
Forging High-Quality User Stories:
Towards a Discipline for Agile Requirements

Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E.M. van der Werf and Sjaak Brinkkemper
Department of Information and Computing Sciences

Utrecht University
Email: {g.lucassen, f.dalpiaz, j.m.e.m.vanderwerf, s.brinkkemper}@uu.nl

Abstract—User stories are a widely used notation for formulat-

ing requirements in agile development. Despite their popularity in

industry, little to no academic work is available on determining

their quality. The few existing approaches are too generic or

employ highly qualitative metrics. We propose the Quality User

Story Framework, consisting of 14 quality criteria that user

stories should strive to conform to. Additionally, we introduce

the conceptual model of a user story, which we rely on to

subsequently design the AQUSA tool. This conceptual piece of

software aids requirements engineers in turning raw user stories

into higher quality ones by exposing defects and deviations from

good practice in user stories. We evaluate our work by applying

the framework and a prototype implementation to multiple case

studies.

I. INTRODUCTION

As practitioners transition to agile development, require-
ments are increasingly expressed [1] as user stories. Invented
by Connextra in the United Kingdom and popularized by Mike
Cohn [2], user stories only capture the essential elements of
a requirement: who it is for, what it expects from the system,
and, optionally, why it is important (a key aspect in RE [3]).
The most well-known format, popularized by Mike Cohn in
2004 [2] is: “As a htype of useri , I want hgoali, [so that
hsome reasoni]”. For example: “As an Administrator, I want
to receive an email when a contact form is submitted, so that
I can respond to it”.

In a 2014 survey among requirements analysts in an agile
environment, user stories were the most used requirements
documentation method [1]. Despite this popularity the num-
ber of methods to assess and improve user story quality is
limited. Existing approaches to user story quality employ
highly qualitative metrics, such as the heuristics of the IN-
VEST (Independent-Negotiable-Valuable-Estimable-Scalable-
Testable) framework [4], and the generic guidelines for ensur-
ing quality in agile RE proposed by Heck and Zaidman [5].

The goal of this paper is to introduce a comprehensive
approach to assessing and enhancing user story quality. To
achieve this goal, we take advantage of the potential of-
fered by natural language processing (NLP) techniques, while
taking into account the reservations of Daniel Berry and
colleagues [6]. Existing state-of-the-art NLP tools for RE such
as QuARS [7], Dowser [8], Poirot [9] and RAI [10] are unable
to transcend from academia into practice. The ambitious ob-
jectives of these tools necessitate a deep understanding of the
requirements’ contents [6]. A currently unachievable necessity

which will remain impossible to achieve in the foreseeable
future [11].

Instead, tools that want to harness NLP are effective only
when they focus on the clerical part of RE that a tool can
perform with 100% recall and high precision, leaving thinking-
required work to human requirements engineers [6]. Addition-
ally, they should conform to what practitioners actually do,
instead of what the published methods and processes advise
them to do [12]. User stories’ popularity among practitioners
and simple yet strict structure make them ideal candidates.

Throughout the remainder of this paper we make five
concrete contributions that pave the way for the creation of
these types of tools:

• Section II formulates a revised notion of user story
quality. The Quality User Story Framework separates the
algorithmic aspects that NLP can automatically process
from the thinking-required concerns which necessitate in-
volving human requirements engineers. We illustrate each
quality criteria with a real-world example to demonstrate
that the quality defect exists in practice;

• Section III proposes the conceptual model of a user story,
detailing the decomposition of a single user story. We use
this conceptual model throughout the paper;

• Section IV explores the different semantic relationships
within sets of user stories, enabling identification of
possible semantic quality improvements;

• Section V presents the design of a prototype tool (an ex-
ample of a dumb tool [6]) that restricts itself to correcting
the algorithmically determinable errors of user stories;

• Section VI empirically evaluates the feasibility of our
approach by applying the framework and the prototype
tool to a case study.

To conclude we discuss our work and explore future research
opportunities in Section VIII.

II. WHAT IS USER STORY QUALITY?

Many different perspectives on requirements quality ex-
ist. The IEEE Recommended Practice for Software Require-
ments Specifications defines eight quality characteristics for
a requirement [13]: correct, unambiguous, complete, con-
sistent, ranked for importance/stability, verifiable, modifiable
and traceable. However, most requirements specifications are
unable to adhere to these in practice [14]. On top of this, these



TABLE I
QUALITY USER STORY FRAMEWORK

Criteria Description

Syntactic

- Atomic A user story expresses a requirement for exactly one feature
- Minimal A user story contains nothing more than role, means and ends
- Well-formed A user story includes at least a role and a means
Semantic

- Conflict-free A user story should not be inconsistent with any other user story
- Conceptually sound The means expresses a feature and the ends expresses a rationale, not something else
- Problem-oriented A user story only specifies the problem, not the solution to it
- Unambiguous A user story avoids terms or abstractions that may lead to multiple interpretations
Pragmatic

- Complete Implementing a set of user stories creates a feature-complete application, no steps are missing
- Explicit dependencies Link all unavoidable, non-obvious dependencies on user stories
- Full sentence A user story is a well-formed full sentence
- Independent The user story is self-contained, avoiding inherent dependencies on other user stories
- Scalable User stories do not denote too coarse-grained requirements that are difficult to plan and prioritize
- Uniform All user stories follow roughly the same template
- Unique Every user story is unique, duplicates are avoided

Fig. 1. Quality User Story Framework

quality characteristics were not developed with user stories nor
agile development in mind.

The Agile Requirements Verification Framework [5] defines
three high-level verification criteria for requirements in an
Agile environment: completeness, uniformity, and consistency
& correctness. The framework proposes specific criteria to be
able to apply the quality framework to both feature requests
and user stories. Many of these criteria, however, require
supplementary, unstructured information that is not captured
in the primary user story text, making them inadequate for
dumb RE tools and our perspective.

