
April 2002 www.stsc.hill.af.mil 9

A“requirement” is a necessary attribute
in a system, a statement that identifies

a capability, characteristic, or quality factor
of a system in order for it to have value and
utility to a user [1]. According to Steve
McConnell in Software Project Survival Guide,
“The most difficult part of requirements
gathering is not documenting what the
users ‘want’; it is the effort of helping users
figure out what they ‘need’ that can be suc-
cessfully provided within the cost and
schedule parameters available to the devel-
opment team.”1

Each requirement should be necessary,
verifiable, attainable, unambiguous, com-
plete, consistent, traceable, concise, imple-
mentation-free, and have a unique identifier
[1]. All of these characteristics of a good
requirement should be self-evident, with
the possible exception of “implementation-
free.” The reason that a requirement should
be implementation-free is that requirements
specify “what” shall be provided and not
“how” – the how is a design aspect rather
than a requirement. Documenting the
rationale for each requirement (why it is
required) is a good technique to reduce the
number of requirements. Taking this one
step, according to industry requirements
consultant Ivy Hooks’ experience, can elim-
inate “up to half ” of the stated require-
ments [2].

Begin by understanding the organiza-
tion’s “business requirements.” This leads to
a “vision and scope” document that
describes the background leading to the
decision to develop a new or modified sys-
tem or capability and describes the system
to be developed. An agreed upon under-
standing of the capability is critical to a suc-
cessful project. Consider having iterative
scoping meetings with customers and users.
The process of requirements elicitation
itself generates more detailed and creative
thinking about the problem that in turn can
affect the scope. As the possibilities for a
solution emerge, there are numerous deci-
sion points concerning what should and
should not be included within the scope of

the system.
The next step is to gather the stated

requirements of the customers and users of
the new capability. An effective require-
ments practice distinguishes “stated”
requirements from “real” requirements [1].
Industry experience has shown that cus-
tomers and system developers should joint-
ly evaluate stated requirements to ensure
that each is a verified need.

Part of the requirements process is to
prioritize requirements.

2
This is important,

because rarely is there enough time and
money to provide everything that is want-
ed. It is also beneficial to focus on product
benefits, not features [3]. Benefits refer to

the necessary requirements. Adding unnec-
essary features adds design constraints and
increases costs.

It is estimated that 85 percent of the
defects in developed software originate in
the requirements [1]. Once defects are
embedded in the requirements, they tend to
resist removal. They are especially difficult
to find via testing. Therefore it is crucial
that training be required for requirements
analysts and engineers that explains how to
reduce the common types of requirements
errors, including incorrect assumptions (49
percent), omitted requirements (29 percent),
inconsistent requirements (13 percent), and
ambiguities (5 percent) [2].

Use peer reviews and inspections to
reduce defects in all your requirements rep-
resentations. Peer reviews and inspections
are a best practice way of eliminating
defects. I recommend a peer review of all
work products. The extent of the review
should be based on the criticality of the
work product. Peer reviews are a very effec-
tive method for reducing the costs of a
project because they identify defects earlier.
Rework is estimated at 45 percent of project
costs, industry-wide [1]. Using peer reviews,
scenarios, and walk-throughs to validate and
verify requirements results in a more accu-
rate requirements specification and higher
customer satisfaction.

Inspections are a very rigorous form of
peer reviews and should be considered for
requirements representations. Gilb and
Graham provide an excellent guide for
inspections of any type of document [4].
According to Gilb, the capability to per-
form Gilb inspections requires five days of
formal training and a lot of rigor.3 One
advantage of the Gilb approach is that he
advocates “sampling” of work products
rather than review of the entire product –
the idea is that by identifying defects in the
first few pages, the author can utilize this
feedback to address similar problems
throughout the document or work product.

Some believe that all requirements
should be listed in a requirements docu-
ment such as a Software Requirements
Specification. Experience has shown that it
is helpful to think of “several” artifacts
comprising your requirements specifica-
tion: the database in your automated
requirements tool, the vision and scope
statement for the project, the requirements
document, and other requirements lists or
descriptions provided by customers and
users. These can include lists of require-
ments met by related legacy (historical) sys-
tems and the list of system-level (real)
requirements evolved by the requirements
manager/requirements engineer. This en-
ables us to have a more comprehensive
understanding of the real requirements that

Recommended Requirements Gathering Practices

Dr. Ralph R. Young
Northrop Grumman Information Technology

This article provides suggested conditions for performing requirements gathering and recommended requirements gathering
practices. The author has conducted an extensive review of industry literature and combined this with the practical experi-
ences of a set of requirements analysts who have supported dozens of projects. The sidebar on page 10 summarizes a set of
recommended requirements gathering practices. Involving customers and users throughout the development effort results in a
better understanding of the real needs. Requirements activities should be performed throughout the development effort, not just
at the beginning of a project.

