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We study the relationship between capacity and performance for a service firm with spatial operations, in

the sense that requests arrive with origin-destination pairs. An example of such a system is a ride-hailing

platform in which each customer arrives in the system with the need to travel from an origin to a destination.

We propose a state-dependent queueing model that captures spatial frictions as well as spatial economies of

scale through the service rate. In a classical M/M/n queueing model, the square root safety (SRS) staffing

rule is known to balance server utilization and customer wait times. By contrast, we find that the SRS rule

does not lead to such a balance in spatial systems. In a spatial environment, pickup times increase the load

in the system; furthermore, they are an endogenous source of extra workload that leads the system to only

operate efficiently if there is sufficient imbalance between supply and demand. In heavy traffic, we derive

the mapping from load to operating regimes and establish implications on various metrics of interest. In

particular, to obtain a balance of utilization and wait times, the service firm should use a higher safety

factor, proportional to the offered load to the power of 2/3. We also discuss implications of these results for

general systems.
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1. Introduction

Motivation. Many traditional service systems are characterized by static servers and customers

that arrive stochastically and line up in a queue before receiving service. These include call centers,

health-care facilities, and amusement parks, among others. In designing such systems, one faces a

tradeoff between the cost of servers and the quality of service as measured through the character-

istics of wait time. The prevalence of such systems has led to an extensive literature on capacity

sizing that has provided important practical guidelines about how to set capacity levels in service

systems. Typically, there is a fine balance between the two objectives. A central rule, the so-called
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square root safety (SRS) staffing rule, emerges naturally from different performance considerations.

In the SRS rule, the capacity is set at the nominal offered load plus a safety factor proportional

to the square root of the offered load. If one considers a social planner’s problem attempting to

minimize the system’s total cost measured by the aggregate of capacity and waiting costs, the SRS

rule is optimal in large systems. Another central metric in the literature and in practice is the

probability that a customer waits before being attended by a server, which has led to the coining of

various terms to describe the regimes of interest. Quality driven (QD) is the regime where customer

quality is paramount and, thus, the probability of waiting is vanishingly small. Efficiency driven

(ED) refers to the regime where cost concerns prevail. In ED, a customer’s probability of having to

wait approaches one. Quality and Efficiency driven (QED) is the intermediate regime, where the

probability that a customer waits is separated from both zero and one, leading to a fine balance

between utilization and quality of service. The latter is achieved through the SRS staffing rule.

The latter capacity is sufficient to ensure that a positive fraction of customers do not wait at all

before receiving service. .

However, there are other service systems in which customers arrive to random locations in space

and servers have to spend time not only servicing customers, but also reaching them before service

starts. This includes, for example, ride-hailing systems such as Uber, Lyft, Via and DiDi. On these

platforms, a customer requests a ride from a given location and a driver is then dispatched by the

platform to pick him up and take him to his desired destination.1 Automated warehouses powered

by Kiva robots (Amazon robotics) or the Ocado smart platform provide another example. In these

warehouses, products are arranged in a grid. As orders for different products arrive, robots are

dispatched to collect the products and transport them to picking stations. In these spatial multi-

server systems, workload is larger than in traditional systems because servers must reach customers

before starting to service them, making it unclear whether the SRS rule of thumb is still valid.

The central question of this paper is the following: How should “capacity thinking” be adapted to

spatial settings, where servers need to reach customers before service can start?

We anchor our analysis around a spatial multi-server system in which arrivals to a two-

dimensional region follow a Poisson process. A customer draws an origin and a destination uniformly

and independently in the region. From a pool of n servers, a central platform dispatches a server

that must reposition to the origin of her assigned customer and then take him to his desired des-

tination. This spatial multi-server system is different from a traditional queueing M/M/n service

system in at least two dimensions. First, servers must “pick up” customers by repositioning to a

customer location before starting service. This translates into extra workload added to the system

1 For consistency, we refer to customers as males and servers/drivers as females throughout the paper.



3

compared to a traditional system. Second, as the imbalance of servers and customers increases,

spatial economies of scale can make the system operate at a faster pace. For example, the larger the

spatial density of idle servers, the more opportunities for better matches and the shorter the time

it takes a server to pick up an arriving customer. Similarly, the larger the spatial density of waiting

customers, the more opportunities for better matches and the shorter the time it takes an idling

server to reach a customer. That is, in a spatial multi-server system, service rate is state-dependent

and might improve with large supply-demand imbalances. This is illustrated in Figure 1.
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Figure 1 Illustration of the potential for matches and the impact on pickup times.

In order to shed light on the capacity sizing question of interest, we take a macro view of the

spatial system by focusing on the key features that dictate its dynamics. More concretely, we

consider a Markovian stochastic model that captures the key characteristics of input and output

rates in the spatial multi-server system. Our Markovian model is a standard queueing system with

n servers, but with a state-dependent service rate that adequately reproduces the spatial economies

of scale of spatial systems. We analyze this queueing model in heavy traffic. On the one hand, the

queueing setting provides guidelines for how the spatial system will behave. On the other hand,

the spatial setting provides a physical interpretation of the queueing model results.

Main contributions. Our first contribution lies in the modeling domain. We develop a Marko-

vian model that captures fundamental aspects of capacity planning in dynamic spatial environ-

ments. The system we analyze features both service speedups and service slowdowns that emerge

due to the presence of spatial economies of scale. In addition, we ground our analysis on near-

optimal dispatch rules derived from the vehicle routing literature.

Our second contribution lies in the set of insights and fundamental results we obtain for this

class of problems. We first analyze a fluid model that highlights some of the key properties of
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such systems. We characterize in closed form the two possible stable equilibria of this deterministic

model. These equilibria correspond to two types of potential operating regimes: the first one with

a high density of waiting customers and the second one with a high density of idle servers. These

equilibria are depicted in Figure 1. In both of these operating points, the system is able to match

customers to servers efficiently since supply and demand are fairly imbalanced.

We then analyze the stochastic system in heavy traffic. In this setting we first establish that,

in stark contrast with a standard multi-server system, the SRS rule will always bring the spatial

multi-server system to the efficiency-driven (ED) regime, in which customers will wait for a server

to be dispatched with probability approaching one. In other words, the added workload due to

pickups is substantial enough and cannot be compensated by simply increasing capacity levels on

the order of the square root of the offered load.

In turn, we fully characterize the asymptotic system’s performance under a range of scalings. If

the capacity buffer is of lower order than the offered load to the power of 2/3, then the system is

in the efficiency-driven (ED) regime. The system operates around the ED equilibrium depicted in

Figure 1. If the capacity buffer is of higher order than the offered load to the power of 2/3, then

the system is in the quality-driven (QD) regime. The system operates around the QD equilibrium

depicted in Figure 1. Hence, in a spatial environment, the QED regime may only emerge if the

safety capacity is of order the offered load to the power of 2/3. We furthermore establish that

the QED regime can indeed be achieved. The QED regime does not correspond to a new stable

operating point of the system, but to a system that oscillates stochastically between the ED and

QD equilibrium points. Reaching the QED regime is more subtle in a spatial environment, as

now it does not only depend on the order of the safety capacity but also on second order terms.

Furthermore, as a by-product of this analysis, we can approximate the system cost and establish

that the power of 2/3 scaling is optimal in the sense that it minimizes a sum of server costs and

waiting costs, which is a natural social planner’s objective.

We show that the approximation method used, which greatly simplifies the analysis of an other-

wise highly non-tractable system, captures the fundamental features of the true system. We validate

our approach via a series of numerical simulations that show that the heavy-traffic behavior of our

Markovian system closely captures that of a simulated spatial multi-server system.

In sum, our model and results imply that common rules of thumb such as the SRS rule will

no longer be valid for spatial operations and, therefore, new staffing rules of thumb are necessary.

This has implications for how to think about such trade offs in automated warehouses and, with

the advent of fleets of self-driving cars, in ride-hailing platforms. Our results derive new rules of

thumb for the implications of capacity levels on the type of service regime they induce.
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2. Related Literature

Our paper relates to several streams of literature.

Staffing. Our goal is to analyze the performance of a system with customers arriving and being

served in a spatial setting as measured by the steady-state probability of waiting in heavy traffic.

The seminal work of Halfin and Whitt (1981) introduces the so-called Halfin-Whitt regime in which

the system is taken to heavy traffic by scaling the number of servers as R+ β ·
√
R where R is

the offered load. This is also known as the square root staffing (SRS) rule. Under this regime, the

authors show that in an M/M/n or GI/M/n, the system the probability of delay is strictly between

zero and one–the QED regime. Garnett et al. (2002) and Whitt (2004) study the Erlang-A case. For

more on the QED regime with applications to call centers, we refer the reader to the survey papers

by Gans et al. (2003) and Aksin et al. (2007). We also refer the reader to Whitt (2007) for related

work, and Reed (2009) for the more general case of the G/GI/n system. Bassamboo et al. (2010)

study the capacity sizing problem in an environment in which there is also parameter uncertainty

for mean arrival rate, deriving new prescriptions for such settings and articulating how to operate

depending on whether one is in an uncertainty-dominated or a variability-dominated regime. Our

work is complementary to this literature in the sense that we also analyze the performance of the

system as measured by the probability of delay. In our model, however, the presence of spatial

frictions affects dynamics and introduces state-dependencies, leading to fundamental changes in

how capacity should be scaled to achieve QED performance. For an in depth discussion about

limiting regimes (ranging from the conventional heavy traffic regime to the Halfin-Whitt regime

and passing through the slowdown regime) and their implications for diffusion approximations in

non-spatial environments we refer the reader to Ward (2012) and Atar (2012).

State-dependent service rate. The general spatial system we aim to understand is complex

and generally intractable. To gain insight we consider a simpler Markovian version of it that can

be regarded as an M/MQ/n system. Our work is thus related to the broad literature on Markovian

system and birth and death processes, and in particular to the works that study service systems

with state-dependent processing rates; for some examples we refer the reader to Mandelbaum and

Pats (1995), Mandelbaum et al. (1998) and Powell and Schultz (2004). Chan et al. (2014) study an

Erlang-R service system in which the service rate can be sped up whenever congestion is above a

certain threshold . Using a fluid analysis they show that, depending on system parameters, speeding

up service can lead to both desirable and undesirable system congestion levels. In related work,

Dong et al. (2015) study a service system in which agents are sensitive to individual future work

load and reduce their service rate as the system’s workload increases. They show that depending

on load sensitivity, the system’s slowdowns can take it from moderate to substantial deterioration.
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Our work can be considered as a combination of both speedups and slowdowns, and the exact

form of these in our context is driven by spatial economies of scale. As the number customers

in our system increases beyond n, the density of waiting customers increases and, therefore, the

next idling servers can spend less time picking up customers, i.e., service rate speeds up. Similarly,

when the number of customer is increasing but below n, the density of idle cars decreases and,

therefore, arriving customers may experience larger pickup times, i.e., service rate is slowed down.

These effects are a result of the physical nature of our system. Related to the above papers, and

in particular Dong et al. (2015), our system features some form of bi-stability in an underlying

tightly related deterministic model. In contrast, however, the equilibria emerge on different scales

in our setting and asymptotically in the stochastic system, these can survive jointly.

Stochastic vehicle routing. Another related stream of related work is that of dynamic routing

problems. Routing is a highly complex class of problems and measuring the performance of routing

algorithms is challenging. Bertsimas and van Ryzin (1991, 1993) show that the scaling of queues

in space is fundamentally different to the one when space is ignored. In particular, Bertsimas and

van Ryzin (1991, 1993) obtain a lower bound for the minimum expected total time in the system

under any dispatching policy given by Θ(λ/(n2(1− ρ)2)) + Θ(1) in heavy traffic, as the offered

load converges to 1. This is a remarkable result that provides a lower bound for all dispatching

policies and in turn sets a target for the optimal expected time in the system which can be used

as a guideline to measure the performance of policies. Interestingly, the size of the system scales

with 1/(1− ρ)2 and not with 1/(1− ρ) as happens in the standard M/M/n system. Thus the fact

that we are taking into account space fundamentally changes how the system scales with traffic

intensity.

Ride-hailing. In the young but quickly growing literature on ride-hailing systems, customers

arrive in a spatial region and a platform matches them to drivers who, in turn, take the customers

to their desired destinations. For the important problem of spatial incentives in ride-hailing system

we refer the reader to Banerjee et al. (2015), Bimpikis et al. (2016), Castillo et al. (2017), Afèche

et al. (2018) and Besbes et al. (2018).

Closer to our work are the studies that investigate the problem of matching to optimize certain

performance metrics. Using a fluid approach in a closed queueing network, Braverman et al. (2016)

study how to route empty cars in order to maximize network utility. In related work, Ozkan and

Ward (2016) use a fluid approach to derive policies that maximize the number of matches. Banerjee

et al. (2018) study matching in a closed queueing network, and show that for a Scaled MaxWeight

policy, the proportion of dropped demand in steady state decays exponentially fast as the number of

servers in the system grows large. In a circular city framework, Feng et al. (2017) analyze the waiting

time performance of different matching mechanisms. The focus of this paper, in contrast, is to
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understand how to think about capacity planning in spatial environments. Rather than optimizing

over the space of dispatching policies, we anchor our analysis around a near-optimal dispatching

policy.

Closest to our setting is Castillo et al. (2017). There, the authors also analyze inefficiencies

stemming from additional workload in a spatial system, and study the possible use of surge pricing

to alleviate these. Our study focuses on a different question, that of capacity planning. The two

papers utilize different dispatch policies. Our framework can be used to analyze the type of dis-

patching considered there, in which the additional capacity needed would be of order the offered

load. In contrast, in our case, we focus on a class of provably near-optimal dispatch rules based on

the vehicle routing literature mentioned above, which, as we establish, enables one to only need a

safety capacity of the order the offered load to the power of 2/3.

3. Spatial Queueing Model

We introduce a stochastic model for spatial capacity planning within a bounded region of a plane.

Our model is an M/MQ/n queueing system (in Kendall’s notation MQ stands for state-dependent

service time) that captures the fundamental aspects of a spatial system that experiences arrivals

and dispatches servers to attend to those arrivals.

3.1. Model

Motivation. We consider two models in our paper. The first is what we call the general system,

where spatial elements such as origin-destination pairs of customers are explicitly modeled. The

second is a Markovian system, which is a queueing system that approximates the general system.

In the Markovian system, the spatial frictions are captured in reduced form via a state-dependent

service time. All of the mathematical results in the paper establish properties of the Markovian

system that can be regarded as qualitative prescriptions for the general system. Indeed, in Section

6, we use simulation to demonstrate that the Markovian system approximates the behavior of the

general system quite well.

We are interested in gaining insights on the following general system. There is a central platform,

customers and servers that interact in a bounded connected subset C of R2 (the city). Customers

arrive according to a Poisson process in the city at uniformly distributed locations in the city. Each

customer wishes to travel from the point they arrive to some other point also drawn uniformly at

random among all locations in C. Customers are patient and will remain in the system until served.

There is a fixed number of servers in the system, and each one can serve one customer at a

time at a constant velocity. A server first repositions to the arrival location of a customer, and
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then she transports that customer to his destination. Upon arrival to his final destination, the

customer leaves the system and the server becomes idle and waits until the platform relocates her.

The repositioning of servers occurs according to some state-dependent dispatching algorithm and

is controlled by the platform.

Any given customer experiences a total time in the system that is composed of three components:

waiting time, pickup time and en-route time:

Time in the system = Waiting + Pickup + En-route. (1)

The waiting time corresponds to the time a customer spends in the system before he is assigned a

server to pick him up. The pickup time represents the time it takes for the server to relocate from

where she currently is to the customer’s origin location. The en-route time is the time it takes to

transport a customer from his origin to his destination.

The system described at a high level above is complex and intractable to analyze in its full gen-

erality, given the stochasticity of the system, the high-dimensional state-space, and the complexity

of the space of possible dispatching policies.

Queueing model. In this paper we study what we call the Markovian system, which is a simpler

queueing model that still captures the spatial features of the general system. In setting up our

model, we deliberately forego the complex interactions among agents that make the general system

intractable, and focus on the overall physical dynamics that dictate the processing performance of

the system. We further discuss our modeling assumptions in Section 3.2.

We focus on a model in which customers arrive to the system according to a Poisson process

with rate λ, and stay until served. There is a total of n identical servers that provide service to

one customer at a time in a first come, first serve fashion. We assume that the time between the

assignment of a server to a customer and the end of the service is exponentially distributed with

state-dependent rate µ(·). Upon arrival, if a customer finds a server idle, he is immediately assigned

a server; otherwise, he waits in line. This leads to an M/MQ/n queueing system. We use Q(t)

to denote the total number of customers in the system at time t, which includes both customers

waiting and in service.