With this in mind, we take inspiration from the verification
framework [5] to define a new Quality User Story (QUS)
Framework (Figure 1 and Table I). The QUS Framework only
focuses on the information that is derivable from user story

texts themselves, disregarding all requirements management
concerns such as effort estimation and additional information
sources such as descriptions or comments. The QUS Frame-
work comprises 14 criteria that influence the quality of a user
story or set of user stories. Because user stories are entirely
textual, we classify each quality criteria according to three
concepts borrowed from linguistics, similar to Lindland [15]:

Syntactic quality, concerning the textual structure of a user
story without considering its meaning;

Semantic quality, concerning the relations and meaning of
(parts of) the user story text;

Pragmatic quality, regarding choosing the most effective al-
ternatives for communicating a given set of requirements.

In the next subsections, we introduce each criterion by
presenting: (1) a comprehensive explanation of the criterion,
(2) an example user story that violates the specific criterion,
and (3) why the example violates the specific criterion. The
example user stories originate from two real-world user story
databases of software companies in the Netherlands. One
contains 98 stories that specify the development of a tailor-
made web information system. The other consists of 26 user
stories from an advanced health care software product for
home care professionals. We refrain from disclosing additional
application details due to confidentiality constraints.

A. Syntax

a) Atomic: A user story should concern only one feature.
It is tempting to combine multiple features in one user story
when they are related or similar. Not doing this, however,
makes estimation of the expected effort more accurate. In
theory the combined effort estimation of two small, clear-cut
user stories is more accurate than the estimation of one larger,
more opaque user story. The user story in US1 consists of two
separate requests, the act of clicking on a location and the
display of associated landmarks. The requirements engineer
should split this user story into two autonomous user stories.



TABLE II
USER STORIES THAT BREACH QUALITY CRITERIA FROM TWO REAL-WORLD CASES

ID

Description Issues

US1
As a User, I’m able to click a particular location from the map and thereby perform a search of
landmarks associated with that latitude longitude combination Not atomic: two stories in one

US2

As a care professional I want to see the registered hours of this week (split into products
and activities). See: Mockup from Alice NOTE: - First create the overview screen - Then add
validations

Not minimal, due to additional note about
the mockup

US3 Add static pages controller to application and define static pages Missing role

US4 As a User, I want to open the interactive map, so that I can see the location of landmarks Conceptual issue: the end is in fact a refer-
ence to another story

US5 As a User, I’m able to edit any landmark Conflict: US5 refers to any landmark, while
US6 As a User, I’m able to delete a landmark which I added US6 only to those that user has added

US7
As a care professional I want to save a reimbursement. - Add save button on top right (never
greyed out) Hints at the solution

US8 As a User, I am able to edit the content that I added to a person’s profile page Unclear: what is content here?
US9 As an Administrator, I am able to view content that needs to be reviewed The type of content is not specified

US10 Server configuration In addition to being syntactically incorrect,
this is not even a full sentence

US11 As an Administrator, I am able to add a new person to the database followed by Viewing relies on first adding a person to
US12 As a Visitor, I am able to view a person’s profile the database

US13
As a care professional I want tosee my route list for next/future days, so thatI can prepare myself
(for example I can see at what time I should start traveling)

Difficult to estimate because it is unclear
what see my route list implies

US14 As an Administrator, I receive an email notification when a new user is registered Deviates from the template, no “wish” in
the means

EPA As a Visitor, I’m able to see a list of news items, so that I can stay up to date on news The same equirement is repeated both in
US15 As a Visitor, I’m able to see a list of news items, so that I can stay up to date on news epic EPA, and in a user story US14

b) Minimal: User stories should contain a role, means
and, optionally, ends. Nothing more. Any additional informa-
tion such as comments, descriptions of the expected behavior
or testing hints are to be captured as additional notes. Take,
for example, US2; aside from a role and means, this user
story includes a reference to an undefined mock-up and a note
on how to approach the implementation. The requirements
engineer should move both to a comments or description
section.

c) Well-formed: Before it can be considered a user story,
the core requirements text needs to define a role and what the
expected functionality entails: the means. For example, US3 is
one of the eight user stories in our sample user story database
that do not adhere to this basic syntax, forgoing the role. This
is most likely done because the requirement is quite technical,
defining static pages and database issues. Nevertheless, the
requirements engineer should fix this issue by introducing the
relevant role.

B. Semantic

a) Conceptually sound: The means and ends parts of a
user story play a specific role. The means should capture a
concrete feature, while the end expresses the rationale for that
feature. Consider US4: the end is actually a dependency on
another (hidden) functionality. The end (implicitly) references
a functionality which is required before the means can be
realized, implying the existence of a landmark database which
isn’t mentioned in other stories. A significant additional feature
that is mistakingly represented as an end, but should be a
means in a separate user story.

b) Conflict-free: To prevent implementation errors and
rework, a user story should not conflict with any of the

other user stories in the database. Requirements conflict occur
when two or more requirements cause an inconsistency [16].
Although a comprehensive taxonomy of all types of conflicts is
beyond the scope of this work, two major families of conflicts
concern activities or resources [17]. Take, for example, US5

and US6. The second user story contradicts the earlier require-
ment that a user can edit any landmark. The new information
that users are only allowed to delete content that they added
themselves, raises the question whether this constraint also
counts for the first requirement. The requirements engineer
should modify the first user story and explicitly include
whether a user can modify all landmarks.

c) Problem-oriented: A user story should only specify
the problem, not the solution. If absolutely necessary, include
implementation hints as a comment or description of the
user story. Aside from breaking the minimal quality criteria,
US7 includes an implementation specification within the core
user story text. The requirements engineer should remove this
section and, if essential, post it as a comment.

d) Unambiguous: Ambiguity is inherent to natural lan-
guage requirements, but the requirements engineer writing user
stories should avoid it as much as possible. Not only should a
user story refrain from being ambiguous itself, it should strive
to be clear in relationship to all other user stories as well.
The Taxonomy of Ambiguity Types by Berry and Kamsties is
a comprehensive overview of the kinds of ambiguity that can
be encountered in a systematic requirements specification [18].
In the context of user stories, we explore some possibili-
ties in Section IV. Examples include registering alternative
means with the same purpose or linking superclass terms
to its respective elements. For example, in US8, “content”
is a superclass referring to audio, video and textual media



uploaded to the profile page. The requirements engineer should
explicitly mention which media are editable.

