
This article was downloaded by: [49.206.58.32] On: 23 May 2022, At: 00:43
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS TutORials in Operations Research

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

Generating Robust Project Baseline Schedules
Willy Herroelen

To cite this entry: Willy Herroelen. Generating Robust Project Baseline Schedules. In INFORMS TutORials in Operations
Research. Published online: 14 Oct 2014; 124-144.
https://doi.org/10.1287/educ.1073.0038

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2007, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/educ.1073.0038
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


INFORMS 2007 c© 2007 INFORMS | isbn 13 978-1-877640-22-3
doi 10.1287/educ.1073.0038

Generating Robust Project Baseline Schedules

Willy Herroelen
Research Center for Operations Management, Katholieke Universiteit Leuven, B-3000 Leuven,
Belgium, willy.herroelen@econ.kuleuven.be

Abstract Most research efforts in resource-constrained project scheduling assume a static and
deterministic environment within which the precomputed baseline schedule will be
executed. Project activities, however, may be subject to considerable uncertainty,
which may lead to numerous schedule disruptions during project execution. In this
tutorial, we discuss proactive project scheduling procedures for generating robust base-
line schedules that are sufficiently protected against anticipated time and/or resource
disruptions in combination with reactive policies that may be deployed to repair the
baseline schedule during project execution.

Keywords project scheduling; uncertainty; stability; buffers

1. Introduction
In this tutorial we focus on proactive procedures for generating project baseline schedules
that are sufficiently protected against disruptions that may be caused by uncertainties in
the activity durations and/or resource availabilities. The proactive procedures can be used
in combination with reactive procedures to be deployed when the baseline schedule, despite
its protection, breaks.

1.1. The Project Baseline Scheduling Problem
The vast majority of the project scheduling research efforts over the past several years has
concentrated on the development of workable baseline schedules, assuming complete infor-
mation and a static and deterministic environment. Such a baseline schedule (preschedule,
predictive schedule) is traditionally constructed by solving the so-called resource-constrained
project scheduling problem (RCPSP).
The RCPSP (problem m,1|cpm|Cmax in the notation of Herroelen et al. [15]) involves

the determination of activity starting times that satisfy both the zero-lag finish-start prece-
dence constraints and the renewable resource constraints under the objective of minimiz-
ing the project duration (for reviews, we refer to Brucker et al. [7], Demeulemeester and
Herroelen [9], Herroelen et al. [14], Kolisch and Padman [20]).
The deterministic RCPSP can be stated as follows. Consider a project network G(N,A)

represented in activity-on-the-node representation format with dummy start node 0 and
dummy end node n. All nondummy project activities have durations pi and are subject to
zero-lag finish-start precedence constraints on the elements of A: We require sj ≥ si + pi

if (i, j) ∈ A, with si the planned start time of activity i. Nondummy activities require an
integer per period amount rik of one or more renewable resource types k, k= 1, . . . , q, during
their execution. All resource types k have a per-period capacity ak. The objective is to derive
a precedence and resource feasible baseline schedule SB = (s0, s1, . . . , sn) of activity start
times that minimizes the duration of the project.
A project network example is shown in Figure 1 (Van de Vonder [37]). For each activity,

the duration and per period requirement for a single renewable resource are shown above

124



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 125

Figure 1. Project network example.

0

1 7

3

42 6 9

5 8

0/0 5/3 4/4 4/5

2/34/5

2/4 5/3 2/6

0/0

i

pi /ri

the corresponding node. The single renewable resource type is assumed to have a per period
availability a= 10.
Conceptually, the RCPSP can be formulated as follows:

minimize sn (1)
subject to si + pi � sj ∀ (i, j)∈A (2)

s0 = 0 (3)∑
i: i∈At

rik � ak for k= 1, . . . , q and t= 1, . . . , sn. (4)

The set At that is used in Equation (4) denotes the set of activities that are in progress
at time t. The objective function Equation (1) minimizes the start time of the dummy end
activity and hence the duration of the project. Equation (2) expresses the finish-start zero-
lag precedence relations, whereas Equation (3) forces the dummy start activity to start at
time 0. Finally, Equation (4) expresses that at no time instant during the project horizon
the resource availability may be violated. The formulation is conceptual: The linear program
cannot be solved directly because there is no easy way to translate the set At into a linear
programming formulation. We refer to Demeulemeester and Herroelen [9] for a detailed
discussion of mathematical programming formulations for the RCPSP. The deterministic
RCPSP has been shown to be strongly NP-hard (Blazewicz et al. [6]).
A minimum makespan schedule for the project network of Figure 1 is shown in Fig-

ure 2. The critical sequence, which determines the 15-period project duration is the chain
〈0,2,4,6,8,9〉. Figure 3 shows the corresponding resource profile. A baseline schedule SB ,
such as the one given in Figure 2, serves a number of important functions (Aytug et al. [4],
Mehta and Uzsoy [31], Wu et al. [47]). One of these is to provide internal visibility within
the organization of the planned activity execution periods reflecting the requirements for the
key staff, equipment, and other resources. The baseline schedule is also the starting point
for communication and coordination with external entities in the company’s inbound and
outbound supply chain: It constitutes the basis for agreements with suppliers and subcon-
tractors (e.g., for planning external activities such as material procurement and preventive

Figure 2. Minimum makespan schedule.

0 5 10 15

2 4 6 8

1 3 5

7

Time



Herroelen: Generating Robust Project Baseline Schedules
126 Tutorials in Operations Research, c© 2007 INFORMS

Figure 3. Resource profile for the minimum makespan schedule.

1050 15 Time

2
4

6 81 3

2

5

7

64

Resource
units

5

10

maintenance), as well as for commitments to customers (delivery dates). During execution,
however, a project may be subject to considerable uncertainty, which may lead to numerous
disruptions in the baseline schedule.
Many types of disruptions have been identified in the literature (we refer to Yu and

Qi [48], Wang [46], and Zhu et al. [49]). Activities can take longer or shorter than expected,
resource requirements or availability may vary, ready times and due dates may change, new
activities may have to be inserted in the schedule, the project may have to be interrupted
for a certain time, etc. In this tutorial we focus on schedule disruptions that may be caused
by uncertainty in the duration of the project activities and/or in the availability of the
renewable resources.
Proactive/reactive project scheduling procedures try to cope with schedule disruptions

that may occur during project execution through the combination of a proactive schedul-
ing procedure for generating a robust baseline schedule with a reactive procedure that is
invoked when a schedule breakage occurs during project execution and the schedule needs
to be repaired. Research in proactive/reactive project scheduling is growing steadily (for
surveys in machine scheduling and project scheduling environments, see Aytug et al. [4],
Herroelen and Leus [12, 13], and Vierra et al. [45]). The objective of this tutorial is to dis-
cuss promising proactive/reactive project scheduling procedures that may be deployed at
the occurrence of disruptions that are caused by uncertain activity durations or uncertain
resource availabilities.
The chapter is organized as follows. Section 2 distinguishes between the concepts of solu-

tion and quality robustness and defines a number of robustness measures. Section 3 focuses
on exact and suboptimal proactive/reactive scheduling procedures under the assumption
that the uncertainty stems from the activity durations. Both resource allocation and time-
buffering proactive procedures are discussed that can be used in conjunction with exact and
suboptimal reactive strategies that may be deployed during project execution upon schedule
breakage. Section 4 concentrates on solution robust scheduling under resource availability
uncertainty. We discuss an integrated proactive scheduling procedure to be used in com-
bination with exact or suboptimal reactive scheduling methods. The last section presents
some overall conclusions.

2. Proactive/Reactive Project Scheduling
Proactive/reactive scheduling involves a proactive and a reactive phase. During the proac-
tive phase, a baseline schedule SB is constructed that accounts for statistical knowledge of
uncertainty and anticipates disruptions. The underlying idea is to protect the schedule as
much as possible against the distortions that may occur during the execution of the project.
When disruptions occur during actual project execution, it may be necessary to call upon
reactive scheduling procedures to modify the baseline schedule in response to these disrup-
tions. The schedule actually executed after these modifications is called the realized schedule
SR (Aytug et al. [4]). In general terms, a baseline schedule that is rather “insensitive” to



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 127

disruptions that may occur during project execution is called robust. The robustness con-
cept has been used in many disciplines (see e.g., Kouvelis and Yu [21], Roy [34], and Billaut
et al. [5]). Many different types of robustness have been identified in the literature.
In the next section we introduce proper definitions and measures.

2.1. Robustness Types and Measures
The robustness measure used can be single or composite. Two often used types of sin-
gle robustness measures have been distinguished: quality robustness and solution robust-
ness (Herroelen and Leus [13], Van de Vonder et al. [43]; for other typologies we refer to
Sanlaville [35]).

