum("WrapWC"),0) "wc", coalesce(sum("allunk"),0) as "allunk",
coalesce (sum("UnSuccess"),0) as "unsuccess™ from (select short_ce."ShortCEName" as name, decode ("DboardStatusId", 'T',

decode (JOB. "DboardGridEndId", 'D',1,0)) "done", decode (JOB."DboardStatusId",'R',1,0) "running", decode (JOB."DboardStatusId",'T',1,0) "terminated",
decode (JOB. "DboardStatusId", 'P',1,0) "pending", decode ("DboardStatusId", 'U', 1, 0) as "unknown", decode ("DboardStatusId", 'T',

decode (JOB. "DboardGridEndId", 'C',1,0)) as "canc", decode ("DboardStatusId", 'T', decode (JOB."DboardGridEndId",'A',1,0)) as "abort"™, decode
("DboardStatusId", 'T', decode (JOB."DboardJobEndId",'S',1,0)) as "apps", decode ("DboardStatusId", 'T', decode ("DboardJobEndId", 'F',

decode ("SiteUserFlag", 'application', 1, 0))) as "applic-failed", decode ("DboardStatusId", 'T', decode ("DboardJobEndId", 'F',

decode ("SiteUserFlag", 'site', 1, 0))) as "site-failed", decode ("DboardStatusId", 'T', decode ("DboardJobEndId", 'F', decode("SiteUserFlag", 'user',
1, 0))) as "user-failed", decode ("DboardStatusId", 'T', decode ("DboardJobEndId", 'F', decode("SiteUserFlag", 'unknown', 1, 0))) as "unk-failed"
decode ("DboardStatusId", 'T', decode ("DboardJobEndId", 'F', decode ("SiteUserFlag", 'site', 1, 0))) as "site-calc-failed", decode ("DboardStatusId",
'T', decode (JOB."DboardGridEndId", 'U', decode (JOB."DboardJobEndId", 'U', 1, 0))) as "allunk", decode ("DboardStatusId", 'T', coalesce ("NEvProc",0)
as "NEvProc", decode ("DboardStatusId", 'T', decode ("ExeCPU",0, (decode (sign("WrapCPU"),1,"WrapCPU",0)),"ExeCPU")) as "ExeCPU", decode
("DboardStatusId", 'T', coalesce ("WrapWC",0)) as "WrapWC", decode (JOB."DboardJobEndId",'S', (decode (JOB."DboardGridEndIid",'c',1,'A"',1,0)),0) as
"UnSuccess™ from JOB,TASK, TASK_TYPE ,short_ce,site, APP_GENERIC_STATUS_REASON where JOB."TaskId"=TASK."TaskId" and TASK."TaskTypeld" =

TASK_TYPE."TaskTypeId" and JOB."ShortCEId" = short_ce."ShortCEId" and job."SiteId" = site."SitelId" and JOB."JobExecExitCode" =
APP_GENERIC_STATUS_REASON."AppGenericErrorCode" (+) and (("FinishedTimeStamp" <= :bv_date2 and "FinishedTimeStamp" >= :bv_datel AND "DboardStatusId"
= 'T' AND "DboardFirstInfoTimeStamp" >= cast(:bv_datel AS TIMESTAMP) - interval 'l14' day) OR ("DboardStatusId" in ('P','R') AND
"DboardFirstInfoTimeStamp" >= cast (:bv_datel AS TIMESTAMP) - interval 'l4' day)) and task type."NewType" = :bv_activity and site."VOName" = :bv_site

order by short_ce."ShortCEName") group by name order by "pending"+"running"+"unknown"+"terminated" desc;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time | Pstart| Pstop

0	SELECT STATEMENT				36975 (100)			
1	SORT ORDER BY		1] 142	36975 (1)	00:05:51			
2 HASH GROUP BY		1] 142	36975 (1)	00:05:51				
3] NESTED LOOPS								
4	NESTED LOOPS		1] 142	36973 (1)	00:05:51			
5	NESTED LOOPS OUTER		1] 115	36972 (1)	00:05:51			
1* 6	HASH JOIN		1] 100	36971 (1)	00:05:51			
71 NESTED LOOPS		4	344	36969 (1)	00:05:51			
8	NESTED LOOPS		4	304	36961 (1)	00:05:51		
9	TABLE ACCESS BY INDEX ROWID	SITE	1 16	2 (0)	00:00:01			
* 10	INDEX RANGE SCAN	VONAME_IDX	1		1 (0)	00:00:01		
[* 11	TABLE ACCESS BY GLOBAL INDEX ROWID	JOB	4	240	36959 (1)	00:05:51	ROWID	ROWID
* 12	INDEX RANGE SCAN	JOB_SITEID IDX	224K		1810 (1) 00:00:18			
* 13	INDEX RANGE SCAN	TASK_ID TYPEID	1] 10	2 (0)	00:00:01			
* 14	TABLE ACCESS FULL	TASK_TYPE	2 28	2 (0)	00:00:01			
15	TABLE ACCESS BY INDEX ROWID	APP_GENERIC STATUS_REASON	1	15	1 (0)	00:00:01		
* 16	INDEX UNIQUE SCAN	PK_APP_GENERIC_STATUS_REASON	1		0 (0)			
* 17	INDEX UNIQUE SCAN	PK_SHORT_ CE_NAME	1		0 (0)			
18	TABLE ACCESS BY INDEX ROWID	SHORT_CE	1	27	1 (0)	00:00:01		

