
Chapter 1

Introduction to Flexibility and
Robustness in Scheduling

1.1. Scheduling problems

A large variety of scheduling problems are to be found in many domains. Almost
every sector is concerned by scheduling problems in the broad sense:

– Industrial production systems: problems may need to be solved simultaneously
in machine scheduling and vehicle dispatching (automated guided systems, robotic
cells, hoist scheduling problems), in workshop layout problems or supply chain
management problems.

– Computer systems: for example, to make full use of the processing power
provided by parallel machines or when scheduling tasks with resource constraints in
real-time environments.

– Administrative systems: appointment scheduling in health care sector, general
resource assignment, timetabling, etc.

– Transportation systems: vehicle routing problems, traveling salesman problems,
etc.

In all cases, for a realization being described as a series of interdependent tasks, it
is necessary to coordinate the implementation of these tasks, i.e. to allocate resources

Chapter written by Jean-Charles BILLAUT, Aziz MOUKRIM and Eric SANLAVILLE.

15

16 Flexibility and Robustness in Scheduling

to tasks and set their execution dates. Sometimes a schedule simply consists of
a sequence of tasks by machine, coupled with a simple rule for calculating task
start times (for example earliest schedules). However, in the more general case it is
necessary to allocate a start time to each task in the schedule definition.

The basic data of a scheduling problem (see for instance [BRU 07]) are: the tasks to
schedule with their precedence constraints, their duration, resources that are necessary
for their execution and a function to optimize.

Methods for solving scheduling problems draw from all the techniques of
combinatorial optimization, whether approximate methods (greedy algorithms, local
search, genetic algorithms, etc.) or exact methods (mathematical programming,
branch-and-bound methods, dynamic programming, decomposition methods,
constraint programming, etc.). Solving a particular problem may require the use of
modeling tools for complex systems (simulation, Petri nets, etc.), thus leading to the
definition of matchings between these methods.

The scheduling problems addressed in this book are described according to the
classification schemes proposed in [GRA 79]. The scheduling problems are specified
using a classification in terms of three fields, α|β|γ where α specifies the machine
environment, β the operation characteristics, and γ the criterion to optimize.

1.1.1. Machine environments

The majority of scheduling problems correspond to a number of fundamental
theoretical models. We have to schedule a set of n tasks or n jobs. The machine
environments are specified in the field α separated into two subfields α1α2. Depending
on the values of α1, we may distinguish the following models:

– Single machine problems. Each task Tj of duration pj runs on a dedicated
machine that cannot handle more than one task at a time. In that case the field α1

is absent and α2 = 1.

– Parallel machine problems. The tasks are to be executed on machines in parallel,
and pij denotes the execution time of Tj on machine Mi:

- If α1 = P , the machines are identical: pij = pj for any machine Mi.
- If α1 = Q, the machines are uniform: pij = pj/si where si is the processing

speed of machine Mi.
- If α1 = R, machines are unrelated: pij = pj/sij where sij is the processing

speed of task Tj on machine Mi.

Introduction to Flexibility and Robustness in Scheduling 17

– Shop problems. In this model, a shop consists of m different machines. We
consider a set of jobs that need to be performed. Each job Jj is described by nj tasks
(which are called operations). Operation Jj running on machine Mi is denoted Oij ,
and its duration is pij . Operations belonging to the same job cannot be carried out
simultaneously. There are three main types of shop:

- Flow-shop. Each job consists of m operations and the order of execution on
different machines is the same for each job. In this case α1 = F .

- Job-shop. The number of operations is not necessarily the same for each job,
and every job has its own order of execution on the machines. In this case α1 = J .

- Open shop. This is the least constrained shop scheduling problem. The
number of operations is not necessarily the same for each job, and the order of
execution on the machines is completely free. In this case α1 = O.

– Project scheduling under resource constraints. In this model, known as the
“resource constrained project scheduling problem” (RCPSP), we consider a set of
tasks or activities. The execution of each task Tj requires the use of a fixed amount
Rij of resource i. The maximum capacity of each resource i is available. The field
α1 takes the value PS (“Project Scheduling”). Note that the case where the capacity
is unlimited corresponds to the central problem in the well-known PERT scheduling
model.

If α2 is a positive integer, the number of machines or resources is assumed to be
constant. If the field α2 is absent then this number is assumed to be arbitrary.

1.1.2. Characteristics of tasks

The field β = β1β2β3β4 describes the task characteristics.

Preemption means that the execution of an operation or a task can be interrupted
and completed later, either on the same machine or on another machine. An operation
or task can be interrupted several times. If preemption is allowed then β1 = pmtn,
otherwise field β1 is missing.