The distinctive feature of the system we analyze and what makes it depart from a traditional

multi-server queue is that servers must be repositioned to serve customers. As a result, the total

time a server spends on a single customer corresponds to pickup time plus en-route time as opposed

to just en-route time—the analogue to service time in a traditional queueing system. In turn, in

order to capture the overall processing performance of the general system, the key is to select an

appropriate function µ(·) that isolates spatial frictions through the combination of both pickup

and en-route times as highlighted in Eq. (1).
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Any sensible choice of the service rate must be such that its inverse, 1/µ(·), has two components:

one reflecting pickup times and the other en-route times. En-route times are simple. They corre-

spond to the distance between two random locations in C (properly scaled by the velocity) and do

not depend on the state of the system. If we let s̄t to denote the expected time to move between

two random points in C (for some nominal velocity), then it follows that one of the components of

1/µ(·) will be equal to s̄t. The remaining component has to relate to pickup times. These are more

involved as they depend on how, based on the state of the system, the platform decides to do the

assignment of servers to customers—the dispatching algorithm. To overcome this difficulty it is

convenient to look at the physics of the spatial system under a particular dispatching algorithm. In

the present study, we anchor our analysis around the asymptotic behavior of one notable dispatch-

ing algorithm: nearest-neighbors dispatch (NN). This algorithm is simple, intuitively appealing, and

it is also near-optimal.2 If there are more servers than customers, NN assigns the next arriving

customer to its closest available servers. If there are less servers than customers, NN assigns the

next idling server to its closest waiting customer.

The asymptotic behavior of NN, which we discuss in Section 3.2, leads to a particular form of the

expected service time which, in turn, motivates the following expression for the state-depend rate

of our queueing system when its state is q

1

µ(q)
,

s̄p√
|q−n| ∨ 1

+ s̄t, q≥ 0, (2)

for two given positive constants s̄p and s̄t, where s̄p represents the average pickup time when there

is one server available and one passenger request. The form in Eq. (2) captures spatial frictions in

the following way. Consider the queueing system. If Q(t)� n, then |Q(t)− n| is large and many

servers are available, and thus, 1/µ(Q(t)) is close to s̄t, the expected en-route time. The pickup

time should be negligible given the high density of free servers in space. Similarly, if Q(t)� n, then

many customers are waiting and a match with a low pickup time could be found given the high

density of customers in space. Indeed, we also have that 1/µ(Q(t)) is close to s̄t in this scenario.

The important point is that whenever there is a critical idle/waiting mass at either side of the

market, the physical nature of the system allows it to process customers efficiently. When Q(t)≈ n,

we expect the match between server and customer to lead to a significantly higher pickup time.

In our model, a customer’s total expected service time will be close to s̄p + s̄t when Q(t)≈ n. For

notational simplicity, we assume s̄t = s̄p throughout the next few sections, and denote this quantity

simply by s̄. When we simulate the system in Section 6, we allow s̄t and s̄p to take distinct values.

2 Among the policies that minimize customers’ expected total system time, NN achieves near optimal performance
(see e.g., Bertsimas and van Ryzin (1991)) .
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Performance Metrics. The main objective of this paper is to understand the implications of

spatial frictions on performance metrics of the service system. In particular, we analyze these in

an asymptotic regime in which the number of servers and the arrival rate grow large. We analyze

the system in heavy traffic and consider a sequence of M/MQ/n queues indexed by n, with arrival

rate λn such that

ρn < 1, lim
n→∞

λn =∞, lim
n→∞

(1− ρn)nα = β, for some β ∈R+, α∈ (0,1), (3)

where ρn equals s̄ · λn/n. Thus, ρn approaches 1 from below at rate 1/nα. Under these different

scalings (as α varies), our goal is to study key performance metrics associated with the system.

We let {Qn(t)}t≥0 denote the number of customers in the n-system. The dynamics of Qn(t) can

be written as follows. Let A= {A(t) : t≥ 0} and S = {S(t) : t≥ 0} be two independent unit rate

Poisson processes. The path-wise construction of Qn is

Qn(t) =Qn(0) +A(λt)−S
(∫ t

0

µn(Qn(u)) ·min(n,Qn(u))du

)
, Qn(0) =Q0. (4)

The term Q0 corresponds to the initial state of the system, the second term captures the cumulative

arrivals up to time t, and the third term refers to the cumulative departures up to t. In the latter,

µn(Qn(t)) ·min(n,Qn(t)) corresponds to the service rate of the system, with µn(Qn(t)) representing

the service rate per server at time t and min(n,Qn(t)) the number of non-idle servers at time t.

We use Qn(∞) to denote a random variable representing the number of customers in the system

in steady-state. One key central metric we are interested in quantifying is the steady-state limiting

delay probability

P∞(W ), lim
n→∞

P[Qn(∞)≥ n],

in order to assess the system performance. As in classical multi-server queues (see, e.g., Halfin

and Whitt (1981)), if P∞(W ) = 1, the system is said to be operating in the efficiency-driven (ED)

regime, if P∞(W ) = 0 the system is said to be operating in the quality-driven (QD) regime, and if

P∞(W )∈ (0,1), the system is said to be in the quality- and efficiency-driven (QED) regime. In the

coming sections, we characterize how P∞(W ) changes as the values of α and β change. In turn, we

will also analyze implications on various other metrics such as, e.g., total system cost.

3.2. Discussion of the Modeling Assumptions

We now provide an asymptotic grounding for Eq. (2), based on the NN dispatching algorithm that

is studied in the vehicle routing literature (Bertsimas and van Ryzin (1991)). Recall that for this

policy, when there are more servers than customers, the closest idle server is assigned to a new

arrival (see Figure 2 (a)). In the case when there are more customers than servers, as soon as a

server becomes idle, we assign her to the closest customer (see Figure 2 (b)).
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Figure 2 Nearest neighbor policy (NN). In (a) we have Q(t)<n, in (b) we have Q(t)>n.

The connection between µ(·) and NN comes from the following argument. Consider a general

system operating under NN. Suppose that at time t there is a total of Q(t) customers, and that

server j was matched to customer i. Depending on the state of the system, the assignment could

have happened in two different ways. If Q(t)<n, server j must be the closest idle server to customer

i among n−Q(t) idle servers (see Figure 2 (a)). If Q(t)≥ n, customer i must be the closest waiting

customer to server j among Q(t)−n waiting customers (see Figure 2 (b)). In either case customer

i’s pickup time can be computed by comparing the distance of the closest of |Q(t)−n| ∨1 random

variables uniformly distributed in C to a single point. We can then use the following standard result

from probability to obtain an asymptotic approximation for a customer’s expected pickup time

under NN.

Lemma 1. Let X1,X2, . . . be a sequence of independent uniformly distributed random points in

C . Then, the expected minimum distance to any x0 in the interior of C satisfies

E

[
min

i=1,...,k
‖Xi−x0‖

]
= Θ

(
1√
k

)
, as k ↑∞.

Conditioning on Q(t) and ignoring any dependencies among the involved random variables, Lemma

1 suggests the following approximation for a customer’s expected pickup time

E[Pickup|Q(t)]≈ s̄p√
|Q(t)−n| ∨ 1

,

for some positive s̄p. The first term in Eq. (2) incorporates this approximation.

We note that the particular approximation we use in µ(·) discussed above is not the only sim-

plifying assumption we use in the Markovian system. We also assume that server travel times,

including both pickup and en-route times, are exponentially distributed. We argue in Section 6

using simulation that our approximations are reasonable, in the sense that the Markovian system

approximates well the behavior of the general system.

First-dispatch. Another dispatching protocol that has received attention in the literature is

first-dispatch (FD). Under FD, an arriving customer is assigned as soon as possible to the closest idle
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server. Consider again Figure 2. In the situation depicted on the left panel (a), NN and FD operate

according to the same rules. However, in the situation represented by the right panel (b) of Figure

2, the two dispatch rules operate quite differently. In this case, the FD dispatching algorithm assigns

the next idling server to the longest waiting customer. As pointed out by Castillo et al. (2017),

the FD dispatch rule can lead the system to a bad equilibrium they call the Wild Goose Chase in

which servers spend long times picking up customers. Our framework can be used to analyze the

systems’ performance under the FD dispatch policy. Using Lemma 1 we can derive the following

expression for an approximate service rate under FD:

1

µFD(q)
=

s̄p√
(n− q)+ ∨ 1

+ s̄t, q≥ 0.

Unlike the NN policy, the FD policy does not make use of spatial economies of scale when the system

is heavily loaded with customers (q > n); instead, it serves customers on a first come first serve

basis. This gives rise to the Wild Goose Chase phenomenon. Under this inefficient dispatching

protocol, the number of servers required to escape ED performance equals the offered load plus a

buffer term that is of the same order of the offered load, as opposed to a buffer of the order of the

offered load to the power of 2/3 under NN. The NN dispatching protocol avoids this bad equilibrium

outcome by exploiting spatial economies of scale even when the system is heavily loaded with

customers.

4. Dynamics of a Related Deterministic System

Before we study the stochastic limiting properties of the Markovian system in Section 5, we analyze

the properties of a deterministic version of it that will provide natural candidate focal points for the

former system and initial insights on its behavior. In particular, we focus on a natural deterministic

counterpart of Eq. (4).

Deterministic dynamics. Consider the dynamics of Q̃n(·) described by

Q̃n(t) = Q̃n(0) +λnt−
∫ t

0

µn

(
Q̃n(u)

)
·min

(
n, Q̃n(u)

)
du, Q̃n(0) = Q̃0,

where Q̃0 is a non-negative constant. This dynamical system has a simple interpretation. A fluid of

customers joins the system at rate λn and departs at state-dependent rate µn(Q̃n(t)) ·min(n, Q̃n(t)).

This dynamical system is a deterministic version of the one presented in Eq. (4). From the equation

above, we can write Q̃n as the solution of the ordinary differential equation

dQ̃n(t)

dt
= fn(Q̃n(t)), Q̃n(0) = Q̃0, (5)

where

fn(q) , λn−µn(q) ·min{n, q}.
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Since µn(·) is a Lipschitz continuous function, so is fn(·). Therefore, by the Picard-Lindelof

theorem, the ODE in Eq. (5) has a unique solution, which we denote by Φ(q0, t) for a given

Q̃n(0) = q0. In what follows, we study the equilibrium points of this solution.

Definition 1 (Equilibria). We say that a point q∗ is an equilibrium point of the dynamic

system presented in Eq. (5) if

Φ(q∗, t) = q∗, for all t≥ 0.

An equilibrium point q∗ is such that if the systems starts at q∗, then the systems remains at q∗

for all t ≥ 0. Observe that we can compute an equilibrium by solving fn(q∗) = 0. In general, a

dynamical system can have multiple equilibria but these may have different properties. We classify

the equilibria according to the following definition.

Definition 2 (Stability of Equilibria). An equilibrium q∗ of Eq. (5) is said to be stable if

for any ε > 0, there exists δ > 0 such that if |q−q∗|< δ, then |Φ(q, t)−q∗|< ε for all t≥ 0. Otherwise,

q∗ is unstable. If q∗ is stable and there exists δ > 0 such that if |q−q∗|< δ, then limt→∞Φ(q, t) = q∗,

we say that q∗ is locally asymptotically stable. If limt→∞Φ(q, t) = q∗ for any q≥ 0, we say that q∗ is

globally asymptotically stable.

Informally, an equilibrium q∗ is stable if whenever the system is slightly perturbed from q∗, it

remains near q∗. An equilibrium q∗ is unstable if small perturbations of the system around q∗ take

the system away from q∗. If for any starting point q, the dynamic Φ(q, t) converges to q∗ then q∗

is globally asymptotically stable. If the latter is true but only in a neighborhood of q∗ then q∗ is

locally asymptotically stable. Next we study the equilibria of the dynamical system from Eq. (5).

Equilibria characterization. Recall that the equilibrium points of Eq. (5) can be found by

solving fn(q∗) = 0. The next theorem provides a complete description of the solutions to this

equation for n large.

Theorem 1 (Equilibrium Points). Suppose limn→∞(1− ρn)nα = β and ρn ↑ 1, and let β∗1 =

3/(41/3).

(i) Then, there exists n0 such that for all n≥ n0, the system from Eq. (5) admits an equilibrium

given by

qn = n+
ρ2
n

(1− ρn)2
.

Furthermore, this equilibrium is unique and globally asymptotically stable if α> 1/3 or if α= 1/3

and β < β∗1 .

(ii) Suppose α< 1/3 or α= 1/3 and β > β∗1 . Then, there exists n0 such that for all n≥ n0, the

system from Eq. (5) admits three equilibria given by

qn = n+
ρ2
n

(1− ρn)2
, (6)

q
n

= n−n · (1− ρn) · r0,n(ρn), (7)

q̃n = n−n · (1− ρn) · r1,n(ρn), (8)
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where

ri,n(ρn) =
4

3
· cos

(
1

3
arccos

(
−
√

27ρ2
n

4n · (1− ρn)3

)
− 2πi

3

)2

, i∈ {0,1}.

Furthermore, qn and q
n

are locally asymptotically stable and q̃n is an unstable equilibrium.

The result establishes that there are two fundamentally different regimes where the system from

Eq. (5) can operate. When the system is heavily loaded, in the sense that α > 1/3 or α = 1/3

and β < β∗1 , then the queue length converges to a point qn >n as t grows to ∞, independently of

the initial condition. Furthermore the exact characterization of qn provides additional insights. We

have

qn = n+
ρ2
n

(1− ρn)2
≈ n+

1

β2
n2α.

Hence, in such a system, asymptotically, there are always order n2α customers waiting in the system

to be served.

As the load decreases (α decreases) and when the system is such that α < 1/3 or α= 1/3 and

β > β∗1 , then the behavior of the system is more subtle. There are two locally stable equilibria and

one unstable equilibrium. Now the same equilibrium qn still exists and is locally stable, but a new

locally stable equilibrium emerges, q
n
. It is possible to show that this new equilibrium is such that3

q
n
≈ n− c n1−α,

for an appropriate constant c. In other words, in such an equilibrium, there are always idle servers,

and there is order n1−α such idle servers. Hence, there are two locally stable equilibria, one with all

servers busy and customers waiting (qn) and one with idle servers and no customers waiting (q
n
).

Proof sketch and intuition. The proof of Theorem 1 relies on analyzing both equilibrium

points and their stability properties. To establish the equilibria, we determine the zero crossings of

fn(·). With some slight rewriting,

fn(q) = λn−µn(q) ·min{n, q} = λn

1−
(

1√
|q−n| ∨ 1

+ 1

)−1

· min{n, q}
λns̄

 = λn

[
1− g2,n(q)

g1,n(q)

]
,

with g1,n(q) = 1 +
1√

|n− q| ∨ 1
, g2,n(q) =

min(n, q)

λns̄
.

The function g1,n(q) is proportional to the amount of work a system with n servers needs to do

per customer when there are q customers in the system. Analogously, g2,n(q) is proportional to

the amount of work the system with n servers is capable of doing per customer when there are

3 This can be seeing by analyzing the Taylor expansion of the term r0,n(ρn).
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q customers in the system. Hence, determining the sign of fn(q) amounts to comparing the sizes

of g1,n(q) and g2,n(q). When the former is larger than the latter, we have fn(q)> 0 and the queue

size grows. When the inverse is true, fn(q)< 0, the queue size shrinks. When they are equal, we

obtain an equilibrium point by solving for q. Figure 3 depicts the two functions for the two different

regimes.

q0

1

2

nq
n q̃n qnq0 n

1

2

qn

g1,n(q) g2,n(q)

(b)(a)

Figure 3 Equilibria points for system from Eq. (5). Plots (a) and (b) correspond to regimes (i) and (ii) from

Theorem 1, respectively. The points where the functions g1,n(q) and g2,n(q) cross correspond to equilibria points.

As for stability, the queue length tends to grow when g1,n(q)> g2,n(q) since the amount of work

the system needs to perform per customer is greater than its ability to do work per customer.

Similarly, g1,n(q)< g2,n(q) implies the system can handle the current workload and that the queue

size is decreasing. Therefore, the two equilibrium points in regime (ii) where g1,n(q) > g2,n(q) to

their left and g1,n(q)< g2,n(q) to their right, q
n

and qn, are stable, while q̃n is not.

An important observation is about what drives the differences between the regimes. From the

heavy traffic scaling (see Eq. (3)) we have that g2,n(q)≈ q/(n− β · n1−α) for all q < n. It follows

that for q < n the slope of g2,n(q) is determined by both α and β. The theorem establishes that

when α is large enough the slope of g2,n(q) is not steep enough to cross g1,n(q) and, therefore, the

only possible equilibrium is qn (See Figure 3 (a)). Similarly, if α is small enough then g2,n(q) is

steep enough to cross g1,n(q); thus, the two extra equilibria q
n

and q̃n emerge (See Figure 3 (b)).

The transition point occurs when α equals 1/3. In this case, depending on the choice of β, the two

extra equilibria may or may not exist. As β increases, the slope of g2,n(q) increases until it reaches

a point from which on g2,n(q) is steep enough so that the two equilibria to the left of n materialize.

