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ABSTRACT
When allocating budgets across different ad campaigns, advertisers
confront the challenge that the payouts or returns are uncertain.
In this paper, we describe a system for optimizing advertising cam-
paign budgets to ensure long-term profitability in the face of this
uncertainty. Our modified contextual bandit system 1) applies su-
pervised learning to predict ad campaign payouts based on context
features and historical performance; 2) extrapolates the payouts
to out-of-sample budgets using a simple functional form for the
distribution of payouts; then 3) uses Thompson Sampling from
the predicted payout distributions to manage the explore-exploit
trade-off when selecting budgets. Using our system, we measure
an overall efficiency improvement of (22 ± 10)% in the mean Cost
Per Acquisition over the previous budget allocation strategy us-
ing Markov Chain Monte-Carlo. This system is now responsible
for managing hundreds of millions of dollars of annual marketing
spend at Lyft.

CCS CONCEPTS
• Theory of computation → Bayesian analysis; • Informa-
tion systems→Online advertising; •Computingmethodolo-
gies → Reinforcement learning.
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1 INTRODUCTION
Paid customer acquisition through advertising has spurred the
growth of many firms. Yet the diversity of channels for customer
acquisition raise a key problem: how to allocate budgets across
many different advertising options. The challenges primarily stem
from the uncertainty in the payouts for a given level of investment
in a given advertising investment option.
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An advertiser might opt to use yesterday’s performance naively
to predict tomorrow’s performance. This approach has three pitfalls:
1) past performance could be a poor predictor as the context – the
seasonality, the competition for ad space, etc. – changes over time.
2) Even if the past is a good predictor, it might not be relevant if
the advertising budget is far greater or lesser than what was spent
before. 3) Past performance data are not available for new ads.

We present a multi-armed bandit system to overcome these chal-
lenges. We frame the performance prediction problem as a modified
contextual bandit [10]. Our system leverages historical data and
context information into a global model to make better predictions.
The context information also enables reasonable predictions for
new ads that share similarities with previous ads. The system com-
bines the contextual predictions with economics principles to en-
able performance extrapolation to out-of-sample budgets. Through
principled exploration of budgets using Thompson Sampling, the
system collects diverse data to improve budget allocation over time
[13].

This system, applied to driver acquisition at Lyft, more accurately
predicts payouts, and produces cost efficiency gains of over 20%
when compared to previous methods using Markov Chain Monte
Carlo.

1.1 Background: Driver Acquisition at Lyft
Lyft provides a taxi-network for its users by dispatching drivers
to ride requests. Lyft invests considerable time and effort to bal-
ance driver supply and rider demand. Some levers to optimize
supply-demand balance have rapid responses (surge pricing mech-
anisms can suppress rider demand within minutes) while others
have longer delays (driver notifications will not generate additional
driver supply for hours). A slow but cost-efficient approach to ma-
nipulating supply and demand is user acquisition in the form of
rider app installation and driver application. Our focus in this paper
is a strategy to improve the cost-efficiency of driver acquisition
through paid online advertising.

Driver acquisition advertising generates new drivers through tar-
geted advertisements on ad platforms while respecting budgetary
constraints. Our system actively manages roughly 10,000 market-
ing campaigns across 300 geographical regions by recommending
a daily budget for each (campaign, region) tuple, accounting for
hundreds of millions of dollars of acquisition spend annually.

To maintain reasonable scope in this paper, we simplify a few
important elements of driver acquisition. First, we treat new dri-
vers as interchangeable within a city, independent of work rate,
day/week availability, vehicle, etc. Second, our system makes use of
driver Lifetime Value (LTV) projections to ensure profitable invest-
ment. We take mean LTV per new driver (by region) as an input to
the system. Third, a prospective driver may take weeks or months
from the day they apply to the time they actually start driving for
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Lyft, pending background checks and other steps that contribute to
applicant churn. We circumvent this delayed reward with a model
that predicts the probability that a new driver applicant will start
driving by a given time. While the details of this model are beyond
the scope of this paper, we use its outputs in our system to quantify
the expected number of driver acquisitions from an ad campaign.