C. Pragmatic

a) Complete: Implementing a set of user stories should
create a feature-complete application. In some cases, however,
the requirements engineer might forget or neglect writing
a crucial user story causing a feature-gap that breaks the
application’s functionality. Unfortunately, it is impossible to
include a missing user story in a table, but as an example
consider that to be able to delete an item you first need to
create it.

b) Explicit dependencies: Whenever a user story has
a non-obvious dependency, it should explicitly link to the
user story tag of the user story it depends on. For example,
US9 does not explicate what types of text or media ‘content’
references. To fix this, the requirement engineer should add
the user story tags of the user stories that capture creating the
relevant types of content.

c) Full sentence: A user story should read like a full
sentence, without typos or hindering grammatical errors. US10,
for example, is not expressed as a full sentence (in addition
to not complying with syntactic quality). By reformulating
the feature as a full sentence user story, it will automatically
specify what exactly needs to be configured.

d) Independent: User stories should not overlap in con-
cept and should be schedulable and implementable in any
order [4]. Note that this quality criterion is more of a ground
rule that you try to follow to the best of your possibilities.
Much like in programming loosely coupled systems, it is
impossible to never breach this quality criterion. For example,
US12 is dependent on US11, because it is impossible to view a
person’s profile without first laying the foundation for creating
a person. As such, there is a dependency between these two
stories, that the requirements engineer is unable to do anything
about. Although it is contradictory that a quality criteria is
unattainable, requirements independence is sufficiently impor-
tant to warrant inclusion in the QUS Framework.

e) Scalable: As user stories grow in size, it becomes
more difficult to accurately estimate the effort required for the
entire set of user stories. Therefore, each user story should
not become so large as to avoid their estimation and planning
with reasonable certainty [4]. For example, US13 requests a
route list so that care professionals can prepare themselves.
While this might be just an unordered list of places to go to
during a workday, it is likely that the feature includes ordering
the routes algorithmically to minimize distance traveled and/or
showing the route on a map. This many functionalities makes
accurate estimation difficult. The requirements engineer should
split the user story into multiple, more specific user stories so
that effort estimation is more accurate.

f) Uniform: All user stories should follow the same,
agreed upon template. Minimal deviations are allowed when
this better suits the narrative structure of the user story. For
instance, using I am able instead of I want to is an acceptable
deviation. However, US14 is a bigger deviation, along with 9

other stories in the first user story set (10.9% of the total). For
uniformity, the requirements engineer should redefine these
user stories using a wish.

g) Unique: A user story should not be a duplicate of
another user story nor epic. For example, both epic EPA and
user story US15 (expressed as part of epic EPA) share the same
text. In this case, the epic contains seven other user stories that
also concern other artifacts than news items. To resolve this
issue, the requirements engineer should formulate an epic that
captures the importance of both news items and events.

III. A CONCEPTUAL MODEL OF USER STORIES

There are multiple syntax variations for user stories. Al-
though originally an unstructured written description similar
to use cases [19] but restricted in size [2], nowadays user
stories follow a strict, compact template that captures who it
is for, what it expects from the system, and (optionally) why it
is important in a simple manner. The most well-known format,
popularized by Mike Cohn in 2004 [2], is as follows: “As a
htype of useri, I want hgoali, [so that hsome reasoni]”. The
so-that clause between square brackets is optional.

When used in SCRUM, two other artifacts are relevant:
epics and themes. An epic is a label for a large user story,
which is broken down into smaller, implementable user stories.
A theme is a collection of user stories grouped according to
a given criterion [2]. For simplicity, and due to their greater
popularity, we only include epics in our conceptual model.

Subject

User Story

EndMeans

Role 1 1..*

1 0..*

Format0..1

1..*
has_parent

Action Verb Direct 
Object

Indirect 
objectAdjective

1

Epic

1..*
has

QualityClarifications

0..* 0..*

11

1 1 10..* 0..*

Dependency

0..*

Fig. 2. Conceptual model of user stories

Figure 2 shows a UML class diagram for user stories. A
user story itself consists of four parts: one role, one means,
optionally one or more ends and a format. In the following
subsections we elaborate on how to decompose each of these.
Note that we deviate from Cohn’s terminology, using the more
abstract means-end instead of goal-reason. We do so because
alternative user story templates talk about desire instead of
goal, or benefit instead of reason and we do not want to choose
one over the other.



A. Format

A user story should follow some pre-defined template as
agreed upon among the stakeholders, such as the one proposed
in [2]. The pre-defined text or skeleton of the template is what
we depict as format in the conceptual model. This format is
the foundation, in between which the role, means and optional
end(s) are interspersed to forge a user story.

B. Role

A user story always defines one relevant role. Roles hi-
erarchically relate to each other through the “has parent”
relationship. This can be used, for example, to determine that
“Editor” is a type of (has parent) “User”.

C. Means

Means can have different structures, for they can be used
to represent different types of requirements. However, gram-
matically speaking, all means have three things in common:
(1) they contain a subject with an intent such as “want” or
“am able”, (2) followed by an action verb1 that expresses the
action related to the feature being requested, and (3) a direct
object on which the subject executes the action. For example:
“I want to open the interactive map”. Aside from this basic
requirement, means are essentially free form text which allow
for an infinite number of constructions. Two common additions
are an adjective or an indirect object, which results in the
following example: “I want to open a larger (adj) view of
the interactive map from the person’s profile page (io)”. We
included these interesting cases in the conceptual model, but
left out all other variations, which will be studied in future
research. However, they can be included in a domain-specific
conceptual model by integrating a metamodel of, for instance,
Web Requirements Engineering [20] or Embedded Real-Time
Software [21].

D. End

The end part provides the reason for the means [2]. How-
ever, user stories frequently end up including other informa-
tion. By analyzing the ends available in our learning set of user
stories, we define three possible variants of a well-formed end:
1. Clarification of means. The end explains the reason of the

means. Example: “As a User, I want to edit a record, so
that I can correct any mistakes”.