2.1.1. Solution Robustness or Schedule Stability. Solution robustness or schedule
stability refers to the difference between the baseline schedule SB and the realized sched-
ule SR. This difference or distance∆(SB ,SR) for a given execution scenario can be measured
in a number of ways: the number of disrupted activities, the difference between the planned
and realized activity start times, etc. Sanlaville [35] suggests to measure solution robust-
ness as

max
I

∆(SB ,SR), (5)

the maximum difference between the baseline schedule SB and the realized schedule SR

over the set of execution scenarios I. The objective of the proactive/reactive scheduling
procedure then is to minimize the maximum distance between the baseline and the realized
schedule.
Leus and Herroelen [29] suggest to measure the difference by the weighted sum of the

absolute difference between the planned and realized activity start times, i.e.

∆(SB ,SR) =
∑
i∈N

wi|Si − si|, (6)

where si denotes the planned starting time of activity i∈N in the baseline schedule SB , Si is
a random variable denoting the actual starting time of activity i in the realized schedule SR,
and the weights wi represent the activity disruption cost per time unit, i.e., the nonnegative
cost per unit time overrun or underrun on the start time of activity i. This disruption cost
reflects either the difficulty in shifting the booked time window on the required resources
(internal stability, or the difficulty in obtaining the required resources) or the importance
of on-time performance of the activity (external stability). In practice, these penalties may
be considerable. For example, the penalty of not meeting the delivery date of the renovated
Berlaymont Building, housing the European Commission in Brussels (Belgium), was set to
EUR 221,000 per month of delay (Kinnock [19]).
The objective of the proactive/reactive scheduling procedure is then to minimize∑
i∈N wiE|Si −si| with E denoting the expectation operator; i.e., to minimize the weighted

sum of the expected absolute difference between the planned and realized activity start
times. It should be observed that the exact determination of the expected value of a function
of the activity durations is unrealistic (Möhring [32], Leus and Herroelen [29]). Hagstrom [11]
has shown for projects without resource constraints that even when every stochastic activity
duration Pi can take only two discrete values, then computing the expected project duration
and computing the probability that the project is finished by a given time instant, assuming
an early-start schedule, is #P complete. For NP-hardness proofs of several cases of the
scheduling problem for stability for projects subject to a deadline and discrete disturbance
scenario, we refer to Leus and Herroelen [30]. The objective function is usually determined
using simulation (Igelmund and Radermacher [17], Leus and Herroelen [29], Stork [36]). The
obtained objective function values will then be dependent on the simulated disruptions and



Herroelen: Generating Robust Project Baseline Schedules
128 Tutorials in Operations Research, c© 2007 INFORMS

on the reactive procedure applied during the simulated project execution in order to repair
the schedule upon breakage (Leon et al. [26]).
As will be illustrated later in this tutorial, solution robustness may also be evaluated using

surrogate objective functions that are easier to compute (see also Aloulou and Portmann [1],
Policella et al. [33], Deblaere et al. [8], Lambrechts et al. [22]–[25]).

2.1.2. Quality Robustness. Quality robustness refers to the insensitivity of the solution
value of the baseline schedule to distortions. The ultimate objective of a proactive/reactive
scheduling procedure is to construct a baseline schedule SB for which the solution value does
not deteriorate when disruptions occur. The quality robustness is measured in terms of the
value of the objective function z. In a project setting, commonly used objective functions
are project duration (makespan), project earliness and tardiness, project cost, net present
value, etc.
When stochastic data are available, quality robustness can be measured by considering the

expected value of the objective function, such as the expected makespan E[Cmax], the classical
objective function used in stochastic resource-constrained project scheduling (Stork [36]).
It is logical to use the service level as a quality robustness measure, i.e., to maximize

P (z≤ z), the probability that the solution value of the realized schedule stays within a cer-
tain threshold. As a result, we want to maximize the probability that the project completion
time does not exceed the project due date dn, i.e., P (Sn ≤ dn), where Sn denotes the actual
starting time of the dummy end activity. Van de Vonder et al. [41] refer to this measure as
the timely project completion probability (TPCP). It should be observed that even the ana-
lytic evaluation of this measure for a given schedule and in the presence of ample resource
availability is very cumbersome, the PERT problem being #P complete (Hagstrom [11]).
Quality robustness can also be measured by comparing the solution value z of the realized

schedule obtained by the proactive/reactive scheduling procedure and the optimal solution
value z∗ computed ex post by applying an exact procedure on the basis of the actually
realized activity durations. Leus and Herroelen [28], for example, have used the percentage
deviation of Sn, the project duration of the realized schedule, from the optimal makespan,
computed by applying a branch-and-bound procedure on the basis of the actually realized
activity durations as a measure of quality robustness.

2.1.3. Composite Robustness Measures. The robustness measures described above
are all single measures. Also composite robustness objectives may be used (Hoogeveen [16]).
Van de Vonder et al. [39] use the bicriteria objective F (P (Sn ≤ dn),

∑
wiE|Si − si|) of

maximizing the timely project completion probability and minimizing the weighted sum of
the expected absolute deviation in activity starting times. The authors assume that the
composite objective function F (., .) is not known a priori, that the relative importance of
the two criteria is not known from the outset, and that no clear linear combination is known
that would reflect the preference of the decision maker. The analytic evaluation of the
composite objective function is very cumbersome (as mentioned before, the PERT problem
is #P complete (Hagstrom [11]) and the scheduling problem for stability is NP-hard in the
ordinary sense (Leus and Herroelen [30])). A natural way out is to evaluate the composite
objective function through simulation.

3. Solution Robust Project Scheduling Under Activity Duration
Uncertainty

3.1. The Proactive/Reactive Scheduling Problem
We consider a project network G(N,A) represented in activity-on-the-node representation
with dummy start node 0 and dummy end node n. All nondummy project activities are
now assumed to have stochastic activity durations Pi and are subject to zero-lag finish-
start precedence constraints on the elements of A: We require Sj ≥ Si + Pi if (i, j) ∈ A,



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 129

with Si the activity start time of activity i realized during project execution. Nondummy
activities require an integer per period amount rik of one or more renewable resource types k,
k = 1, . . . , q, during their execution. All resource types k have a per-period capacity ak. As
before, the activity weight wi denotes the marginal cost of a deviation between the realized
start time Si of activity i and its planned start time si in the baseline schedule. As mentioned
earlier, these weights may include unforeseen storage costs, extra organizational costs, costs
related to agreements with subcontractors, or just a cost that expresses the dissatisfaction
of employees with schedule changes. We assume that w0 = 0, whereas wn denotes the cost
of delaying the project completion beyond a predetermined deterministic due date dn.
The proactive scheduling objective is to build a solution robust or stable precedence and

resource feasible baseline schedule, the activity starting times of which are denoted by si.
We assume in this chapter that stability is strived for by minimizing the stability function∑

i∈N wiE|Si − si|, defined earlier in Equation (6).

3.2. Proactive Scheduling
We assume that a two-phase procedure is used for generating stable schedules. In the first
phase, an input schedule is generated that is both precedence and resource feasible but is not
intentionally protected against anticipated disruptions. Such a schedule can be generated by
solving the underlying resource-constrained project scheduling problem (problem RCPSP
or problem m,1|cpm|Cmax), using (deterministic) single-point estimates pi for each Pi.
Two strategies may then be used in the second phase to increase the stability of the input

schedule. One way is to aim at a robust resource allocation, i.e., to decide on a clever way
in which the various resource units are transferred between the activities of the schedule.
Another is to insert time buffers that should prevent as much as possible the propagation
of distortions throughout the schedule.
Leus and Herroelen [30] have shown that under the assumption that a single activity

may deviate from its preschedule duration (without knowing which) and a single disruption
scenario per activity, the machine scheduling problem for stability is strongly NP-hard for
a single machine with unequal ready times or precedence constraints and for the case of
a free number of parallel machines; the single-machine problem without ready times and
precedence constraints is still ordinarily NP-hard.
3.2.1. Robust Resource Allocation. Leus [27] and Leus and Herroelen [29] study the
problem of generating a robust resource allocation for a given feasible baseline schedule SB .
They explore the fact that the search for an optimal resource allocation reduces to the search
for a so-called resource flow network (which describes the routing of resources across the
activities in the schedule) that exhibits desirable robustness characteristics. A branch-and-
bound algorithm is developed that solves the robust resource allocation problem in exact and
approximate formulations for the case of a single renewable resource type and exponential
activity duration disruption lengths.
Resource Flow Network. Artigues and Roubellat [2] introduce the concept of a

resource flow network in which the flow describes the resource units transferred among the
activities. Let ui = ri, ∀ i ∈ N\{0, n} and u0 = un = a. A resource flow f associates with
each activity pair (i, j) ∈ N ×N a value fij = f(i, j) ∈ N. The flow values must respect the
following constraints, which impose the conservation of flow in a node as well as a lower and
upper bound on the flow

f(i,N) = ui ∀ i∈N\{n} (7)
f(N, i) = ui ∀ i∈N\{n}, (8)

fij denotes the number of units of the single resource type transferred from activity i to
activity j. For a flow f , let Φ(f) = {(i, j) ∈ N ×N | fij > 0} denote the set of arcs carrying



Herroelen: Generating Robust Project Baseline Schedules
130 Tutorials in Operations Research, c© 2007 INFORMS

Figure 4. Resource flow network for the example project.