Interpretation in terms of the queueing system. In terms of the queuing model, when

the number of customers is much larger than n, service times become shorter. In turn, the system

processes customers more efficiently, which brings the total number of customers down. In addition,

when the number of customers is close to n, service times are not as short as in the previous

situation. This implies that the system is not as effective in processing customer, bringing the total
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number of customers up. That is, the queueing system (and also the general system) has a self-

regulating property that is captured by the deterministic system through the equilibrium qn. When

the number of customers is low (when q < q
n
), despite the fact that each customer experiences a

“short” pickup time, there are just not enough customers in the system so that the arrival rate

dominates departure rate, which increases the number of customers in the system. For a medium

number of customers (when q ∈ (q
n
, q̃n)), there are enough idle servers so that we are processing

customer efficiently, but also there are enough customers in the system so that arrivals can be

dominated by departures. This brings the number of customers in the system down. For a large

number of customers (q ∈ (q̃n, n)), there are not enough idle servers. Therefore, the service time of

customers becomes large and, as a consequence, so does the number of customers in the system.

That is, for states below n, the queueing system also has a self-regulating property that is captured

by the deterministic dynamics through the equilibrium q
n
. Therefore, one might expect q

n
and qn

to play focal roles in the queueing system, which they indeed do when we analyze the stochastic

version of the system in Section 5.

5. Limiting Regimes

In this section, we first investigate the properties of the Markovian system in steady state, where

the equilibria derived in the previous section for the deterministic system from Eq. (5) will play a

central role. We then analyze the system in the asymptotic regime from Eq. (3), parametrized by

α and β. In turn, our results lead to a parametrization of the system’s regimes: QD, ED and QED.

We also discuss some managerial implications of the results.

5.1. Steady-State Analysis

Before we provide our main results, observe that for a given scale n, the process Qn(t) is a birth

and death process with birth rate λn and state-dependent death rate µn(Qn(u)) ·min(n,Qn(u)).

Letting πn(k) be the steady-state probability that the n-system is in state k, the detailed balance

equations yield

πn(k) · fn(k)

λn
= πn(k)−πn(k− 1), k≥ 1. (9)

We first characterize the shape of the steady-state distribution πn(·) for systems with large scale.

Proposition 1 (Steady-state Probability Distribution). Suppose that limn→∞(1 −
ρn)nα = β, ρn ↑ 1, and let β∗1 = 3/(41/3). Then the following holds.

(i) If α> 1/3 or if α= 1/3 and β < β∗1 , then for n sufficiently large, the steady distribution πn(·)
is unimodular with a mode at bqnc.
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(ii) If α < 1/3 or if α = 1/3 and β > β∗1 , then for n sufficiently large, the steady distribution

πn(·) admits two modes, one at bq
n
c and one at bqnc.

This result leverages Eq. (9) and the intuition obtained from Figure 3 to link the equilibria of

the deterministic system from Eq. (5) with the modes of πn(k). From Eq. (9), we note that the

monotonicity of πn(·) can be determined by looking at the sign of fn(·). In turn, Proposition 1

establishes that πn(·) has at most two modes and that those modes are close to the equilibrium

points. There is always one at bqnc, and, depending on the scaling parameters, there may or may

not be another one at bq
n
c. We represent the two possibilities in Figure 4.

Q̃n0

πn(·)

n

bq
n
c bq̃nc bqncQ̃n0

πn(·)

n

bqnc
(b)(a)

Figure 4 Steady-state probability πn(·). In (a), which corresponds to regime (i) in Proposition 1, the state

distribution is unimodal with a peak at bqnc. In (b), which corresponds to regime (ii) in Proposition 1, the state

distribution is bimodal with peaks at bq
n
c and bqnc.

Whenever α > 1/3, πn(·) is unimodal and it peaks once to the right of n, see Figure 4(a). If

α < 1/3, πn(·) is bimodal and it also peaks to the left of n, see Figure 4(b). If α= 1/3 these two

cases are possible depending on the parameter β. This is in line with the intuition we obtained

from the deterministic analysis in Section 4.

In steady-state, one expects that the system spends most of the time around the modes of the

distribution. However, when assessing the performance of the system in terms of probability of

having to wait for a server to be assigned, one needs to analyze the steady-state distribution beyond

its modes to evaluate how mass is distributed. We do so next.

5.2. Service Regimes

We start our analysis of service regimes by analyzing the quality-driven (QD) and effiency-driven

(ED) regimes.
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5.2.1. QD and ED regimes. We first establish sufficient conditions for the ED and QD

regimes to emerge.

Theorem 2 (Limiting Regimes). Fix α∈ (0,1) and β > 0. Suppose that limn→∞ n
α(1−ρn) =

β. Then, there exists β∗2 >β
∗
1 such that

(i) (ED Regime) if α∈ (1/3,1) or if α= 1/3 and β < β∗2 , then

P∞(W ) = 1,

(ii) (QD Regime) if α∈ (0,1/3) or if α= 1/3 and β > β∗2 , then

P∞(W ) = 0.

Theorem 2 provides a crisp characterization of the domains in which the ED and QD regimes

emerge. If α∈ (1/3,1) or if α= 1/3 and β < β∗2 , then recall from Proposition 1 that the steady-state

probability of the number of customers in the system admits only one mode at bqnc, which is higher

than n, the number of servers. Part (i) of Theorem 2 establishes that the mass is concentrated to

the right of n and hence servers are almost always either en route to customers or transporting

customers and almost never idle. In turn, customers, will have to wait with probability close to 1

before being assigned a server.

If α ∈ (0,1/3) or if α= 1/3 and β > β∗2 , then the the steady-state probability of the number of

customers in the system admits two modes (cf. Proposition 1 part (ii)), one at bqnc which is higher

than n and one at bq
n
c which is lower than n. Part (ii) of Theorem 2 establishes that the mass is

concentrated to the left of n and hence there is almost always a fraction of servers that idle and

customers almost never wait before being assigned a server. In other words, the mode to the right

of n plays little role in this parameter regime.

Discussion of Capacity Planning. To further appreciate the result, recall that since nα(1−
ρn)→ β we have

n−λns̄
(λns̄)1−α → β, that is, n≈ λns̄ + β · (λns̄)1−α. (10)

The term λns̄ corresponds to the standard offered load of the system as defined for standard

M/M/n multi-server systems. In heavy traffic, this quantity determines how the capacity of the

system should be scaled with the arrival rate of customers. First, there is a nominal term, which

is simply λns̄, that accounts for the expected amount of work requested by customers. The second

term β ·(λns̄)1−α is a buffer term that accounts for stochastic variations of the system. In a classical

M/M/n setting, when α< 1/2, the system is in the QD regime, when α> 1/2, the system is in the

ED regime, and when α= 1/2 the system is in the QED regime. In contrast, in our setting when

the buffer term is β · (λns̄)1/2, the system is in the ED regime no matter the choice of β. Since our
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model captures spatial frictions, this result highlights that in a setting where servers need to reach

customers before the start of effective service, the capacity needed to achieve QED performance

is fundamentally different than in a standard setting. Moreover, spatial frictions create the need

for more servers than in a standard setting for the system to operate in the QD regime. Indeed,

in our model the buffer term must be β · (λns̄)m with m ≥ 2/3. The transition between ED and

QD occurs when the buffer term is β · (λns̄)2/3, that is, the QED regime can only happen with a

scaling of 2/3 which is orders of magnitude larger than the traditional SRS rule of thumb.

Proof sketch of Theorem 2. The proof of Theorem 2 consists on bounding above the terms

P[Qn(∞)< n] and P[Qn(∞)≥ n], respectively, and then using asymptotic relations between the

mode probabilities as established in the following result.

Proposition 2. Fix α∈ (0,1) and β > 0. Suppose that limn→∞ n
α(1− ρn) = β then

(i)

lim
n→∞

1

nα
log
(πn(bqnc)

πn(n)

)
=

1

β
,

(ii) if α< 1/3 then

lim
n→∞

1

n1−2α
log
(πn(bqnc)
πn(bq

n
c)
)

=−β
2

2
,

(iii) if α= 1/3 then there exists a function g(·) such that

lim
n→∞

1

n1/3
log
(πn(bqnc)
πn(bq

n
c)
)

= g(β).

And there exists β∗2 > β∗1 such that g(β∗2) = 0 and if β∗1 < β < β∗2 then g(β)> 0, whereas if β > β∗2

then g(β)< 0.

Proposition 2 shows how the peak of the modes of πn(·) compare to each other as n grows large.

When α > 1/3, for large n, there is only one peak given by bqnc. From part (i), its steady-state

probability satisfies

πn(bqnc)≈ πn(n) · enα/β,

that is, πn(bqnc) is exponentially larger than πn(n). Since πn(·) is increasing to the left of bqnc
(see Proposition 1), this suggests that, in the limit, the number of customers in the system will be

above n with high probabilty. In other words, the system will be in the ED regime.

For the case when α< 1/3, Proposition 1 states that πn(·) is bimodal and, therefore, there could

be mass around both peaks. However, part (ii) of the proposition establishes that πn(bq
n
c) is

exponentially larger than πn(bqnc),

πn(bq
n
c)≈ πn(bqnc) · e

1
2β

2n1−2α

.
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This suggests that when α > 1/3, the tail of πn(·) to the right of n vanishes as n becomes large.

In turn, the number of customers in the system should be below n with high probability. In other

words, while the distribution πn(·), has two modes, only one mode “matters” and we expect the

system to be in the QD regime.

The threshold case is α= 1/3. In this case whether πn(bqnc) dominates πn(bq
n
c) (or vice-versa)

is governed by β. When β < β∗1 , from Proposition 1, we know that bqnc is the only mode and,

therefore, πn(bqnc) dominates. If β ∈ (β∗1 , β
∗
2) then bq

n
c is also a mode; however, part (iii) of the

proposition establishes that πn(bqnc) is exponentially larger than πn(bq
n
c). That is, in this case

bq
n
c transitions into becoming a mode, but the mass it contributes is not large enough and it

vanishes as n increases. Therefore, for β < β∗2 , the system will be in the ED regime. In contrast,

when β > β∗2 , the roles of πn(bqnc) and πn(bq
n
c) reverse. This indicates that for β > β∗2 , the system

will be in the QD regime.

5.2.2. QED regime Theorem 2 implies that the QED regime, in which the asymptotic prob-

ability that customers have to wait for a server to be assigned is such that P∞(W ) ∈ (0,1), may

only occur if α = 1/3 and β = β∗2 as for all other values, the system is either in the ED or QD

regimes. It is already apparent that the QED regime is much more subtle in our Markovian system

than in classical M/M/n systems as both the buffer order of magnitude (determined by α) and the

constant in front of the buffer size (determined by β) need to be pinned down. The transition from

QD to ED regimes does not occur through the constants in front of the buffer order of magnitude,

leaving the question open of whether the QED regime exists at all in our Markovian system and, if

so, how may it be reached. The next result establishes that there exists a QED regime and provides

a characterization of it.

Theorem 3 (QED Regime). Let pH ∈ (0,1). There exists a sequence {γn : n≥ 1} with γn→ 0

as n ↑∞ and a function pL(pH)∈ (0,1), such that if n1/3(1− ρn) = β∗2 + γn then

pL(pH) ≤ lim inf
n→∞

P[Qn(∞)≥ n]≤ limsup
n→∞

P[Qn(∞)≥ n] ≤ pH ,

with pL(·) strictly increasing in pH and such that limpH→1 pL(pH) = 1 and limpH→0 pL(pH) = 0.

This result establishes a regime such that for n large enough the probability of waiting to be

assigned a server is in (0,1). In turn, the probability of not waiting also belongs to (0,1). That

is, the system is in the QED regime. We have not pinned down an exact expression for these

probabilities but, instead, we have provided a range. As one varies pH ∈ (0,1), one can achieve the

extreme regimes. If pH ≈ 1 then from the theorem we can deduce that P[Qn(∞)≥ n]≈ 1; if pH ≈ 0

then we can deduce that P[Qn(∞)≥ n]≈ 0.
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Capacity Planning for the QED Regime. From a practical perspective, Theorem 3 provides

two important insights. First, it shows that QED performance is achieved at a different scaling

than in traditional multi-server systems. Typically, in those system a SRS rule can balance the

trade-off between waiting times and service efficiency. In a spatial setting this is no longer enough

because servers must reach their customers before starting service. Our results suggest that the

right scaling is 2/3 instead of 1/2. Second, notice that since n1/3(1− ρn)− γn→ β∗2 we have

n−λns̄
(λns̄)1−α − γn→ β∗2 , that is, n≈ λns̄ + β∗2 · (λns̄)2/3 + γn · (λns̄)2/3. (11)

From this equation we observe that, in addition to the traditional buffer term of the form β ·(λns̄)m,

our result establishes that an extra lower order term is needed for QED performance. In particular,

in our Markovian system, it is necessary to add the term γn · (λns̄)2/3. Because γn→ 0 this term

is of lower order than the second term in Eq. (11). Hence, the QED regime requires a very fine

balance involving second order terms compared to the buffer size in this spatial setting, in stark

contrast with the classical M/M/n setting.

Proof sketch of Theorem 3. A necessary condition to achieve the QED regime is that the

peaks of πn(·) be in a constant proportion; otherwise, one would dominate the other and the system

would be in the QD or ED regime. According to Proposition 2 part (iii), this can only happen

when α= 1/3 and β = β∗2 . In this case

lim
n→∞

1

n1/3
log
(πn(bqnc)
πn(bq

n
c)
)

= 0,

that this, the log(·) term is o(n1/3). In turn, the ratio πn(bqnc)/πn(bq
n
c) does not necessar-

ily converge to a constant. To have it so, one would have to look at lower order terms for

log(πn(bqnc)/πn(bq
n
c)) and try to disentangle the exact rate at which n1/3(1−ρn) has to approach

β∗2 so that the log(·) converges to a constant. Instead of pursuing this, in the next result we show

the existence of a sequence converging to zero, {γcn : n≥ 1}, such that if n1/3(1−ρn) approaches β∗2

as β∗2 + γcn, the peaks of πn(·) will be in a constant proportion.

Proposition 3. Fix c ∈R. Then, there exists a sequence {γcn : n≥ 1} with γcn→ 0 such that if

n1/3(1− ρn) = β∗2 + γcn, then

lim
n→∞

log
(πn(bqnc)
πn(bq

n
c)
)

= c.

In the proof of the proposition we provide a detailed explanation of how to construct the sequence

{γcn : n≥ 1}. In turn, the proposition is not just an existence result, but it also provides the exact

sequence that enables us to maintain the peaks in a constant proportion. It also establishes that,

for any constant c∈R, if n1/3(1− ρn) approaches β∗2 at an appropriate rate then

πn(bqnc)≈ πn(bq
n
c) · ec.
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In particular, as we vary c we can achieve any desired proportion. For example, if c < 0 then πn(·)
might look as depicted in Figure 4(b).

Even though there is a way to scale the system such that that the peaks are in constant propor-

tion, this does not guarantee that the probability of being around each of them will be positive at

the same time. It is possible, for example, that the dispersion of πn(·) around bqnc diminishes to

zero while the proportion with the other peak remains constant. Therefore, we need to assess how

the peaks compare to the mass around them. The next lemma provides a characterization of this.

Lemma 2. Fix α∈ (0,1) and β > 0. Suppose that limn→∞ n
α(1− ρn) = β, then

(i)

P[Qn(∞)≥ n]

πn(bqnc)
= Θ(n

3
2α).

(ii) if α∈ (0,1/3), or α= 1/3 and β > β∗1 , then

P[Qn(∞)<n]

πn(bq
n
c) = Θ(

√
n).

This result establishes that the ratio of the mass to the right of n, to the peak in that region is

Θ(n
3
2α). That is, with respect to πn(bqnc) the mass to the right of n is not negligible and, in fact,

is approximately n
3
2α larger than πn(bqnc). Similarly, with respect to πn(bq

n
c), the mass to the left

of n is non-trivial and, in fact, is approximately
√
n larger than πn(bq

n
c).

Observe that in part (i) of the lemma, the order of the ratio depends on α. When α< 1/3 then

this ratio is not as big as the one for πn(bq
n
c) (which is Θ(

√
n)). This coincides with Theorem 2 in

that for these values of α the mass to the left of n dominates the mass to the its right. Similarly,

when α> 1/3, the mass to the right of n dominates. For α= 1/3, both ratios are of the same order.

In turn, we have

P[Qn(∞)≥ n]

P[Qn(∞)<n]
= Θ

(
πn(bqnc)
πn(bq

n
c)

)
.