2. Dependency on another (hidden) functionality. The
end (implicitly) references a functionality which is
required for the means to be realized. Although
dependency is an indicator of a bad quality criteria,
having no dependency at all between requirements is
impossible [4]. There is no size limit to this dependency
on the (hidden) functionality. Small example: “As a
Visitor, I want to view the homepage, so that I can learn
about the project”. The end implies the homepage also
has relevant content, which requires extra input. Larger

1While other types of verbs are in principle admitted, in this paper we focus
on action verbs, which are the most used in user stories requesting features

example: “As a User, I want to open the interactive map,
so that I can see the location of landmarks”. The end
implies the existence of a landmark database, a significant
additional functionality of the same requirement.

3. Qualitative requirement. The end communicates the in-
tended qualitative effect of the means. For example: “As
a User, I want to sort the results, so that I can more easily
review the results” indicates that the means contributes
maximizing easiness.

Note that these three are not mutually exclusive, but can
occur simultaneously such as in “As a User, I want to open
the landmark, so that I can more easily view the landmark’s
location”. The means only specifies that the user wishes to
view a landmark’s page. The end, however, contains elements
of all three types: (1) a clarification that you want to open the
landmark to view its location, (2) additional functionality of
the landmark and (3) the qualitative requirement that it should
be easier than an alternative.

IV. IDENTIFYING CROSS-STORY RELATIONSHIPS

There are two dimensions of user story quality: individual
and cross-story. While several criteria in Table I concern
individual user stories, some require taking into account all
other user stories for the project at hand. For example, whether
a user story is complete, independent, uniform and unique
depends on the entire set of user stories.

In this section, we explore the relationships between user
stories. We characterize each relationship, formalize them via
first-order logic predicates that enable the identification of
these relationship, and associate the relevant quality criteria.
Our aim is to provide an initial set of relevant relationships,
which is far from being complete.

Notation. Lowercase identifiers refer to single elements
(e.g., one user story), and uppercase identifiers denote sets
(e.g., a set of user stories). We employ the following notation:

• U for the set of user stories;
• r1, r2, . . . for role identifiers;
• m1,m2, . . . for means identifiers, where m =

hs, av, do, io, adji with s being a subject, av an action
verb, do a direct object, io an indirect object, and adj an
adjective (do and io may be null, see Fig. 2);

• e1, e2, . . . for end identifiers;
• E1, E2, . . . for identifiers of sets of ends;
• f1, f2, . . . for user story format;
• µ1, µ2, . . . for user stories, where µ = hr,m,E, fi, or,

expanding m, µ = hr, hs, av, do, io, adji, E, fi
Furthermore, we assume that the equality, intersection, etc.
operators are semantic, i.e., they look at the meaning of an
entity (e.g., they account for synonyms, etc.), in addition to
the syntax. To denote that an operator is merely syntactic,
we add the “syn” subscript; so, for instance, =syn. In this
section, we employ theoretical semantic operators; Sec. V will
discuss the feasibility of some of them. Finally, the function
depends(av, av0) denotes that executing the action av on a
specific object requires first executing av

0 on that very object
(e.g., “delete” depends on “create”).



A. Complete

Some user stories imply the necessity of other functionality
not yet captured in another user story. A simple example
is user stories with action verbs that refer to a non-existent
direct object: to read, update or delete an item you first
need to create it. In practice, however, completeness is very
context dependent. Because of this, we define this relationship
on a high abstraction level, but focusing on dependencies
concerning the means’ direct object. Formally, the predicate
missesDep(µ) holds when a dependency for µ’s direct object
is missing:

missesDep(µ) $ depends(av, av0) ^ @µ0 2 U. do

0 = do

B. Independent

Many different types of dependency exist, and our intent is
not to list them here. For illustration, we explain two cases.

a) Causality: In some cases, it is necessary that one
user story µ1 is completed before the developer can start on
another user story µ2 (US11 and US12 in Table II). Such a
causal dependency foremost impacts the independent quality
criterion. When this dependency is non-obvious and implicit,
the requirements engineer needs to consider adding an explicit
dependency. Formally, the predicate hasDep(µ1, µ2) holds
when µ1 causally depends on µ2:

hasDep(µ1, µ2) $ depends(av1, av2) ^ do1 = do2

b) Superclasses: An object of one user story µ1 can refer
to multiple other objects of a set of user stories {µ2, µ3, . . .},
indicating that the object of µ1 is a parent or superclass of
the other objects. ‘Content’ for example can refer to different
types of multimedia, as exemplified in US8. This relationship
has an impact on the unambiguous, independent and explicit
dependencies quality criteria. One can detect ambiguity or
missing dependencies by scanning for Create, Read, Update
and Delete (CRUD) actions which have a unique direct object.
Formally, predicate hasIsaDep(µ, do0) is true when µ has a
direct object superclass dependency based on the sub-class do0
of do.

hasIsaDep(µ, do0) $ 9µ0 2 U. is-a(do0, do)

C. Uniformity

Uniformity in the context of user stories means that a user
story has a format that is consistent with the format of all
other user stories. To test this, the requirements engineer needs
to review the syntax of all other user stories to determine
the most frequently occurring format, typically the format
agreed upon with the team. The format of an individual
user story µ = hr,m,E, fi is syntactically compared to the
most common format fstd to determine whether it adheres
with the uniformity quality criterion. US14 in Table II was
en example of a non-uniform user story. Formally, predicate
isNotUniform(µ, fstd) is true if the format of µ deviates from
the standard:

isNotUniform(µ, fstd) $ f 6=syn fstd

D. Unique
A user story is unique when no other user story is (semanti-

cally) the same or too similar. There are many different ways
in which two user stories can be similar. For example, all user
stories should follow a similar user story format. The type of
similarity we are interested in, however, is a potential indicator
of duplicate or conflicting user stories such as user stories US5

and US6 or US15 and epic EPA in Table II. We discuss five
similarity relationships that help detecting similarity among
user stories.