CERN IT Department — ~ T e
CHi2lliGeneva 23— 100 more lines with predicates ...

Switzerland
www.cern.ch/it >

CERNIT

Department

VOMAME_IDX SITE / 9 — 9 A
ﬁ}ﬂ _.g} ~ P > 1 e

—= 5L

I
T
guu'nu)

J0B_SITEID IDK 108 - /)
m IE} A 'E} /
TASK_ID_TYPEID TASK_TYPE __._,,.‘&Pﬁ:GENERIC_STATUS_RE:E\SON _J,-"’
~ X g
ﬁan PK_SHORT _CE_MAME SHORT _CE

PK_APP_GENERIC_STATUS_REASON

Id	Operation	Name
0	SELECT STATEMENT [
1	SORT ORDER BY	
2	HASH GROUP BY	
I 3 NESTED LOOPS [/ . . \	
4 NESTED LOOPS		o Parent operatlons get
s NESTED LOOPS OUTER		from their children (data sources)
[* 6	HASH JOIN	
7 NESTED LOOPS [[. .		
L8	NESTED LOOPS	
[9	TABLE ACCESS BY INDEX ROWID	SITE [without children
[* 10	INDEX RANGE SCAN	VONAME_IDX [
[* 11	TABLE ACCESS BY GLOBAL INDEX ROWID	JOB [« ”
12	INDEX RANGE SCAN	JoB_sTTEID 10X
1* 13	INDEX RANGE SCAN	TASK_ID_TYPETD I data sources in cascading fashion
[* 14	TABLE ACCESS FULL	TASK_TYPE
15	TABLE ACCESS BY INDEX ROWID	APP_GENERIC STATUS REASON
[* 16	INDEX UNIQUE SCAN	PK_APP_GENERIC STATUS REASON
[* 17	INDEX UNIQUE SCAN	PK_SHORT CE_NAME

TABLE ACCESS BY INDEX ROWID SHORT CE

: : : CERN|T
Execution plan — interpreting P

* QOracle tries to estimate cardinality of each
execution phase (row in the plan)
— It uses statistics (on tables and indexes)
— It applies certain heuristics for complex clauses
— It can use dynamic sampling, if no statistics available

— If the estimate is orders of magnitude wrong — the
execution plan will not be optimal (hours vs. minutes)!

— Use /*+ gather plan statistics */ hint

1	SORT GROUP BY		1	1171
* 2	FILTER		1	1314K
3 NESTED LOOPS		1 1	1314K	
[* 4 | HASH JOIN | | 1 1 | 1314K |
[* 5 | INDEX RANGE SCAN | T2 IND 3 | 1 2841 | 2022 |
[* 6 | TABLE ACCESS BY LOCAL INDEX ROWID | TEST | 1 3879 | 4771K |
[* 7 | INDEX SKIP SCAN | TEST IND 2 | 1 3567 | 4771K |
[* 8 | INDEX RANGE SCAN | 4K | 1 |

CH-1211 Geneva 23
Switzerland

www.cern.ch/it >

T6 IND 4 | 1314K 1314K |
CERN IT Department ——-—-—-—————————————\--- --------------------- 7/ @Y

CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

SQL Monitoring !l

Department

* Oracle 11g Real-Time SQL Monitoring

— Allows you to monitor the performance of SQL statements
while they are being executed and the breakdown of time
and resources used during execution

— Monitors statements that consume more than 5 seconds of
CPU or IO time (and samples the execution every second)

— One can override it by using the MONITOR or NO MONITOR
hints.

— Reports can be viewed in Oracle Enterprise Manager or
generated directly in a database using package
dbms_sqgltune.report_sqgl_monitor

AR A CERN
. { SQL trace !)Ipartment

CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

« SQL Trace

The only way to capture all the SQL being executed and
all the execution steps (and waits) in a session is to switch
on SQL trace.

 ALTER SESSION SET tracefile identifier = my tracel;
- ALTER SESSION SET sql trace = true;)’

« ... runyour SQL or PL/SQL ...