1.2 Related Work
Budget allocation across different ad campaigns has been well-
studied in the case where payouts, or returns on ad spend, are
known. We apply similar budget allocation strategies as described
in [7] and used by Criteo [6] and Netflix [11]. The key idea is that,
assuming each ad campaign offers diminishing marginal returns,
an advertiser’s next unit of spend should always be spent on the
campaign with the highest marginal payout. While this optimiza-
tion deals with known payouts, the novelty of our system is its
handling of risk and uncertainty.

Our approach to dealingwith uncertainty in the payouts is amod-
ified contextual bandit algorithm. Multi-Armed Bandit approaches
have been used extensively throughout the adtech industry for ma-
nipulating creative [1, 5] and bidding/budgeting [8]. Our method
relies on Thompson Sampling for managing the explore and exploit
trade-off for ad campaigns with consistent performance history
and those with greater uncertainty [2, 12]. It shares similarities
with Contextual Bandits [3, 10] by supplying relevant contextual
features to predict payouts and select the appropriate action. How-
ever our system differs from previous contextual bandit algorithms
because we have a profitability/budget constraint. Our method is
agnostic to different models for predicting payouts: any black-box
regression model will work. Our method also extends these ban-
dit approaches to ensure stable payout extrapolation far from the
observed action-space of previously allocated budgets.

2 PROBLEM FORMULATION
2.1 Basic budget allocation
First we describe the basic budget allocation problem and its solu-
tion when the payouts are known and well-behaved. We follow the
logic of previous work on advertising budget optimization [6, 7, 11],
with minor modifications.

Consider a firm with a set of N investment options (or ad cam-
paigns) operating concurrently. Each day, for a given ad campaign
i , an allocated spend xi yields payout yi = fi (xi ) ≥ 0. We will refer
to fi as the payout curve or payout function for ad campaign i . Our
system must prescribe target budgets xi ≥ 0 for all i on each day.
Our goal is to maximize total payout under the total daily budget
constraint B:

maximize
x ∈R

N∑
i=1

fi (xi )

subject to
N∑
i=1

xi ≤ B

xi ≥ 0, i ∈ {1, ...,N }

In the case of driver acquisition, the payout yi = fi (xi ) is the
number of new drivers acquired. If the typical value of a new driver
is known to beC , we may use an alternative profitability constraint

– we should never pay more than C for a new customer. This refor-
mulation effectively supports infinite budget, provided acquisition
remains profitable in expectation. The Cost Per Incremental Acqui-
sition (CPIA) for an ad campaign is the inverse derivative of the
payout function, [d fi (xi )/dxi ]−1. With this alternative constraint,
our goal becomes

maximize
x ∈R

N∑
i=1

fi (xi )

subject to
(
d fi (xi )

dx

)−1
≤ C, i ∈ {1, ...,N }

xi ≥ 0, i ∈ {1, ...,N }

We anticipate acquisition to be profitable when the forecast cus-
tomer value C exceeds the CPIA. At Lyft, C is provided externally
based on regional forecasts for supply, demand, and driver utiliza-
tion. The generation of these profitability targets is beyond the
scope of this paper.

In this formulation, we assert the following desirable properties
for forecast daily payout function fi with respect to xi ≥ 0:

(1) fi is differentiable (to compute CPIA)
(2) fi is monotonically increasing (more spend always yields

more drivers)
(3) fi has sublinear growth (diminishing marginal returns)
In practice, we often observe a successful ad campaign has

reached the entire available audience and no increase in budget can
yield additional drivers, hence the diminishing marginal returns
assertion. Furthermore, this property ensures campaigns with extra-
ordinary returns have a limited budget growth rate day-over-day.

We also assume that the payout of one ad is independent of
the payouts from other ads (no cannibalization). Under these as-
sumptions, the optimal budget allocation is obtained by setting the
budgets xi such that the CPIA values for all ads are equal. Using the
profitability constraint, we simply set xi so that the CPIA equals the
target customer value, [d fi (xi )/dxi ]−1 = C , for all ad campaigns.