Therefore, if the ratio of the peaks is constant, then the total mass to the left and to the right

of n can be both (asymptotically) positive and separated away from zero. That is, both sides can

be “balanced” whenever the peaks are in constant proportion. We can thus combine the results

in Proposition 3 and Lemma 2 to find lower and upper bounds for P[Qn(∞)≥ n]. In the proof of

Lemma 2 we find exact expressions to control for the ratios as n increases, which we then leverage

to provide explicit bounds for P[Qn(∞) ≥ n] that can be mapped to probability values, pH and

pL(pH), which satisfy the properties of Theorem 3.
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5.3. Orders of Magnitudes of Queues and Wait Times

The results so far provide an understanding of the different regimes the system can operate in as

a function of its load. Next, we quantify queue sizes and waiting times in our system as a function

the scaling parameter α. The discussion in this section underlines the differences of a spatial server

system with a traditional queueing system.

Let Ls and W s denote respectively the steady-state expected queue length (excluding customers

in service) and expected wait time. Similarly, let Lc and W c denote the corresponding quantities

in the classical M/M/n system. From standard queueing theory, we have that

Lc =
ρn

(1− ρn)
·C(n,λn/s̄t),

where C(n,λn/s̄t) satisfies the Erlang’s C formula, and represents the probability of waiting (see,

e.g., Allen (2014)). Assuming that nα(1− ρn)→ β we have that

C(n,λn/s̄t)→


1 if α> 1/2,

constant if α= 1/2,

0 if α< 1/2.

In turn, using standard arguments, one can show that for α < 1/2, we have that Lc is o(1).

Meanwhile, for α≥ 1/2, Lc is Θ(nα). This implies that for α< 1/2, W c is o(1), while for α≥ 1/2,

W c is Θ(nα−1). In particular, in the Halfin-Whitt regime (α = 1/2), we have that Lc is Θ(
√
n)

and W c is Θ(1/
√
n). Next, we compare these classic results with the results obtained from our

Markovian system.

We first provide a rigorous statement about the order of magnitude of the size of our Markovian

system around the equilibria, in the sense of deriving the subset of the real line where the queue

lengths fluctuations are constrained to, assuming n is sufficiently large. We use this result to provide

approximate expressions for Ls and W s.

Proposition 4. Suppose limn→∞ n
α(1− ρn) = β. Then,

(i) If α∈ (1/3,1) or if α= 1/3 and β < β∗2 then there exists C > 0 such that

lim
n→∞

P
[
−C ≤ Qn(∞)−bqnc√

log(n) ·n 3
2α
≤ C

]
= 1.

(ii) If α∈ (0,1/3) or if α= 1/3 and β > β∗2 then there exists C > 0 such that

lim
n→∞

P
[
−C ≤

Qn(∞)−bq
n
c√

log(n) ·√n
≤ C

]
= 1.

Let’s consider first part (i) of the proposition. In this case we can use Eq. (6) to deduce that

Ls ≈ r2 ρ2
n

(1− ρn)2
± C ·n 3

2α ·
√

log(n) = Θ(n2α),
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Little’s law delivers

W s ≈ r2 ρ2

λn(1− ρ)2
± C

λn
·n 3

2α ·
√

log(n) = Θ(n2α−1).

There are several interesting observations. First, for α= 1/2, the queue size is approximately Θ(n)

and the wait time is approximately Θ(1). Note the contrast to a classical M/M/n system, where

Lc = Θ(
√
n) and W c = Θ(1/

√
n). This makes precise how much more work we are adding to the

system by including pickups. It also highlights that for α = 1/2, the Markovian system is in the

ED regime, with its long queues. Second, note that α= 1/2 is the largest value for which W s does

not explode. In contrast, in the M/M/n system, for any α ∈ (1/2,1), the expected waiting time

approaches zero.

If we focus on pickup times, we can gain further intuition about how the QED regime works in

our system. Let P s denote the expected pickup time. Then, from part (i) of the proposition,

P s ≈ s̄√
|Qn(∞)−n| ∨ 1

≈Θ(1/nα).

For α= 1/3, pickup times are of order 1/nα and W s is of order n2α−1. This showcases the interplay

between wait times and pickup times. When the load of the system increases (as measured by α),

wait times increase because of the greater number of customers in the system, while pickup times

decrease due to the increased spatial density of customers. If one attempts to minimize expected

customer system times, we therefore need to balance W s and P s. For the regime where α≥ 1/3,

this occurs at α= 1/3.

For the regime from part (ii) of the proposition, we have that Ls ≈ 0 and W s ≈ 0. Moreover,

we can use the fact that q
n
≈ n−Θ(n1−α) to deduce that the expected number of idle server is

Θ(n1−α) and P s ≈ Θ(1/(n
1−α
2 )). As we increase the load in the system (as measured by α), we

reduce the number of idle servers. However, at the same time, pickup times increase due to the

decreased spatial density of servers.

5.4. A Social Planner’s Perspective

An alternative approach to determining the proper safety staffing level is to start from a social

planner’s objective, and then find the staffing level that optimizes it. A natural social planner’s

objective is one that incurs a cost per server of building capacity plus a waiting (and pick-up time)

cost per customer. We now show that this objective function also leads us to the conclusion that

a safety staffing that is equal to the offered load to the power of 2/3 is optimal.

Let us consider a service provider that pays cs per unit of capacity and customers that incur a

waiting cost of cw per unit of waiting. That is, a social planner would like to select the level of

capacity n that solves the following optimization problem

min
n

cs ·n+λ · cw ·E[Pn +Wn]. (12)
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The first term in Eq. (12) corresponds to the cost of having n servers in the system. The second,

to the cost experienced by customers while they wait to be assigned a server, Wn, and to be picked

up, Pn.

Notice that from Eq. (3) we can write n as λ · s̄+ β(λ · s̄)1−α. Now, depending on our choice of

α we can have one of two cases. When α≥ 1/3, the average pick up times are of order Θ((λ · s̄)−α)

while average waiting times are of order Θ((λ · s̄)2α−1). Replacing this in Eq. (12) delivers the

following expression for the objective

cs · (λ · s̄+β(λ · s̄)1−α) + cw · ((λ · s̄)1−α + (λ · s̄)2α).

Among all values α > 1/3 the term that dominates in the expression above is the total waiting

times, that is, (λ · s̄)2α. This is increasing in α. Hence, α= 1/3 leads to lower (asymptotic) costs

compared to all values of α> 1/3.

For the case α le1/3, let πλ be the steady state probability the number of customers being below

n and let πλ be 1−πλ. Similar to the case when α> 1/3, we can rewrite the objective in Eq. (12)

to obtain

cs · (λ · s̄+β(λ · s̄)1−α) + cw ·
(
{πλ · (λ · s̄)

1+α
2 +πλ · (λ · s̄)1−α}+ {πλ · 0 +πλ(λ · s̄)2α}

)
.

When α< 1/3 the term that dominates is of order (λ · s̄)1−α. This term is decreasing in α. In this

case, α= 1/3 leads to lower (asymptotic) costs compared to all values of α≤ 1/3.

In conclusion, in a large system, the system total social cost measured by capacity cost and

waiting cost will be minimized by selecting the number of servers n according to λ · s̄+β(λ · s̄)2/3,

where β should be tuned.

6. Numerical Experiments and General Simulation

In this section, we aim at (i) illustrating the results in the Markovian system (§6.1), and also to

(ii) compare the behavior obtained in the Markovian system to that of the actual physical system

that motivated the Markovian system (§6.2).

Simulation setup. We consider a square city C = [0,2]× [0,2] and assume v= 1, implying that

s̄t · v ≈ 1.0428. The time horizon will be T = 4,000. We simulate the general system introduced in

Section 3 and the Markovian system under several different conditions, starting from Qn(0) = 0,

in order to capture the ED, QD and QED regimes. We scale the number of servers in the system

according to

n= dλs̄t + β · (λs̄t)1−αe. (13)

For α∈ {1/4,1/2}, we consider β = 2.1. For α= 1/3, we vary β ∈ {2.1,2.4,2.7}.
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6.1. Markovian System

We begin by numerically illustrating our theoretical results for the Markovian system. We consider

the rate
1

µ(q)
=

s̄p√
|q−n| ∨ 1

+ s̄t, q≥ 0, (14)

with s̄p = s̄t = 1.0428, that is, the coefficient in front of the pickup times coincides with the expected

travel time between two points. Recall from §3.1 that these two parameters need not to be the

same because s̄p comes from an asymptotic approximation. In the next section we consider more

realistic values for s̄p that we estimate from simulation.

In Figures 5-6, we depict sample paths of the the number of customers in the system minus the

number of servers for the various parameters and superimpose a corresponding histogram (taken

from the path between periods 500 and 4,000). Furthermore, the two modes bqnc and bq
n
c (when

they exist) minus n are depicted.

In Figure 5(a), α= 0.25 and we depict the system for three different scales. In line with Theorem

2, one observes that the system spends almost all its time around bq
n
c and as the scale increases,

the probability of wait approaches zero. The system is in the QD regime.

In Figure 5(b), α = 0.5 and we depict the system for three different scales. Note that in this

case, there is only one mode, bqnc. In line with Theorem 2, one observes that the system spends

almost all its time around bqnc and as the scale increases, the probability of wait approaches 1.

The system is in the ED regime.

In Figure 6, α = 1/3 and we depict the system for three values of β. This is the only setting

where, asymptotically and depending on β, the system can oscillate between the two equilibria

and asymptotically, a positive fraction of the customers (separated from 0 and 1) will wait before

being assigned a server. Indeed, we observe that for small values of β, the system operates most

often with Q>n, as in the ED regime. As β increases (center plot), the fraction of time the system

spends in states such that Q<n increases, in which case, the system is in the QED regime. When

β increases further, the system enters the QD regime.

6.2. Comparing the General and Markovian Systems

Next we simulate the general system and compare it the Markovian system. Our purpose in this

section is two-fold. First, we illustrate the system’s behavior under the different scalings. In partic-

ular, we test whether for α< 1/3 and α> 1/3 the general system oscillates around the equilibria to

the left and right of n, respectively. For α= 1/3, we also test how by varying β the general system

can, as predicted by the Markovian system, oscillate around both equilibria.

Second, we provide numerical evidence for the quality of the Markovian system as an approxi-

mation to the general system. To ensure an appropriate comparison, we proceed as follows:
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Figure 5 Simulation of the Markovian system. We consider β = 2.1 and from left to right λ∈ {100,400,800}.

The bottom x−axis corresponds to the simulation time, while the top x−axis corresponds to probabilities. In the

figure we observe both a sample path and πn(·). The dashed lines correspond to the modes bq
n
c and bqnc as

given by Theorem 1.
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Figure 6 Simulation of the Markovian system. We consider α= 1/3 and λ= 800 and from left to right

β ∈ {2.1,2.4,2.7}. The bottom x−axis corresponds to the simulation time, while the top x−axis corresponds to

probabilities. In the figure we observe both a sample path and πn(·). The dashed lines correspond to the modes

bq
n
c and bqnc as given by Theorem 1.

• We fix λ, α and β, and use Eq. (13) to obtain the number of servers.

• We simulate the general system for the computed value of n.

• We estimate s̄p, see Eq. (14). Then we simulate the Markovian system with rate given by Eq.

(14), and compute the theoretical modes/equilibria.
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• We compare the system behavior for both the Markovian and general systems.

In Figures 7-8, we depict sample paths of the queue lengths in the general system (right column)

and compare it to the Markovian system (left column). For the sake of exposition we fix λ= 800

throughout, but all the simulations are consistent for large values of λ.

We observe that for low α (α= 0.25, Figure 7(a)), the general system queue admits a behavior

very similar to the proposed Markovian approximation. In particular, the general system also

admits a mode exactly around bq
n
c (as predicted by the theory for the Markovian system) and

this behavior is consistent across different scales.
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(b) α= 0.5, n= 895, s̄p = 1.518, bqnc−n= 399

Figure 7 Simulation for Markovian (left) and General (right) systems. We consider β = 2.1. The bottom x−axis

corresponds to the simulation time, while the top x−axis corresponds to probabilities. In the figure we observe

both a sample path and πn(·). The dashed lines correspond to the modes bq
n
c and bqnc as given by Theorem 1.

For high α (α= 0.5, Figure 7(b)), the general system queue admits again a behavior very similar

to the proposed Markovian approximation. Again, the general system also admits a mode exactly

around bqnc (as predicted by the theory for the Markovian system).
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For the critical value of α (α = 1/3, Figures 7(a) and 8(b)), the general system queue admits

again a behavior very similar to the proposed Markovian approximation. For low values of β (Figure

8(a)), both systems operate in the ED regime. As β increases (Figure 8(b)), both systems move

into the QED regime, as the queue oscillates between the two equilibria.

Across values of α and β and across scales, this simulation highlights the usefulness of the

Markovian system in capturing some of the key features and predicting some of the behavior of

the general system.
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Figure 8 Simulation for Markovian (left) and General (right) systems. We consider α= 1/3. The bottom x−axis

corresponds to the simulation time, while the top x−axis corresponds to probabilities. In the figure we observe

both a sample path and πn(·). The dashed lines correspond to the modes bq
n
c and bqnc as given by Theorem 1.



30

7. Conclusion

In the present paper, we have proposed a framework for studying how spatial frictions affect

capacity planning. In particular, we propose a reduced-form Markovian system that captures spatial

economies of scale, leading to a crisp characterization of the trade-offs at play in such environments.

We have established a mapping from load to types of regimes in heavy traffic. In particular,

recalling Eq.(3), we have focused on regimes parametrized by α and β, where

lim
n→∞

(1− ρn)nα = β, for some β ∈R+, α∈ (0,1).

Figure 9 summarizes some of the main findings. The ED regime emerges whenever α > 1/3 and

α

β

0

β∗2

11/3

QD

ED

QD ED

QED

Figure 9 Regimes for different values of α and β.

the QD regime emerges whenever α < 1/3. When α = 1/3, the three regimes QD, ED and QED

can emerge and the latter can only emerge for one critical value of β, which we label β∗2 . We have

further demonstrated through simulations that the Markovian approximation provides a reliable

guideline for the behavior of a general system.

This paper opens up various avenues of potential research, from both methodological and model-

ing perspectives. Analyzing the case when customers are impatient and might abandon the system

if not served after some time is a natural extension. On the one hand, abandonment decreases the

workload of the system as fewer customer have to be processed; on the other hand, it increases

the system’s workload as having fewer customers implies that spatial economies of scale become

less advantageous. The important question in this case is whether, in order to achieve QED per-

formance, abandonment necessitates just a change in β or more fundamental change in α. Another

interesting extension is to study how the results in this study can be generalized to cases where

origin-destination demand patterns generate imbalances in the system. In this case, the additional

workload stemming from pickups might be even larger. How would this impact capacity sizing? An

additional important practical question is to consider time-varying demand patterns that might

require alternatives to steady-state analysis.
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From a methodological perspective, an interesting extension would be to establish some of form

of convergence of the processes in the general system to those in the Markovian approximation.

More generally, there is potential to generalize the main result of this paper to any near optimal

dispatching protocol by directly studying the spatial system. A simple back-of-the-envelope calcu-

lation serves to enlighten the latter claim. From Bertsimas and van Ryzin (1993) we can deduce

that the expected number of customers in the system in steady state is bound below by

n

2
−n · (1− ρn) +C · ρ2

n

(1− ρn)2
.

The second term in this expression represents the number of idle server in the system, n− nρn;

while the third term maps to the number of customers waiting or being picked up. These two terms

are opposing forces that push the system to have less and more customers, respectively. Using the

heavy traffic scaling from Eq. (3), we can deduce that the second term scales as Θ(n1−α), while the

third term as Θ(n2α). Observe that these scalings relate to those of the equilibria in Theorem 1.

Intuitively, quality and efficiency should balance when the two opposing forces balance each other.

This occurs when 1− α equals 2α or, equivalently, when α equals 1/3, as our results prescribe.

Note that this derivation does not rely on a specific dispatching protocol, but only on one that is

optimal or “near optimal” compared to the lower bound. Deriving the 2/3-scaling result at a full

level of generality is an exciting direction for future work.
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Online Appendix for:
Spatial Capacity Planning

A. Proofs for Section 3.2

Proof of Lemma 1. Let x0 be in the interior of C, a bounded subset of R2 with area denoted

by |C|. It is enough to prove that the following limit exists

lim
k→∞

√
k ·E

[
min

i=1,...,k
‖Xi−x0‖

]
.

Let Zk ,mini=1,...,k ‖Xi−x0‖. First, note that since x0 is in the interior of the bounded region we

can always find a ball B(x0, ε) that is contain in C (below we take ε small enough). From this and

the fact that the points Xi are drawn uniformly at random in C, we have the following lower and

upper bounds for any i= 1, . . . , k

π · (z ∧ ε)2

|C| = P[‖Xi−x0‖ ≤ z ∧ ε]≤P[‖Xi−x0‖ ≤ z]≤
π · z2

|C| .

Second, from these bounds and the fact that the points Xi are IID we deduce(
1− π · z

2

|C|
)k
∨ 0≤P[Zk > z]≤

(
1− π · (z ∧ ε)

2

|C|
)k
∨ 0.