“Using peer reviews,
scenarios, and walk-

throughs to validate and
verify requirements
results in a more

accurate ... specification
and higher customer

satisfaction.”

Risky Requirements

10 CROSSTALK The Journal of Defense Software Engineering April 2002

is communicated effectively to all stake-
holders.

One of our most common problems is
taking on too much work – attempting to
exceed requirements rather than addressing
the minimum requirements to meet real
needs. Thus, meeting minimum require-
ments is in the customers’ best interests. It

helps avoid the problems of late deliveries,
budget overruns, low morale, and poor
quality [5].

Preferred Requirements
Gathering Techniques
Following are a set of recommended
requirements elicitation techniques. Among

almost 40 such techniques available [1],
only a few have proven most effective.
These techniques can be used in combina-
tion. Their advantages are that they are
effective in emerging the real requirements
for planned development efforts. Kotonya
and Sommerville [6] provide a good discus-
sion of the context for requirements elici-
tation and analysis. More detailed discus-
sions of these techniques are provided in
Leffingwell and Widrig [7] and in
Sommerville and Sawyer [8].

Interviews. Interviews are used to
gather information. However, the predis-
position, experience, understanding, and
bias of the person being interviewed influ-
ence the information obtained. The use of
context-free questions by the interviewer
helps avoid prejudicing the response [9]. A
context-free question is a question that
does not suggest a particular response. For
example, who is the client for this system?
What is the real reason for wanting to
solve this problem? What environment is
this product likely to encounter? What
kind of product precision is required?

Document Analysis. All effective
requirements elicitation involves some
level of document analysis such as busi-
ness plans, market studies, contracts, re-
quests for proposals, statements of work,
existing guidelines, analyses of existing sys-
tems, and procedures. Improved require-
ments coverage results from identifying
and consulting all likely sources of require-
ments [10].

Brainstorming. Brainstorming in-
volves both idea generation and idea reduc-
tion. The goal of the former is to identify
as many ideas as possible, while the latter
ranks the ideas into those considered most
useful by the group. Brainstorming is a
powerful technique because the most cre-
ative or effective ideas often result from
combining seemingly unrelated ideas. Also,
this technique encourages original thinking
and unusual ideas.

Requirements Workshops. Require-
ments workshops are a powerful tech-
nique for eliciting requirements because
they can be designed to encourage con-
sensus concerning the requirements of a
particular capability. They are best facili-
tated by an outside expert and are typical-
ly short (one or a few days). Other advan-
tages are often achieved – participant
commitment to the work products and
project success, teamwork, resolution of
political issues, and reaching consensus on
a host of topics. Benefits of requirements
workshops include the following:
• Workshop costs are often lower than

are those for multiple interviews.
• They help to give structure to the

Recommended Requirements
Gathering Practices

The following is a list of recommended requirements gathering practices. They
are based on the author’s extensive review of industry literature combined with

the practical experiences of requirements analysts who have supported dozens of
projects.
1. Write and iterate a project vision and scope document.
2. Initiate a project glossary that provides definitions of words that are acceptable

to and used by customers/users and the developers, and a list of acronyms to
facilitate effective communication.

3. Evolve the real requirements via a “joint” customer/user and developer effort.
Focus on product benefits (necessary requirements), not features. Address the
minimum and highest priority requirements needed to meet real customer and
user needs.

4. Document the rationale for each requirement (why it is needed).
5. Provide training for requirements analysts and selected customer/user represen-

tatives that explains the following:
• The role of the requirements analyst, e.g., to evolve real requirements work-

ing with customers and users, not to invent requirements independently or to
“gold plate.”

• How to write good requirements.
• The types of requirements errors and how these can be reduced.
• The value of investing more in the requirements process.
• The project and/or organization’s “requirements process.”
• Overview of the methods and techniques that will be used.
• How to use the project’s automated requirements tool.
• The role of validation and verification during requirements definition.

6. Establish a mechanism to control changes to requirements and new require-
ments.

7. Prioritize the real requirements to determine those that should be met in the first
release or product and those that can be addressed subsequently.