If the payout functions fi are known, budget allocation is thus a
solved problem. In reality the payouts are uncertain, so the problem
reduces to generating forecasts f̂i for each ad i from the available
historical data. In the next subsection we describe challenges of
producing such forecasts.

2.2 Challenges arising from payout
uncertainty

Since the payouts are generally unknown, we develop a method
to estimate the distribution of payout functions fi and deal appro-
priately with their uncertainties. We highlight three challenges to
estimating the payouts:

(1) Changing context: An ad may compete in an ad marketplace
day after day, but its payout function may change over time
(seasonality, ad auction competitor behavior, or the available
audience and their preferences could change)

(2) Extrapolation: An effective model must predict payouts for
levels of investment outside the range of past budgets.

(3) Cold start: We require payout predictions for new ads with
little or no historical data.
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2.3 Payout prediction as a contextual bandit
In order to deal appropriately with uncertainties in the payouts, we
frame the problem as a contextual bandit. Our task is to set new
budgets for all ads at each round in a sequence of rounds, with the
goal of maximizing the total payout over the long-term. Each round
we set a budget for each ad, then measure payout from each ad (in
our case, the number of new drivers).

Our solution uses context features with supervised learning to
predict the distribution of payouts of each ad campaign. It accom-
plishes exploration of new budgets by considering uncertainty in
the payout distributions and sampling from the distributions. This
cycle of predicting payouts, sampling from the prediction uncer-
tainties, then allocating budgets repeats each round. Over time the
system explores new budgets and collects data that make its pre-
dictions increasingly precise. In the following section we provide
details of this method.

3 METHODS

Figure 1: A schematic diagram of our system.

3.1 Contextual payout modeling
Our solution to predict payouts is to fit a global performance model
on the entirety of the available advertisement performance history,
including deprecated ad campaigns. The model predicts payouts
(acquired acquisition) using advertising features (including ad copy,

sign-on bonus), audience features (including region, target audi-
ence, day of week), and the daily expenditure (including actual
advertising costs and expected bonus costs). Since the spend xi is
a feature of the model, we can form a predicted payout function
ŷi = f̂i (xi ), for each ad campaign, from the regression model re-
sults. Using a global regression model, rather than training separate
models for each ad campaign, enables information-sharing among
similar campaigns. For example, an ad creative that was successful
in New York is also likely to succeed in San Francisco.

A simple non-linear model, such as Random Forest, has excellent
performance near-sample, when the budget does not vary signif-
icantly from recent observations. However most supervised ap-
proaches cannot reliably extrapolate; in the extreme, tree-based
model predictions are clipped by both the minimum and maximum
observed target values. Accordingly these predictions cannot be
used to forecast acquisition when target C is suddenly changed, so
we require a separate extrapolation step.
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Figure 2: Payout curve extrapolation data is augmented by
point predictions from a black box model.

3.2 Bayesian extrapolation
To forecast customer acquisition far-from-sample, where proposed
budgets are far from the observed historical budgets, we fit a sim-
ple functional form to the payout function for each ad campaign
using linear regression. The regression employs an augmented data
set combining observed history for the campaign and a series of
predicted returns generated by the contextual payout model. For
data augmentation, the contextual model is fed a snapshot of the
latest available context features for the campaign and a series of
linearly-spaced proposal budgets chosen near the observed history,
where the model interpolates reliably. Each campaign-specific lin-
ear regression provides a differentiable curve that is monotonically
increasing and has diminishing returns (Section 2.1) using a power-
law form y = w1xw2 (equivalently log(y) = w1 +w2 log(x)) 1 with
w1 non-negative andw2 bounded 0 < w2 < 1. Figure 2 shows ex-
ample results of fitting augmented data with this power-law model.