Precedence constraints are represented by a directed graph G = (X,≺), where
X denotes the complete set of tasks. Tj ≺ Tk means that the task Tj must be fully
completed before the task Tk begins. Whether the graph G is arbitrary, a union of
paths, an out-tree or an in-tree, β2 takes the value prec, chain, out-tree, or in-tree,
respectively. When there are no precedence constraints this field is missing. In the
context of parallel computing (message passing) or shop management (part transfer),
a quantity cjk may be associated with any precedence Tj ≺ Tk. If Tj and Tk are

18 Flexibility and Robustness in Scheduling

performed on two different processors (or machines), cjk corresponds to the shortest
delay between the end of Tj and the beginning of Tk, otherwise this delay is zero.

The release dates of tasks (earliest start times) are not necessarily identical. In this
case, β3 = rj . If all tasks are assumed to be available at time 0, the field β3 is missing.

If β4 = dj , we hope that the completion time Cj for each task Tj will be less than
or equal to dj , called the due date of Tj . If Cj exceeds dj , the task is considered late.

1.1.3. Optimality criteria

When a schedule is fixed, the following variables can be computed for each task
Tj or every job Jj :

– end date of the task Tj or job Jj , or completion time, noted Cj ;

– lateness Lj = Cj − dj or tardiness Tj = max{0, Cj − dj};
– unit penalty Uj = 0 if Cj ≤ dj , otherwise Uj = 1;

– flow time Fj = Cj − rj .

Optimality criteria are functions to minimize. Usually, they integrate the above
variables in the form of a maximum function or a sum function, possibly weighted.
For example:

– the duration of the schedule or makespan is the function Cmax = max1≤j≤n Cj ;

– the weighted number of late tasks is the function
∑n

j=1 wjUj .

Optimizing a single criterion is sometimes not sufficient, and in order to solve
the problem, several conflicting criteria must be taken into account. For example, a
company might want to minimize delivery delays and also to minimize its storage
costs. These two criteria are clearly antagonistic, and multicriteria optimization
methods are required to develop a procedure which will provide the best compromise
solution [T’K 06].

We conclude this section by defining three scheduling classes:

– a schedule is said to be semi-active if no task can be performed earlier without
changing the order of execution or violating the constraints;

– a schedule is said to be active if no task can be performed earlier without
violating the constraints;

– a schedule is said to be without delay if at any time t resources are not present in
sufficient quantity to start an available job processed later in the schedule.

Introduction to Flexibility and Robustness in Scheduling 19

Figure 1.1 shows a single machine scheduling problem involving two tasks T1 and
T2 with p1 = 2, p2 = 1, r1 = 1 and r2 = 0. The schedule shown in Figure 1.1a
is semi-active but is neither active nor without delay, whereas the schedule shown in
Figure 1.1b is semi-active, active and without delay.

b)a)

3104310

1T2
T2T1

T

Figure 1.1. Examples of semi-active and delay-free schedules

Figure 1.2 shows a parallel machine scheduling (m = 2) of three tasks T1, T2 and
T3 with p1 = 2, p2 = 2, p3 = 4, r1 = 1 and r2 = r3 = 0. The schedule shown in
Figure 1.2 is both active and semi-active but not without delay.

2

1

M

M
3

2

T

5

T

310

1
T

Figure 1.2. An example of an active schedule that is not delay-free

1.2. Background to the study

The subject under consideration is scheduling and the problem addressed in this
book is the integration of flexibility and robustness in scheduling problems.

Scheduling problems are widely discussed in the literature, in a large variety of
contexts (see section 1.1). We distinguish here two major classes of approach:

– Classical deterministic methods, which consider that the data are deterministic
and that the machine environment is relatively simple (disjunctive resources, possibly
in multiple copies: see section 1.1.1). Some traditional constraints are taken into
account (precedence constraints, release dates, due dates, preemption, etc.). The
criterion to optimize is often standard (makespan). Problems have been investigated
and classified according to their computational complexity. A number of methods
have been proposed (exact methods, greedy algorithms, approximate methods, etc.),
depending on the difficulty of a particular problem. These kinds of studies are the most

20 Flexibility and Robustness in Scheduling

common in the literature devoted to scheduling problems, and there are many books
dealing with the most classic problems (see for example [BLA 01, BRU 07, PIN 01]).

– On-line methods. When the algorithm does not have access to all the data from
the outset, we say that the data become available step by step, or “on-line”. Different
models may be considered here. In some studies, the tasks that we have to schedule are
listed, and appear one by one. The aim is to assign them to a resource and to specify a
start time for them. In other studies, the duration of the tasks is not known in advance.
These problems have given rise to many theoretical studies (e.g. [SGA 98, FIA 98]).

