Abstract No. 002-0439
An Optimal Breadth-First Algorithm for the Preemptive Resource-Constrained Project Scheduling Problem

Second World Conference on POM and 15th Annual POM Conference, Cancun, Mexico, April 30 - May 3, 2004

An Optimal Breadth-First Algorithm for the Preemptive Resource-Constrained Project Scheduling Problem
Prof. Sanjay Verma

Indian Institute of Management, Ahmedabad. India.

IIM Ahmedabad, Gujarat, India. 380015. 

Ph: 91 79 26324804.

Email: sverma@iimahd.ernet.i
Abstract


A simple breadth-first tree search scheme with pruning rules to minimize the completion time (makespan) of the project is described. A project consists of a set of activities partially ordered by precedence constraints. An activity has a given non-negative duration and uses renewable resources such as manpower and machinery. The total number of available units of each resource is constant and specified in advance. A unit of resource cannot be shared by two activities. An activity is ready to be processed only when all its predecessor activities are completed and the numbers of units of the various resource required by it are free and can be allocated to it. Once started, an activity can be interrupted and rescheduled later on without any increase in remaining duration of that activity. There are no set-up times. The objective is to assign start times to the activities so that the makespan is minimized. 
1 Introduction

A project consists of a set of activities partially ordered by precedence constraints. An activity has a non-negative duration and uses different types of renewable resources such as manpower and machinery. The total number of available units of each resource type is constant and specified in advance. Two activities cannot simultaneously make use of the same unit of resource. An activity is ready to be processed only when all its predecessor activities are completed and the number of units of the various resource types required by it are free and can be allocated to it. In the non-preemptive case, once started an activity is not interrupted and runs to completion. One of the objectives is to minimize the completion time (makespan) of the project. In the preemptive case which is discussed in this paper, an activity can be interrupted any number of times. However, this preemption is allowed at unit time intervals only.


Extensive work on resource constrained project scheduling problem can be found in Stinson et al. [1978], Christofides et al. [1987], Bell and Park [1990], Demeulemeester and Herroelen [1992], and Nazareth et al. [1999]. However, very little literature is available on solving project-scheduling problem when activities can be preempted to resume later on, so that some other activities can be executed. Demeulemeester and Herroelen [1999] presented an algorithm for the preemptive case. However, experiments were conducted on standard set of Patterson [1984] only, which are very small compared to the new standard sets, by Kolisch et al. [1995]. The objective of the paper is to present an optimal breadth first algorithm to solve the preemptive resource-constrained project scheduling problem, and to show the results on the standard set of Kolisch et al. [1995].


 Section 2 of the paper introduces the basic terminology and notation, and gives the mathematical formulation of the problem. Section 3 reviews the existing literature. Section 4 explains the operation of Prempt_MRS with the help of examples. Section 5 details our experimental observations. Prempt_MRS, coded in C is executed on a Linux based machine and the results are recorded. Experiments have been conducted over standard set of Patterson as well as, that of Kolisch et al [1995]. Section 6 suggests further work on the problem and concludes the paper.

2 Definitions of Terms

1. Project: A project consists of N activities a1, a2, ..., ai, …, aN. Activity ai has duration of pi units; this includes the set-up time, processing time and set-down time. We use the Activity-on-Node (AON) convention when referring to projects.

2. Precedence Constraints: Activity ai (i = 1, …, N) can start only when all its predecessor activities have finished. The predecessors are determined by the technological considerations of the project. An activity ap is said to be a predecessor of ai, when ai cannot start until ap has finished. This is represented as ap < ai, where '<' defines the precedes relationship. Similarly as is said to be a successor activity of ai if as cannot begin until ai has finished. Let H denote the set of all the pairs of activities with predecessor and successor relationships.

3. Resource Types: M types of renewable resources are assumed to be available. Rj (j=1,.. M) denotes the total availability in number of units of resource type j. Activity ai requires rij units of the jth resource. 

4. Resource Constraints: The total number of units of resource type j used by all the activities in progress at any instant of time should not exceed the total availability Rj of that resource type.

5. Integrality Condition: Values of parameters such as activity duration (pi), resource availability (Rj) and resource requirements (rij) are non-negative integers.