0

1 7

3
3 3

42 6 9

5 8

5

3

2
2

1
6

2

4

1

2

3

1

4

1

0

nonzero flow. Let TA denote the transitive closure of A, meaning that (i, j)∈ TA if a path
exists from i to j in G(N,A). The arcs X (f) = Φ(f)\TA denote the flow carrying arcs
that do not represent technological precedence constraints. In other words, X (f) is a set of
additional arcs inducing additional precedence constraints. For all X ⊂N ×N , GX denotes
the graph G(N,TA ∪ X). The flow f is a feasible flow if GX (f) is acyclic: The additional
precedence constraints implied by X (f) do not prohibit the realization of the project.
For the project network of Figure 1 u0 = u9 = 10, u1 = 5, u2 = 3, u3 = 4, u4 = 4, u5 = 3,

u6 = 5, u7 = 3, and u8 = 6. A possible resource flow is shown in Figure 4.
Activity 8, for example, has a per period resource requirement of six units (u8 = 6). It uses

three resource units released by its predecessor activity 5, two units passed on by activity 7
and one unit released by activity 6.
The set of arcs carrying nonzero flow, Φ(f) = {(0,1), (0,2), (0,3), (1,3), (1,4), (1,7), (2,4),

(3,5), (3,7), (4,6), (5,8), (6,8), (6,9), (7,6), (7,8), (8,9)} are shown in bold. The set of arcs
X (f) = {(1,3), (3,7), (6,8), (7,6), (7,8)} represent extra precedence relations that were not
present in the original project network. The arc (7,9) does not carry flow.
Let θ(X), X ⊆ N × N , be the earliest start schedule in which the starting time of the

dummy activity s0 = 0 and each other activity i starts at time si =maxj∈πA∪X(i){sj + pj},
with πA∪X(i) the immediate predecessors of activity i in the acyclic graph G(N,A ∪ X).
A solution to an RCPSP instance can be obtained by finding a feasible flow f that minimizes
sn(θ(A∪ X (f))).
The resource flows in Figure 4 may be represented in the resource profile shown in Figure 5,

where the use of the 10 resource units is now shown along the 10 horizontal bands.
Leus and Herroelen [29] have shown that for any realizable flow f , X = X (f) defines a

realizable early start policy (ES-policy). In order to obtain a feasible schedule for a given
scenario of activity durations, an ES-policy simply computes earliest activity start times in
a graph by performing a forward CPM (longest path) pass (Stork [36]). The idea behind an
ES-policy (Igelmund and Radermacher [17]) is to extend the partially ordered set G(N,A) to

Figure 5. Resource profile showing the resource transfers.

0 10 15 Time

2 4

8

1

3 5

7

6

Resource
units

5

5

10



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 131

a partially ordered set G(N,A∪X) such that no so-called forbidden sets1 remain precedence
unrelated and can thereby not be scheduled in parallel. The feasibility condition for the
policy is that G(N,A∪X) still be acyclic. The arc (1,3) in Figure 4, for example, guarantees
that the three activities of the forbidden set {1,2,3} cannot be scheduled in parallel.
ABranch-and-BoundAlgorithm. Leus and Herroelen [29] impose the restriction that

a resource allocation be compatible with a precomputed baseline schedule SB . Let si(SB)
denote the planned start time of activity i in the baseline schedule SB so that Ci(SB) =
si(SB) + pi denotes its corresponding planned completion time. Let Λ(SB) = {(i, j) ∈
N ×N | (i, j) /∈ TA, i �= j,Ci(SB)≤ sj(SB)}. A feasible flow f is said to be compatible with
a feasible baseline schedule SB , written f ∼ SB , if ∀ (i, j) ∈ TA ∪ X (f),Ci(SB) ≤ sj(SB),
or in other words X (f) ⊆ Λ(SB). One should attempt to respect the baseline schedule
as much as possible: During project execution, activities are started at the maximum of
the finish times of their predecessors and their baseline starting time (often referred to as
railway scheduling). As such, the actual starting time of activity i is a stochastic variable
Si(P,X (f),SB) = max{si(SB),maxj∈πT A∪X(f)(i){Sj(P,X (f),SB) + Pj}}, with s0(SB) = 0.
Following the logic of Equation (6), the authors then aim at generating a feasible flow f
with X (f)⊆Λ(SB) such that

E

[∑
i∈N

wi × (Si(P,X (f),SB)− si(SB))
]

≡ g(X (f)) (9)

is minimized. Minimizing the expected makespan is the special case wi = 0, i �= n, and
wn �= 0.
The set of decision variables is the set of flows fij with (i, j) ∈ F = TA ∪ Λ(SB). For

(i, j)∈ F, denote by Bij the domain initially associated with fij . The objective is to minimize
the expression in Equation (9) subject to the constraints given by Equations (7)–(8) and
the requirement that f ∼ SB . Also, GX (f) is acyclic because arc (i, j) ∈ TA ∪ Λ(SB) has
Ci(SB) ≤ sj(SB) ≤ Cj(SB) because the baseline schedule SB is feasible. For fij ∈ F , Bij

can be represented by its minimal value LBij and its maximal value UBij . The domains are
represented as intervals. The branch-and-bound algorithm implicitly evaluates all the valid
flow values and relies on constraint propagation in order to reduce the search space. Leus
and Herroelen [29] find an optimal resource allocation for a schedule SB by considering all
subsets Ω⊆Λ(SB) that allow a feasible flow in network TA∪Ω. One such subset corresponds
with at least one and mostly multiple feasible f , with X (f)⊆Ω. They iteratively add arcs
of Λ(SB) to Ω until a feasible flow is attainable.
At each node k in the search tree the set F = TA∪Λ(SB) is partitioned into three disjoint

subsets: F = αk ∪ νk ∪ ωk, with αk = {(i, j) ∈ F,LBij > 0} the set of included arcs, νk =
{(i, j)∈ F,UBij = 0} the set of forbidden arcs, and ωk = {(i, j)∈ F,LBij = 0 and UBij > 0}
the set of undecided arcs. Bounds LBij and UBij are established through constraint propa-
gation in conjunction with branching conditions. All arcs in αk\TA are added to Ωk which
results in the partial network Gk = GΩk

. If a feasible flow cannot be obtained in Gk, no
further branching is needed, otherwise no further arcs must be added to the network and
the procedure backtracks after having checked whether the objective function value corre-
sponding with the current feasible solution improves on the objective function value of the
best known feasible solution. The branching decision entails the selection of an undecided
arc (i, j) ∈ Λ(SB)∩ωk: the left branch is to set LBij = 1, so to include (i, j) in the partial
network Gk. The right branch is to impose UBij = 0, so to forbid any flow across (i, j), and
prohibit inclusion of (i, j) in Ω by placing the arc into set νk. The result of the addition
of a constraint is to split up the flow domain into two disjoint subsets, one of which is
singleton {0}.
1 A forbidden set is defined as a set of precedence unrelated activities, which cannot be scheduled together
due to the resource constraints.



Herroelen: Generating Robust Project Baseline Schedules
132 Tutorials in Operations Research, c© 2007 INFORMS

The authors report on promising computational results on randomly generated instances
up to 61 activities (79% of the 61 activity instances are solved to optimality in an average
CPU time of 45.5 seconds on a 800 MHz PC). Extension of the algorithm to multiple resource
types would require a revision of the branching decisions taken by the branch-and-bound
procedure and the consistency tests involved in the constraint propagation.
Suboptimal Algorithms. For the general multiresource-type case, Deblaere et al. [8]

derive lower bounds on scheduling stability and develop and validate three integer pro-
gramming-based resource-allocation heuristics and one constructive procedure against the
flow generation algorithm of Artigues et al. [3] and three algorithms developed by Policella
et al. [33]. Overall excellent results have been obtained using the constructive procedure
MABO (myopic activity-based optimization). The procedure is myopic because the authors
do not look at other activities while deciding on the best possible resource allocation for an
activity. MABO consists of three steps which have to be executed for each activity j. Step
1 examines whether the current predecessors of activity j may release sufficient resource
units to satisfy the resource requirements of activity j. If not, extra predecessors are added
in Step 2 with a minimal impact on stability. Step 3 then defines resource flows fijk from
predecessor activities i to activity j for renewable resource type k. The detailed steps of the
procedure can be written as follows:

Initialize: AR =AU and ∀k: alloc0k = ak

Sort the project activities by increasing sj (tie break: decreasing wj)
Take next activity j from list
1. Calculate Avail jk(A∪AR) =