Flexibility occurs at the boundary between these two approaches: some
information is available concerning the nature of the problem to be solved and
concerning the data. Although this information is imperfect and not wholly reliable,
it cannot be totally ignored. We also know that there will be discrepancies, for a
number of reasons, between the initial plan and what is actually realized. Given that
disruptions will occur and unforeseen circumstances arise, the aim is to propose one
or more solutions that adapt well to disruptions, and then produce reactive decisions
in order to ensure a smooth implementation. Another parameter here is the freedom
left to the scheduler about the set of solutions it might be possible to propose:
this flexibility is internal to the individual problem. Hence there are two kinds of
flexibility, this internal flexibility, and the chosen flexibility, that the method really
use when proposing a set of solutions (see section 1.4).

Robustness refers to the performance of an algorithm in the presence of
uncertainties. Measures of robustness are required, which we will show later.
Robustness can be defined at several levels: we can speak of the robustness of a
solution of course, but also of the robustness of a procedure or of a conclusion
[ROY 02]. Robustness is a qualifier which generally refers to a capacity to tolerate
approximations (on the assumptions, model or data [ROY 02]). It is also a measure
of the result after the application of a procedure in the presence of uncertainties, or
after the appearance of uncertainty, for example relative to the operation duration
the transport time, the availability of the most qualified personnel, etc. It is the
performance characterization of an algorithm (or a complete process of schedule
construction) in the presence of uncertainties (see section 1.5).

1.3. Uncertainty management

This section summarizes the sources of uncertainty for scheduling problems and
shows that all data may be concerned. The different models that take into account these
uncertainties are presented and the different approaches proposed in the literature are
then reviewed. Recent literature is too rich to make a complete state-of-the-art survey

Introduction to Flexibility and Robustness in Scheduling 21

possible. We restrict ourselves to some basic works, leaving the more specialized
studies in the bibliographies of the different chapters.

The book by Kouvelis and Yu [KOU 97] presents the sources of uncertainty in
operations research, particularly in scheduling, and provides a discussion on models
(see also the article by Daniels and Kouvelis [DAN 95]). The article by Davenport and
Beck [DAV 00] is a very detailed review with a classification of possible approaches,
while Herroelen and Leus [HER 05] focus on project scheduling and describe a wide
range of methods.

1.3.1. Sources of uncertainty

The data associated with a scheduling problem are the processing times,
occurrence dates of some events, some structural features, and the costs. None of this
data is free from factors of uncertainty.

The duration of tasks depends on the conditions of their execution, in particular
on the necessary human and material resources. They are thus inherently uncertain,
regardless of contingent factors that may impair their execution. At any time,
communications between two tasks depend on the state of the communication
network, the level of contention, the availability of links, and so on. Similarly,
transportation times for components between separate operations in a production
process will depend on the characteristics of the transportation resources available.
Finally, in a production context, some resources such as versatile machines require
a reconfiguration time between operations. This time depends on the type of tools
needed and the location of these tools in the shop, not to mention the operator
carrying out the reconfiguration.

The start times for some events within a schedule can be part of the initial data.
This is the case for the arrival of a task (release date), which often depends on events
outside the studied system, such as events in the supply chain or a customer order.
The same is true of the due date of a task. The periods of availability of human or
machine resources is also difficult to predict precisely, due to maintenance, delays or
unforeseen absences of an operator or a raw material.

More radically, some events can be totally unforeseen and change the structure of
the problem and consequently the ongoing schedule. A task can be added or removed
without warning. The characteristics of a task can be changed, like its way of execution
(regarding, for example, the range of products or the enforcement of a particular
operator) or its relationships with other tasks, such as precedences or disjunctions.
A machine may fail or suddenly become useless for unforeseen reasons.

22 Flexibility and Robustness in Scheduling

Finally, if a cost is associated with a task, it can be changed without notice,
especially when the considered system is part of a larger hierarchical system: the
priorities are set at a higher level.

Thus, no data can be regarded as immutable, although the possibility of a change
depends on the context. We can consider two cases for each piece of data (duration,
date or cost): either its value is uncertain, that is to say it may take any value inside
some fixed set; or its value may be subject to a disturbance, meaning that it is set
in order to ensure normal functioning of the system, but can be changed by some
unexpected event. This is of course always the case for structural data, which are
modified according to contingent events.