Note: 
Without loss of generality and in consistency with standard practice, it is assumed that:


a)
A project has 2 dummy activities, a (unique) dummy start activity a1 and a (unique) dummy finish activity aN, which are of zero duration and consume no resources (i.e.,  p1 = pN = 0,  r1j = rNj = 0,  j,  j = 1,…, M).


b)
The activities are numbered in such a way that no activity has a predecessor with a higher number.


c)
Every non-dummy activity has at least one predecessor and at least one successor, 


d)
In listing the set of predecessor activities of a given activity, only the activities directly preceding need to be listed. If the direct predecessors have completed, all indirect predecessors must also have completed.


A project starts at time t = 0 (i.e., s1 = 0). A schedule for the project is an assignment of a start time si to each activity ai. An activity is said to be scheduled when it is assigned a start time. The makespan (T = fN) of a schedule is the time when the last activity (aN) finishes. A feasible schedule is a schedule that satisfies the given precedence and resource constraints. An optimum schedule is a feasible schedule that optimizes the given objective function.


Given Rj ( j = 1, .. M), and pi, H and rij for each ai, ( i = 1, …, N, j = 1, …, M), our problem is to determine an optimum schedule. In the widely discussed resource-constrained project-scheduling problem (RCPSP), activities once started are executed unto their completion. The problem can be formulated mathematically as follows:

Minimize fN 










(1)

subject to the conditions

i)
 fi - fj  >  pi  ( (ai, aj) ( H; and







(2)
ii) ( rij  <  Rj  for each j, 1 < j < M, at every integer time instant t, 0 < t < fN, 

(3)


where the summation is over all i such that activity ai is in progress during the time interval [t, t+1).


However, when preemptions are allowed, the activities can be interrupted at any integer time instant and restarted later without any setup cost, i.e. the duration (pi) of activity (ai) can be splitted into pi duration. Following formulation is discussed in Demeulemeester and Herroelen [1999].


Let fik be the completion time of kth unit of activity ai, where each activity ai is broken into pi durations. Let fi0 be the earliest start time of the activity ai. Only finish-start relations with a time lag of zero are allowed, and therefore fi0, equals the latest finish time of all the predecessors of activity ai. An activity ai belongs to the set of activities in progress at time t if one of its duration units k = 1,2,.....,pi finishes at time t. With these, PRCPSP can be formulated as follows:

Minimize fn,0 










(4)

i) fi,di <  fj,0  ( (ai,aj) (H 







(5)

ii) fi,k-1 + 1 < fi,k
 for i = 1,.....n and k = 1,......di





(6)

iii) f1,0 = 0, and 









(7)

iii) ( rij  <  Rj  for each j, 1 < j < M, at every integer time instant t, 0 < t < fN,0 

(8)


where the summation is over all i such that activity ai is in progress during the time interval [t, t+1).

The objective function (4) minimizes the makespan by minimizing the earliest start time of activity aN (dummy activity). In (5) all precedence relationships are satisfied; the earliest start time of an activity aj cannot be smaller than the finish time of the last unit of duration of its predecessor ai.(6) specify that the finish time of a portion of activity at least one unit of time more that the completion time of previous portion. (7) specify that the earliest start time of activity ai is 0. (8) specifies that the resources consumed at any point of time during the duration of the project are not greater that the resources available. It should be noted that with preemption the number of possible solutions increase and therefore the computational complexity of the problem also increases.

3 Literature Review


Significant work has been done in the field of project scheduling. A comprehensive survey of the work that has been done can be found in Herroelen et al. [1998]. In RCPSP the objective is to minimize the makespan of the project, where activities have deterministic duration and resource requirements. The resource requirement as well as, resource availability is given and remains constant throughout the duration of the project. Some of the noteworthy publications in this field are by Stinson et al. [1978], Demeulemeester and Herroelen [1992], and Nazareth et al. [1999]. Demeulemeester and Herroelen [1992] use a depth first strategy (DH). It generates a search tree, in which the nodes correspond to partial schedules. At each node finish times are assigned to a subset of activities in the project. DH uses the concept of Minimal Delaying Alternatives (MDA). A delayed set consists of all subset of activities that are either in progress or are eligible, the delay of which would resolve the resource conflict in the partial schedule. Pruning rules are also used.