8. When the requirements are volatile (and perhaps even when they are not), con-
sider an incremental development approach. This acknowledges that some of
the requirements are “unknowable” until customers and users start using the sys-
tem.

9. Use peer reviews and inspections of all requirements work products.
10. Use an industry-strength automated requirements tool.

• Assign attributes to each requirement.
• Provide traceability.
• Maintain the history of each requirement.

11. Use requirements gathering techniques that are known, familiar, and proven in
the organization such as requirements workshops, prototyping, and storyboards.

12. Provide members of the project team (including requirements analysts) who are
domain/subject matter experts.

13. Evolve a project and organizational approach based on successful use of policy,
process, methods, techniques, and tools. Provide a mechanism such as working
groups to share information and “best practices” among projects.

14. Establish a continuous improvement ethic, teamwork approach, and a quality
culture.

15. Involve customers and users throughout the development effort.
16. Perform requirements validation and verification activities in the requirements

gathering process to ensure that each requirement is testable.

Recommended Requirements Gathering Practices

April 2002 www.stsc.hill.af.mil 11

requirements capture and analysis
process.

• They are dynamic, interactive, and
cooperative.

• They involve users and cut across
organizational boundaries.

• They help to identify and prioritize
needs and resolve contentious issues.

• When properly run, they help to man-
age user’s expectations and attitude
toward change [11].
A special category of requirements

workshop is a Joint Application Develop-
ment (JAD) workshop. JAD is a method
for developing requirements through
which customers, user representatives, and
developers work together with a facilitator
to produce a requirements specification
that both sides support. This is an effec-
tive way to define user needs early. Wood
and Silver in Joint Application Development
[12] assert that quality systems can be built
in 40 percent less time utilizing JAD. They
explain how to perform JAD and provide
diagrams, forms, and a sample JAD design
document.

Prototyping. Prototyping is a tech-
nique for building a quick and rough ver-
sion of a desired system or parts of that
system. The prototype illustrates the capa-
bilities of the system to users and design-
ers. It serves as a communications mecha-
nism to allow reviewers to understand
interactions with the system. See
Sommerville’s Software Engineering [13] for
a good discussion of prototypes and how
they can be used. Prototyping sometimes
gives an impression that developers are
further along than is actually the case, giv-
ing users an overly optimistic impression
of completion possibilities. Prototypes
can be combined effectively with other
approaches such as JAD and models.

Use Cases. A use case is a picture of
actions a system performs, depicting the
actors [14]. It should be accompanied by a
textual description and not be used in iso-
lation of other requirements gathering
techniques. Use cases should always be
supplemented with quality attributes and
other information such as interface char-
acteristics. Many developers believe that
use cases and scenarios (descriptions of
sequences of events) facilitate team com-
munication. They provide a context for
the requirements by expressing sequences
of events and a common language for end
users and the technical team.

Be cautioned that use cases alone do
not provide enough information to enable
development activities. Other require-
ments elicitation techniques should also
be used in conjunction with use cases.
Requirements consultant Ivy Hooks rec-

ommends using operational concepts as a
simple, cost-effective way to build a con-
sensus among stakeholders and to address
two large classes of requirements errors:
omitted requirements and conflicting re-
quirements [2]. Operational concepts
identify user interface issues early, provide
opportunities for early validation, and
form a foundation for testing scenarios in
product verification.

Storyboards. A storyboard is a set of
drawings depicting a set of user activities
that occur in an existing or envisioned sys-
tem or capability. Storyboards are a kind
of paper prototyping. Customers, users, or
developers start by drawing pictures of
the screens, dialogs, toolbars, and other
elements they believe the software should
provide. The group continues to evolve
these until real requirements and details
are worked out and agreed upon. Story-
boards are inexpensive and eliminate risks
and higher costs of prototyping. Another
related technique is storytelling: the writ-
ing of vignettes to envision new products
and services based on perceived user
needs and the possibilities offered by
emerging technologies.

Interfaces Analysis. Missing or
incorrect interfaces are often a major
cause of cost overruns and product fail-
ures. Identifying external interfaces early
clarifies product scope, aids risk assess-
ment, reduces product development costs,
and improves customer satisfaction. The
steps of identifying, simplifying, control-
ling, documenting, communicating, and
monitoring interfaces help to reduce the
risk of problems related to interfaces.
Hooks and Farry provide a thorough dis-
cussion and recommendations [2].