* ALTER SESSION SET sql_ trace = false;

Beware — SQL tracing may impact performance of your
application, if the tracing is activated for long time

Trace files are stored on the DB server and you can ask
DBA to send them to you (they can be very big)

Trace files can be read in their raw state or translated
using the tkprof utility

..
®

@)

Snapper Ul

Department

« Snapper tool by Tanel Poder

— An easy to use Oracle session-level performance
snapshot utility

— Comes as a PL/SQL script that does not require creation
of any database objects

— Very useful for ad-hoc performance diagnosis, especially
In environments with restrictive change management

— Example will be presented by Eric

CERN IT Department

CH-1211 Geneva 23 — ’
Switzerland
www.cern.ch/it

DB Session Mana

ger

CERNIT

Department

- Available for many production and DBs at CERN
— https://phydb.web.cern.ch/phydb/SessionManager.html

P e p—

(= Execution plan (from wsql_plan) - Windows Internet Explarer

SESSION MANAGEIR

CEE‘N

{Logout from database only) {Logout from Session Manager) «

Lo o =]

{Logout from database only) (Logout from Session Manager] =

Execution plan

Operation

Time

Partition
STOP

Partition

START Predicate

Filter

SELECT STATEMENT

..FILTER

...... SORT GROUP BY

......... HASH JOIN

............ NESTED LOCPS

............... NESTED LOOPS

.................. SORT UNIGUE

..................... INDEX FAST FULL SCAN
.................. INDEX RANGE SCAN

............... TABLE ACCESS BY INDEXROWID

............ TABLE ACCESS FULL

LCG_SAM_MS WO_SERVICE_GROUP_UNX
LCG_SAM MS.SERVICESTATUS_SERVICE ID_IX
LCG_SAM MSACE SERVICESTATUS

LCG_SAM MS.ACE_SERVICESTATUS

1948194

5980

820
820

3691137

240

155935520

289000
70
70

32600

110734110

4823

33

“PROFILE_IDr="PROFILE_IC™
AND
“SERVICE_ID"="SERVICE_IDM

“SERVICE_ID"="SERVICE_ID"

“START_TIMESTAMP =MAX
("START_TIMESTAMP")

"GROURS_ID =178

“EMD_TIMESTAMP =TC_TIMESTAMP
(*07-Jun-12 06.00.00.000000 AN}

Department

f . CERN
1 Oracle Enterprise Manager I/

- Available for many production and DBs at CERN
— https://oms.cern.ch/em

-

ORACLE Enterprise Manager N N N N N Senp Prefemncess Helb leows
Grid Control 11g Home JREGTIE Deplowments Alerts Compliance Johs Reports My Oracle Support

Hosts | Databases | Middleware | Web Applications | Services | Systems | Groups | All Targets | PhyDB PROD Clusters

Cluster: LCGR. CLUSTER > Cluster Database: lcgr > Database Instance: legr lcgrd > Top Activity = Logged in As SYSTEM
SQL Details: 1phjqpvi63zhw Switch Database Instance lcgr_lear3 ~ ((Go)
Switch to SQL ID (Go View Data Real Time: Manual Refresh ~ [Refresh | (SQL Worksheet) Schedule SOL Tuning Achisar) (SOL Repair Advisar)

pText T

SELECT channel share, SHARE NORM, SHRRE ACTIVE, SHARE ACTIVE_ NORM

from |

SELECT wvo_name, channel share, DECCDE (channel share, D,D,channel_share;"’SUM{channel_share} OVER (PARTITION BY channel name)) SHARE NORM,
channel share*cn SHARE ACTIVE, DECCDE (channel share*cn, 0,0, channel_share“’cm"SL[M{channel_sh.are*’cn} OVER (PARTITION BY channel_ name))
SHARE ACTIVE NCRM

FROM

SELECT S.channel name, S.vo_name, DECO...

Details

Select the plan hash value to see the details below. Plan Hash Value 2239233231 » There are multiple plans found for this SQL statement,

Statistics Activi Plan Plan Control Tuning History | SQL Monitoring | 3
Status Duration User Parallel Database Time 10 Requests Start Ended
v 22.0s LCG_FTS_5CA _ 22 fis i1 a:11:26 P 5:11:48 FM
v _ LETEST_W e —

&«

21.0= LG _FTS_SCA _2'1.85 =ri) &:01:20 PM 5:01:41 Ph
LETEST_'W

o e I

LETEST_W

18.0: LCG_FTS_SC4 - 16.7s =15 44252 Pl 44211 Pl
LETEST_W

20.0s LCG_FTS_SCA _ 2882

LETEST_W

1,404 44515 P 4550 Phd

€ €

290 G237 :54 Fid 43823 P

&«

Statistics Activi Plan Plan Contraol Tuning History] SQL Monitoring [

| SOL Worksheet] | Schedule SOL Tuning Ad\fisor]

Home | Targets | Deplovments | Alerts | Compliance | Jobs | Reports | Mv Oracle Support | Setup | Preferences | Help | Logout

CERNIT

Department