∑
∀ i: (i,j)∈A∪AR

allocik for each k

2. If ∃k: Avail jk(A∪AR)< rjk

2.1 Define the set of arcs Hj

with (h, j)∈Hj ⇐⇒
(h, j) /∈A∪AR

sh + ph ≤ sj

∃k: allochk > 0
2.2 Find a subset H∗

j of Hj

such that ∀k: Avail jk(A∪AR ∪H∗
j )>= rjk

and Stability cost(A∪AR ∪H∗
j ) is minimized

2.3 Add H∗
j to AR

3. Allocate resource flows f(i, j, k) to the arcs (i, j)∈ (A∪AR):
For each resource type k:
3.1 Sort predecessors i of j by:
Increasing number of successors l of i
with sl > sj and rlk > 0

Tie break 1: Decreasing finish times si + pi

Tie break 2: Decreasing variance σ2
i of Pi

Exception: Activity 0 is always put last in the list
3.2 While allocjk < rjk

Take next activity i from the list
f(i, j, k) =min(allocik, rjk − allocjk)
Add f(i, j, k) to allocjk

Subtract f(i, j, k) from allocik

Let us discuss the various steps of the algorithm in more detail. Let G = (N,A ∪ AR)
denote the resource flow network, where A denotes the set of arcs representing the original
precedence relations and the resource arcs AR are connecting two nodes i and j if there is a
resource flow f(i, j, k) of any resource type k between the corresponding activities i and j.
In the initialization step, the set of resource arcs AR is initialized to the set of unavoidable



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 133

arcs AU ⊂AR. Two activities i and j must be connected by an unavoidable resource arc in
the resource flow network for a given input schedule, if the schedule causes an unavoidable
strictly positive amount of resource units f(i, j, k) of some resource type k to be sent from
activity i to activity j. The conditions to be satisfied by activities i and j can be formally
specified as follows:

∀ i∈N ; ∀ j ∈N with sj ≥ si + pi:

(i, j)∈AU ⇐⇒ ∃k: ak −
∑

l∈Asj

rlk −max
(
0, rik −

∑
z∈Z

rzk

)
< rjk (10)

in which Asj is the set of the activities that are in progress at time sj and Z is the set
of activities that have a baseline starting time sz: si + pi ≤ sz < sj . The left-hand side
of Equation (10) identifies the number of resource units of type k that can be maximally
supplied to activity j at time sj from other activities than activity i. If this number is
smaller than rjk, there is an unavoidable resource flow between i and j. The exact amount
and resource type of the flows on the unavoidable resource arc are irrelevant at this time.
We are only interested in the fact that an arc (i, j) must be added to the set of unavoidable
resource arcs AU .
Figure 6 shows an alternative minimum duration schedule for the project example of

Figure 1 (Van de Vonder [37]). This schedule requires an unavoidable resource arc from
activity 7 to activity 3. At time s3 = 6 only activity 4 is in progress with r4 = 4. Because
activity 3 starts when activity 7 ends, Z is obviously void. This results in the left-hand side
of Equation (10) being equal to 10− 4−max(0,3− 0) = 3, which is smaller than r3 = 4.
Arc (7,3) should thus be added to AU . The complete set of unavoidable arcs for the schedule
in Figure 6 is AU = {(0,1), (0,2), (1,7), (7,3), (3,5), (4,6), (6,8), (8,9)}.
For each resource type k, the number of resource units alloc0k that may be transferred from

the dummy start activity 0 is initialized to the resource availability ak. The project activities
are placed on a list in increasing order of their planned starting times using decreasing
activity weight as tie-break rule.
Step 1 computes the amount of resource units Avail jk(A∪AR) currently allocated to the

predecessors of activity j in A∪AR.
If this amount of available resource units is not sufficient for any resource type k, new

precedence constraints have to be added to AR in Step 2. The set Hj is defined as the set
of all possible arcs between a possible resource supplier h of the current activity j and j
itself. By solving a small recursion problem, the subset H∗

j of Hj is found that accounts for
the missing resource requirements of j for any resource type k at a minimum stability cost
Stability cost(A ∪ AR ∪ H∗

j ). The stability cost Stability cost(A ∪ AR ∪ H∗
j ) is the average

stability cost
∑

j∈N wjE|Sj −sj |, computed through simulation of sufficient executions of the
(partial) schedule, keeping the resource flows fixed, and respecting the additional precedence
constraints AR ∪H∗

j that were not present in the original project network diagram. The set

Figure 6. Alternative minimum duration schedule for the project of Figure 1.

1050 15 Time

4 6

81 3

2

57



Herroelen: Generating Robust Project Baseline Schedules
134 Tutorials in Operations Research, c© 2007 INFORMS

of arcs H∗
j is added to AR such that the updated Avail jk(A∪AR)≥ rjk and the resource-

allocation problem for the current activity is solved in a myopic way.
In Step 3, the actual resource flows f(i, j, k) are allocated to the predecessors of j in

A∪AR and allocik, the number of resource items allocated to each activity, is updated. If
Avail jk(A∪AR)> rjk for resource type k, it has to be decided which predecessors account
for the resource flows. The predecessors i are sorted by increasing number of their not yet
started successors l with rlk > 0, because these successors might count on these resources to
be available. Two tie-break rules are used: decreasing finish times and decreasing activity
duration variances. The principle is that the predecessors earlier in the sorted list normally
have a higher probability to disrupt future activities. It is advisable to consume all the
resource units they release as much as possible such that their possible high impact on
later activities is neutralized. This allocation procedure is redone for every resource type k
independently. After all this, the three-step procedure is restarted for the next activity
in the list until a complete feasible resource allocation is obtained at the end of the list.
The procedure uses an optimal recursion algorithm for each activity, but is not necessarily
optimal over all activities.
As an illustration, we run MABO on the minimum duration schedule of Figure 6. The

activity weights are w0 = 0, w1 = 2, w2 = 7, w3 = 4, w4 = 5, w5 = 3, w6 = 7, w7 = 5, w8 = 5,
and w9 = 38. Because the problem instance has a single resource type, we omit the index k.
We start by ordering the activities, yielding the list (0,2,1,7,4,3,5,6,8,9). All available
resource units are allocated to the dummy start activity (alloc0 = 10).
Activity 2 is next on the list. It has dummy activity 0 as single predecessor, so that

Avail2 = alloc0 = 10. As Avail2 > r2 (10> 3), no extra precedence relations have to be added
and we can proceed to Step 3. We set f(0,2) =min(alloc0, r2 − alloc2) = 3, alloc0 = 7, and
alloc2 = 3.
Also activity 1 poses no problems because its only predecessor (activity 0) still has 7

transferrable resource units and r1 = 5. Thus, f(0,1) = 5, alloc0 = 2, alloc1 = 5.
Activity 7 is the next activity on the list and we calculate in Step 1 that Avail7((1,7)) =

alloc1 = 5 while r7 = 3. Step 2 can thus again be skipped and the algorithm decides in Step 3
that f(1,7) =min(alloc1, r7 − alloc7) = 3, alloc1 = 2, and alloc7 = 3.
Activity 4 is next. Avail4((1,4), (2,4)) = 2 + 3 = 5 while r4 = 4. Step 3 gives priority to

activity 2, because neither activity 1 nor activity 2 has any not yet started predecessor
left, but activity 2 ends later in the baseline schedule and is thus a greater stability threat
for activities further down the list. This results in f(2,4) = min(alloc2, r4 − alloc4) = 3
and alloc4 = 3 and alloc2 = 0. Then f(1,4) = min(alloc1, r4 − alloc4) = 1, alloc1 = 1, and
alloc4 = 4. Activities 3 and 5 are processed in a similar way.
When activity 6 is looked at, the current situation is alloc0 = 1, alloc1 = 1, alloc3 = 1,

alloc4 = 4, and alloc5 = 3, resulting in Avail6(4,6) = alloc4 = 4, which is smaller than r6 = 5.
Thus, for the first time, an extra precedence relationship has to be added to supply one
resource unit from H6 = {(0,6), (1,6), (3,6)}. Two subsets of H6, namely (0,6) and (1,6) can
resolve the resource-allocation problem for activity 6 without extra cost. This is no surprise
because both 0 and 1 are already transitive predecessors of 6. Activity 1 is selected to supply
the missing resource unit and thus (1,6) is added to AR. The procedure then moves on,
until a complete feasible resource allocation is found.
Figure 7 shows the resource profile for the obtained robust resource allocation. The hori-

zontal bands again define the resource flow between the activities.

3.2.2. Buffer Insertion. Van de Vonder [37] and Van de Vonder et al. [38]–[43] have
developed several exact and suboptimal procedures for inserting time buffers in an input
schedule under the objective of minimizing the stability cost function

∑
i∈N wiE|Si − si|,

defined earlier in Equation (6). The included time buffers are idle periods (gaps) in the
schedule that should act as cushions to prevent propagation of a disruption throughout the
schedule.



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 135

Figure 7. MABO resource allocation for the schedule in Figure 6.