To detect these types of relationships, each user story part
needs to be compared with the parts of other user stories, using
a combination of similarity measures that are either syntactic
(e.g., Levenshtein’s distance) and semantic (e.g., employing an
ontology to determine synonyms). When a similarity exceed a
certain threshold, a human analyst is required to examine the
user stories for potential conflict and/or duplication.

a) Full duplicate: A user story µ1 is an exact duplicate
of another user story µ2 when the stories are identical. This
impacts the unique quality criterion. Formally,

isFullDuplicate(µ1, µ2) $ µ1 =syn µ2

b) Semantic duplicate: A user story µ1 that duplicates
the request of µ2, while using a different text; this has an
impact on the unique quality criterion. Formally,

isSemDuplicate(µ1, µ2) $ µ1 = µ2 ^ µ1 6=syn µ2

c) Different means, same end: Two or more user stories
that have the same end, but achieve this using different means.
This relationship potentially impacts two quality criteria, as it
may indicate: (i) a feature variation that should be explicitly
noted in the user story to maintain an unambiguous set of user
stories, or (ii) a conflict in how to achieve this end, meaning
one of the user stories should be dropped to ensure conflict-
free user stories. Formally, for user stories µ1 and µ2:

di↵MeansSameEnd(µ1, µ2) $ m1 = m2 ^ E1 \ E2 6= ;

d) Same means, different end: Two or more user stories
that use the same means to reach different ends. This rela-
tionship affects the qualities of user stories to be unique or
independent of each other. If the ends are not conflicting, they
could be combined into a single larger user story; otherwise,
they are multiple viewpoints that should be resolved. Formally,

sameMeansDi↵End(µ1, µ2) $ m1 6= m2 ^
(E1 \ E2 6= ; _ E2 \ E1 6= ;)

e) Different role, same means and/or same end: Two or
more user stories with different roles, but same means and/or
ends indicates a strong relationship. Although this relationship
has an impact on the unique and independent quality criteria, it
is considered good practice to have separate user stories for the
same functionality for different roles. As such, requirements
engineers could choose to ignore this impact. Formally,

di↵RoleSameStory(µ1, µ2) $ r1 6= r2 ^
(m1 = m2 _ E1 \ E2 6= ;)



f) Purpose = means: The end of one user story µ1

is identical to the means of another user story µ2. Indeed,
the same piece of text can be used to express both a wish,
and a reason for another wish. When there is this strong a
semantic relationship between two user stories, it is important
to add explicit dependencies to the user stories, which is
a trade-off with the independent quality criterion. Formally,
purposeMeans(µ1, µ2, x) is true if x is an end in µ1 and a
means in µ2

purposeMeans(µ1, µ2, x) $ 9e 2 E1 s.t. e = m2

V. A DUMB TOOL FOR IMPROVING USER STORY QUALITY

The Quality User Story (QUS) Framework provides struc-
tured guidelines for improving the quality of (a set of) user
stories. To support the framework, we propose the Automatic
Quality User Story Artisan (AQUSA) tool, which exposes
defects and deviations from good practice in user stories.

Unlike most NLP tools for RE, and in line with Berry’s
notion of a dumb tool [6], we require our tool to detect defects
with close to 100% recall. This is necessary to avoid that a
human requirements engineer has to double check the entire
requirements document for missed defects [22]. On the other
hand, precision, the number of false positives in proportion
to the detected defects, should not be so high that the user
perceives AQUSA to report useless errors. Thus, AQUSA is
designed as a tool that focuses on easily describable, algo-
rithmically determinable defects. This allows the requirements
engineer to focus on thinking-required defects for which 100%
recall with high precision is impossible [22]. Consequently,
AQUSA can support only certain QUS criteria in an effective
manner:

• Syntactical criteria are detectable with 100% recall;
AQUSA can report need-to-improve defects with high
precision.

• Semantic criteria are impossible to detect with 100%
recall and are thus out of scope for AQUSA.

• Some aspects of the pragmatic criteria are detectable with
100% recall, while others are not. For AQUSA, we select
a number of algorithmically determinable subparts.

Next, we present the selected quality criteria, discuss their
theoretical implementation and provide accompanying exam-
ple input and output user stories. This is followed by how we
envision AQUSA’s architecture and implementation.

A. Syntax

a) Well-formed: One of the essential aspects of verifying
whether a string of text is a requirement, is splitting it into
role, means and end(s). This process consists of two steps:
(1) chunking on commas and common indicator texts such as
As a, I want to, I am able to and so that; (2) verifying that
each chunk contains their relevant part. A grammatical tagger
assigns a word category to each of the words in the chunk.
For each chunk, AQUSA tests the following rules:
Role: Is the last word a noun? Do the words before the noun

match a known role format?

Means: Is the first word I? Can we identify a known means
format? Does the part include two verbs and a noun?

End: Is the end present? Does it start with a known end
format?

When AQUSA encounters the user story “Add static pages
controller to application and define static pages”, it includes
the user story in its report, highlighting that it is not well-
formed because it does not explicitly contain a role nor means.
The well-formed example input user story “As a Visitor, I want
to register at the site, so that I can contribute”, however, would
be verified and separated into the following chunks for later
use:
Role: As a Visitor
Means: I want to register at the site
End: so that I can contribute

b) Atomic: To audit that the means of the user story
concerns only one feature, AQUSA parses the means for
occurrences of “and, &, +” to include any double feature
requests in its report. Additionally, AQUSA suggests the
reader to split the user story into multiple user stories. US1

from Table II, for example would generate a suggestion to be
split into two user stories: (1) “As a User, I want to click a
particular location from the map” and (2) “As a User, I want
to perform a search of landmarks associated with the latitude
longitude combination of a location.”.

c) Minimal: To test this quality criterion, AQUSA re-
lies on the results of chunking and verification of the role
and means quality criterion. When this process has been
successfully completed, AQUSA reports any user story that
contains additional text after a dot, hyphen, semicolon or other
separating punctuation marks. For example the “See: Mockup
from Alice” text from US2 is sufficient for AQUSA to report
that the user story is not minimal.