Nazareth et al.[1999] have used two strategies, a breadth-first and a best first strategy. The concept of Maximal Resource Satisfying Set (MRS) is used. An MRS is considered out the candidate set. A candidate set is those activities that are available for scheduling. A MRS is a maximal subset of activities that are eligible to be scheduled and does not cause a resource violation; however if another activity belonging to candidate set is added to an MRS, the resulting subset would cause a resource violation. Nazareth et al.[1999] also use three pruning rules, namely Dominance Pruning rule, Left shift rule and One child rule.

However, not enough work has been done in the area of PRCPSP. Davis and Heidorn [1971] suggested and implicit enumeration scheme based on the splitting of activities into sub-activities of unit duration. DH has also been extended for PRCPSP. DH also make a distinction between activities and sub-activities. Each activity in the project network is replaced by sub-activities; their number being equal to the duration of the activity. Each sub-activity has duration of 1 and resource requirement equal to the corresponding activity. Nazareth [1995] suggested that it was possible to modify the algorithms discussed in Nazareth et al. [1999] for the preemptive case. In this paper, the same idea has been taken further.

4 Preempt_MRS: A Breadth-First Strategy


Like most other project scheduling methods, Preempt_MRS is a tree-search procedure augmented with pruning rules. The nodes in the search tree are called states and correspond to partial schedules, where a partial schedule is a schedule of a subset of the N activities that do not violate any of the given precedence and resource constraints. A complete schedule is a partial schedule of all the N activities; a state corresponding to a complete schedule is a solution state. A state is identified with its partial schedule when no confusion is likely to arise; for clarity, we sometimes refer to the partial schedule corresponding to a state X as schedule(X). The root node of the search tree corresponds to a partial schedule with no activity completed and the dummy start activity a1 in progress. The following parameters are associated with a state X:

cX 
Current time: The time of creation of state X. This corresponds to the earliest time at which the processing of an activity in progress was completed in the parent state of X and a scheduling decision was made.

FX
Finished set: The set of activities that have already finished at or before time cX (without violating any precedence or resource constraints).

AX 
Active set: The set of activities, a part of which started at time cX; this is the set of activities in progress in state X at time cX.

dpX
Decision point: The time at which we make consider new activities for scheduling. This becomes the current time of each child state of X.

KX
Decision set: The set of activities, which are not yet completed at time cX but all of whose predecessors have completed at some time < cX. These are the ready activities at time cX. Activities in AX, also belong to KX.

4.1 Generation of Root State

The parameters associated with the root state I of the search tree are as follows:

cI
=
0
=
Current time of the root state I

FI
=
{ }
=
Set of activities completed at cI (empty set)

AI
=
{a1}
=
Set of activities in progress at time cI
dpI
=
0
=
Finish time of activity a1
KI
=
{a1}


Initially the search tree consists only of the root state I. States get added to the tree as follows. Suppose X is a state in the tree that is not a solution state and X is selected for expansion.. The child state will be created at dpX = cX. To determine decision set KY, where KY are the candidate set for the children of X, we use the concept or Maximal Resource Satisfying Set (MRS), which was presented in Nazareth et al. [1999]. The concept is presented again for ease of understanding. A Maximal Resource Satisfying Set (MRS) is a maximal subset of KY that does not cause a resource violation; if another activity belonging to KY is added to an MRS, the resulting subset would cause a resource violation. In general, KY has a number of distinct subsets each of which is an MRS; these are not necessarily disjoint. For example, suppose there is only one resource type with a total availability of two units. Also suppose that in schedule(X), activities aj and ak are in progress, and aj finishes at time dpX but ak is still in progress. Let am and an be two other activities that are ready to be scheduled at dpX, so that KY = {ak, am, an}. Let each of ak, am and an require one unit of resource. Then, at dpX the MRSs are {ak, am}, {ak, an} and {am, an}. The expansion of X, which takes place at time dpX, creates a child node corresponding to each MRS. In every child state Y of X


cY
=
dpX

FY
=
FX augmented by the activities in AX that completed at time dpX

AY 
=
the MRS of X that corresponds to this child state

Since the activities are preempted, these will be scheduled many times. 

4.2 Expansion of A State


Let the level of a state X in the search tree be the decision point of the state dpX. The next state is generated at time cY = dpX = cX+1. However, if the duration of any activity in progress (AX) is zero than cY = cX (and dpX = dpY) and therefore, level of both parent and child states will be the same. 