1In production, we fit log(y + 1) = w1 +w2 log(x + 1) to support zero values, but
refer to the simpler form above for brevity without significant algorithmic changes.
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However, without uncertainty measures, this curve is insufficient
for an exploration policy. We instead rely on Bayesian Linear Re-
gression to provide covariance estimates for Gaussian distributed
weights.

From design matrix X (containing historical budgets), historical
acquisitionsy, prior inverse-gamma hyperparameters (a0,b0), prior
precisionmatrixΛ0, and prior meanweights µ0, we obtain posterior
mean weights µ and posterior precision matrix Λ:

µ = (XTX + Λ0)
−1(Λ0µ0 +X

Ty)

Λ = XTX + Λ0

In this framing, the vector µ = (w1,w2) gives an estimate of the
shape and normalization of the power-law fit. Covariance can be
evaluated from normal-inverse gamma parameters a,b as follows
[14],

Cov =
b

a − 1Λ
−1

a = a0 + |y |/2

b = b0 +
1
2 (y

Ty + µT0 Λ0µ0 + µ
TΛµ)

Thus we obtain an estimate of the power-law payout curve dis-
tribution, with an uncertainty measure provided by the parameter
covariance. This estimate is generated independently for each ad
campaign. The next step is Thompson Sampling from the payout
curve distribution, which controls exploration of budgets.

3.3 Exploratory budget allocation
From parameter distributions (w1,w2) ∼ N(µ, Cov), we sample
curves of the form f (x) = w1xw2 for Thompson Sampling inde-
pendently for each campaign. Figure 3 shows an example set of
curves sampled from the posterior distribution of the Bayesian Lin-
ear Regression model. Using Thompson Sampling, we randomly
choose one curve, f ∗i , from the sample curves. Using f ∗i and the
provided CPIA target C , we evaluate a target budget x̂i where
[d f ∗i (x̂i )/dxi ]

−1 = C for each ad campaign i daily. Figure 4 shows
how the allocated budget increases with CPIA target and varies
among sampled curves. By randomly exploring curves that are
more optimistic or pessimistic than the best-fit, the system allo-
cates larger or smaller budgets, respectively. The system exhibits
greater budget exploration if an ad campaign has substantial per-
formance variance by sampling curves from broader parameter
distributions. Over time, the system accumulates a larger and more
diverse volume of data than that of a pure-exploitation model, im-
proving forecast accuracy in the long term.

4 RESULTS
4.1 Baseline
Our previous model, like the new system described in Section 3,
used a functional form for the payout curves as well as Thompson
Sampling. It did not, however, incorporate a contextual regression
model. Instead, the model would fit an independent curve to the
historical payouts data for each ad campaign. Conceptually, the
model used a hierarchical model that required Markov Chain Monte
Carlo (MCMC) sampling.

Roughly,MCMC is a method for estimating the best-fit distribu-
tion of the parameters in a model by pseudo-randomly exploring
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Figure 3: Payout curve distribution variance facilitates ex-
ploration with Thompson Sampling.
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Figure 4: Budget curve distribution grows exponentially as
a function of CPIA target.

points in the parameter space and accepting or rejecting them based
on their consistency with observations. The baseline implemen-
tation applied the same form, y = w1xw2 + ϵ , assuming Gaussian
error, ϵ ∼ N(µϵ , σ

2
ϵ ). Weights are sampled w1 ∼ Γ(α1, β1) and

w2 ∼ Beta(α2, β2), respectively.

4.2 Offline Evaluation
We compared the accuracy of payout predictions from several
different regression models using historical data. We tested the
previous implementation usingMCMC, Least Squares Regression
(LSR), Bayesian Linear Regression (BLR), Random Forest (RF),
RF-augmented Least Squares Regression (RF_LSR), RF-augmented
Bayesian Linear Regression (RF_BLR), and LightGBM (LGBM) [9].
We used training data with observations from January 1, 2019 -
April 13, 2019 and testing on data spanning April 14 - 27, 2019.