1.3.2. Uncertainty of models

It follows from the above discussion that non-deterministic models are essential
for solving concrete problems in scheduling, because of the inherent uncertainty in
the data. Let us first consider the hypothesis of randomness which has given rise to
a longstanding branch of research: stochastic scheduling. Here, all data (durations
and also the dates of events, including possible disruptions) are modeled using
random variables, and possibly constants. The probability of events is assumed to be
known. From this stochastic model, it is theoretically possible to compute a priori
the best schedules, or rather (in the case of possible disruptions) policies, i.e. the
most successful decision sets (see the chapter by Weis [WEI 95] in [CHR 95] for a
presentation of stochastic scheduling, as well as the book by Pinedo [PIN 01]).

This assumption of randomness is not always made, for at least three reasons.
First, a priori knowledge about the data is not always sufficient to deduce the laws of
probability associated with it, especially if the problem is addressed for the first time.
Secondly, assumptions regarding independence are rarely justified: a major source of
disruptions may often result in a number of uncertainties concerning various data.
Finally, even if a stochastic model can be envisaged, it is often too complex to be
usable.

Data values are therefore often regarded as “simply” uncertain. However, it is
usually possible to maintain values within some limits, in almost all cases within a set
which is discrete or continuous (interval). In the case of discrete sets, we obtain a finite
but potentially large number of scenarios (a value is assigned to all data). It may be
possible to allocate a probability to each scenario, even if it is not exactly computable,
thus indirectly achieving a stochastic model. Even in the continuous case, it is possible
to proceed using these intervals. The theory of fuzzy sets is applicable here, the

Introduction to Flexibility and Robustness in Scheduling 23

application of which to scheduling problems has seen some recent developments. This
is not addressed in this book, but has been the subject of a book published by Hapke
and Slowinski [SLO 00]; see also Dubois et al. [DUB 03].

It may happen that the data are outside the considered sets. One simple solution
to this is not to propose a set at all. Nevertheless, a commonly-used technique is to
assign to each piece of data a central value, its estimate, and all these estimated values
may then be used while anticipating the possible differences at the execution step.

To sum up, the data can be represented as either random variables (stochastic
model), real intervals (interval model) or discrete sets (scenario model). They may
or may not be associated with an initial estimate. It is of course possible to combine
different modes of representation!

1.3.3. Possible methods for problem solving

We now look at different methods for solving a scheduling problem with
uncertainties. The choice depends of course on the chosen model. Let us first list the
steps needed to solve such a problem.

1.3.3.1. Full solution process of a scheduling problem with uncertainties

Obtaining a complete solution to the problem requires the following steps:

– Step 0: defining a static problem. The definition includes, in addition to the
classical specifications in deterministic scheduling, the specifications of uncertainties
and their modeling. The concept of schedule quality must also be specified at this
stage.

– Step 1: computing a set of solutions, i.e. a family of feasible schedules achievable
by a static algorithm α (static phase). A set of solutions can be obtained from a single
solution, for example when the start times of some tasks may vary within a known
interval.

– Step 2: during execution, a unique solution is calculated, that is to say the
schedule actually carried out, which is the outcome of applying a dynamic algorithm
δ (dynamic phase) to the set of possible solutions.

The solution methods differ depending on the choices made in steps 1 and 2,
and therefore on the static and dynamic algorithms chosen. These choices depend,
of course, on the models in step 0, which were discussed above, apart from the notion
of quality, which we examine in section 1.5.

24 Flexibility and Robustness in Scheduling

1.3.3.2. Proactive approach

In this approach, the focus is on step 1: knowledge of the uncertainties is used
by the static algorithm to build one baseline schedule or a family of schedules.
This family can be described either explicitly or implicitly. In the literature we
also encounter the term predictive approach, the difference being that the schedule
constructed in the latter case, using a static algorithm, does not take uncertainty into
account. The starting point of this book is that it must be taken into account, and
therefore we shall only look at proactive approaches.

In both approaches, predictive and proactive, step 2, during the execution, does
not require any calculations: according to the real value of data, the baseline schedule
is used or it is adjusted to remain feasible. These choices or adjustments are made
using simple rules, such as waiting for a task to complete if it is overdue, or taking a
particular action when a particular event occurs.

A stochastic model can give rise to a proactive approach, the uncertainty being
taken into account in the computation of a baseline schedule.

1.3.3.3. Proactive/reactive approach

It is natural to couple a proactive approach, when it proposes a family of schedules,
with a more elaborate step 2: as knowledge of the actual data values is acquired, and
possibly after a disruption, a non-trivial dynamic algorithm is used to choose among
the schedules selected in the previous (static) step those that prove to be the most
efficient. This approach, responding to actual conditions while using the results of
step 1, is called proactive/reactive.