The root state is at level zero, its children are at level one, and so on. In the breadth-first formulation, all states at a given level are expanded before any states at a numerically greater level. The search tree is generated level-by-level. This makes the breadth-first algorithm very simple in structure. The main advantage of a level-by-level search is that much less memory is required for storing the states, since at any time, states at only two adjacent levels need to be stored in memory. In principle, the states can be maintained in a queue; the state X at the front of the queue is selected for expansion, the child states of X being inserted at the back of the queue. 


In this simple form the algorithm is very inefficient as too many states get generated. Pruning rules must be employed to cut down the effective branching factor of the search tree. A rule called Dominance Pruning rule is used to prune the tree. This rule prunes states that would generate solutions no better than those obtainable from states that remain in the search tree. The Dominance Pruning Rule used in Preempt_MRS has the following form:

Dominance Pruning Rule: If at any time during the execution of Preempt_MRS there are two states X and Y in the search tree such that: 

i) dpX = dpY;
ii) FX = FY; (KX = KY
iii) The balance (remaining) time in state X of each activity in KX at time dpX is less than or equal to the balance time of corresponding activities in state Y at time dpY
then prune state Y from the search tree.


Thus a state X can dominate a state Y only if X and Y are at the same level. This makes the rule easy to implement in a breadth-first scheme. Since we are doing a level-by-level search, as soon as, we find a state which has activity aN in progress (or KY = aN), it must be a state that will provide an optimal solution. Also, it is important to note that the level of the search tree can never exceed the sum of durations of all the activities. 

The algorithm with its pruning rule can is shown below.

Algorithm Preempt_MRS



Step 1 (Initialization)

create the root state I at level 0 in the search tree


Step 2 (Loop)



for L from 0 to N-1 do






  



for each state X at level L do


Step 3 (Expansion)


    
construct KY and all the MRSs 


Step 3a (Termination Condition)

if KY = {aN} 













exit and go to Step 6




Step 3b







else 













generate a child state for each MRS; determine dpX,

Step 5 (Dominance)


apply the Dominance Pruning Rule to all states at level L+1


Step 6 (Output)


output the complete schedule associated with the state at level N

[image: image1.emf]Figure 1: Project for Example 1

1

0  0

3

2  1

4

2  1

2

2  1

5

0  0

a

i

p

i

r

i

M    = 1

R     = 2

1

Figure 1: Project for Example 1

1

0  0

3

2  1

4

2  1

2

2  1

5

0  0

a

i

p

i

r

i

M    = 1

R     = 2

1

1

0  0

3

2  1

4

2  1

2

2  1

5

0  0

a

i

p

i

r

i

M    = 1

R     = 2

1

Example 1: Consider the project network shown in Figure 1. It has five activities numbered 1 to 5. The duration (pi) and resource requirement (ri) of each activity is given on the top of the activity. There is one resource type with maximum availability of two. The preemptive makespan of the project is 3 as shown in Figure 2(a). Please note that if preemptions were not allowed the makespan would be 4 as shown in Figure 2(b). Table 1 shows the details of the states generated in the search tree.

[image: image2.emf]2

3

2

4

3

4

0      1  2  3

Figure 2(a): Makespan for Example 1 

(Preemptions Allowed)

2

3

2

4

3

4

2

3

2

4

3

4

0      1  2  3

Figure 2(a): Makespan for Example 1 

(Preemptions Allowed)