This yields the following bound for E[Zk]∫ √|C|/π
0

(
1− π · z

2

|C|
)k
dz ≤E[Zk]≤

∫ ε

0

(
1− π · z

2

|C|
)k
dz+

∫ RC

ε

(
1− π · ε

2

|C|
)k
dz,

where RC = maxx,y∈C ‖x− y‖ and we are assuming that ε <RC. Note that

lim
k→∞

√
k ·
∫ RC

ε

(
1− π · ε

2

|C|
)k
dz = lim

k→∞

√
k ·
(

1− π · ε
2

|C|
)k
· (RC − ε) = 0,

where we are using that ε is small enough such that π · ε2/|C|< 1. Therefore, we have that

√
k ·
∫ ε

0

(
1− π · z

2

|C|
)k
dz ≤

√
k ·E[Zk]≤

√
k ·
∫ ε

0

(
1− π · z

2

|C|
)k
dz+

√
k ·
∫ RC

ε

(
1− π · ε

2

|C|
)k
dz,

where the last term on the RHS above converges to zero. To complete the proof note that

lim
k→∞

√
k ·
∫ ε

0

(
1− π · z

2

|C|
)k
dz =

√
|C|
π
· lim
k→∞

√
k ·
∫ ε·
√
π/|C|

0

(
1− z2

)k
dz ≈ 0.886 ·

√
|C|
π
,

where in the last step we use that for any 0 < δ < 1 the limit as k ↑ ∞ of
√
k
∫ δ

0
(1 − z2)kdz is

approximately 0.886. �
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B. Proofs for Section 4

Proof of Theorem 1. We make use of Proposition B-1 which we state and prove after the

proof of this theorem. We prove each statements in the theorem.

(i) First we show that qn as given in the statement is always an stable equilibrium. We have

that qn = n+z2
n with zn = ρn/(1−ρn). Any equilibrium solves fn(q) = 0, thus we just need to verify

that

1 +
1

zn
=

n

λns̄
=

1

ρn
,

which is clearly satisfied. To verify stability we proceed using the Lyapunov method. Let V (q) =

|q − qn|, then V̇ (q) = sgn(q − qn) · fn(q). We need to verify that V̇ (q) < 0 for q 6= qn (for n large

enough). By Proposition B-1 part (i), if q ∈ (qn, qn + δ] we have that V̇ (q) = fn(q) < 0, and if

∈ [qn− δ, qn) V̇ (q) =−fn(q)< 0 for δ > 0 small enough. Hence, qn is a locally asymptotically stable

equilibrium.

If α> 1/3 or if α= 1/3 and β < β∗1 by Proposition B-1 we have that fn(q)> 0 for all q ∈ [0, qn).

Therefore the same Lyapunov analysis as before leads to the conclusion that qn is a globally

asymptotically stable equilibrium.

(ii) Both equilibria q
n

and q̃n can be found by equating g1,n(q) and g2,n(q). This turns out to be

equivalent to solving the equation

(n− q) +
n · ρn√
n− q = n · (1− ρn). (B-1)

For the current values of α and β, Proposition B-1 part (iii), we know the latter equation has two

solutions: q̃n and q
n
. Let’s start with q̃n. From Proposition B-1 we know that in a vicinity to the left

of q̃n we have fn(q)< 0, that is, in a vicinity to the left of q̃n we have dQ̃n(t)/dt < 0 and, therefore,

the systems moves away from q̃n. Similarly, in a vicinity to the right of q̃n we have fn(q)> 0 and,

therefore, the system moves away from q̃n. This shows that this equilibrium is unstable.

For q
n

we can use the same Lyapunov analysis as before, together with Proposition B-1, to show

that it is a locally asymptotically stable equilibrium.

To conclude we need to provide a closed form characterization the two equilibria. We transform

the equation that defines them, Eq. (B-1), in to a cubic equation. Consider the change of variables

w=
√
n− q, then the equation becomes

w3−n · (1− ρn) ·w+n · ρn = 0. (B-2)

The solution to this equation can be found in Shelbey (1975). When the term −4n3 · (1− ρn)3 +

27n2 · ρ2
n is non-positive the three possible solutions to (B-2) are real and given by

wi = 2

√
n · (1− ρn)

3
· cos

(1

3
arccos

(
−
√

27ρ2
n

4n · (1− ρn)3

)
− 2πi

3

)
, i= 0,1,2.
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In order to verify that −4n3 · (1 − ρn)3 + 27n2 · ρ2
n ≤ 0, note that this is equivalent to 27ρ2

n ≤
4n1−3α · (nα(1 − ρn))3. For large n, this last inequality holds for α < 1/3. The same is true for

α= 1/3 and β > β∗1 . Therefore, the solutions wk are all real. Furthermore, it is possible to verify

that they are ordered, w0 ≥w1 ≥w2, and that w2 satisfies

w2 =−2

√
n · (1− ρn)

3
· cos

(1

3
arccos

(√ 27ρ2
n

4n · (1− ρn)3

))
< 0,

and w1 ≥ 0 for large n. Since we are using the change of variables w =
√
n− q, we can disregard

w2 as a solution and take w0 and w1 to compute the solutions of our original equation. Because

q
n
≤ q̃n we obtain that q

n
= n−w2

0 and q̃n = n−w2
1.

�

Proposition B-1. Suppose limn→∞(1− ρn)nα = β and that ρn ↑ 1. Let β∗1 = 3/41/3 then

(i) there exists n0 such that for all n≥ n0 there exists qn >n for which

fn(q)


= 0 if q= qn
< 0 if q > qn
> 0 if q ∈ [n, qn).

(ii) if α> 1/3, or if α= 1/3 and β < β∗1 , there exists n0 such that for all n≥ n0 we have fn(q)> 0

for all q ∈ [0, qn).

(iii) if α< 1/3, or if α= 1/3 and β > β∗1 then there exists n0 such that for all n≥ n0 there exist

q
n

and q̃n with 0≤ q
n
<n− (n·ρn

2
)2/3 < q̃n <n− 1 such that

fn(q)


= 0 if q ∈ {q

n
, q̃n}

< 0 if q ∈ (q
n
, q̃n)

> 0 if q ∈ [0, q
n
)∪ (q̃n, qn).

Proof of Proposition B-1. First note that from the definition of fn we have

fn(q) = λn−
1

s̄√
|q−n|∨1

+ s̄
·min(n, q). (B-3)

Next prove each part of the statement separately.

(i) Consider q≥ n+ 1 then fn(q) = 0 if and only if(
1 +

1√
q−n

)
=

1

ρn
.

The left hand side is a decreasing function of q with maximum value equal to 2 for q≥ n+ 1. Also,

since ρn < 1 we have that 1/ρn > 1. If n is large enough so that 1/ρn < 2, we can always find a

solution qn >n such that fn(qn) = 0. Moreover, fn(qn)< 0 for q > qn, and fn(qn)> 0 for q ∈ [0, qn).



B-3

(ii) First suppose that q ∈ [n, qn), from what we did in the proof of (i) we can conclude that

fn(q)> 0 for n large enough. For q ∈ [n− 1, n), fn(q)> 0 if and only if 2> q/(nρn). Since ρn ↑ 1

and q is at most n this last inequality holds for all n large enough.

Next, suppose that q < n− 1. Note that fn(q)> 0 if and only if(
1 +

1√
n− q

)
>

q

nρn
.

We can rewrite the previous equation in the following equivalent form

xn +
n · ρn√
xn︸ ︷︷ ︸

gn(xn)

>n · (1− ρn),

where xn = n− q. Hence, fn(q)> 0 if and only if gn(xn)>n · (1− ρ). Note that

dgn(x)

dx
= 1− n · ρ

2x3/2
, and

d2gn(x)

dx2
=

3n · ρ
4x5/2

.

Hence, gn(x) is a convex function with minimum at x∗n = (n·ρn
2

)2/3. Thus, whenever gn(x∗n) >

n · (1− ρn) we have that fn(q)> 0. Observe that

gn(x∗n)>n · (1− ρn)⇔ (n · ρn)2/3 (
1

22/3
+ 21/3)︸ ︷︷ ︸
β∗1

>n · (1− ρn)⇔ ρ2/3
n β∗1 >n

1/3−α · (1− ρn)nα.

If α > 1/3 then, because (1− ρn) · n1/3→ β, the last inequality above holds for all n sufficiently

large. If α= 1/3 the last inequality above becomes ρ2/3
n · β∗1 > (1− ρn) · n1/3, and if β < β∗1 , since

(1 − ρn) · n1/3 → β and ρn ↑ 1, we would have gn(x∗n) > n · (1 − ρn) for all n sufficiently large.

Therefore in both cases we have that fn(q)> 0 for all q < n− 1.

(iii) Similarly, we can argue that if α< 1/3, or if α= 1/3 and β > β∗1 then gn(x∗n)<n ·(1−ρn) for

n sufficiently large. When gn(x∗n)<n · (1− ρn) the function gn(x) (recall this is a convex function)

crosses n · (1−ρn) at two points: x1,n and x1,n, with 1<x1,n <x
∗
n <x1,n ≤ n. Defining q

n
= n−x1,n

and q̃n = n−x1,n we conclude the result.

�
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C. Proofs for Section 5

Proof of Proposition 1. We make use of Eq. (9) and Proposition B-1.

(i) Note that from Proposition B-1 part (i) we have that fn(k) ≥ 0 for all k ∈ [n, qn], since

bqnc ≤ qn from Eq. (9) we deduce that πn(k) is increasing for all k ∈ [n, bqnc] ∩ N. Moreover,

because fn(k)< 0 for k > qn and qn < bqnc+ 1 from Eq. (9) we have that πn(k) decreases for all

k ∈ (bqnc,∞)∩N. Finally, using a similar argument and Proposition B-1 part (ii), we deduce that

πn(k) is increasing for all k ∈ [0, n]∩N.

(ii) Note that from Proposition B-1 part (iii) we have that fn(k)≥ 0 for all k ∈ [0, q
n
], fn(k)< 0

for all k ∈ (q
n
, q̃n), and fn(k)≥ 0 for all k ∈ [q̃n, qn). Eq. (9) then implies that πn(k) increases for

k ∈ [0, bq
n
c]∩N, it decreases for k ∈ (bq

n
c, bq̃nc]∩N, and it increases for k ∈ (bq̃nc, bqnc)∩N.

�

Proof of Theorem 2. This result relies on Proposition 2 which is stated in the main text in

the Proof sketch of Theorem 2 discussion. We provide a proof for Proposition 2 after the present

proof.

We prove each statement in the theorem separately.

(i) We analyze different cases. First we consider α ∈ (1/3,1). In this case from Proposition 1

part (ii) we now that πn(k)≤ πn(n) for all k, for all n large enough. Moreover, from Proposition

2 part (i) we have that for ε∈ (0,1/β) for all n large enough the following inequality holds

πn(n)

πn(bqnc)
≤ exp

(
−nα(

1

β
− ε)

)
.

Therefore,

P[Qn(∞)<n] =
n−1∑
k=0

πn(k)≤ n ·πn(n) = n · πn(n)

πn(bqnc)
·πn(bqnc)≤ n · exp

(
−nα(

1

β
− ε)

)
·πn(bqnc)→ 0.

Next, consider α = 1/3 and β < β∗2 . Let πn(k|β) be the steady-state probability when λn is such

that (1− ρn)n1/3 = β. For notational clarity we use λn(β), qn(β) and q
n
(β) instead of λn, qn and

q
n
. It is possible to show that for β < β′ and n large enough we must have that

πn(k|β)

πn(bqn(β′)c|β)
≤ πn(k|β′)
πn(bqn(β′)c|β′) , ∀k≤ n− 1. (C-1)

Before we show Eq. (C-1), we will use to conclude this part of the proof. Fix β < β∗2 then we can

find β′ ∈ (max{β∗1 , β}, β∗2) for which Eq. (C-1) holds and, therefore, from Proposition 2 we can take

ε∈ (0, g(β′)) such that for n large enough we have

P[Qn(∞)<n] =
n−1∑
k=0

πn(k|β)
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≤
n−1∑
k=0

πn(k|β)

πn(bqn(β′)c|β)

≤
n−1∑
k=0

πn(k|β′)
πn(bqn(β′)c|β′)

≤ n ·
πn(bq

n
(β′)c|β′)

πn(bqn(β′)c|β′)
= n · exp

(
−n1/3(g(β′)− ε)

)
→ 0,

as n→∞. Next, we verify Eq. (C-1). Note that for k < bqn(β′)c

πn(bqn(β′)c|β)

πn(k|β)
=

bqn(β′)c∏
m=k+1

λn(β)s̄

min{m,n} ·
(

1 +
1√

|n−m| ∨ 1

)
and

πn(bqn(β′)c|β′)
πn(k|β′) =

bqn(β′)c∏
m=k+1

λn(β′)s̄

min{m,n} ·
(

1 +
1√

|n−m| ∨ 1

)
.

Hence, Eq. (C-1) is satisfied if and only if

λn(β′)bqn(β′)c−k ≤ λn(β)bqn(β′)c−k⇔ λn(β′)≤ λn(β)⇔ n1/3
(

1− λn(β′)s̄

n

)
≥ n1/3

(
1− λn(β)s̄

n

)
,

since both expression in the last inequality above converge to β′ and β (respectively) and β′ > β,

we can always find n large enough so that the inequality is true. This shows Eq. (C-1).

(ii) Consider first α∈ (0,1/3). Write

P[Qn(∞)≥ n] =

bqnc∑
k=n

πn(k) +
∞∑

k=bqnc+1

πn(k). (C-2)

We next bound both terms and then show they converge to zero. The first term in Eq. (C-2) is

bounded above

bqnc∑
k=n

πn(k)≤ πn(bqnc) · (bqnc−n+ 1) = πn(bqnc) · (bqnc− qn+ qn−n+ 1)≤ πn(bqnc) · (
ρ2
n

(1− ρn)2
+ 1),

where in the last inequality we used that bqnc ≤ qn, and Theorem 1 part (i) to obtain an expression

for qn. In order to bound the second term in Eq. (C-2), first note that

πn(k)

πn(bqnc)
=

k∏
`=bqnc+1

ρn ·
(

1 +
1√
`−n

)
, ∀k > bqnc.

Let

an = ρn ·
(

1 +
1√

bqnc+ 1−n

)
,
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which satisfies an < 1 for all n. Indeed,

ρn ·
(

1 +
1√

bqnc+ 1−n

)
< 1 ⇔ ρ2

n

(1− ρn)2
< bqnc+ 1−n ⇔ ρ2

n

(1− ρn)2
< 1− (qn−bqnc) + qn−n,

from Theorem 1 part (i) the last inequality becomes (qn−bqnc)< 1, which is always is true. then

∞∑
k=bqnc+1

πn(k) = πn(bqnc) ·
∞∑

k=bqnc+1

k∏
`=bqnc+1

ρn ·
(

1 +
1√
`−n

)
(a)

≤ πn(bqnc) ·
∞∑

k=bqnc+1

k∏
`=bqnc+1

an

= πn(bqnc) ·
∞∑

k=bqnc+1

ak−bqncn

= πn(bqnc) · a−bqncn · a
bqnc+1
n

1− an
<πn(bqnc) ·

1

1− an
,

where (a) holds because the term 1 + 1/
√
`−n is decreasing in `. Putting the upper bounds for

Eq. (C-2) together yields

P[Qn(∞)≥ n]≤ πn(bqnc) ·
( ρ2

n

(1− ρn)2
+ 1 +

1

1− an

)
.

Observe that the term in brackets is O(nγ) for some γ > 0. Also, we can always consider ε > 0 such

that β2/2> ε and then we can use Theorem 2 to find n0 such that for all n≥ n0

πn(bqnc)≤ πn(bq
n
c) · exp

(
− (

β2

2
− ε) ·n1−2α

)
.

Since πn(bq
n
c)≤ 1 and 1− 2α> 0 we conclude that

P[Qn(∞)≥ n]≤ exp
(
− (

β2

2
− ε) ·n1−2α

)
·O(nγ)−→ 0, as n→∞.

Note that for α = 1/3 and β > β∗2 the same argument holds, we only need to chose ε > 0 such

that |g(β)|> ε. This is always possible since for β > β∗2 Theorem 2 establishes that g(β)< 0. This

concludes the proof.