In addition, let us note that it is often impossible to take all uncertainties into
account, in particular disruptions, during the static phase. The example of machine
failure is the most obvious but not the only one. The dynamic algorithm is then a
necessity.

There are two extreme types of dynamic algorithms. The first type attempts a
repair, trying to recover as fully as possible the baseline schedule or one of the
selected schedules. In contrast, the second type carries out a re-optimization or
post-optimization, i.e. it calculates, on the basis of actual conditions, a new schedule
without further reference to the results of the static phase. The re-optimization is
needed especially in the case of contingencies which significantly change the data of
the initial problem.

Introduction to Flexibility and Robustness in Scheduling 25

1.3.3.4. Reactive approach

In the purely reactive approach, the choices specifying a schedule are made
during the dynamic phase. We must keep in mind that depending on the context,
the reaction time required may vary from several days for some projects to less
than a second for computer applications or embedded systems. If we have relatively
accurate information regarding the value of data in the ongoing schedule (see step
0), the ideal scenario is to compute the optimal decision at every point where a
choice can be made, which corresponds to post-optimization, here used in an iterative
manner. However, simple decision rules are more often applied, such as giving
priority to tasks with smaller margins. These rules rarely build optimal schedules. In
the particular case of stochastic models, it is sometimes possible to show that one
set of rules (here called policy) is the best, for example according to the criterion
expectation (see section 1.5).

Finally, when very few assumptions are made about the data (no estimates),
decisions to be made at each moment are very difficult to evaluate a priori, which
leads us into the area of on-line scheduling mentioned earlier. A typical case is when
the characteristics of a task (duration or mode of execution) are unknown until the
job is ready to be executed. The on-line scheduling reviewed by Sgall [SGA 98] is
beyond the scope of this book.

1.4. Flexibility

The introduction of flexibility into a scheduling problem reflects the degree of
freedom during the implementation phase of the scheduling. This flexibility can take
several forms:

– Time, or temporal flexibility, i.e. regarding the starting times of operations. This
flexibility can be seen as implicit in scheduling, since it allows some operations to
drift over time, if conditions dictate. This is the first level of flexibility in scheduling.

– Flexibility regarding order of execution, or sequential flexibility. This means
being able to change the order in which the operations should run on the machines, and
implicitly presupposes temporal flexibility. It can be proposed during the execution of
the sequence, allowing some operations to overtake others, if the conditions require it.

– Flexibility in assignments. In cases when there are multiple copies of resources,
this allows a task to be executed using a resource other than that which was initially
planned. This flexibility is a great help, for example when a machine becomes
unavailable. It implicitly presupposes sequential flexibility and temporal flexibility.

26 Flexibility and Robustness in Scheduling

– Flexibility in the execution mode. The execution mode encompasses the
possibility of preemption, overlap, changes in product range, whether set-up time
is taken into account, changes in the number of resources required to perform an
operation, and so on. This flexibility can be proposed depending on the context to
overcome a difficult situation.

Flexibility, which is a degree of freedom available during the operational phase,
can be harnessed in step 1, during the static phase. Indeed, some methods, in order
to give more flexibility regarding start times, will allocate the available margins to
operations in proportion to their length, for example, or will allocate margins to the
operations considered as the most critical, as is the case with the concept of buffer
in the critical chain [GOL 97, HER 01]. In order to give more sequential flexibility,
the concepts of groups of swappable tasks ([ART 99, ART 05]) and of partial order
between tasks [ALO 02, WU 99, MOU 99] have been proposed. These methods were
designed to build robust schedules.

The challenge when introducing flexibility is finding a way of measuring the level
of flexibility obtained. Some approaches rely on measuring a posteriori the utility of
the flexibility proposed by comparing the quality of a flexible solution to that of a
non-flexible solution in the presence of disturbances. It is consequently the robustness
measure that should indicate whether or not a particular flexible solution is better than
a non-flexible solution.

1.5. Robustness

It is really difficult to give a unique definition for robustness, as this concept
is differently defined in several domains. Furthermore, often in the literature, the
definition often remains implicit in the literature or is determined by the specific target
application. Finally, most authors prefer to use the concept of robust solution (and
here, of robust schedule).

Let us first propose some consensus definition: a schedule is robust if its
performance is rather insensitive to the data uncertainties. Performance must be
understood here in the broad sense of solution quality for the person in charge; this
naturally encompasses this solution value relatively to a given criterion, but also the
structure itself of the proposed solution. The robustness of a schedule is a way to
characterize its performance.