Table 1: States Generated in Search Tree for Example 1

	State
	Level
	Parent

State
	Decision

Point

dpX
	MRS
	Completed

FX
	In Progress

AX
	Balance Times

of KX
	Pruned

by

	S1
	0
	-
	0
	{2,3}{2,4}{3,4}
	-
	{1}
	{0}
	

	S2
	1
	S1
	1
	{2,3}{2,4}{3,4}
	{1}
	{2,3}
	{1,1,2}
	

	S3
	1
	S1
	1
	{2,3}{2,4}{3,4}
	{1}
	{2,4}
	{1,2,1}
	

	S4
	1
	S1
	1
	{2,3}{2,4}{3,4}
	{1}
	{3,4}
	{2,1,1}
	

	S5
	2
	S2
	2
	{4}
	{1}
	{2,3}
	{0,0,2}
	

	S6
	2
	S2
	2
	{3,4}
	{1}
	{2,4}
	{0,1,1}
	

	S7
	2
	S2
	2
	{2,4}
	{1}
	{3,4}
	{1,0,1}
	

	S8
	2
	S3
	2
	{3,4}
	{1}
	{2,3}
	{0,1,1}
	S6

	S9
	2
	S3
	2
	{3}
	{1}
	{2,4}
	{0,2,0}
	

	S10
	2
	S3
	2
	{2,3}
	{1}
	{3,4}
	{1,1,0}
	

	S11
	2
	S4
	2
	{2,4}
	{1}
	{2,3}
	{1,0,1}
	S7

	S12
	2
	S4
	2
	{2,3}
	{1}
	{2,4}
	{1,1,0}
	S10

	S13
	2
	S4
	2
	{2}
	{1}
	{3,4}
	{2,0,0}
	

	S14
	3
	S5
	3
	{4}
	{1,2,3}
	{4}
	{0,0,1}
	

	S15
	3
	S6
	3
	{5}
	{1,2}
	{3,4}
	{0,0,0}
	

	S16
	3
	S7
	3
	{5}
	{1,3}
	{2,4}
	{0,0,0}
	S15

	S17
	3
	S9
	3
	{3}
	{1,2,4}
	{3}
	{0,1,0}
	S14

	S18
	3
	S10
	3
	{5}
	{1,4}
	{2,3}
	{0,0,0}
	S15

	S19
	3
	S13
	3
	{2}
	{1,3,4}
	{2}
	{1,0,0}
	

	S20
	4
	S14
	4
	{5}
	{1,2,3}
	{4}
	{0,0,0}
	

	S21*
	-
	S15
	-
	-
	{1,2,3,4}
	{5}
	{0}
	


* Final Solutions

5 Experimental Observations

The experiments were conducted on two sets of problems: (i) the Patterson’s set of 110 problems, and (ii) the problem set of Kolisch et al.  containing 480 problems. The algorithm was coded in C on Linux and was run on a Pentium IV 1.7 GHz machine with 490 MB RAM. The results are as follows.

Set 1: Problem set of Patterson

i. All the 110 problems were solved with an average time of 0.087 seconds. Average number of states generated was 18850 and the average number of states expanded was 5243 (see Table 2).

ii. Out of the 110 problems, 80 problems did not see any improvement in completion time. 

iii. 30 problems saw an improvement of one time unit. It is worthwhile to point out that this data matches with the results provided by Demeulemeester and Herroelen [1996]

Table 2: Decrease in the optimal project length if pre-emption is allowed

(Patterson’s Problems)
	Decrease in Optimal Project Length
	0
	1
	Total

	No. of Problems Solved
	80
	30
	110

	Average Time
	0.097
	0.061
	0.087

	Average No. of States Generated
	19,735
	16,492
	18,850

	Average No. of States Expanded
	5,342
	4,980
	5,243


Set 2: Problem set of Kolisch et al.

The standard set of Kolisch et al. [1995] consists of 480 problems generated by controlling various parameters. These parameters are 

· NC (level of the network complexity): It is a measure of number of arcs per node in the network. The more the number of arcs; more the interconnectedness in the network

· RF (level of the resource factor): Average portion of resources requested per activity. For RF = 0, no activity requests any resource. For RF = 1, each activity requests all the resources.

· RS (level of the resource strength): When RS = 0, the resource availability is smallest with respect to one resource type. For RS = 1, the resource availability is largest w.r.t one resource type i.e. the problem is not at all resource constrained.

Not all the problems were solved from this standard set. Each problem was given 300 seconds to get solved. If the problem did not get solved in this time, the execution was discontinued. Following are the observations.

i. Out of the 480 problems, 366 problems were solved with an average time of 12.47 seconds.
ii. Average number of states generated and expanded were 161,650 and 32,883 respectively
Table 3: Impact of NC in Problems by Kolisch et al.

	 
	NC
	Total

	
	1.5
	1.8
	2.1
	

	Total Problems
	160
	160
	160
	480

	No. of problems solved
	102
	123
	141
	366

	Average computation time (seconds)
	8.93
	14.25
	13.47
	12.47

	Average No. of States Generated
	138,071
	201,469
	143,970
	161,650

	Average No. of States Expanded
	27,246
	40,145
	30,625
	32,883


Table 4: Impact of RF in Problems by Kolisch et al.