0 10 15 Time

2 4
8

1
3 57

6

Resource
units

5

10

5

Exact Algorithm. Van de Vonder [37] has developed a depth-first branch-and-bound
algorithm. The algorithm accepts as input an unbuffered schedule and accompanying
resource allocation that will be preserved during schedule execution. An upper bound UB on
the stability cost can be computed using a heuristic, for example the heuristic described in
the next section. During the preprocessing phase, the activities are listed in decreasing order
of their starting time sU

j in the unbuffered input schedule SU (decreasing activity number as
tie break). For the input schedule of Figure 2, this would yield the list L= (l[1], l[2], . . . , l[n]) =
(9,8,6,7,5,4,3,2,1,0). The set Nj− denotes the set of activities preceding activity j in the
list, whereas the set Nj+ denotes the set of its successor activities in the list. Let esj = sU

j

be the earliest allowable start time of activity j. The project due date dn defines the latest
allowable start time lsn for the dummy end activity n. Backward calculations in the net-
work G= (N,A∪R) then yield the latest allowable start time lsj for each activity j. The
total schedule float of activity j, the maximum amount of time by which activity j may be
delayed without violating the due date dn, is then computed as TFj = lsj − esj . A lower
bound stabmin

j (FFj) on the stability cost induced by activity j when activity j is preceded
by a time buffer of FFj time units, is then computed by running the following algorithm:

∀ j ∈N :
for FFj = 0 to (lsj − esj) do

Simulate sufficient scenarios of G(Nj+,A∪AR) with:
∀ i∈Nj+: si = esi

sj = esj +FFj

Calculate stabmin
j (FFj) = wjE|Sj − sj |.

The depth first search considers the activities in the order dictated by the list L =
(l[1], l[2], . . . , l[n]). The activity under consideration is called the current activity. The first
activity l[1] on the list is the dummy end activity n. The root node at level 0 of the search
tree is generated with s′

n = dn. Moving to the second current activity c= l[2] on the list, the
left most node at level 1 of the search tree is generated with s′

c = sc. The lower bound on
the stability cost induced by this current activity c is computed using simulation as

LB1c =
∑

l∈Nc−

wlE|Sl − sl|. (11)

If LB1c ≥ UB, then the node can be fathomed, as it is not necessary to evaluate the
starting times si > esi for any i ∈ Nc+, given that s′

l has been fixed for each l ∈ Nc−. Also,
it is not necessary to evaluate other starting times for c. Hence, the procedure backtracks to
the previous activity in the list.
Backtracking is done by moving one level up in the search tree and investigating the

next position s′
(c′) + 1 for the current activity c′ explored at that level. If there exists no

subsequent starting time of c′ such that sc′ + pc′ ≤max∀m: (c′,m)∈(A∪AR) s
′(m), then back-

tracking continues until an activity is met with feasible subsequent starting times. When
backtracking reaches the root of the search tree, the algorithm stops.



Herroelen: Generating Robust Project Baseline Schedules
136 Tutorials in Operations Research, c© 2007 INFORMS

If LB1c <UB, a tighter lower bound LB2c can be computed. Latest starting times ls′
i for

i∈Nc+ are calculated given that ∀ l ∈ (Nc− ∪{c}): ls′
l = s′

l. For any activity i∈ (Nc+ ∪{c}),
the expression wiE|Si − si| ≥ stabmin

i (ls′
i − esi) holds for any schedule that would be gener-

ated in lower branches of the search tree.
Aggregation yields

∑
i∈(Nc+∪{c})

wiE|Si − si| ≥
∑

i∈(Nc+∪{c})

stabmin
i (ls′

i − esi). (12)

We have shown above that
∑

i∈Nc− wiE|Si −si| ≥LB1 holds in the current branch of the
search tree. It results that

LB2 =LB1+
∑

i∈(Nc+∪{c})

stabmin
i (ls′

i − esi)≤
∑
i∈N

wiE|Si − si|. (13)

LB2 is thus a lower bound on the stability cost for all schedules with sj = s′
j and ∀ l ∈

Nj−: sl = s′
l. The computations made in the preprocessing stage make this bound rather

easy to compute. If LB2≥UB, the current node can be fathomed and the search continues
by evaluating the next larger start time for current activity c. If LB2 < UB, the current
branch needs to be further explored by branching on the next activity in the ordered list.
When branching has been done for all activities i with esi > 0 and LB2<UB, a new best
solution has been found with stability cost LB2.
Running the optimal buffer insertion algorithm on the input schedule given in Figure 2

with dn = 20, activity weights w0 = 0, w1 = 2, w2 = 7, w3 = 4, w4 = 5, w5 = 3, w6 = 7, w7 = 5,
w8 = 5, and w9 = 38, and expected activity durations E(D1) = 4, E(D2) = 5, E(D3) = 2,
E(D4) = 4, E(D5) = 5, E(D6) = 4, E(D7) = 2, and E(D8) = 2, yields the robust project
schedule of Figure 8.
A Heuristic Procedure. Several heuristic procedures have been developed for gen-

erating stable buffered schedules under the
∑

i∈N wiE|Si − si| objective (Van de Vonder
et al. [39]). Despite the simplicity of its underlying assumptions and structure, the starting
time criticality heuristic (STC) obtained excellent results.
The STC exploits information about both the weights of the activities and the variance

structure of the activity durations. The basic idea is to start from a minimum duration
schedule and iteratively create intermediate schedules by adding a one-unit time buffer in
front of that activity that needs it the most in the current intermediate schedule, until adding
more safety would no longer improve stability. We thus need a measure to quantify for each
activity how critical its current starting time is in the current intermediate baseline schedule.
The starting time criticality for activity j is defined as stc(j) = P (Sj > sj)×wj = γj ×wj ,
where γj denotes the probability that activity j cannot be started at its scheduled starting
time sj .
The iterative procedure runs as follows. At each iteration step (see Figure 9), the buffer

sizes of the current intermediate schedule are updated as follows. The activities are listed

Figure 8. Buffered schedule produced by branch-and-bound.

0 10 15 20 Time

4 6 8

1 3

2

5

7

dn = 20

5



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 137

Figure 9. Iteration step of STC heuristic.

Calculate all stc(j)
Sort activities in decreasing order of the stc(j)
While no improvement found do
Take next activity j from list
If stc(j) := 0 then procedure terminates
Else add buffer in front of j
Update schedule
If improvement and feasible then
Store schedule
Goto next iteration step

Else
Remove buffer in front of j
Restore schedule

in decreasing order of the stc(j). The list is scanned and the size of the buffer to be placed
in front of the currently selected activity from the list is augmented by one time unit such
that the starting times of the activity itself and of the direct and transitive successors of
the activity in G(N,A ∪ R) are increased by one time unit. If this new schedule has a
feasible project completion (sn < dn) and results in a lower approximated stability cost
(
∑

j∈N stc(j)), the schedule serves as the input schedule for the next iteration step. If
not, the next activity in the list is considered. Whenever an activity j is encountered for
which stc(j) = 0 (all activities j with sj = 0 are by definition in this case) and no feasible
improvement is found, a local optimum is obtained and the procedure terminates.
Regrettably, the probabilities γj are not easy to compute. The authors define k(i, j) as

the event that predecessor i disturbs the planned starting time of activity j. The probability
that this event occurs can be expressed as P (k(i, j)) = P (Si + Pi + LPL(i, j)) > sj), in
which LPL(i, j) is the sum of the durations of all activities h on the longest path between
activity i and activity j in the graph G(N,A∪R). We can now calculate γj = P (

⋃
i k(i, j))

for ∀ i: (i, j)∈ T (A∪R).
STC makes two assumptions in approximating γj : (a) only one activity at a time dis-

turbs the starting time of activity j, and (b) the predecessor i of activity j starts at its
originally planned starting time. Assumption (a) means that P (

⋃
i k(i, j)) is estimated by∑

i P (k(i, j)), i.e., it is assumed that P (k(i1, j)∩k(i2, j) = 0 for each i1, i2. Assumption (b)
boils down to setting Si = si. Combining both assumptions yields γ′

j =
∑

i P (Pi > sj − si −
LPL(i, j)) such that stc(j) = γ′

j ×wj . Because si, sj , LPL(i, j) and the distribution of the Pi

are all known, the values of γ′
j and stc(j) can be easily computed for every activity j.