B. Pragmatic

a) Explicit Dependencies: Whenever a user story in-
cludes an explicit dependency on another user story, it should
include a navigable link to the dependency. Because the
popular issue trackers Jira and Pivotal Tracker use numbers
for dependencies, AQUSA checks for numbers in user stories
and checks whether the number is contained within a link.
The example “As a care professional, I want to edit the
planned task I selected, so that I can create a realization for
this line - see 98059.” would prompt the user to change the
isolated number to “See PAW-98059”. On the end of the issue
tracker, this should automatically change to “see PAW-98059
(http://companyname.issuetracker.org/browse/PAW-98059)”

b) Uniform: Aside from chunking, AQUSA extracts the
user story format parts out of each chunk and counts their
occurrences throughout the set of user stories. The most
commonly occurring format is used as the standard user story
format. All other user stories are marked as non-compliant to
the standard and included in the error report. For example,
AQUSA reports that “As a User, I am able to delete a
landmark” deviates from the standard ‘I want to’.



c) Unique: AQUSA implements each of the similarity
measures as outlined in Section IV using the WordNet lexical
database [23] to detect semantic similarity. For each verb and
object in a means or end, AQUSA runs a WordNet::Similarity
calculation with the verbs or objects of all other means or ends.
Combining the calculations results in one similarity degree for
two user stories. When this metric is bigger than 90% AQUSA
reports the user stories as potential duplicates.

C. Architecture and Implementation

AQUSA is designed as a simple, stand-alone, deployable
as-a-service application that analyzes a set of user stories
regardless of its source of origin. Being a service, AQUSA
can be invoked by some popular requirements management
tools that requirements engineers use to create user stories,
but also MS Excel spreadsheets describing user stories can
be imported. By retaining its independence from other tools,
AQUSA is capable of easily adapting to future technology
changes. Aside from importing user stories, AQUSA consists
of four main architectural components (Figure 3):

User 
Stories

AQUSA 
Model

AQUSA

Linguistic 
Parser

Enhancer

Analysis

Synonyms Homonyms Ontologies

Error 
Report

Atomic Explicit 
dependencies UniqueMinimal Uniform

Fig. 3. Architecture of AQUSA

Linguistic parser: the first step for every user story is val-
idating that it is well-formed. This takes place in the
linguistic parser, which chunks the text according to com-
mon indicator texts and assigns word categories based on
the NLTK grammatical tagger.

AQUSA model: a parsed user story is captured as an object—
aligned with the conceptual model in Fig. 2—in the
AQUSA model database, ready to be processed further.

Enhancer: AQUSA enhances user stories by adding possible
synonyms, homonyms and possibly semantic information
extracted from an ontology to the relevant words in each
chunk.

Analysis: AQUSA analyzes user stories by running methods
that verify the selected syntactic and pragmatic quality
criteria: atomic, minimal, explicit dependencies, uniform
and unique.

We developed an AQUSA proof of concept with a lim-
ited scope that is still under active development2. Although
currently only the syntactical quality criteria are implemented
that has only been tested with a single user story set, these
preliminary results are promising. Out of 96 user stories, this
proof of concepts finds 7 that are not well-formed and 8 that
are not atomic. A 100% recall in comparison to the manual
analysis in Section VI.

VI. EMPIRICAL EVALUATION

We evaluate the QUS Framework in two ways. In Sub-
section VI-A, we manually apply all the quality criteria to
a third set of mature user stories to validate their occurrence
besides the two user story sets we used while constructing
our approach. Additionally, in Subection VI-B, we apply the
algorithmically determinable quality criteria of AQUSA to all
three user story sets to show which errors exist in real-world
user story requirements, and to evaluate the effectiveness of
our identification mechanisms.

A. Applying the Quality User Stories Framework

We validate the QUS Framework by applying its criteria
to a third set of intuitively high-quality user stories, with the
aim to assess if its perceived quality is confirmed by our
quality framework. These user stories belong to a point of
sales software product with customers world-wide. A require-
ments engineering team in Belgium creates the user stories
and outsources their development to a near-shore team in
Romania. Over the span of a year, both sides made significant
investments to be able to collaborate in an effective manner.
User stories are central to this collaboration. In the experience
of the Belgian team, user story quality directly influences the
quality of the software product. Despite their high quality,
however, these user stories still contain flaws. In the follow-
ing paragraphs, we discuss how and why some criteria are
breached, emphasizing three interesting patterns that arose.

a) The Pragmatic Requirements Engineer: The data set
contains a number of quality errors that are easily avoidable.
They request more than one feature, do not comply to the user
story format or specify a solution instead of a problem. Aside
from a few exceptions, these errors appear to exist because of
the attempt of representing technical requirements using the
user story format.

b) Keep it Minimal: It is particularly difficult to adhere
to one quality criteria: minimal. More than 10% of the user
stories include additional information, distracting the reader
from the user story itself.

c) Context is King: The examined user stories concern a
mature software product for a specific business domain with
its own particular jargon. As a consequence, it is difficult for a
non-informed outsider to accurately test some quality criteria.
Not knowing the technical implications of user stories makes
it difficult to estimate their scalability, an effect that jargon
amplifies by causing lexical ambiguity. Moreover, without

2Code available at http://github.com/gglucass/aqusa



intimate knowledge of the application, it is nearly impossible
to detect dependencies or conflicts among user stories of which
one cannot be sure that they are conceptually sound. This
clearly calls for reliance on domain-specific ontologies.

The overall quality is high: no dependencies or conflicts
were immediately obvious. Nevertheless, using structured ap-
proaches one can detect some defects, e.g. by collecting all
user stories that contain a frequently occurring phrase we
did find some dependencies. For instance: by grouping nine
user stories concerning ‘price’, a causal dependency quickly
became apparent that was hidden among the other user stories
before.

B. Applying the Automatic QUS Artisan

To test whether a full AQUSA implementation is effective to
determine user story quality, we manually apply the rules in-
troduced in Section V to our three user story sets. The resulting
quality criteria breaches in Table III show promising results
that indicate high potential for successful further development.
For each set, at least 25% of the processed user stories violate
one or more quality criteria that the AQUSA algorithms can
detect. Moreover, AQUSA detect the total amount of user
stories with with errors with 71% precision. Furthermore, the
quality criteria breaches significantly vary per user story set.
User story set #1 is very minimal, but breaks uniformity in
15% of all user stories. For user story sets #2 and #3 the
inverse is true; although they are very uniform, they are not
minimal.