�

Proof of Proposition 2. We prove each part separately. First, note that

πn(bqnc)
πn(m)

=

bqnc∏
k=m+1

λn
µn(k) ·min{k,n} =

bqnc∏
k=m+1

λns̄

min{k,n} ·
(

1 +
1√

|n− k| ∨ 1

)
,

for any m< bqnc. Then

log
(πn(bqnc)
πn(m)

)
= (bqnc−m) log(ρn) +

bqnc∑
k=m+1

log
[ n

min{k,n} ·
(

1 +
1√

|n− k| ∨ 1

)]
(C-3)
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(i) For m= n: Let xn = bqnc−n, then equation (C-3) becomes

log
(πn(bqnc)

πn(n)

)
= xn log(ρn) +

bqnc∑
k=n+1

log
[
1 +

1√
k−n

]
= xn · log(ρn) +

∫ xn

1

log
[
1 +

1√
x

]
dx+O(1)

= xn · log(ρn) +
[√
x+x log(1 +

1√
x

)− log(1 +
√
x)
]∣∣∣xn

1
+O(1)

=
√
xn− log(1 +

√
xn) +xn ·

(
log(ρn) + log

(
1 +

1√
xn

))
+O(1).

In the expression above we can use that xn→∞, xn = bqnc− qn + ρ2

(1−ρ)2 and Taylor expansions to

conclude that

√
xn =

ρn
(1− ρn)

+o(1), and that xn ·
(

log(ρn)+log
(

1+
1√
xn

))
=− ρ2

(1− ρ)2
+
√
xn+O(1) =O(1).

Since (1− ρn)nα→ β we have

lim
n→∞

1

nα
log
(πn(bqnc)

πn(n)

)
= lim

n→∞

1

nα
ρn

(1− ρn)
=

1

β
.

(ii) We assume that α< 1/3 and we take m= bq
n
c. Note that since α< 1/3 we have

27ρ2
n

4n · (1− ρn)3
→ 0, as n→∞.

Then, we can use Theorem 1 and do a Taylor expansion to deduce that

r0,n(ρn) = 1− 2

3
√

3

√
x− 2

27
x− 5

81
√

3
x3/2 +O(x2)

∣∣∣
x=

27ρ2n
4n·(1−ρn)3

.

Hence, since α< 1/3 we deduce that

n− q
n

= n · (1− ρn) +O(n(1+α)/2). (C-4)

In order to prove the result for this part of the proposition we need to analyze the term

log
(πn(bqnc)
πn(bq

n
c)
)

= (bqnc− bqnc) log(ρn) +
n−1∑

k=bq
n
c+1

log
[n
k
·
(

1 +
1√
n− k

)]
+

bqnc−n∑
k=1

log
[
1 +

1√
k

]
+ log(2)

= (n−bq
n
c) log(ρn)︸ ︷︷ ︸
A

+
n−1∑

k=bq
n
c+1

log
[n
k
·
(

1 +
1√
n− k

)]
︸ ︷︷ ︸

B

+ (bqnc−n) log(ρn) +

bqnc−n∑
k=1

log
[
1 +

1√
k

]
︸ ︷︷ ︸

C

+log(2).
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Let’s look at each one of the terms A, B and C. For A, using Eq. (C-5), we have that

(n−bq
n
c) log(ρn) = n · (1− ρn) log(ρn) +O(n(1−α)/2) =−n · (1− ρn)2 +O(n1−3α) +O(n(1−α)/2),

and because α < 1/3, we have that A/n1−2α→−β2. So we only need to case analyze B and C.

From the proof of part (i) we have

C =
ρn

(1− ρn)
+ log(1− ρn) +O(1) = o(n1−2α),

where the last equality comes from α< 1/3. For B,

B =

∫ n−1

bq
n
c

log
[n
x
·
(

1 +
1√
n−x

)]
dx+ o(n1−2α)

=
[
x log(

n

x
) +x−

√
n−x− (n−x) log(1 +

1√
n−x) + log(1 +

√
n−x)

]∣∣∣n−1

bq
n
c
+ o(n1−2α)

= n− 1−
[
bq
n
c log(

n

bq
n
c) + bq

n
c−
√
n−bq

n
c− (n−bq

n
c) log(1 +

1√
n−bq

n
c
)

+ log(1 +
√
n−bq

n
c)
]

+ o(n1−2α)

= n−bq
n
c log(

n

bq
n
c)−bqnc+ o(n1−2α)

= n−bq
n
c− bq

n
c ·
((n−bq

n
c)

bq
n
c −

(n−bq
n
c)2

2bq
n
c2

)
+ o(n1−2α)

=
(n−bq

n
c)2

2bq
n
c + o(n1−2α),

using that α< 1/3 it follows that this last expression, when scaled by 1/n1−2α, converges to β2/2

. Therefore,
1

n1−2α
log
(πn(bqnc)
πn(bq

n
c)
)
→−β2 +

β2

2
+ 0 =−β

2

2
, as n→∞,

as required.

(iii) We assume that α= 1/3 and we take m= bq
n
c. Note that

r0,n(ρn)→ 4

3
· cos

(1

3
arccos

(
−
√(β∗1

β

)3))2

, r(β), as n→∞. (C-5)

Observe that since we are considering β ≥ β∗1 the arccos(·) term is well defined and, therefore, so

is r(β). We need to analyze the following expression

log
(πn(bqnc)
πn(bq

n
c)
)

= (n−bq
n
c) log(ρn)︸ ︷︷ ︸
A

+
n−1∑

k=bq
n
c+1

log
[n
k
·
(

1 +
1√
n− k

)]
︸ ︷︷ ︸

B

+ (bqnc−n) log(ρn) +

bqnc−n∑
k=1

log
[
1 +

1√
k

]
︸ ︷︷ ︸

C

+log(2).
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Let’s look at each one of the terms A, B and C. For A, using Theorem 1 we have that

A= (n−bq
n
c) log(ρn) = n · (1− ρn) · r0,n(ρn) log(ρn) + o(1) =−n(1− ρn)2r0,n(ρn) + o(n1/3).

Similarly to part (ii) above, for C we deduce

C =
ρn

(1− ρn)
+ log(1− ρn) +O(1) =

ρn
(1− ρn)

+ o(n1/3).

Finally, for B (similarly to part (ii) above)

B = n−
[
bq
n
c log(

n

bq
n
c) + bq

n
c−
√
n−bq

n
c− (n−bq

n
c) log(1 +

1√
n−bq

n
c
) + log(1 +

√
n−bq

n
c)
]

+ o(n1/3)

= n−bq
n
c− bq

n
c log(

n

bq
n
c) + 2

√
n−bq

n
c+ o(n1/3)

=
(n−bq

n
c)2

2bq
n
c + 2

√
n−bq

n
c+ o(n1/3),

and, therefore, using that n1/3(1 − ρn)→ β, n − bq
n
c = n(1 − ρn)r0,n(ρn) and Eq. (C-5) we can

compute the limit

lim
n→∞

B

n1/3
= lim

n→∞

1

n1/3
·
(n−bq

n
c)2

2bq
n
c + 2

√
n−bq

n
c

n1/3
=
β2r(β)2

2
+ 2
√
βr(β),

where r(β) is defined in Eq. (C-5). From this we can deduce that

1

n1/3
log
(πn(qn)

πn(q
n
)

)
→−β2r(β) +

β2r(β)2

2
+ 2
√
βr(β) +

1

β
, g(β), as n→∞. (C-6)

It is possible to verify that g(β) satisfies g(β∗1) > 0 and it is strictly decreasing for β ≥ β∗1 , with

limβ→∞ g(β) = −∞, see Figure 10. Therefore, there exists β∗2 > β∗1 such that g(β∗2) = 0. Thus we

have verified that g(β) is such that if β∗1 <β <β
∗
2 then g(β)> 0, whereas if β > β∗2 then g(β)< 0.

ββ∗1

g(β)

β∗2

51
24β∗1

Figure 10 Function g(β) as defined in Eq. (C-6), g(β) is strictly decreasing and it crosses zero at β∗2 .
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�

Proof of Theorem 3. We make use of the lemmata C-1 and C-2 which we first state and

then prove after the proof of this theorem. We also make use of Proposition 3 which is stated in

the main text and proven in this appendix.

In order to simplify notation let p+
n = P[Qn(∞)≥ n]. Let β = β∗2 and α= 1/3 then from Lemma

C-1 and Lemma C-2 there exists n1 such that

1−exp

(
−C

2β3

2

)
C2β3

2

1 +
exp

(
−C2

2

(
1− 1

2(β·r(β))3/2

))
C2
2

(
1− 1

2(β·r(β))3/2

)
︸ ︷︷ ︸

A(C)

·πn(bqnc)
πn(bq

n
c) ≤

p+
n

(1− p+
n )
≤

1 + 1 ·
exp

(
−C

2β3

4

)
C2β3

4

1−exp

(
−C2·

(
1− 1

2(β·r(β))3/2

))
C2·

(
1− 1

2(β·r(β))3/2

)
︸ ︷︷ ︸

B(C)

·πn(bqnc)
πn(bq

n
c) , ∀n≥ n1.

Next, fix ε > 0 then by Proposition 3 we have that there exists n2 such that

exp(−ε+ c)≤ πn(bqnc)
πn(bq

n
c) ≤ exp(ε+ c), ∀n≥ n2.

Therefore, for all n≥max{n1, n2}

A(C) · exp(−ε+ c) ≤ p+
n

(1− p+
n )
≤ B(C) · exp(ε+ c),

or, alternatively, (letting ε→ 0)

A(C)

e−c +A(C)
≤ lim inf

n→∞
p+
n ≤ limsup

n→∞
p+
n ≤

B(C)

e−c +B(C)
.

Now we want to find the tightest upper and lower bound. To do this it is enough to maximize

the LHS and minimize the RHS above as a function of C. Since all the parameters are known

(β∗2 ≈ 2.6030 and r(β∗2)≈ 0.7192) we can obtain numerical values,

max
C>0

{ A(C)

e−c +A(C)

}
≈ 0.0524

e−c + 0.0524
, and min

C>0

{ B(C)

e−c +B(C)

}
≈ 1.3173

e−c + 1.3173
.

So if we fix pH ∈ (0,1) then there exists c∗ ∈R such that

1.3173

e−c∗ + 1.3173
= pH ,

and c∗ increases with pH . Therefore if we let

pL(pH) =
0.0524

e−c∗ + 0.0524
,

we have that pL(pH) ∈ (0,1) increases with pH . In particular, limpH→1 pL(pH) = 1 and

limpH→0 pL(pH) = 0, as desired.

�



C-8

Lemma C-1. Fix α ∈ (0,1/3) and β > 0, or α = 1/3 and β > β∗1 . Suppose that limn→∞ n
α(1−

ρn) = β and let C > 0 be a constant then

2 ·
1− exp

(
−C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

))
C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

) ≤ lim inf
n→∞

1

C
√
n
· P[Qn(∞)<n]

πn(bq
n
c) ,

and

limsup
n→∞

1

C
√
n
· P[Qn(∞)<n]

πn(bq
n
c) ≤ 2 + 2 ·

exp
(
− C2

2

(
1− 1{α=1/3}

2(β·r(β))3/2

))
C2

2

(
1− 1{α=1/3}

2(β·r(β))3/2

) ,

where r(β) = limn→∞ r0,n(ρn).

Lemma C-2. Fix α ∈ (0,1) and β > 0. Suppose that limn→∞ n
α(1− ρn) = β and let C > 0 be a

constant then

2 ·
1− exp

(
− C2β3

2

)
C2β3

2

≤ lim inf
n→∞

1

Cn
3
2α
· P[Qn(∞)≥ n]

πn(bqnc)
,

and

limsup
n→∞

1

Cn
3
2α
· P[Qn(∞)≥ n]

πn(bqnc)
≤ 2 + 2 ·

exp
(
− C2β3

4

)
C2β3

4

.

Proof of Lemma C-1. We start we the lower bound. Let bn =C
√
n and note that

P[Qn(∞)<n]

πn(bq
n
c)bn

=
1

bn

n−1∑
k=0

πn(k)

πn(bq
n
c)

≥ 1

bn

bq
n
c+bn∑

k=bq
n
c−bn

πn(k)

πn(bq
n
c)

=
1

bn

bq
n
c∑

k=q
n
−bn

bq
n
c∏

`=k+1

1

ρn

`

n

1(
1 + 1√

n−`

) +
1

bn

bq
n
c+bn∑

k=bq
n
c+1

k∏
`=bq

n
c+1

ρn
n

`

(
1 +

1√
n− `

)
(a)

≥ 1

bn

bq
n
c∑

k=bq
n
c−bn

( 1

ρn

bq
n
c− bn
n

1(
1 + 1√

n−bq
n
c+bn

)
︸ ︷︷ ︸

s1n

)bq
n
c−k

+
1

bn

bq
n
c+bn∑

k=bq
n
c+1

(
ρn

n

bq
n
c+ bn

(
1 +

1√
n−bq

n
c− bn

)
︸ ︷︷ ︸

s2n

)k−bq
n
c

=
1

bn
· 1− s

bn+1
1n

1− s1n

+
1

bn
· s2n− sbn+1

2n

1− s2n

, (C-7)

where (a) comes from the fact that the function

hn(x) =
1

x
· (1 +

1√
n−x),
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is decreasing in [0, q
n

+bn] for n large, we show this at the end of the proof. Next we show that both

terms in Eq. (C-7) above converge to a constant. First note that from Theorem 1 we have that

q
n

= n−z2
n where z2

n is given by n · (1−ρn) ·r0,n(ρn). Note that 1−r0,n(ρn) is of order O(n−(1−3α)/2)

if α< 1/3 and r0,n(ρn) converges to a function of β, r(β), for α= 1/3

r(β) =
4

3
· cos

(1

3
arccos

(
−
√(β∗1

β

)3))2

.

For the rest of the proof we will use b̃n to denote bn + (q
n
−bq

n
c). Note that |(q

n
−bq

n
c)| ≤ 1. Let

`n = (n− z2
n− b̃n)/n, for s1n we have that

s1n =
1

ρn
`n

1(
1 + 1√

z2n+b̃n

)
=

1

ρn
`n

(
1− 1√

z2
n + b̃n

+O(
1

z2
n + b̃n

)
)

=
1

ρn
`n

(
1− 1

zn

1√
1 + b̃n

z2n

+O(
1

z2
n + b̃n

)
)

=
1

ρn
`n

(
1− 1

zn
+

b̃n
2z3

n

+O(
b̃2
n

z5
n

) +O(
1

z2
n + b̃n

)
)

=
`n
ρn
− `n
ρnzn

+
`nb̃n

2ρnz3
n

+O(
`nb̃

2
n

ρnz5
n

) +O(
`n

ρn(z2
n + b̃n)

),

the last two terms above times bn converge to zero. Hence,

bn · (1− s1n) = bn−
bn`n
ρn

+
bn`n
ρnzn

− `nbnb̃n
2ρnz3

n

+ o(1).

The expression above converges to C2 ·
(

1 − 1{α=1/3}
2(β·r(β))3/2

)
. Indeed, the fourth term above is

O(n)/O(n
3
2 (1−α)) which is o(1) when α< 1/3 and converges to −C2/(2β3/2 ·r(β)3/2) when α= 1/3.

The first three terms converge to C2. Indeed, recall that q
n

solves the equation

(n− q
n
) +

nρn√
n− q

n

= n(1− ρn), or equivalently, z2
n +

nρn
zn

= n(1− ρn). (C-8)

Hence

bn · (1− s1n) = bn−
bn`n
ρn

+
bn`n
ρnzn

− `nbnb̃

2ρnz3
n

+ o(1)

= bn−
(

1− z
2
n

n
− b̃n
n

)
· bn
ρn

+
(

1− z
2
n

n
− b̃n
n

)
· bn
ρnzn

− `nbnb̃

2ρnz3
n

+ o(1)

= bn−
(

1− z
2
n

n

)
· bn
ρn

+
bn
ρnzn

+
bnb̃n
ρnn

− `nbnb̃

2ρnz3
n

+ o(1)

Eq.(C-8)
= bn−

(
1− z

2
n

n

)
· bn
ρn

+
bn
ρ2
n

(
(1− ρn)− z

2
n

n

)
+
bnb̃n
ρnn

− `nbnb̃

2ρnz3
n

+ o(1)
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=
bnb̃n
ρnn

− `nbnb̃

2ρnz3
n

+ o(1)

→C2−1{α=1/3} ·
C2

2(β · r(β))3/2
.

Given this, we have

1

bn
· 1− s

bn+1
1n

1− s1n

=
1− exp

(
(bn + 1) log(s1n)

)
bn(1− s1n)

=
1− exp

(
− bn(1− s1n) + o(1)

)
bn(1− s1n)

→
1− exp

(
−C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

))
C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

) ,

note that the function (βr(β))3/2 is strictly increasing and equal to 1/2 at β = β∗1 . Because we are

considering β > β∗1 , the last expression above is positive. Finally, since this limit is a lower bound

we obtain the desired lower bound for the lim inf.

A similar argument shows that

1

bn
· s2n− sbn+1

2n

1− s2n

→
1− exp

(
−C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

))
C2 ·

(
1− 1{α=1/3}

2(β·r(β))3/2

)
Next we move to the upper bound. We first note that

bq
n
c+bn∑

k=bq
n
c−bn

πn(k)≤ πn(bq
n
c) · (2 · bn + 1).