Assuming activity weights w0 = 0, w1 = 2, w2 = 7, w3 = 4, w4 = 5, w5 = 3, w6 = 7, w7 = 5,
w8 = 5, and w9 = 38, and expected activity durations E(D1) = 4, E(D2) = 5, E(D3) = 2,
E(D4) = 4, E(D5) = 5, E(D6) = 4, E(D7) = 2, and E(D8) = 2, the application of the STC
algorithm to the input schedule of Figure 2 runs as follows. We illustrate the calcula-
tion of the LPL(i, j) for LPL(1,3), LPL(1,5), and LPL(1,8). Activity 3 is immediately
preceded by activity 1 in the schedule, hence LPL(1,3) = 0. The resource flow network
of Figure 4 shows a unique path 〈1,3,5〉 leading from activity 1 to activity 5, yielding
LPL(1,5) = E(D3) = 2. Multiple paths exist between activity 1 and activity 8, namely
〈1,3,5,8〉, 〈1,3,7,8〉, 〈1,3,7,6,8〉, 〈1,7,8〉, 〈1,7,6,8〉, and 〈1,4,6,8〉, with corresponding path
length of 7,4,8,4,2,6, and 8 respectively. Thus, LPL(1,8) = 8.
The stc-values are first calculated for the initial minimum duration schedule of Figure 2

with due date dn = 20. For example, stc(6) is calculated as w6 × (P (k(1,6)) +P (k(2,6)) +
P (k(3,6)) + P (k(4,6)) + P (k(7,6))), with P (k(1,6) = P (P1 > s6 − s1 − LPL(1,6)) =
P (P1 > 5) = 0.11, P (k(2,6)) = P (P2 > s6 − s2 −LPL(2,6)) = P (P2 > 5) = 0.23, P (k(3,6)) =
P (P3 > s6 − s3 − LPL(3,6)) = P (P3 > 3) = 0.01, P (k(4,6)) = P (P4 > s6 − s4 − LPL(4,6))
= P (P4 > 4) = 0.34, and P (k(7,6)) = P (P7 > s6 − s7 −LPL(7,6)) = P (P7 > 5) = 0.05. As a



Herroelen: Generating Robust Project Baseline Schedules
138 Tutorials in Operations Research, c© 2007 INFORMS

Figure 10. STC schedule for the example problem.

0 10 15 20 Time

2 4 6 8

1 3 5

7

dn = 20

5

result, stc(6) = 7× (0.11+0.23+0.01+0.34+0.05) = 5.18. Computing the other stc-values
yields

∑
stc(j) = 0 + 0+ 1.20 + 1.71 + 1.47 + 5.18 + 2.45 + 4.88 + 0.04 = 16.93 as the total

schedule cost. Ordering the activities by decreasing stc gives the list (6,8,7,4,5,3,9,1,2).
Adding a one-time period buffer in front of activity 6 yields updated start times s6 = 10
and s8 = 14. The newly inserted buffer in front of activity 6 requires a recalculation of
its stc-value and the stc-values of its successor activities 8 and 9. Activity 7 now has the
largest stc-value, yielding the ordered list (7,8,4,6,5,3,9,1,2,0). Delaying the starting time
of activity 7 is feasible and leads to a reduction in the total schedule cost

∑
stc(j) =

0 + 0 + 1.20 + 1.71 + 1.47 + 1.69 + 2.45 + 2.22 + 0.04 = 10.78. Subsequently, the procedure
will insert a time buffer in front of activity 8, activity 6, activity 4 (leading to a one-period
delay in activity 6 and 8), activity 5, activity 3 (leading to a one-period delay of activities 5
and 7). The procedure then continues by examining a possible delay of activity 6. Delaying
activity 6, however, would lead to an increase in the total schedule cost. Therefore, activity 6
is not delayed. In a similar fashion, delaying activity 3 or either of the following activities
in the list would yield no cost improvement. The procedure terminates with the schedule
shown in Figure 10 (Van de Vonder [37]).

3.3. Reactive Scheduling
Proactive/reactive scheduling implies that the buffered baseline schedules generated by
the proactive procedures should be combined with reactive scheduling procedures that are
deployed during project execution when disruptions occur that cannot be absorbed by the
baseline schedule.
The literature concerning reactive project scheduling is virtually void. Yu and Qi [48]

describe an ILP model for the multimode RCPSP (problem m,1T |cpm,disc,mu|Cmax in the
notation of Herroelen et al. [15]) and report on computational results obtained by a hybrid
mixed integer programming/constraint propagation approach for minimizing the schedule
deviation caused by a single disruption induced by a known increase in the duration of a
single activity. Van de Vonder et al. [40] developed and extensively evaluated a number of
exact and heuristic reactive procedures.
The reactive scheduling problem at decision point t when the baseline schedule SB breaks,

can be viewed as a resource-constrained project scheduling problem with weighted earliness
tardiness costs (problem m,1|cpm|early/tardy in the notation of Herroelen et al. [15]). Due
dates are set equal to the activity completion times si + pi in the predictive schedule. The
earliness and tardiness costs may be assumed to be symmetrical and chosen as the weights wi

in the stability objective function, with a possible exception for the earliness cost of the
dummy end activity, which can be set equal to zero.
Efficient exact procedures for solving problem m,1|cpm|early/tardy have been proposed

in the scheduling literature (see e.g., Vanhoucke et al. [44] and Kéri and Kis [18]). However,
Van de Vonder et al. [40] found that calling an exact weighted earliness-tardiness proce-
dure at each schedule breakage point becomes computationally infeasible already for small
networks. The authors obtained excellent computational results with a sampling approach.



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 139

The basic sampling approach by Van de Vonder et al. [40] relies on different priority lists in
combination with different schedule generation schemes. It tries to make a suitable decision
at each decision time t as follows (S0 is the baseline schedule):

for t= 0, . . . , T do
Step 1: Check for new scheduling information.
Step 2: If no new information then St = St−1 and goto period t+1

else goto step 3
Step 3: For list λl = λ0, . . . , λL do

Construct St
λl,RP and calculate ∆(S0,St

λl,RP )
Construct St

λl,RS and calculate ∆(S0,St
λl,RS)

Construct St
λl,P

and calculate ∆(S0,St
λl, P )

Construct St
λl,S

and calculate ∆(S0,St
λl, S)

Store the schedule St that minimizes ∆(S0,St)
Step 4: Start all activities i with st

i = t.

Step 1 checks for new information becoming available at time t. If at time t, no activity
finishes and no activity was projected to finish (st−1

i = t), then no new information became
available since the previous decision point t − 1. The previous projected schedule St−1,
generated at time t− 1, remains valid (Step 2).
Instead of using one priority list in combination with one schedule generation scheme

(SGS), Step 3 uses multiple lists λl = λ0, . . . , λL at time t in combination with several SGSs.
The authors evaluate different priority lists: EBST (earliest start time in the baseline

schedule), LST (latest starting time), LW (largest activity weight), LAN (lowest activity
number), RND (random), EPST (earliest starting time in the schedule generated at the last
decision point), and MC (lowest current stability cost).
For each of these priority lists λl, a complete schedule is generated using four schedule

generation schemes. The parallel schedule generation scheme (St
λl, P ) iterates over time and

starts at each decision point, in the order dictated by the priority list, as many unscheduled
activities as possible in accordance with the precedence and resource constraints. The robust
parallel schedule generation scheme (St

λl,RP ) is similar to the parallel scheme, but considers
at each decision time t only the activities for which the current decision time t is greater
than or equal to their planned starting time in the baseline schedule. The serial schedule
generation scheme (St

λl, S) schedules at each decision point t the next activity from the
priority list. The robust serial schedule generation scheme (St

λl,RS) considers the activities in
the order dictated by the priority list and starts them at a feasible time as close as possible
to their planned starting time in the baseline schedule.
In this way, a total of 4 × L candidate schedules are generated and the schedule St

λl, .

yielding the smallest stability cost deviation ∆(S0,St
λl, .) from the baseline schedule S0 is

stored. The procedure then continues in Step 4 by starting the activities for which the
planned starting time in the schedule equals t.

4. Solution Robust Scheduling Under Resource
Availability Uncertainty

The literature on proactive/reactive project scheduling under resource availability uncer-
tainties is virtually void. Drezet [10] considers the problem of project planning subject to
human-resource constraints, which have to do with job competences, working hour limits,
vacation periods, and unavailability of employees. She presents a mathematical model as
well as dedicated algorithms for robust schedule generation and schedule repair. Yu and
Qi [48], in their above-mentioned ILP model for the multimode problem, allow for (known)
decreases in the resource availabilities in certain planning periods.



Herroelen: Generating Robust Project Baseline Schedules
140 Tutorials in Operations Research, c© 2007 INFORMS

4.1. The Problem
Contrary to §3, activity durations are now assumed to be deterministic; uncertainty orig-
inates from the stochastic nature of renewable resource availability Ak (k = 1, . . . , q). This
means that during schedule execution infeasibilities may occur due to renewable resource
breakdowns, so that the schedule needs to be repaired. The proactive project scheduling
problem then consists of generating a proactive schedule that is as well as possible pro-
tected from such disruptions, subject to a project deadline, finish-start, zero-lag precedence
constraints and renewable resource constraints.
A maximum resource availability ak is considered for each renewable resource type k.

Each of these ak resource units initially allocated to the project is subject to breakdowns;
some of the proposed models presuppose knowledge of the mean time to failure and the
mean time to repair. The objective function to be minimized is again

∑
i∈N wiE(|Si − si|),

the weighted expected deviation between the planned and actually realized activity start
times.
Lambrechts et al. [22] develop and evaluate eight proactive and three reactive scheduling

procedures. A tabu search procedure for generating robust baseline schedules is presented
in Lambrechts et al. [23]. In Lambrechts et al. [24], the authors analytically determine the
impact of unexpected resource breakdowns on activity durations and develop effective and
efficient algorithms for inserting explicit idle time into an initial unbuffered input schedule.
Reactive strategies are discussed in Lambrechts et al. [25].