Using these results, we compare the main issues between
the user story sets. By looking at AQUSA’s grouping of all
non-uniform user stories of user story set #1, we immediately
recognize its primary issue: 10 user stories omit ‘want to’,
directly expressing the functionality. Moreover, 5 out of 7
reports of atomic errors are false positives, while the not
well-formed user stories are the consequence of technical
requirements that are difficult to capture in the user story
format.

This is in stark contrast with user story set #2, which
contains errors in all AQUSA’s criteria but one (unique).
It is immediately apparent that the majority of these user
stories are not minimal. More than 2/3rds of these user stories
contain notes, feedback, testing hints, todo’s and/or solution
specifications. Although user story set #3 has 17 potential

TABLE III
NUMBER OF IDENTIFIED VIOLATIONS (V) AND FALSE POSITIVES (FP) PER

QUALITY CRITERIA IN THE THREE USER STORY SETS

Set 1 (n=96) Set 2 (n=24) Set 3 (n=124)

V FP V FP V FP

Atomic 7 5 10 3 17 12
Minimal 0 - 17 - 16 -
Well-formed 8 - 2 - 6 -
Explicit dependencies 0 - 1 - 0 -
Uniform 14 4 2 - 1 -
Unique 2 - 0 - 0 -
Total US with errors 27 9 19 3 37 12

atomic defects according to AQUSA, 12 are false positives.
The real primary issue is minimality, albeit less frequent and
less severe than for #2. In 7 cases the requirements engineer
has added a reference to a specific document, the remaining
9 breaches contain no relevant patterns.

VII. RELATED LITERATURE

Despite their popularity among practitioners [1], academic
research on user stories is few and far between. The little
work that is available, concerns a diverse list of topics. The
connection of user stories to code was studied to retrieve
reusable test steps [24]. A conceptual method for identifying
dependencies between User Stories [25] was proposed by
Gomez and colleagues, using an approach similar to ours, i.e.,
relying on the data entities that stories refer to. Along the
same lines, a basic tool was developed for writing consistent
user stories [26]. Plank, Sauer and Schaefer reported on the
potential of applying NLP to user stories [27]. They proposed
that by analyzing source code, comments, bug reports one can
establish links between user stories and their implementation
progress. Unfortunately, in private communication, the first
author indicated that they chose not to pursue this research
line any further. In future work, however, we intend to pursue
a similar goal by building on the conceptual model presented
in this paper.

Applying natural language processing to RE has historically
been heralded as the final frontier of requirements engineer-
ing. Nowadays, this ambitious objective is understood to be
unattainable in the foreseeable future—at least not without
a significant, fundamental breakthrough [11]. Nevertheless, a
wide variety of contemporary research in RE applies NLP for
specific uses: automatically identifying security requirements
hidden in other requirements [28], detecting uncertainty in
NL requirements [29] or improving NL requirements quality
by semi-automatically detecting a range of bad practices [7].
Tools like these are interesting research artifacts, but still far
from becoming mainstream in practice.

Arguing that these tools deliver the opposite effect of what
they intend, Berry [6] calls for NLP supported tools that
support 100% recall. Our AQUSA tool is an attempt to satisfy
this constraint in the context of requirements quality. However,
we will investigate the techniques other tools rely upon to
determine if some of them have the potential for improving
user story quality.

Multiple frameworks exist for characterizing requirements
quality, a very vague concept in general. The IEEE Recom-
mended Practice for Software Requirements Specifications is
the standard body of work on this subject, defining eight
quality characteristics [13]. Unfortunately, most requirements
specifications are unable to adhere to them in practice [14],
although evidence shows a correlation between high-quality
requirements and project success [30].

VIII. CONCLUSION AND FUTURE RESEARCH

In this paper, we have argued for user stories as an ideal
candidate for improving requirements quality using Natural



Language Processing (NLP) techniques. They conform to what
practitioners in agile development actually do, and detection of
errors is possible with 100% recall and high precision. This
paper laid down the theoretical foundations for such a tool,
and made three contributions.

1) A revised notion of user story quality in the Quality User
Story (QUS) Framework which provides requirements
engineers with the information necessary to forge higher
quality user stories.

2) A conceptual model of a user story that is used by the
tool in order to identify points for improvement.

3) An initial set of relationships, with preliminary tech-
niques to identify them, that pinpoint where user stories
lack of quality.

Based on these theoretical contributions, we design the Auto-
matic Quality User Story Artisan (AQUSA), a prototype tool
which exposes defects and deviations from good practice in
user stories. The promising results of our application of both
the QUS Framework and AQUSA to 1 and 3 user story sets
demonstrates the feasibility and relevance of this work.

This paper paves the way for future work. By studying
how requirements engineers apply and experience the QUS
Framework in practice, we can validate it further. Moreover,
implementing a robust version of AQUSA enables quantitative
analysis of user story databases and demonstrating the increase
of user story quality when practitioners use the tool for longer
periods of time. One of the key challenges will be to reduce
the number of false positives, while retaining the ability to
achieve a 100% recall. Exploring the potential of both domain
and foundational ontologies is another direction to pursue, that
has the potential to significantly improve the tooling.

ACKNOWLEDGEMENTS

The authors would like to thank Floris Vlasveld, Erik
Jagroep, Jozua Velle and Frieda Naaijer for providing real-
world user story data. Additionally, we would like to thank
Leo Pruijt for his comments on an earlier draft of this paper.

REFERENCES

[1] X. Wang, L. Zhao, Y. Wang, and J. Sun, “The Role of Requirements
Engineering Practices in Agile Development: An Empirical Study,” in
Requirements Engineering. Springer, 2014, vol. 432, pp. 195–209.

[2] M. Cohn, User Stories Applied: for Agile Software Development. Red-
wood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.,
2004.

[3] E. S. K. Yu and J. Mylopoulos, “Understanding “Why” in Software
Process Modelling, Analysis, and Design,” in Proc. of the International
Conference on Software Engineering. IEEE, 1994, pp. 159–168.