Anyway, analysis cannot restrict itself to one solution. We are mainly interested in
the performance of the process previously detailed (see section 1.3.3.1) to build these

Introduction to Flexibility and Robustness in Scheduling 27

solutions according to the real problem data. Throughout this section, the term method
will be used to designate the whole building process of the final schedule. Thus, we
follow Bernard Roy [ROY 02] who states that the person in charge is not interested
in a specific solution, but in the set of solutions a method can build according to
the real data, and by their variability. The questions raised in this work, in the larger
framework of decision aid are fundamental also for scheduling under uncertainties.
When the whole method is not explicit, but one stage alone (static or dynamic) is
under study, it is then legitimate to use the terms of robust algorithm, or even of robust
schedule.

The curious reader might also find it very useful to look for works about robust
optimization at large, reflecting the diversity of the approaches; see Kouvelis and
Yu [KOU 97], Ben-tal and Nemirovski [BEN 99], Aïssi et al. [AÏS 07], among many
others.

In order to characterize robustness, different tools that might be used are presented.
This in fact implies that several types of robustness exist. The following notations shall
be used:

– P: a static problem, together with uncertainties description. Hence P is a set,
possibly infinite, of instances of the deterministic problem.

– I: an effective instance of P (describing the effective conditions met during
execution) also called the scenario.

– S: an effective schedule, obtained by the studied building process. S varies
according to the considered scenario and in cares of possible ambiguity it is noted
SI .

– zI(S): performance of schedule S realized on I, simply denoted zI if there is
no ambiguity.

– z∗I : performance of an optimal schedule on I.

In deterministic scheduling, the performance criterion is fixed from the
beginning, and it is immediately computable for a fixed schedule. In scheduling with
uncertainties, there are several possible measures for a given criterion, and we try to
give below a typology of these measures.

1.5.1. Flexibility as a robustness indicator

As said before, flexibility is the freedom allowed at execution phase for building
the final schedule. Intuitively, it should be easier to propose a robust method if the
allowed flexibility is large. Let us think about this. If everything is possible, we could

28 Flexibility and Robustness in Scheduling

be tempted to report any decision at execution phase (reactive approach); this is not
always the best for the quality of the final solutions (myopic behavior, temporal
constraints). Another key feature of a method is its feasibility for all considered
uncertainties. If uncertainty is large, and/or disturbances numerous, the feasibility
cannot be guaranteed in general (unless some exceptional repair mechanism can be
set). Hence we should always try to maximize the method flexibility, expressed as
its feasibility for the largest set of scenarios (here understood in a broad sense). It
must be noted that starting from the internal or allowed flexibility, we consider now a
chosen flexibility. In that sense, a flexibility indicator can rightly be considered as a
robustness measure for the method at hand; see Chapters 9 and 11 in this book.

Still, it is always a good idea to couple that indicator with another measure, bound
to the performance in the classical sense. Concerning the studies from the literature,
the feasibility guarantee is usually implicitly accepted as a property of the method (a
hypothesis that should be justified). In that case, flexibility is not measured.

1.5.2. Schedule stability (solution robustness)

Here the performance criterion (makespan, mean flow-time, etc.) is not considered.
For a given method, we try to minimize the differences between the different solutions
obtained (by the same method) for different scenarios. In automation literature this
specific aspect of robustness is sometimes called stability, a term that shall be used
in that sense inside this book (see Chapters 8 and 13); ideally, there is one schedule
unchanged for the different scenarios, hence it is stable. The difference between two
schedules, denoted their distance d, can be for instance the number of permutations
between tasks or machines, or any other adequate measure in the considered context.
Then we might try to minimize either the largest distance between two solutions, or
the largest distance with respect to some reference, or baseline, schedule S̃. In the
second case, we speak naturally of the stability of this baseline schedule, or of solution
robustness [HER 05].

R1 = max
I,I′∈P

d
(
SI , S′

I
)

R′
1 = max

I∈P
d
(
SI , S̃

)

In a way, we try to build the smallest set of schedules compatible with the
uncertainty taken into account. Equivalently, it is the search for a solution set of
minimum flexibility, but sufficient to guarantee feasibility. In practice, we usually
start from a reference (or baseline) schedule whose performances are acceptable for
the available estimations.