4.1.1. Proactive Strategies. The two-step proactive scheduling procedure (Lambrechts
et al. [24]) for generating stable baseline schedules may take as input an unbuffered schedule
generated by an exact or heuristic procedure for solving the deterministic RCPSP, or by a
procedure that places activities that can be expected to have a high impact on the total
project stability earliest in time (largest CIW first). Furthermore, it can be decided to include
resource slack (resource buffering).
Resource buffering boils down to planning the project subject to a deterministic nominal

resource availability that is strictly below the maximum deterministic resource availabil-
ity ak. More precisely, the nominal availabilities are set equal to E(Ak) =

∑ak

m=0(ak −m)πm,
where πm denotes the steady state probability that m resource units of resource type k are
inactive. When necessary, this value is increased to maxi∈N rik to allow for the activity with
the highest resource demand for resource type k to be scheduled.
The largest-CIW-first rule schedules the activities i in nonincreasing order of their cumu-

lative instability weight CIWi = wi +
∑

j∈Succi
wj , where Succi denotes the set of direct

and indirect successors of activity i. In a first step a precedence feasible priority list is con-
structed in which precedence-unrelated activity pairs appear in nonincreasing order of CIWi

(lowest activity number as tie breaker). Afterwards this priority list is transformed into a
precedence and resource feasible schedule using a serial schedule generation scheme that
sequentially adds activities to the schedule until a feasible complete schedule is obtained.
In each step, the next activity in the priority list is selected and for that activity the first
precedence and resource feasible starting time is chosen.
Time buffers can then be inserted into the unbuffered schedule in order to increase its

stability. Time buffering implies that time buffers are inserted in front of activities in order
to absorb potential disruptions caused by earlier resource breakdowns and the resulting
activity shifts. The input schedule may be iteratively buffered using a simulation-based
steepest descent procedure (Lambrechts et al. [24]). In each iteration, every activity (except
the dummy start) is considered for buffering. The selected activity is then right-shifted with
one time unit. Affected activities are likewise right-shifted with one time unit in order to
keep the schedule precedence and resource feasible. The activity leading to the greatest
stability cost reduction (determined by simulation) that yields a schedule respecting the
deadline is buffered. If no such activity can be found, the procedure terminates.



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 141

Such a simulation-based procedure is very time consuming. Surrogate measures can be
used to estimate the instability costs. Lambrechts et al. [24] conclude that for the preempt-
repeat case, in which an interrupted activity must be restarted later, the best results are
obtained by computing the surrogate measure as

∑
j∈N

∑
i∈Predj

wj max(0, si+pi+LPLij+
E[σi]− sj), where Predj denotes the immediate and transitive predecessors of activity j,
LPLj represents the length of the longest path between activities i and j in G(N,A∪R),
and E[σi] denotes the expected duration extension of activity i caused by the resource
breakdown.
Lambrechts et al. [24] conclude from their computational experiment, assuming exponen-

tial or uniform repair time distributions, and combining the proactive procedure with the
scheduled order reactive procedure (§4.1.2), that simulation-based time buffering always out-
performs the time-buffering approaches that use surrogate stability cost estimates. However,
its computational requirements are prohibitive. In the preempt-resume case, when inter-
rupted activities may be resumed on repair of the broken resource(s), and in the preempt-
setup case, when a setup time is needed when activities are resumed, best results are obtained
using the STC heuristic described earlier. In the absence of resource and time buffering, the
largest CIW scheduling rule outperforms the use of a minimum makespan input schedule.
Resource buffering always pays off.

4.1.2. Reactive Strategies. When the baseline schedule breaks, i.e., when activities
have to be interrupted because of a resource breakdown, the schedule needs to be repaired
using a reactive procedure. Lambrechts et al. [22] investigate a preempt-repeat setting (inter-
rupted activities have to be restarted anew); they generate a list L containing all activities
that are not yet completed at the time of interruption, ordered in nondecreasing order of
the baseline starting times. This list is then decoded into a feasible schedule using a serial
schedule generation scheme that tries to schedule the interrupted activities as early as pos-
sible; a tabu search algorithm to improve the generated reactive schedule is also proposed
in the same source.
Lambrechts et al. [25] study exact and suboptimal procedures to restore schedule feasibil-

ity under the objective of minimizing the weighted sum of deviations between the repaired
schedule and the baseline schedule, under the assumption that the encountered disruption is
the last disruption until project completion. The exact algorithm relies on the (truncated)
branch-and-bound algorithm of Vanhoucke et al. [44] for solving the resulting resource-
constrained project scheduling problem with weighted earliness tardiness costs (problem
m,1|cpm|early/tardy in the notation of Herroelen et al. [15]). They also present a scheduled
order list scheduling heuristic that allows to reschedule the activities in the order dictated
by the baseline schedule (the lowest activity number being the tie breaker) although taking
into account the new, reduced resource availabilities. They obtain improved solutions by
imposing a tabu search procedure on the priority list rule.
Lambrechts et al. [25] extend the tabu search procedure allowing it, when a disruption

occurs, not only to generate a repaired baseline schedule that does not deviate too much from
the original baseline, but a repaired schedule that is also protected against the occurrence of
future disruptions. They use a surrogate robustness measure based on the expected duration
increase of an activity due to resource breakdowns.

5. Conclusions
Real-life projects are typically subject to considerable uncertainty. This chapter has
addressed proactive/reactive project scheduling procedures that may be deployed when the
uncertainty pertains to the duration of activities or to the availability of renewable resources.
Proactive procedures have been described to generate a robust baseline schedule that is
appropriately protected against distortions that may occur during project execution. The
term “robustness” in this context refers to solution robustness or stability. Our aim has



Herroelen: Generating Robust Project Baseline Schedules
142 Tutorials in Operations Research, c© 2007 INFORMS

been to generate proactive precedence and resource feasible baseline schedules that minimize
one particular stability cost function, namely the weighted sum of the expected deviation
between the actually realized activity start times during project execution and the planned
activity start times in the baseline. When distortions during project execution cause the
baseline schedule to become infeasible, a reactive policy needs to be invoked to repair the
schedule.
For variable activity durations, Van de Vonder et al. [37–43] have developed exact and

heuristic proactive time-buffer-insertion strategies that can be combined with effective
reactive policies for (optimally or heuristically) solving the underlying weighted earliness-
tardiness problem. These research efforts allow to draw interesting and reassuring conclu-
sions. It appears that the combination of proactive and reactive scheduling techniques leads
to significant stability improvements (reduction in the planning nervousness), with only
moderate (hence acceptable) increases in schedule makespan.
The unavailability of resources is a second potential but very realistic cause of substantial

deviations from the baseline schedule. Consequently, the development of proactive/reactive
scheduling procedures under stochastic resource availability is relevant from a theoretical
and a practical point of view. Research in this area is just emerging. Lambrechts et al.
[22–25] have obtained excellent results with their proactive/reactive procedures to cope with
resource breakdowns.
These promising results justify the engagement in additional research. The development

of effective and efficient single-step (monolithic) proactive scheduling procedures for the
generation of stable (solution robust) baseline schedules with acceptable makespan perfor-
mance, which can be easily combined with effective reactive scheduling policies that are able
to operate under various types of schedule distortions, deserves priority. The exploration of
robustness measures other than the weighted activity starting time deviations, which was
explored in this chapter, constitutes another interesting area of future research.

Acknowledgments
This research has been supported by Project OT/03/14 of the Research Fund of Katholieke
Universiteit Leuven, Project G.0109.04 of the Research Foundation – Flanders (FWO-
Vlaanderen) and Project NB06163 supported by the National Bank of Belgium. The author
is very much indebted to Filip Deblaere, Erik Demeulemeester, Olivier Lambrechts, Roel
Leus, and Stijn Van de Vonder. Their research results, obtained over the last few years, were
indispensable for the preparation of this tutorial.

References
[1] M. Aloulou and M.-C. Portmann. An efficient proactive scheduling approach to hedge against

shop floor disturbances. Proceedings of the First Multidisciplinary Conference on Scheduling:
Theory and Applications, Nancy, France, 337–362, 2003.

[2] C. Artigues and F. Roubellat. A polynomial activity insertion algorithm in a multi-resource
schedule with cumulative constraints and multiple modes. European Journal of Operational
Research 127(2):297–316, 2000.

[3] C. Artigues, P. Michelon, and S. Reusser. Insertion techniques for static and dynamic resource-
constrained project scheduling. European Journal of Operational Research 149(2):249–267,
2003.

[4] H. Aytug, M. A. Lawley, K. McKay, S. Moan, and R. Uzsoy. Executing production schedules in
the face of uncertainties: A review and some future directions. European Journal of Operational
Research 161:86–110, 2005.