[4] B. Wake, “INVEST in Good Stories, and SMART Tasks,”
http://xp123.com/articles/invest-in-good-stories-and-smart-tasks/, 2003,
accessed: 2015-02-18.

[5] P. Heck and A. Zaidman, “A Quality Framework for Agile
Requirements: A Practitioner’s Perspective,” CoRR, vol. abs/1406.4692,
2014. [Online]. Available: http://arxiv.org/abs/1406.4692

[6] D. Berry, R. Gacitua, P. Sawyer, and S. Tjong, “The Case for Dumb
Requirements Engineering Tools,” in Proc. of Requirements Engineer-
ing: Foundation for Software Quality. Springer, 2012, vol. 7195, pp.
211–217.

[7] A. Bucchiarone, S. Gnesi, and P. Pierini, “Quality Analysis of NL
Requirements: An Industrial Case Study,” in Proc. of the IEEE Interna-
tional Conference on Requirements Engineering, 2005, pp. 390–394.

[8] D. Popescu, S. Rugaber, N. Medvidovic, and D. M. Berry, “Reducing
Ambiguities in Requirements Specifications Via Automatically Created
Object-Oriented Models,” in Innovations for Requirement Analysis.
From Stakeholders’ Needs to Formal Designs. Springer, 2008, vol.
5320, pp. 103–124.

[9] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E. Romanova,
“Best Practices for Automated Traceability,” Computer, vol. 40, no. 6,
pp. 27–35, 2007.

[10] R. Gacitua, P. Sawyer, and V. Gervasi, “On the effectiveness of abstrac-
tion identification in requirements engineering,” in Proc. of the IEEE
International Requirements Engineering Conference, 2010, pp. 5–14.

[11] K. Ryan, “The Role of Natural Language in Requirements Engineer-
ing,” in Proc. of the IEEE International Symposium on Requirements
Engineering, 1993, pp. 240–242.

[12] N. Maiden, “Exactly How Are Requirements Written?” IEEE Software,
vol. 29, no. 1, pp. 26–27, 2012.

[13] IEEE Computer Society, “IEEE Recommended Practice for Software
Requirements Specifications,” IEEE Std 830-1993, 1994.

[14] M. Glinz, “Improving the Quality of Requirements with Scenarios,” in
Proc. of the World Congress on Software Qualtiy, 2000, pp. 55–60.

[15] O. I. Lindland, G. Sindre, and A. Sølvberg, “Understanding Quality in
Conceptual Modeling,” IEEE Software, vol. 11, no. 2, pp. 42–49, 1994.

[16] W. N. Robinson, “Integrating Multiple Specifications Using Domain
Goals,” SIGSOFT Software Engineering Notes, vol. 14, no. 3, pp. 219–
226, 1989.

[17] M. Kim, S. Park, V. Sugumaran, and H. Yang, “Managing Requirements
Conflicts in Software Product Lines: A Goal and Scenario Based
Approach,” Data & Knowledge Engineering, vol. 61, no. 3, pp. 417–432,
Jun. 2007.

[18] D. M. Berry and E. Kamsties, “Ambiguity in Requirements Specifica-
tion,” in Perspectives on Software Requirements. Springer, 2004, vol.
753, pp. 7–44.

[19] K. Beck, Extreme Programming Explained: Embrace Change. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2000.

[20] M. Escalona and N. Koch, “Metamodeling the Requirements of Web
Systems,” in Web Information Systems and Technologies. Springer,
2007, vol. 1, pp. 267–280.

[21] P.-A. Hsiung, S.-W. Lin, C.-H. Tseng, T.-Y. Lee, J.-M. Fu, and W.-
B. See, “VERTAF: An Application Framework for the Design and
Verification of Embedded Real-Time Software,” IEEE Transactions on
Software Engineering, vol. 30, no. 10, pp. 656–674, 2004.

[22] S. F. Tjong and D. M. Berry, “The Design of SREE: A Prototype
Potential Ambiguity Finder for Requirements Specifications and Lessons
Learned,” in Proc. of Requirements Engineering: Foundation for Soft-
ware Quality. Springer, 2013, vol. 7830, pp. 80–95.

[23] G. A. Miller, “WordNet: A Lexical Database for English,” Communica-
tions of the ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995.

[24] M. Landhäusser and A. Genaid, “Connecting User Stories and Code
for Test Development,” in Proc. of the International Workshop on
Recommendation Systems for Software Engineering. Piscataway, NJ,
USA: IEEE, 2012, pp. 33–37.

[25] A. Gomez, G. Rueda, and P. Alarcn, “A Systematic and Lightweight
Method to Identify Dependencies between User Stories,” in Agile Pro-
cesses in Software Engineering and Extreme Programming. Springer,
2010, pp. 190–195.

[26] M. Śmiałek, J. Bojarski, W. Nowakowski, and T. Straszak, “Writing
Coherent User Stories with Tool Support,” in Extreme Programming and
Agile Processes in Software Engineering. Springer, 2005, pp. 247–250.

[27] B. Plank, T. Sauer, and I. Schaefer, “Supporting Agile Software De-
velopment by Natural Language Processing,” in Trustworthy Eternal
Systems via Evolving Software, Data and Knowledge. Springer, 2013,
pp. 91–102.

[28] M. Riaz, J. King, J. Slankas, and L. Williams, “Hidden in Plain
Sight: Automatically Identifying Security Requirements from Natural
Language Artifacts,” in Proc. of the IEEE International Requirements
Engineering Conference, 2014, pp. 183–192.

[29] H. Yang, A. De Roeck, V. Gervasi, A. Willis, and B. Nuseibeh,
“Speculative Requirements: Automatic Detection of Uncertainty in
Natural Language Requirements,” in Proc. of the IEEE International
Requirements Engineering Conference, 2012, pp. 11–20.

[30] M. I. Kamata and T. Tamai, “How Does Requirements Quality Relate
to Project Success or Failure?” in Proc. of the IEEE International
Requirements Engineering Conference. IEEE, 2007, pp. 69–78.