Introduction to Flexibility and Robustness in Scheduling 29

1.5.3. Stability relatively to a performance criterion (quality robustness)

Again, we try to minimize a distance between the solutions obtained by different
scenarios. This time though, the distance is measured with respect to the obtained
value of the criterion. In [HER 05] this is called quality robustness, meaning that
the quality (criterion value) of the baseline schedule should remain equivalent in all
scenarios. With different models and points of view, such robustness measures are
used in Chapters 6, 7, 12 and 14. If this value is considered as one characteristic,
among others, of a schedule, it is a particular example of the previous case: we look
for a set of solutions with close performances. Most often this approach is used
jointly with a model based on estimations of the data (scenario Ĩ). There is a baseline
schedule, and the robustness measure is given by the largest difference between the
performance of this schedule for the initial scenario zĨ , and the performance obtained
for any other scenario:

R2 = max
I∈P

zI
zĨ

(relative difference)

R′
2 = max

I∈P
∣∣zI − zĨ

∣∣ (absolute difference)

R2 can be called the stability ratio. In one important case, only one schedule is
built whatever the scenario (this implies the feasibility hypothesis). In fact, a family of
schedules is usually considered, obtained from an initial schedule by accepting some
amount of temporal flexibility. The robustness of this schedule S is measured by R2

or R′
2, zI being here the performance of S for I.

From the perspective of the associated optimization problems, such as looking for
the most robust process for R2, the problem is equivalent to minimizing the largest
value of the criterion on the set of possible scenarios as soon as zĨ is fixed.

When statistical data are available, a stochastic model can be used and it is
possible to look for schedules whose mean behavior is good. Although the robustness
measures are obtained from R2 or R′

2 by replacing the maximum by, for instance,
the expectation, it is less natural to speak of stability (except that it means some
guarantees can be obtained about, for instance, the mean behavior). The obtained
measures are here the traditional measures in stochastic optimization, particularly:

R3 = EI∈P
[
zI
]

(criterion expectation)

The drawback of all these measures is that they sometimes lead to schedules quite
far from the best solution for a given scenario, even if it is reassuring to build a stable

30 Flexibility and Robustness in Scheduling

set of solution, or a set with good mean behavior. That is why many authors keep the
term robustness for other measures.

1.5.4. Respect of a fixed performance threshold

Frequently, a target performance z̃ is defined a priori. The method is then
considered as robust if no performance schedule exceeds this threshold, whatever the
scenario. Hence the measure

R4 = max
I∈P
(
zI − z̃

)
(absolute deviation with respect to some threshold)

Of course, the associated optimization problem is the same as for the stability with
respect to the performance criterion (see section 1.5.3) and the same drawback holds.

In the case of a stochastic model, it is logical (see Daniels and Carillo [DAN 97])
to minimize the probability of exceeding the threshold:

R5 = PI∈P
(
zI ≥ z̃

)
(service level measure)

The difficulty in using this measure (see Chapter 5) comes from the fact that we
must know the probability law associated with the random variable z.

1.5.5. Deviation measures with respect to the optimum

Robustness is measured here by comparing the criterion value obtained by the
method and the optimum value, this for all scenarios. Following [DAN 95, KOU 97]
we use the term of deviation: absolute deviation if the difference is computed; relative
deviation for the ratio. There are several possibilities for using these deviations. One
possibility is to compute their maxima, or their expectation in a stochastic setting.
Thus, two relative measures are possible:

R6 = max
I∈P

zI
z∗I

(worst case relative deviation)

R7 = EI∈P

[
zI
z∗I

]
(relative deviation in expectation)

and the corresponding absolute measures R′
6 and R′

7. In robust optimization literature
(see [AÏS 07, AVE 00, MUL 95]), the absolute deviation is called the “minmax regret
criterion”. Note also that in approximation literature, and sometimes in on-line
optimization, the term competitivity ratio can be used for the relative deviation.

Introduction to Flexibility and Robustness in Scheduling 31

Computing these measures supposes that the optimal solution can be computed
for each scenario, and in the stochastic case, that the probability of each scenario is
known. This is not always possible, and we might just compute some upper bound,
called the sensitivity bound, absolute or relative (see Chapter 4). It is also possible in
the stochastic case to compute an approximation of R7 or R′

7, by computing a mean
after sampling the scenarios, see Kouvelis et al. [KOU 00] and more generally the
stochastic optimization literature. We might speak then of sampled mean deviation.

1.5.6. Sensitivity and robustness

In the literature, it is sometimes difficult to separate sensitivity analysis and
robustness. In fact the sensitivity analysis tries to answer the “what if...” questions.
It deals with disturbances more than with general uncertainty: data are fixed but
might be disturbed, a baseline schedule S̃ is given, which is most often optimal.
Sensitivity analysis tries to measure the performance degradation of S̃ for a particular
disturbance. It is not concerned with the execution phase: the robustness of a static
algorithm is measured. Among the above measures, sensitivity analysis might use
R′

1, R2, R6 or R′
6, and does not deal with probabilistic models. Furthermore, it comes

historically from linear programming (LP), and as for LP disturbances concerns one
parameter at a time. In LP, the maximum change of a parameter for which the current
basis is still optimal is easy to compute. In scheduling, Sotskov et al. [SOT 98] did
introduce the stability radius ρS̃ . Computing the radius is equivalent to searching for
the maximum disturbance size for which R′

2 = 0. Hall and Posner [HAL 04] present
a classification and many results about sensitivity analysis in scheduling.