RF has the lowest error in Table 1, however the model is not
differentiable and cannot be applied directly to our maximization
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Table 1: Offline Error (all advertisements)

Approach Bias MAE MSE Curve Uncertainty
MCMC 0.1575 0.2144 0.5881 ✓ ✓

LSR -0.6384 0.1095 0.4242 ✓ ✗

BLR -0.1029 0.1565 0.4024 ✓ ✓

RF -0.0340 0.0788 0.0656 ✗ ✗

RF_LSR -0.0364 0.0894 0.0871 ✓ ✗

RF_BLR -0.0349 0.0937 0.0946 ✓ ✓

LGBM -0.0764 0.1894 0.3463 ✗ ✗

Table 2: Offline Error (cold start, less than 7 day data)

Approach Bias MAE MSE Curve Uncertainty
MCMC 0.0842 0.123 0.0372 ✓ ✓

LSR 0.0364 0.1118 2.1390 ✓ ✗

BLR -0.0045 0.0586 0.0290 ✓ ✓

RF 0.0179 0.0714 0.0421 ✗ ✗

RF_LSR 0.0087 0.0668 0.0264 ✓ ✗

RF_BLR 0.0081 0.0682 0.0257 ✓ ✓

LGBM 0.0366 0.0987 0.0275 ✗ ✗

Table 3: Online Error (all advertisements)

Approach MAE MSE
MCMC 0.1320 ± 0.0207 0.0716 ± 0.0467
RF_BLR 0.0732 ± 0.0122 0.0280 ± 0.0132

strategy. This limitation also holds for LGBM. And while the com-
bined RF_LSR approach yields the best curve-fit, neither it nor
LSR provides uncertainty measures for exploration in Thompson
Sampling.

We also examined the subgroup of campaigns with less than 7
days of training data to evaluate cold-start in Table 2. New cam-
paigns are typically allocated more conservative budgets from pri-
ors and initially generate fewer customer acquisitions until demon-
strating cost-efficient returns. This presents as lower absolute val-
ues in the unscaled error metrics shown in Table 2 than in Table 1.
Regardless, RF_BLR yields the lowest Mean Squared Error (MSE)
among strategies meeting our maximization strategy criteria and
was deployed for online experimentation.

4.3 Online Experiments
We measured our system using RF_BLR in a region-split A/B test
over 7 major cities. We launched RF_BLR in 4 cities for 3 weeks
while measuring 3 additional cities using the existing MCMC ap-
proach as control. After, we swapped control and treatment cities
and continued experimentation for 3 additional weeks to measure
changes within each city. During the control/treatment swap, we
delayed measurement 1 week to mitigate experimental interference
due to ad viewers who had been exposed to the previous strategy.
For the duration of the experiment, we ensured the CPIA targets
for these regions were unchanged.

Table 4: Experiment Results

City CPA % Improvement Std Error
Boston 37.08 24.02
Chicago 32.56 57.23
Denver -0.01 (worse) 11.95
Philadelphia 15.57 20.88
Pittsburgh 79.03 10.73
San Francisco 3.09 9.93
Washington, DC 9.92 23.50

Figure 5: Daily driver acquisition using RF_BLR (treatment)
yields more drivers at lower expense than the baseline ap-
proach usingMCMC (control). The pre-fit curve is fit tomea-
sured returns prior to experiment launch.

In the online error evaluation, both systems are only responsible
for prediction accuracy on a 1-day horizon (instead of up to 2-
weeks in the offline evaluation). This presents as lower absolute
error in Table 3 than in Table 1. Regardless, our system dominated
the baseline approach across error metrics.