	 
	RF
	Total

	
	0.25
	0.5
	0.75
	1.00
	

	Total Problems
	120
	120
	120
	120
	

	No. of problems solved
	120
	106
	78
	62
	366

	Average computation time (seconds)
	2.12
	12.05
	20.42
	23.21
	12.47

	Average No. of States Generated
	34,746
	208,367
	225,476
	247,101
	161,650

	Average No. of States Expanded
	6,781
	46,826
	45,399
	43,819
	32,883


iii. With increase in NC, the problems get easier (as expected and shown earlier). With NC of 1.5, 102 problems were solved in 8.93 seconds while with NC of 2.1 the number of problems solved increased to 141 with an average time of 13.47 seconds (see Table 3 for details).
iv. Table 4 shows that as RF increases the number of problems solved reduce. 120 problems were solved at RF = 0.25 versus 62 problems for RF = 1. It can be seen that number of states generated as well as, expanded increase with increase in RF. When RF = 0.25, average number of states generated (expanded) are 34,746 (6,781). For RF = 1, number of states generated (expanded) increase to 161,650 (32,883). 

v. As shown in Table 5 with increase in RS the problems get easier. At RS = 0.2 only 66 problems were solved while for RS = 1, all 120 problems are solved. When the problem becomes easier, number of states generated as well as, expanded also reduces. For RS = 0.2, number of states generated (expanded) are 476,263 (108,438). For RS = 1, number of states generated (expanded) reduce to 51 (51). 

vi. One of the interesting questions to ask is what benefit does preemption brings?  Out of the 366 solved problems 259 did not see any improvement in makespan, 42 problems saw improvement of one time unit, 38 problems of two time units and 19 of three time units followed by 6, 1 and 1 problems had improvements of four, five and six times units respectively (Table 6).
Table 5: Impact of RS in Problems by Kolisch et al.

	 
	RS
	 Total

	
	0.2
	0.5
	0.7
	1.00
	

	Total Problems
	120
	120
	120
	120
	

	No. of problems solved
	66
	72
	108
	120
	366

	Average computation time (seconds)
	29.31
	16.60
	13.28
	0.00
	12.47

	Average No. of States Generated
	476,263
	183,429
	134,421
	51
	161,650

	Average No. of States Expanded
	108,438
	34,240
	22,285
	51
	32,883


Table 6: Decrease in the optimal project length if pre-emption is allowed

Problems by Kolisch et al.

	Decrease in Optimal Project Length
	0
	1
	2
	3
	4
	5
	6

	Number of Problems
	259
	42
	38
	19
	6
	1
	1


vii. If we take the observations made above further and understand the improvements in completion times, and its relation to various parameters, it emerges that with increase in NC, higher percentage of problem (out of the solved problems) see improvement in completion times (table 7).
Table 7: Impact of RF on optimal project length on Problems by Kolisch et al.

(When preemption is allowed)

	
	Decrease in Optimal Project Length
	Total
	Problems with reduced

Project length

	
	0
	1
	2
	3
	4
	5
	6
	
	

	
	1.5
	78
	6
	11
	6
	1
	0
	0
	102
	23.53%

	NC
	1.8
	86
	15
	13
	6
	2
	0
	1
	123
	30.08%

	
	2.1
	95
	21
	14
	7
	3
	1
	0
	141
	32.62%

	
	Total
	259
	42
	38
	19
	6
	1
	1
	366
	29.23%


viii. Table 8 shows that improvement is minimal with boundary values of RF. For RF = 0.25, 22.50% of the problems solved saw improvement in completion times. When RF to 0.50, proportion of problems with improvement in completion time increases to 41.51% and then reduces to 30.77% for RF = 0.75, further reducing to 19.35% for RF = 1.

Table 8: Impact of RF on optimal project length on Problems by Kolisch et al. 

(When preemption is allowed)

	
	
	
	Decrease in Optimal Project Length
	Total
	Problems with reduced

Project length

	
	
	0
	1
	2
	3
	4
	5
	6
	
	

	
	0.25
	93
	10
	9
	7
	1
	0
	0
	120
	22.50%

	RF
	0.50
	62
	14
	17
	7
	4
	1
	1
	106
	41.51%

	
	0.75
	54
	12
	8
	4
	0
	0
	0
	78
	30.77%

	
	1.00
	50
	6
	4
	1
	1
	0
	0
	62
	19.35%

	
	Total
	259
	42
	38
	19
	6
	1
	1
	366
	


ix. With increase in RS, less proportion of problems see any improvement in makespan. The proportion of problems facing improvement reduces to the extent that while for RS = 0.20, 65.15% of problems saw reduced project length, for RS = 1.00, none of the problem saw any improvement.