Now we bound the terms in [0, bq
n
c− bn− 1] and [bq

n
c+ bn + 1, n− 1] separately.

1

bn ·πn(bq
n
c) ·

bq
n
c−bn−1∑
k=0

πn(k) =
1

bn
·
bq
n
c−bn−1∑
k=0

bq
n
c∏

`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
(a)

≤ 1

bn
·
bq
n
c−bn−1∑
k=0

bq
n
c−1∏

`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
(b)

≤ 1

bn
·
bq
n
c−bn−1∑
k=0

{
1

bq
n
c− k− 1

·
bq
n
c−1∑

`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)}bqnc−k−1

(c)

≤ 1

bn
·
bq
n
c−bn−1∑
k=0

{
1

bn
·
bq
n
c−1∑

`=bq
n
c−bn

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
︸ ︷︷ ︸

s1n

}bq
n
c−k−1

=
sbn1n− s

bq
n
c−1

1n

bn · (1− s1n)
,
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where in (a) we use that
1

ρn
·
bq
n
c

n
· 1(

1 + 1√
n−bq

n
c

) ≤ 1,

in (b) the inequality of arithmetic and geometric means, and in (c) the fact that hn(x) is decreasing

for x≤ q
n

+ bn. In order to simplify notation let z̃2
n = n−bq

n
c. Let us analyze s1n,

s1n =
1

bn
·
bq
n
c−1∑

`=bq
n
c−bn

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
≤ 1

bn
·
∫ bq

n
c

bq
n
c−bn

1

ρn
· x
n
· 1(

1 + 1√
n−x

)dx
=

1

bnnρn
·
[

1

6

(
− 3n2 +n(8

√
n−x+ 6) + 4x

√
n−x− 12

√
n−x+ 3x2− 6x

)
− 2(n− 1) log(

√
n−x+ 1)

]∣∣∣∣∣
bq
n
c

bq
n
c−bn

=
1

bnnρn
·
[

12n− 4z̃2
n− 12

6

(
z̃n−

√
z̃2
n + bn

)
+

4

6
bn
√
z̃2
n + bn + (n− z̃2

n)bn−
b2
n

2

− 2(n− 1) log
( z̃n + 1√

z̃2
n + bn + 1

)]
,

If we denote this last expression s̃1n then for bn(1− s̃1n) we have that

bn(1− s̃1n) = bn−
1

nρn

[
12n− 4z̃2

n− 12

6
z̃n

(
1−

√
1 +

bn
z̃2
n

)
+ (n− z̃2

n)bn−
b2
n

2

]
+ o(1)

= bn−
1

nρn

[
12n− 4z̃2

n− 12

6

(
− bn

2z̃n
+

b2
n

8z̃3
n

)
+ (n− z̃2

n)bn−
b2
n

2

]
+ o(1)

Eq.(C-8)
= bn−

(
1− z̃

2
n

n

) bn
ρn

+
((1− ρn)

ρn
− z2

n

nρn

) bn
ρn
· zn
z̃n
− b2

n

4ρnz̃3
n

+
b2
n

2ρnn
+ o(1)

= bn
(1− ρn)2

ρ2
n

(1− r0,n)− b2
n

4ρnz̃3
n

+
b2
n

2ρnn
+ o(1)

=− b2
n

4ρnz̃3
n

+
b2
n

2ρnn
+ o(1),

where in the last equality we used that when α < 1/3 then (1− r0,n) = O(n−(1−3α)/2). This last

expression converges to 1
2
(C2−1{α=1/3} · C2

2(β·r(β))3/2
), which is a positive quantity. Therefore, for n

large enough we have s̃1n ≤ 1 and, thus

1

bn ·πn(bq
n
c) ·
bq
n
c−bn−1∑
k=0

πn(k)≤ sbn1n− s
bq
n
c+1

1n

bn · (1− s1n)
≤ s̃bn1n
bn · (1− s̃1n)

→
exp

(
− 1

2

(
C2−1{α=1/3} · C2

2(β·r(β))3/2

))
1
2

(
C2−1{α=1/3} · C2

2(β·r(β))3/2

) ,

where is the second inequality we used that for n large enough s̃1n ≤ 1.



C-12

Next we move to the range [bq
n
c+ bn + 1, n− 1]. First observe that

n−1∑
k=bq̃nc

πn(k)≤ πn(n) · (n−bq̃nc)≤
πn(n)

πn(bqnc)
· (n−bq̃nc)→ 0,

where the limit follows from Proposition 2 part i). Thus,

1

bn ·πn(bq
n
c) ·

n−1∑
k=bq

n
c+bn+1

πn(k) =
1

bn
·

bq̃nc∑
k=bq

n
c+bn+1

k∏
`=bq

n
c+1

ρn ·
n

`
·
(

1 +
1√
n− `

)
+ o(1)

≤ 1

bn
·

bq̃nc∑
k=bq

n
c+bn+1

{
1

k−bq
n
c ·

k∑
`=bq

n
c+1

ρn ·
n

`
·
(

1 +
1√
n− `

)}k−bq
n
c

≤ 1

bn
·

bq̃nc∑
k=bq

n
c+bn+1

{
1

bn
·
bq
n
c+bn∑

`=bq
n
c+1

ρn ·
n

`
·
(

1 +
1√
n− `

)
︸ ︷︷ ︸

s2n

}k−bq
n
c

≤ sbn+1
2n

bn · (1− s2n)
.

Let us analyze s2n,

s2n =
1

bn
·
bq
n
c+bn∑

`=bq
n
c+1

ρn ·
n

`
·
(

1 +
1√
n− `

)
≤ 1

bn
·
∫ bq

n
c+bn

bq
n
c

ρn ·
n

x
·
(

1 +
1√
n−x

)
dx

=
ρn ·n
bn
·
[

log(x) +
1√
n

(
log(
√
n−
√
n−x)− log(

√
n−x+

√
n)
)]∣∣∣bqnc+bn
bq
n
c

=
ρn ·n
bn
·
[

log(1 +
bn
bq
n
c) +

1√
n

(
log
[1− z̃n√

n
·
√

1− bn
z̃2n

1 + z̃n√
n
·
√

1− bn
z̃2n

]
− log

[1− z̃n√
n

1 + z̃n√
n

])]
.

Denoting this last expression by s̃2n we have that

bn · (1− s̃2n) = bn− ρn ·n · log(1 +
bn
bq
n
c)− ρn ·

√
n ·
(

log
[1− z̃n√

n
·
√

1− bn
z̃2n

1 + z̃n√
n
·
√

1− bn
z̃2n

]
− log

[1− z̃n√
n

1 + z̃n√
n

])
= bn− ρn ·n ·

( bn
bq
n
c −

b2
n

2bq
n
c2
)
− ρn ·

√
n ·
( bn√

nz̃n
+

b2
n

4
√
nz̃3

n

)
+ o(1)

= ρn ·n ·
b2
n

2bq
n
c2
− ρn ·

b2
n

4z̃3
n

+ bn ·
(

1− ρn ·nbq
n
c −

ρn
z̃n

)
+ o(1)

Eq.(C-8)
= ρn ·n ·

b2
n

2bq
n
c2
− ρn ·

b2
n

4z̃3
n

+ bn · (1− ρn)2 · (1− rn) · rn + o(1)

= ρn ·n ·
b2
n

2bq
n
c2
− ρn ·

b2
n

4z̃3
n

+ o(1)
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where from the first to second equality we we did a Taylor expansion around zero of the functions

log(1 + x), log((1− x)/(1 + x)) and
√

1−x, and collected the o(1) terms. In the last equality we

used that when α < 1/3 then (1− rn) =O(n−(1−3α)/2). As before we can argue that s̃2n ≤ 1 for n

large. From this we have

1

bn ·πn(bq
n
c) ·

n−1∑
k=bq

n
c+bn+1

πn(k)≤ sbn+1
2n

bn · (1− s2n)
≤ s̃bn2n
bn · (1− s̃2n)

→
exp

(
− 1

2

(
C2−1{α=1/3} · C2

2(β·r(β))3/2

))
1
2

(
C2−1{α=1/3} · C2

2(β·r(β))3/2

) .

Finally, since this limit is an upper bound we obtain the desired upper bound for the lim sup.

Remaining proofs. Let

hn(x) =
1

x
· (1 +

1√
n−x),

we show is decreasing in (0, q
n

+ bn] for n large. First,

dhn
dx

(x) =− 1

x2
·
(

1 +
1√
n−x

)
+

1

2x
(n−x)−3/2,

so hn(x) is decreasing if and only if x≤ 2((n− x)3/2 + n− x). Note that the LHS in the previous

inequality is strictly increasing and the RHS is strictly decreasing. Also, at x= 0 the LHS is below

the RHS, and for x= n the converse is true. Therefore, there if for some y,

y

2
≤ (n− y)3/2 ·

(
1 +

1√
n− y

)
(C-9)

then the same is true for all x≤ y. Consider y= q
n

+ bn and let `n = 1− bn
n−q

n

(n− q
n
− bn)3/2 ·

(
1 +

1√
n− q

n
− bn

)
= (n− q

n
)3/2`3/2n ·

(
1 +

1√
`n

1√
n− q

n

)
Eq.(C-8)

= (n− q
n
)3/2`3/2n ·

(
1 +

1√
`n
·
(q
n
−nρn)

nρn

)
= (n− q

n
)3/2`n ·

(nρn(
√
`n− 1) + q

n

nρn

)
,

note that for n large enough nρn(
√
`n− 1) + q

n
> 0. Then Eq. (C-9) is satisfied if and only if

ρn
2
·
[ q

n
+ bn

`n(nρn(
√
`n− 1) + q

n
)

]
︸ ︷︷ ︸

Hn

≤
(n− q

n
)3/2

n
= n(1−3α)/2(nα(1− ρn)r0,n(ρn))3/2, (C-10)

where we used that n− q
n

= n(1− ρn)r0,n(ρn). Since `n→ 1, Hn→ 1. If α < 1/3 then for n large

enough the previous inequality hold. If α = 1/3 and β > β∗1 , the LHS in Eq (C-10) converges to

1/2 and the RHS to (βr(β))3/2. This last function is strictly increasing and equal to 1/2 at β = β∗1 .

This implies that for n large enough Eq. (C-10) is satisfied, completing the proof.

�
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Proof of Lemma C-2. We start we the lower bound, let bn =Cn
3α
2 and note that

P[Qn(∞)≥ n]

bnπn(bqnc)
=

1

bn

∞∑
k=n

πn(k)

πn(bqnc)

≥ 1

bn

bqnc+bn∑
k=bqnc−bn

πn(k)

πn(bqnc)

=
1

bn

bqnc∑
k=bqnc−bn

bqnc∏
`=k+1

1

ρn

1(
1 + 1√

`−n

) +
1

bn

bqnc+bn∑
k=bqnc+1

k∏
`=bqnc+1

ρn

(
1 +

1√
`−n

)

≥ 1

bn

bqnc∑
k=bqnc−bn

[
1

ρn

1(
1 + 1√

bqnc−bn−n

)
︸ ︷︷ ︸

s1n

]bqnc−k
+

1

bn

bqnc+bn∑
k=bqnc+1

[
ρn

(
1 +

1√
bqnc+ bn−n

)
︸ ︷︷ ︸

s2n

]k−bqnc

=
1

bn
· 1− s

bn+1
1n

1− s1n

+
1

bn
· s2n− sbn+1

2n

1− s2n

.

Next we compute limits for bn(1−s1n) and bn(1−s2n). Before we begin note that qn = n+z2
n where

z2
n = ρ2

n/(1− ρn)2 and let b̃n = bn + (qn−bqnc) then

bn(1− s1n) =
bn

b̃n

[
b̃n− b̃n ·

1

ρn

1(
1 + 1√

bqnc−bn−n

)]
=
bn

b̃n

[
b̃n− b̃n ·

1

ρn

(
1− 1√

z2
n− b̃n

)
+ o(1)

]

=
bn

b̃n

[
b̃n− b̃n ·

1

ρn

(
1− 1

zn

{
1 +

b̃n
2z2

n

})
+ o(1)

]
=
bn

b̃n

[
b̃n

(1− ρn)2

ρ2
n

+
b̃2
n

2ρ4
n

· (1− ρn)3 + o(1)
]

→ C2β3

2
.

Thus,

1

bn
· 1− s

bn+1
1n

1− s1n

→
1− exp

(
− C2β3

2

)
C2β3

2

.

For bn(1− s2n) we have

bn(1− s2n) =
bn

b̃n

[
b̃n− b̃n · ρn

(
1 +

1√
z2
n + b̃n

)]

=
bn

b̃n

[
b̃n− b̃n · ρn

(
1 +

1

zn

{
1− b̃n

2z2
n

})
+ o(1)

]
=
bn

b̃n

[ b̃2
n

2ρ2
n

· (1− ρn)3 + o(1)
]

→ C2β3

2
.
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Thus,

1

bn
· s2n− sbn+1

2n

1− s2n

→
1− exp

(
− C2β3

2

)
C2β3

2

.

Finally, since this limit is a lower bound we obtain the desired lower bound for the lim inf.

For the upper bound note that

P[Qn(∞)≥ n]

bnπn(bqnc)
=

1

bn

∞∑
k=n

πn(k)

πn(bqnc)
≤ 2 +

1

bn

bqnc−bn∑
k=n

πn(k)

πn(bqnc)
+

1

bn

∞∑
k=bqnc+bn+1

πn(k)

πn(bqnc)
, (C-11)

so we just need to upper bound both summation on the right hand side of Eq. (C-11) and take the

limit. For the first summation we have

1

bn

bqnc−bn∑
k=n

πn(k)

πn(bqnc)
=

1

bn

bqnc−bn∑
k=n

bqnc∏
`=k+1

1

ρn ·
(

1 + 1√
`−n

)
(a)

≤ 1

bn

bqnc−bn∑
k=n

[
1

bn
·

bqnc−1∑
`=bqnc−bn+1

1

ρn ·
(

1 + 1√
`−n

)
︸ ︷︷ ︸

s1n

]bqnc−k

≤ 1

bn

sbn1n
1− s1n

,

where in (a) we used the inequality of arithmetic and geometric means, and the fact that the

function inside the summation is increasing. For s1n we have

s1n =
1

ρn · bn
·

bqnc−1∑
`=bqnc−bn+1

1(
1 + 1√

`−n

)
≤ 1

ρn · bn
·
∫ qn

qn−bn

1(
1 + 1√

x−n

)dx
=

1

ρn · bn
·
[
− 2
√
x−n+ 2 log(

√
x−n+ 1) +x−n

]∣∣∣qn
qn−bn

=
1

ρn · bn
·
[
− 2zn + 2 log(zn + 1) + 2

√
z2
n− bn− 2 log(

√
z2
n− bn + 1) + bn

]
,

then denoting the last expression above by s̃1n we have

bn · (1− s̃1n) = bn−
1

ρn
·
[
− 2zn + 2 log(zn + 1) + 2

√
z2
n− bn− 2 log(

√
z2
n− bn + 1) + bn

]
= bn +

bn
ρnzn

+
b2
n

4ρnz3
n

− bn
ρn

+ o(1)

→ C2β3

4
.

Hence, since (for n large) s̃1n ≤ 1 we have

1

bn

qn−bn∑
k=n

πn(k)

πn(qn)
≤ 1

bn

sbn1n
1− s1n

≤ 1

bn

s̃bn1n
1− s̃1n

→
exp

(
− C2β3

4

)
C2β3

4

.
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Now let us consider the second summation in Eq. (C-11),

1

bn

∞∑
k=bqnc+bn+1

πn(k)

πn(bqnc)
=

1

bn

∞∑
k=bqnc+bn+1

k∏
`=bqnc+1

ρn

(
1 +

1√
`−n

)

≤ 1

bn

∞∑
k=bqnc+bn

[
1

bn
·
bqnc+bn∑
`=bqnc+1

ρn ·
(

1 +
1√
`−n

)
︸ ︷︷ ︸

s2n

]k−bqnc

=
1

bn

sbn2n
1− s2n

,

where we used the inequality of arithmetic and geometric means, the fact that the function inside

the summation is decreasing, and that for app `≥ bqnc+1 the terms in the summation are strictly

bounded above by 1. For s2n, if we let z̃2
n = bqnc−n, we have

s2n ≤
ρn
bn
·
∫ bqnc+bn
bqnc

(
1 +

1√
x−n

)
dx

=
ρn
bn
·
[
2
√
x−n+x

]∣∣∣bqnc+bn
bqnc

=
ρn
bn
·
[
2
√
z̃2
n + bn− 2z̃n + bn

]
,

denoting this last term by s̃2n we have

bn · (1− s̃2n) = bn− ρn ·
[
2
√
z̃2
n + bn− 2z̃n + bn

]
= bn(1− ρn)− ρn ·

[bn
z̃n
− b2

n

4z̃3
n

]
+ o(1)

→ C2β3

4
.