Because it is difficult to measure CPIA or Marginal Return on
Investment directly [6], we instead measure the mean Cost Per
Acquisition (CPA). From pre-experiment measurements, we use
Ordinary Least Squares to fit a curve p, providing an estimated
baseline performance function defined for all budget values x , in-
cluding for unobserved budgets. We consider the daily experimental
spend x and driver acquisition payout y as a ratio y/p(x). We then
evaluate the improvement of treatment over control as a ratio. Fig-
ure 5 illustrates this measurement for one region. Controlling for
location in Table 4, we measure an overall CPA improvement of
(21.8 ± 10.3)% between treatment and control. Similarly, we mea-
sure a (21.5 ± 13.1)% CPA improvement while controlling for time.
These improvements correspond to tens of millions of dollars in
savings for 2019. Shortly after the conclusion of this experiment,
RF_BLR was deployed to all regions.
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5 DEPLOYMENT
The system is scheduled to retrain the global performance model
and allocate budgets nightly using Apache Airflow without human
oversight. Although larger model architectures are available than
Random Forest, this simple model is trusted to execute without ad-
ditional hyperparameter tuning. However upstream data pipelines
have a non-trivial failure rate. For robustness, we have implemented
simple checks in the distributions of our inputs to filter potential
errors, preferring stale data to erroneous data. Because Thompson
Sampling yields randomly sampled budget allocations, the system
continues to explore even when the latest data is not available.
Furthermore, production exploration is restricted by guardrails,
filtering both the lower and upper 25% of sampled curve variation
within each advertising campaign.

In our framing, each payout curve is estimated f̂ (x) = ŵ1xŵ2

and satisfies property (3) sublinear growth if 0 < ŵ2 < 1. For
sparse or high-variance data, it is plausible that Bayesian Linear
Regression fit a parameter distribution ŵ2 ∼ N(µw2 , σ

2
w2 ) that

can yield samples outside of this range. We resolve this by itera-
tively increasing the prior precision parameter Λw2 using values
in [0, 1, 4, 16, 64, 256], increasing the strength of prior mean weight
µ0 until the lower-confidence and upper-confidence bounds of ŵ2
are both between (0, 1). We then reject samples that do not satisfy
property (3) sublinear growth.

Before manipulating real budgets, we conducted extensive hyper-
parameter optimization using multi-dimensional random searches,
both offline and online off-policy evaluation. We searched scikit-
learn Random Forest hyperparameters n_estimator ∈ [10, 512] and
max_features ∈ {auto, log2, 0.1, 0.25, 0.5} and Bayesian Linear Re-
gression hyperparameters for the number of augmented data points
∈ [128, 512] and prior precision Λw2 ∈ [0, 49]. The number of aug-
mented data points is an especially sensitive hyperparameter be-
cause it correlates with the posterior precision of the parameter
distributions generated by Bayesian Linear Regression.

5.1 Computational advantages of our system
In addition to CPA improvements, deploying our system reduced
the infrastructure necessary for allocating budgets from 15 to 1 AWS
r5a.8xlarge instances. It also improved reliability by eliminating the
possibility of chain failure inMCMC due to poorly fitting priors
and failure to converge model parameters within the allotted time.
Deploying to RF_BLR increased the Mean Time Between Failures
from 2.04 to 21.0 days in the 100 most recent execution attempts.

6 DISCUSSION AND CONCLUSION
In this paper, we present a framework for supporting budget ex-
ploration from black box machine learning models. Our system at-
tempts to maximize total driver acquisition by allocating campaign
budgets such that the mean cost of acquisition is profitable based
on forecast driver supply and rider demand. Using Bayesian Linear
Regression, our system transforms point predictions into payout
curve distributions. Using Thompson Sampling for exploration,
our system obtains diverse observations for future exploitation. In
experiment, we measure a (22 ± 10)% improvement in the mean
Cost Per Acquisition over the existing Markov Chain Monte Carlo

method while controlling for location and report similar results
while controlling for time.

This work presents a proof-of-concept for other Reinforcement
Learning systems at Lyft, including a dedicated Bandit Platform
for orchestrating adaptive field experiments, similar to Facebook’s
Ax [4]. We have deployed the Platform to control in-application
banner copy and measure a 40% improvement to conversion rate.
We have running experiments using Contextual Bandits to rank
banner campaigns based on expected Click-Through-Rate. We are
also researching and developing an approach to dispatching drivers
using online event-based Temporal Difference updates [15].
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