It is of course possible to extend the analysis to a true uncertainty on data
simultaneously considered (see [PEN 01] and Chapters 3 and 4 in this book), if the
study is restricted to the static phase and to some disturbance types (taking into
account the breakdowns, for instance, seems impossible). However, it is then difficult
to show results on the stability radius for instance.

1.6. Bibliography

[AÏS 07] AÏSSI H., BAZGAN C. and VANDERPOOTEN D., “Min-max and min-max regret
versions of some combinatorial optimization problems: a survey”, p. 1–32, Annales du
Lamsade. ROY B., ALOULOU M.A. and KALAI R. (Eds.): Robustness in OR-DA, Paris,
2007.

[ALO 02] ALOULOU M.A., PORTMANN M.-C. and VIGNIER A., “Predictive-reactive
scheduling for the single machine problem”, Proceedings of the 8th International Workshop

on Project Management and Scheduling, Valencia, Spain, p. 39–42, 2002.

32 Flexibility and Robustness in Scheduling

[ART 99] ARTIGUES C., ROUBELLAT F. and BILLAUT J.-C., “Characterization of a set
of schedules in a resource-constrained multi-project scheduling problem with multiple
modes”, International Journal of Industrial Engineering, vol. 6, no. 2, p. 112–122, 1999.

[ART 05] ARTIGUES C., BILLAUT J.-C. and ESSWEIN C., “Maximization of solution
flexibility for robust shop scheduling”, European Journal of Operational Research, vol. 165,
no. 2, p. 314–328, 2005.

[AVE 00] AVERBAKH I., “On the complexity of a class of combinatorial optimization
problems with uncertainty”, Mathematical Programming, vol. Ser A 90, p. 263–272, 2000.

[BEN 99] BEN-TAL A. and NEMIROVSKI A., “Robust solutions of uncertain linear
programs”, Operations Research Letters, vol. 25, p. 1–13, 1999.

[BLA 01] BLAZEWICZ J., ECKER K.H., PESCH E., SCHMIDT G. and WEGLARZ J.,
Scheduling Computer and Manufacturing Processes, Springer-Verlag, Berlin, 2nd edition,
2001.

[BRU 07] BRUCKER P., Scheduling Algorithms, Springer-Verlag, Berlin, 5th edition, 2007.

[CHR 95] CHRÉTIENNE P., COFFMAN JR. E.G., LENSTRA J.K. and LIU Z. (Eds.),
Scheduling Theory and its Applications, John Wiley & Sons, 1995.

[DAN 95] DANIELS R.L. and KOUVELIS P., “Robust scheduling to hedge against processing
time uncertainty in single stage production”, Management Science, vol. 41, no. 2,
p. 363–376, 1995.

[DAN 97] DANIELS R.L. and CARILLO J.E., “β-robust scheduling for single-machine
systems with uncertain processing times”, IIE Transactions, vol. 29, p. 977–985, 1997.

[DAV 00] DAVENPORT A.J. and BECK J.C., A survey of techniques for scheduling with
uncertainty, available in http://www.eil.utoronto.ca/profiles/chris/chris.papers.html, 2000.

[DUB 03] DUBOIS D., FARGIER H. and FORTEMPS B., “Fuzzy scheduling: modelling
flexible constraints vs coping with incomplete knowledge”, European Journal of

Operational Research, vol. 147, p. 231–252, 2003.

[FIA 98] FIAT A. and WOEGINGER G.J. (Eds.), Online Algorithms, The State of the Art,
Lecture Notes in Computer Science, Springer, 1998.

[GOL 97] GOLDRATT E.M., Critical Chain, The North River Press Publishing Corporation,
Great Barrington, 1997.

[GRA 79] GRAHAM R.E., LAWLER E.L., LENSTRA J.K. and RINNOOY KAN A.,
“Optimization and approximation in deterministic sequencing and scheduling: a survey”,
Ann. Discrete Math., vol. 4, p. 287–326, 1979.

[HAL 04] HALL N. and POSNER M., “Sensitivity analysis for scheduling problems”, Journal

of Scheduling, vol. 7, p. 49–83, 2004.