Modeling. A model is a representa-
tion of reality that is intended to facilitate
understanding. The CORE requirements
tool has behavioral modeling capabilities.
Behavior is allocated to physical compo-
nents of the planned system. See Vitech’s
Web page at <www.vtcorp.com> for
information concerning this tool and a
trial version that can be downloaded. Uses
of the tool for modeling and example
problems are described in Buede [15]. In a
recent study of 15 requirements engineer-
ing teams supporting relatively small proj-
ects (average of 10 person-years of effort
with project duration of 16.5 months), use
of prototypes and models helped elimi-
nate ambiguities and inconsistencies and
correlated with the most successful proj-
ects [10].

Performance and Capacity Analysis.
Hofmann and Lehner [10] provide an
insight based on their study of 15 require-
ments engineering efforts: Stakeholders

emphasized that concentrating on system
functions and data resulted in a lack of
attention to the total system requirements
and in incomplete performance, capacity,
and external interface requirements. Thus,
it is vital to ensure that the requirements
gathering process provides for all require-
ments (requirements coverage).

An Innovative Concept
For an innovative approach to gathering
requirements, see “A Quick, Accurate Way
to Determine Customer Needs [16].” The
authors of this article believe customers
tend to say one thing during requirements
elicitation and then do something entirely
different. They feel that this problem is
largely due to reliance on traditional re-
quirements gathering approaches such as
focus groups, surveys, and interviews that
do not deal effectively with contradictions
in peoples’ responses.

The authors advocate “a new technol-
ogy” called imprint analysis. Imprint refers
to the collection of associations and emo-
tions unconsciously linked with a word,
concept, or experience. They believe this
method produces findings that remain
consistent over time because it takes
human emotions into account. Emotion is
the trigger to action; emotions in the pres-
ent dictate peoples’ emerging needs. The
authors believe that imprint analysis can
actually forecast customer behavior.

A Cautionary Note
Everyone involved in a particular project
should use a common set of methods and
techniques. To that end, it is advisable to
have project discussions and training ses-
sions to evolve the desired “project
approach.” Projects should use methods
and techniques that have been used suc-
cessfully on previous projects in that
organization. If there is no local prece-
dent, hire staff from outside the organiza-
tion who have previous successful experi-
ence. And above all, I strongly recom-
mend that the project involve people who
have previously successfully used all meth-
ods and techniques that are to be
employed. Providing formal training for
developers who are expected to use new
methods and tools is a valuable invest-
ment.

Automated Requirements
Tools
I recommend the use of an automated
requirements tool to support a develop-
ment effort of any size. Tiny projects
might get away with using Microsoft Word
or Microsoft Excel; however, most proj-

Risky Requirements

12 CROSSTALK The Journal of Defense Software Engineering April 2002

ects require an industry-strength require-
ments tool such as DOORS, Requisite
Pro, or Caliber RM with capabilities that
extend beyond “requirements manage-
ment.”

Using a requirements tool facilitates
requirements elicitation because it enables
better understanding of the requirements
by both the customer and the developer.
Also, an effective requirements tool helps
prioritize requirements, provides require-
ments traceability throughout the devel-
opment effort, allows assignment of mul-
tiple attributes (characteristics of require-
ments) to all requirements, and facilitates
managing requirements changes [1].

Conclusions and
Recommendations
There is a wealth of information and
guidance available in back issues of
CrossTalk, books, articles, and indus-
try conference publications, and also from
the “lessons learned” on projects in our
own organizations. Much has been writ-
ten, but perhaps too little has been consci-
entiously applied on actual projects. Do
not try to do everything at once. Rather,
encourage the project team to select and
commit to a few improved practices that
make sense in your environment.

Establish a few useful metrics that
enable evaluation of implementation
effectiveness and institutionalization of
selected practices. Remember, the things
that are measured and tracked are the ones
that improve. Make a concerted effort to
improve project communications as well
as teamwork. A committed, highly moti-
vated team can accomplish most any-
thing.◆

References
1. Young, Ralph R. Effective Require-

ments Practices. Boston: Addison-
Wesley, 2001. See also <ralph young.
net>, a Web site devoted to require-
ments-related topics.

2. Hooks, Ivy F., and Kristin A. Farry.
Customer-Centered Products: Creat-
ing Successful Products Through
Smart Requirements Management.
New York: AMACOM (publishing
arm of The American Management
Association), 2001.