[5] J.-C. Billaut, A. Moukrim, and E. Sanlaville. Flexibilité et robustesse en ordonnancement.
Traité IC2, Série Informatique et systèmes d’information. Hermes Science Publications, Paris,
France, 2005.

[6] J. Blazewicz, J. K. Lenstra, and A. H. G. Rinnooy Kan. Scheduling subject to resource
constraints—classification and complexity. Discrete Applied Mathematics 5(1):11–24, 1983.



Herroelen: Generating Robust Project Baseline Schedules
Tutorials in Operations Research, c© 2007 INFORMS 143

[7] P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch. Resource-constrained project
scheduling: Notation, classification, models and methods. European Journal of Operational
Research 112(1):3–41, 1999.

[8] F. Deblaere, E. Demeulemeester, W. Herroelen, and S. Van de Vonder. Robust resource-
allocation decisions in resource-constrained projects. Decision Sciences 38(1):5–37, 2007.

[9] E. Demeulemeester and W. Herroelen. Project Scheduling—A Research Handbook. Interna-
tional Series in Operations Research & Management Science, Vol. 49. Springer, Heidelberg,
Germany, 2002.

[10] L.-E. Drezet. Résolution d’un problème de gestion de projets sous contraintes de ressources
humaines: De l’approche prédictive à l’approche réactive. Ph.D. thesis, Université François
Rabelais, Tours, France, 2005.

[11] J. N. Hagstrom. Computational complexity of PERT problems. Networks 18(2):139–147, 1988.
[12] W. Herroelen and R. Leus. Robust and reactive project scheduling: A review and classification

of procedures. International Journal of Production Research 42(8):1599–1620, 2004.
[13] W. Herroelen and R. Leus. Project scheduling under uncertainty—Survey and research poten-

tials. European Journal of Operational Research 165(2):289–306, 2005.
[14] W. Herroelen, B. De Reyck, and E. Demeulemeester. Resource-constrained scheduling: A sur-

vey of recent developments. Computers and Operations Research 25(4):279–302, 1998.
[15] W. Herroelen, B. De Reyck, and E. Demeulemeester. On the paper “Resource-constrained

project scheduling: Notation, classification, models and methods” by Brucker et al. European
Journal of Operational Research 128(3):679–688, 2001.

[16] H. Hoogeveen. Multicriteria scheduling. European Journal of Operational Research 167(3):
592–623, 2004.

[17] G. Igelmund and F. J. Radermacher. Algorithmic approaches to preselective strategies for
stochastic scheduling problems. Networks 13(1):29–48, 1983.

[18] A. Kéri and T. Kis. Primal-dual combined with constraint propagation for solving RCPSP-
WET. Proceedings of the 2nd Multidisciplinary International Conference on Scheduling: Theory
and Applications, MISTA, New York. 748–751, 2005.

[19] N. Kinnock. Communication of the European Commission to the Council concerning the
Berlaymont Building. 1094, 2002.

[20] R. Kolisch and R. Padman. An integrated survey of deterministic project scheduling. Omega
49(3):249–272, 1999.

[21] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer Academic
Publishers, Boston, MA, 1997.

[22] O. Lambrechts, E. Demeulemeester, and W. Herroelen. Proactive and reactive strategies
for resource-constrained project scheduling with uncertain resource availabilities. Journal of
Scheduling. Forthcoming.

[23] O. Lambrechts, E. Demeulemeester, and W. Herroelen. A tabu search procedure for developing
robust predictive project schedules. International Journal of Production Economics. Forthcom-
ing.

[24] O. Lambrechts, E. Demeulemeester, and W. Herroelen. Time-slack-based techniques for
generating robust project schedules subject to resource uncertainty. Research report KBI,
Department of Decision Sciences and Information Management (KBI), Katholieke Universiteit
Leuven, Leuven, Belgium, 2007.

[25] O. Lambrechts, E. Demeulemeester, and W. Herroelen. Exact and suboptimal reactive strate-
gies for resource-constrained project scheduling with uncertain resource availabilities. Research
report KBI 0702, Department of Decision Sciences and Information Management (KBI),
Katholieke Universiteit Leuven, Leuven, Belgium, 2007.

[26] V. J. Leon, S. D. Wu, and R. H. Storer. Robustness measures and robust scheduling for job
shops. IIE Transactions 16(5):32–43, 1994.

[27] R. Leus. The generation of stable project plans. Ph.D. thesis, Katholieke Universiteit Leuven,
Leuven, Belgium, 2003.

[28] R. Leus and W. Herroelen. On the merits and pitfalls of critical chain scheduling. Journal of
Operations Management 19(5):559–577, 2001.

[29] R. Leus and W. Herroelen. Stability and resource allocation in project planning. IIE Transac-
tions 36(7):667–682, 2004.

[30] R. Leus and W. Herroelen. The complexity of machine scheduling for stability with a single
disrupted job. Operations Research Letters 33(2):151–156, 2005.



Herroelen: Generating Robust Project Baseline Schedules
144 Tutorials in Operations Research, c© 2007 INFORMS

[31] S. V. Mehta and R. M. Uzsoy. Predictive scheduling of a job shop subject to breakdowns.
IEEE Transactions on Robotics and Automation 14(3):365–378, 1998.

[32] R. H. Möhring. Scheduling under uncertainty: Bounding the makespan distribution. H. Alt,
ed. Computational Discrete Mathematics: Advanced Lectures. Springer, New York, 2001.

[33] N. Policella, A. Oddi, and A. Cesta. Generating robust partial order schedules. Proceedings of
CP2004. Springer, Toronto, Canada, 2004.

[34] B. Roy. Robustesse de quoi et vis-à-vis de quoi mais aussi robustesse pourquoi en aide à la
décision? J. Figueira, C. Henggeler-Anthunes, J. Climaco, eds. Proceedings of the 56th Meeting
of the European Working Group on Multiple Criteria Decision Making, Coimbra, Portugal,
2002.

[35] E. Sanlaville. Ordonnancement sous conditions changeantes—Habilitation à diriger des
recherches. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand, France, 2004.

[36] F. Stork. Stochastic resource-constrained project scheduling. Ph.D. thesis, School of Mathe-
matics and Natural Sciences, Technical University of Berlin, Berlin, Germany, 2001.

[37] S. Van de Vonder. Proactive-reactive procedures for robust project scheduling. Ph.D thesis,
Department of Decision Sciences and Information Management (KBI), Katholieke Universiteit
Leuven, Leuven, Belgium, 2006.

[38] S. Van de Vonder, E. Demeulemeester, and W. Herroelen. Heuristic procedures for generating
stable project baseline schedules. European Journal of Operational Research, 2007. Forthcom-
ing.

[39] S. Van de Vonder, E. Demeulemeester, and W. Herroelen. An investigation of efficient and
effective predictive-reactive project scheduling procedures. Journal of Scheduling, Forthcoming.

[40] S. Van de Vonder, F. Ballestin, E. Demeulemeester, and W. Herroelen. Heuristic procedures
for reactive project scheduling. Computers & Industrial Engineering 52(1):11–28, 2007.

[41] S. Van de Vonder, E. Demeulemeester, W. Herroelen, and R. Leus. The use of buffers in
project management: The trade-off between stability and makespan. International Journal of
Production Economics 97(2):227–240, 2005.

[42] S. Van de Vonder, E. Demeulemeester, W. Herroelen, and R. Leus. The trade-off between
stability and makespan in resource-constrained project scheduling. International Journal of
Production Research 44(2):215–236, 2006.

[43] S. Van de Vonder, E. Demeulemeester, R. Leus, and W. Herroelen. Proactive-reactive project
scheduling—Trade-offs and procedures. J. Jozefowska and J. Weglarz, eds. Perspectives in Mod-
ern Project Scheduling. International Series in Operations Research and Management Science.
Springer, New York, 2006.

[44] M. Vanhoucke, E. Demeulemeester, and W. Herroelen. An exact procedure for the resource-
constrained weighted earliness-tardiness project scheduling problem. Annals of Operations
Research 102:179–196, 2001.

[45] G. Vieira, J. Herrmann, and E. Lin. Rescheduling manufacturing systems: A framework of
strategies, policies, and methods. Journal of Scheduling 6(1):39–62, 2003.

[46] J. Wang. Constraint-based schedule repair for product development projects with time-limited
constraints. International Journal of Production Economics 95(3):399–414, 2005.

[47] S. D. Wu, R. H. Storer, and P. C. Chang. One-machine rescheduling heuristics with efficiency
and stability as criteria. Computers and Operations Research 20(1):1–14, 1993.

[48] G. Yu and X. Qi. Disruption Management—Framework, Models and Applications. World Sci-
entific, Singapore, 2004.

[49] G. Zhu, J. Bard, and G. Yu. Disruption management for resource-constrained project schedul-
ing. Journal of the Operational Research Society 56(4):365–381, 2005.