Table 9: Impact of RS on optimal project length on Problems by Kolisch et al. 

(When preemption is allowed)

	
	
	Decrease in Optimal Project Length
	Total
	Problems with reduced

Project Length

	
	
	0
	1
	2
	3
	4
	5
	6
	
	

	
	0.20
	23
	16
	12
	10
	3
	1
	1
	66
	65.15%

	RS
	0.50
	37
	12
	17
	5
	1
	0
	0
	72
	48.61%

	
	0.70
	79
	14
	9
	4
	2
	0
	0
	108
	26.85%

	
	1.00
	120
	0
	0
	0
	0
	0
	0
	120
	00.00%

	
	Total
	259
	42
	38
	19
	6
	1
	1
	366
	


6 Conclusion and Future Directions

The algorithm Preempt_MRS is a simple algorithm based on level-to-level search. The pruning rule is also simple and therefore, easy to implement. However, newer pruning rules may be devised to improve the performance of the algorithm. Demeulemeester and Herroelen[1996] use the concept of sub-activities to solve PRCPSP in which each activity is broken into sub-activities of unit duration each. Using that approach can one devise special pruning rules to make use of unit durations? It may also happen that breaking up of an activity in unit duration may result in loss of information and therefore loss of performance. There is a need to compare Preempt_MRS with the algorithm of Demeulemeester and Herroelen [1996]. Moreover, the Best_first and Depth_first strategy base on the concept of MRS may also be devised and tested for performance.

7 References

Bell C. E. & Park K. (1990): “Solving resource-constrained project scheduling problems by A* search”, Naval Research Logistics, Vol 37, February 1990, pp 61-84.
s

Christofides N., Alvarez-Valdes R. & Tamarit J. M. (1987): “Project scheduling with resource constraints: A branch and bound approach”, European Journal of Operational Research, Vol 29, 1987, pp 262-273.

Davis E. W., and Heidorn G.E. (1971): “An algorithm for optimal project scheduling under multiple resource constraints”, Management Science, Vol 17, No 12, August 1971, pp 803-816.

Demeulemeester E. & Herroelen W. (1992): “A branch-and-bound procedure for the multiple resource constrained project scheduling problem”, Management Science, Vol 38, No 12, December 1992, pp 1803-1818.

Demeulemeester E. & Herroelen W. (1996): “A efficient optimal solution for the preemptive resource-constrained project scheduling problem”, European Journal of Operational Research, Vol 90, Issue 2, April 1996, pp 334-348.

Demeulemeester E. & Herroelen W. (1997 B): “New benchmark results for the resource constrained project scheduling problem”, Management Science, Vol 43, No 11, November 1997, pp 1485-1492.

Kolisch R, Sprecher A, and Drexl A [1995], “Characterization and generation of a general class of resource-constrained project scheduling problems”, Management Science, 41, 1693-1703.

Nazareth T. (1995) “New Algorithms for the Multiple-Resource Constrained Project Scheduling Problem, Unpublished Fellow Programme Thesis, Indian Institute of Management Calcutta ,1995.
Nazareth T, Verma S, Bhattacharya S, and Bagchi A [1999], “The multiple resource constrained project scheduling problem: A breadth-first approach”, European Journal of Operational Research, 112, 347-366.

Patterson J. H. (1984): “A comparison of exact approaches for solving the multiple constrained resource project scheduling problem”, Management Science, Vol 30, No 7, 1984 pp 854-867.

Stinson J. P., Davis E. W. & Khumawala B. M. (1978): “Multiple resource-constrained scheduling using branch and bound”, AIIE Transactions, Vol 10, No 3, September 1978, pp 252-259.
























































































































































































































































































































































































































































































































































































































































































































































































PAGE  
11

[image: image3.emf]2

3 4

0 2  4

Figure 2(b): Makespan for Example 1 

(Without Preemptions)

2

3 4

0 2  4

2

3 4

2

3 4

0 2  4

Figure 2(b): Makespan for Example 1 

(Without Preemptions)