3. Smith, Preston G., and Donald G.
Reinertsen. Developing Products in
Half the Time. 2nd ed. New York:
John Wiley & Sons, Inc., 1998.

4. Gilb, Tom, and Dorothy Graham.
Software Inspection. Reading, Mass.:
Addison-Wesley, 1993. See also
<www.result-planning.com>.

5. Whitten, Neal. “Meet Minimum Re-
quirements: Anything More Is Too
Much.” PM Network Sept. 1998.

6. Kotonya, Gerald, and Ian Sommerville.
Requirements Engineering: Processes
and Techniques. Chichester, England:
John Wiley & Sons, 1998.

7. Leffingwell, Dean, Don Widrig, and
Edward Yourdon. Managing Software
Requirements. Boston: Addison-
Wesley, 2000.

8. Sommerville, Ian, and Pete Sawyer.
Requirements Engineering: A Good
Practice Guide. New York: John Wiley
& Sons, 1997.

9. Gause, Donald C., and Gerald M.
Weinberg. Exploring Requirements:
Quality Before Design. New York:
Dorset House Publishing, 1989.

10. Hofmann, Hubert F., and Franz
Lehner. “Requirements Engineering as
a Success Factor in Software Projects.”
IEEE Software July/Aug. 2001: 58-66.

11. Graham, Ian. Requirements Engineer-
ing and Rapid Development: An
Object-Oriented Approach. Reading,
MA: Addison-Wesley, 1998.

12. Wood, Jane, and Denise Silver. Joint
Application Development. New York:
John Wiley & Sons, 1995.

13. Sommerville, Ian. Software Engineer-
ing. 6th ed. Harlow, England:
Addison-Wesley, 2001.

14. Schneider, Geri, Jason P. Winters, and
Ivar Jacobson. Applying Use Cases: A
Practical Guide. Reading, Mass.:
Addison-Wesley, 1998.

15. Buede, Dennis M. The Engineering
Design of Systems: Models and Meth-
ods. New York: John Wiley & Sons,
2000.

16. Afors, Cristina, and Marilyn Zucker-
man Michaels. “A Quick, Accurate
Way to Determine Customer Needs.”
Quality Progress, July 2001, 82-87.

17. McConnell, Steve. Software Project
Survival Guide. Redmond, Wash.:
Microsoft Press, 1998.

18. Wiegers, Karl E. “First Things First:
Prioritizing Requirements.” Software
Development Magazine Sept. 1999:
24-30.

Notes
1. Adapted from Steve McConnell,

Software Project Survival Guide [17]. See
Chapter 8 for valuable suggestions
concerning requirements develop-
ment.

2. Visit Karl Wiegers’ Web site <process
impact.com/goodies.shtml> to down-
load a Microsoft Excel spreadsheet
useful for prioritizing requirements.

See also Wiegers’ article, First Things
First: Prioritizing Requirements [18].

3. Industry consultant Robert Sabourin
trains and facilitates Gilb inspections.
He advises that the basic training can
be accomplished in four hours,
including one example inspection. A
mentor or champion is required to
train moderators, scribes, and process
administrators. Sabourin’s experience
is that Gilb inspections provide good
value, for example, to inspect require-
ments against sources and to inspect
all downstream work from require-
ments. Performing inspections can
foster communication and gain buy-
in. Inspections can be used to test
artifacts that otherwise would be
nearly impossible to test objectively.
Inspections can be implemented with
minimal impact on the normal work-
flow. See <www. amibug.com>.

4. See Chapter 3 of Graham’s Require-
ments Engineering and Rapid Development
for a detailed discussion of organiz-
ing and running workshops.

About the Author
Ralph R. Young,
DBA, is the director of
Software Engineering,
Systems and Process
Engineering, Defense
Enterprise Solutions at

Northrop Grumman Information
Technology, a leading provider of
information technology and systems-
based solutions. Dr. Young leads a
requirements working group of re-
quirements engineers. He teaches a
10-hour Requirements Course for
Practitioners and consults frequently
concerning both requirements engi-
neering and process improvement. Dr.
Young has received awards for team-
work, leadership, continuous improve-
ment, and publishing, and is often rec-
ognized for his contributions in
process management and improve-
ment. He is the author of Effective
Requirements Practices.

Northrop Grumman
Information Technology
Mail Stop 5S3
1500 PRC Drive
McLean,VA 22102
Phone: (703) 556-1030
E-mail: young_ralph@prc.com