Thus, since s̃2n ≤ 1 (for n large) we have

1

bn

∞∑
k=bqnc+bn+1

πn(k)

πn(bqnc)
≤ 1

bn

sbn2n
1− s2n

≤ 1

bn

s̃bn2n
1− s̃2n

→
exp

(
− C2β3

4

)
C2β3

4

.

Finally, since this limit is an upper bound we obtain the desired upper bound for the limsup. �

Proof of Lemma 2. This result is a direct consequence of Lemmata C-1 and C-2 which were

stated and proved right before the present proof. �

Proof of Proposition 3. Consider the following

ρn(y) = 1− β∗2
n1/3

− y

n1/3
, y ∈ (−(β∗2 −β∗1), (β∗2 −β∗1)) =D.

Note that n1/3(1− ρn(y)) = β∗2 + y > β∗1 and ρn(y) ↑ 1, hence we can always find n1 such that for

all n≥ n1 the leftmost equilibrium q
n

is well defined. Note that for ρn(y) we have

log
(πn(bqnc)
πn(bq

n
c)
)

= (bqnc−bqnc) log(ρn(y))+
n−1∑

k=bq
n
c+1

log
[n
k
·
(

1+
1√
n− k

)]
+

bqnc−n∑
k=1

log
[
1+

1√
k

]
+log(2).

(C-12)
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Furthermore, observe that both q
n

and qn are continuous functions of y,

q
n
(y) = n−n(1− ρn(y)) · r0,n(ρn(y)) and qn(y) = n+

ρn(y)2

(1− ρn(y))2
.

Define,

fn(y), log
(πn(bqn(y)c)
πn(bq

n
(y)c)

)
.

since we are using the floor function, fn(·) might not be continuos. In the first step of this proof

we show that the potential jumps of fn(·) in D converge to zero (Step 1). Then we show that there

exists a sequence γcn such that fn(γcn)→ c (Step 2) and γcn→ 0 (Step 3).

Step 1. Fix ε > 0. First, we prove that there exists ñ such that for all n≥ ñ we have that

∀y ∈D, ∃δ > 0 such that ∀ỹ : |ỹ− y|< δ⇒ |fn(ỹ)− fn(y)|< ε. (C-13)

We choose ñ such that for all n≥ ñ:

• supz∈D 2| log(ρn(z))| ≤ ε/9. This is possible because ρn(z)→ 1 uniformly in D.

•
sup
z∈D

∣∣∣ log
[ n

bq
n
(z)c+ 1

]∣∣∣≤ ε

6
, and sup

z∈D

∣∣∣ log
(

1 +
1√

n−bq
n
(z)c− 1

)∣∣∣≤ ε

6
.

This is possible because for any z ∈D, n/(bq
n
(z)c+ 1)→ 1.

•
sup
z∈D

∣∣∣ log
[
1 +

1√
bqn(z)c−n

]∣∣∣≤ ε

3
.

This is possible because for any z ∈D, (bqn(z)c−n) ↑∞.

Let n≥ n1 and fix y ∈D, we consider the first three terms in fn(·), see Eq. (C-12). Let Qn(ỹ) =

bqn(ỹ)c − bq
n
(ỹ)c and Rn(ỹ) = qn(ỹ)− q

n
(ỹ), and note that |Qn(ỹ)−Rn(ỹ)| ≤ 2 for any ỹ. Also,

Rn(ỹ) log(ρn(ỹ)) is continuous; therefore, there exists δ1 such that

|Rn(ỹ) log(ρn(ỹ))−Rn(y) log(ρn(y))| ≤ ε/9, ∀ỹ : |ỹ− y|< δ1.

Using this, for the first term in Eq. (C-12), we have∣∣∣Qn(ỹ) log(ρn(ỹ))−Qn(y) log(ρn(y))
∣∣∣= ∣∣∣(Qn(ỹ)−Rn(ỹ)) log(ρn(ỹ)) +Rn(ỹ) log(ρn(ỹ))

− (Qn(y)−Rn(y)) log(ρn(y))−Rn(y) log(ρn(y))
∣∣∣

≤ 2| log(ρn(ỹ))|+ 2| log(ρn(y))|

+ |Rn(ỹ) log(ρn(ỹ))−Rn(y) log(ρn(y))|

≤ ε

3
,
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for all ỹ such that |ỹ − y| < δ1. For the second term in Eq. (C-12), observe that since q
n
(·) is

continuous there always exists δ2 > 0 such that for all ỹ with |ỹ − y| < δ2 we have |bq
n
(ỹ)c −

bq
n
(y)c| ≤ 1. Therefore,

∣∣∣ n−1∑
k=bq

n
(ỹ)c+1

log
[n
k
·
(

1 +
1√
n− k

)]

−
n−1∑

k=bq
n

(y)c+1

log
[n
k
·
(

1 +
1√
n− k

)]∣∣∣≤ ∣∣∣ log
[ n

bq
n
(ỹ)c+ 1

·
(

1 +
1√

n−bq
n
(ỹ)c− 1

)]∣∣∣
≤
∣∣∣ log

[ n

bq
n
(ỹ)c+ 1

]∣∣∣
+
∣∣∣ log

(
1 +

1√
n−bq

n
(ỹ)c− 1

)∣∣∣
≤ ε

3
.

Finally, for the third term in Eq. (C-12), since qn(·) is continuous there always exists δ3 > 0 such

that for all ỹ with |ỹ− y|< δ3 we have |bqn(ỹ)c− bqn(y)c| ≤ 1. Therefore,

∣∣∣ bqn(ỹ)c−n∑
k=1

log
[
1 +

1√
k

]
−
bqn(y)c−n∑

k=1

log
[
1 +

1√
k

]∣∣∣≤ ∣∣∣ log
[
1 +

1√
bqn(y)c−n

]∣∣∣≤ ε

3

Putting the three inequalities jus proved together, for δ≤min{δ1, δ2, δ3}, delivers Eq. (C-13). Next

define

∆n , sup
y∈D
|fn(y+)− fn(y−)|,

then Eq. (C-13) ensures that ∆n→ 0.

Step 2. We construct γcn and show that fn(γcn)→ c. Fix y1 ∈ (−(β∗2−β∗1),0) and y2 ∈ (0, β∗2−β∗1),

we next argue that there exists n2 such that for all n≥ n2 it holds that fn(y1)> c> fn(y2). Indeed,

consider first y1 and note that β∗2 + y1 ∈ (β∗1 , β
∗
2). For g(·) as in Proposition 2 part iii), one has

g(β∗2 + y1)> 0. So, again by Proposition 2 part iii) we have that for any ε1 ∈ (0, g(β∗2 + y1)) there

exists n1,2 such that for all n≥ n1,2 we have

c < n1/3 · (g(β1)− ε1)< fn(y1).

A similar argument that leverages the fact that g(β∗2 + y2) < 0 shows that there exists n2,2 such

that for all n≥ n2,2 we have fn(y2)< c. We take n2 = max{n1,2, n2,2} to conclude that for all n≥ n2

it holds that fn(y1) > c > fn(y2). To conclude consider n ≥max{n1, n2} then, by Step 1 we can

always find γcn ∈ (y1, y2) such that

c− ∆n

2
≤ fn(γcn)≤ c+

∆n

2
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Taking limit at both sides and using that ∆n→ 0, we conclude that fn(γcn)→ c.

Step 3. To conclude the proof we need to argue that γcn→ 0. Note from the argument above

{γcn} is a bounded sequence. For the sake of contradiction fix ε > 0 and suppose that

limsup
n→∞

γcn > ε.

This implies that there exists a subsequence {γck(n)} that convergences to a point γ̂c ≥ ε. Let

ρ̂n = 1− β∗2
n1/3

− γcn
n1/3

,

then k(n)1/3(1− ρ̂k(n))→ β?2 + γ̂c. Because g(β?2 + γ̂c)< 0 from Proposition 2, for ε′ > 0 such that

g(β?2 + γ̂c) + ε′ < 0, we can deduce that for all n large enough

fk(n)(γ
c
k(n))≤ n1/3(g(β?2 + γ̂c) + ε′)≤ c− ε′.

However, from Step 1 we know that fk(n)(γ
c
k(n))→ c. This, together with the previous inequality

yields a contradiction. The case when lim infn→∞ γ
c
n < ε can be treated similarly and is thus omitted.

Therefore, for any ε > 0

ε≤ lim inf
n→∞

γcn ≤ limsup
n→∞

γcn ≤ ε,

since ε is arbitrary we have that γcn→ 0, which concludes the proof.

�

Proof of Proposition 4. We prove both statement separately.

(i) We show that

lim
n→∞

P[Qn(∞)< bqnc−C ·
√

log(n) ·n1.5α] = 0,

the other case in analogous. To reduce notation let bn =C ·
√

log(n) ·n1.5α for some C > 0 that we

will choose later in the proof then

P[Qn(∞)< bqnc− bn]≤P[Qn(∞)<n] + P[n≤Qn(∞)≤ bqnc− bn]

= P[Qn(∞)<n] +

bqnc−bn∑
k=n

πn(k)

by Theorem 2 part (i) the first term converges to zero. For the second term we have the following

upper bound

bqnc−bn∑
k=n

πn(k)≤
bqnc−bn∑
k=n

bqnc∏
`=k+1

1

ρn ·
(

1 + 1√
`−n

)
(a)

≤
bqnc−bn∑
k=n

[
1

bqnc− k
·
bqnc−1∑
`=k+1

1

ρn ·
(

1 + 1√
`−n

)]bqnc−k
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≤
bqnc−bn∑
k=n

[
1

bn
·

bqnc−1∑
`=bqnc−bn+1

1

ρn ·
(

1 + 1√
`−n

)
︸ ︷︷ ︸

sn

]bqnc−k

≤ sbnn
1− sn

,

where in (a) we used the inequality of arithmetic and geometric means. We next show the last

term above converges to zero.

Recall that qn = n+ z2
n where zn = ρn

(1−ρn)
. We have

sn =
1

ρn · bn
·

bqnc−1∑
`=bqnc−bn+1

1(
1 + 1√

`−n

)
≤ 1

ρn · bn
·
∫ qn

qn−bn

1(
1 + 1√

x−n

)dx
=

1

ρn · bn
·
[
− 2
√
x−n+ 2 log(

√
x−n+ 1) +x−n

]∣∣∣qn
qn−bn

=
1

ρn · bn
·
[
− 2zn + 2 log(zn + 1) + 2

√
z2
n− bn− 2 log(

√
z2
n− bn + 1) + bn

]
,

denote this last term by s̃n. Then

s̃n =
1

ρn · bn
·
[
− 2zn + 2(

1

zn
+O(n−2α)) + 2zn

(
1− bn

2z2
n

− b2
n

8z4
n

+O(
b3
n

z6
n

)
)

− 2
(√

1− bn
z2
n

+
1

zn
− 1 +O(

b2
n

z4
n

)
)

+ bn

]
=

1

ρn · bn
·
[
2zn

(
− bn

2z2
n

− b2
n

8z4
n

)
− 2
(
− bn

2z2
n

)
+ bn

]
+O(n−2α log(n))

=
[
1 +

(1− ρn)3

ρ3
n

− bn(1− ρn)3

4ρ4
n

]
+O(n−2α log(n)).

Hence, s̃n→ 1 and

bn · (1− s̃n) =
(1− ρn)3

ρ3
n︸ ︷︷ ︸

O(n−3α)

· b2
n

4ρn︸︷︷︸
O(n3α log(n))

+O(n−α/2 log(n)3/2) =O(log(n)). (C-14)

From this we can deduce that bn · (1− s̃n)→+∞ (which implies that s̃n ≤ 1) and

bn · (1− s̃n)2 =O(log(n)) · (1− s̃n) =O(log(n)) ·O(n−3α/2
√

log(n))−→ 0 as n→∞.

Putting all this together yields, for n large enough,

bqnc−bn∑
k=n

πn(k)≤ sbnn
1− sn
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≤ s̃bnn
1− s̃n

=
exp

(
− bn · (1− s̃n) +O(bn(1− s̃n)2)

)
1− s̃n

Eq.(C-14)
=

exp
(
− (1−ρn)3b2n

4ρ4n
+O(n−α/2 log(n)3/2)

)
1− s̃n

=
n
−n

3α(1−ρn)3C2

4ρ4n exp
(
O(n−α/2 log(n)3/2)

)
1− s̃n

,

observe that the exponential term above converges to 1. Also, the denominator is O(n−3α/2
√

log(n))

while n3α(1−ρn)3C2

4ρ4n
→ β3C2/4. So if we choose C such that β3C2/4> 3α/2 then we have that

lim
n→∞

bqnc−bn∑
k=n

πn(k) = 0,

as desired.

(ii) We show that

lim
n→∞

P[Qn(∞)< bq
n
c−C ·

√
log(n) ·√n] = 0,

the other case is analogous. To reduce notation let bn = C ·
√

log(n) ·n for some C > 0 that we

identify later then

P[Qn(∞)< bq
n
c− bn] =

bq
n
c−bn−1∑
k=0

πn(k)

=

bq
n
c−bn−1∑
k=0

bq
n
c∏

`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
(a)

≤
bq
n
c−bn−1∑
k=0

bq
n
c−1∏

`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
(b)

≤
bq
n
c−bn−1∑
k=0

{
1

bq
n
c− k− 1

·
bq
n
c−1∑

`=k+1

1

ρn
· `
n
· 1(

1 + 1√
n−`

)}bqnc−k−1

(c)

≤
bq
n
c−bn−1∑
k=0

{
1

bn
·
bq
n
c−1∑

`=bq
n
c−bn

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
︸ ︷︷ ︸

s1n

}bq
n
c−k−1

≤ sbn1n
(1− s1n)

,

where in (a) we use that
1

ρn
·
bq
n
c

n
· 1(

1 + 1√
n−bq

n
c

) ≤ 1,
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in (b) the inequality of arithmetic and geometric means, and in (c) the fact that the term we are

summing in the second summation is decreasing in ` is decreasing for ` ≤ q
n

+ bn. In order to

simplify notation let z̃2
n = n−bq

n
c. Let us analyze s1n,

s1n =
1

bn
·
bq
n
c−1∑

`=bq
n
c−bn

1

ρn
· `
n
· 1(

1 + 1√
n−`

)
≤ 1

bn
·
∫ bq

n
c

bq
n
c−bn

1

ρn
· x
n
· 1(

1 + 1√
n−x

)dx
=

1

bnnρn
·
[

1

6

(
− 3n2 +n(8

√
n−x+ 6) + 4x

√
n−x− 12

√
n−x+ 3x2− 6x

)
− 2(n− 1) log(

√
n−x+ 1)

]∣∣∣∣∣
bq
n
c

bq
n
c−bn

=
1

bnnρn
·
[

12n− 4z̃2
n− 12

6

(
z̃n−

√
z̃2
n + bn

)
+

4

6
bn
√
z̃2
n + bn + (n− z̃2

n)bn

− b
2
n

2
− 2(n− 1) log

( z̃n + 1√
z̃2
n + bn + 1

)]
,

If we denote this last expression s̃1n then for (1− s̃1n) we have that

(1− s̃1n) = 1− 1

bnnρn

[
12n− 4z̃2

n− 12

6
z̃n

(
1−

√
1 +

bn
z̃2
n

)
+ (n− z̃2

n)bn−
b2
n

2

]
+ o
(√ 1

n log(n)

)
= 1− 1

bnnρn

[
12n− 4z̃2

n− 12

6

(
− bn

2z̃n
+

b2
n

8z̃3
n

)
+ (n− z̃2

n)bn−
b2
n

2

]
+ o
(√ 1

n log(n)

)
= 1− 1

bnnρn

[
2n
(
− bn

2z̃n
+

b2
n

8z̃3
n

)
+ (n− z̃2

n)bn−
b2
n

2

]
+ o
(√ 1

n log(n)

)
Eq.(C-8)

= 1−
(

1− z̃
2
n

n

) 1

ρn
+
((1− ρn)

ρn
− z2

n

nρn

) 1

ρn
· zn
z̃n
− bn

4ρnz̃3
n

+
bn

2ρnn
+ o
(√ 1

n log(n)

)
=− bn

4ρnz̃3
n︸ ︷︷ ︸

O(

√
log(n)

n2−3α )

+
bn

2ρnn︸ ︷︷ ︸
O(

√
log(n)
n )

+o
(√ 1

n log(n)

)
,

hence, s̃n→ 1 and

bn · (1− s̃n) = bn ·
(
− bn

4ρnz̃3
n

+
bn

2ρnn
+ o
(√ 1

n log(n)

))
=O(log(n)). (C-15)

From this we can deduce that bn · (1− s̃n)→+∞ (which implies that s̃n ≤ 1) and

bn · (1− s̃n)2 =O(log(n)) · (1− s̃n) =O(log(n)) ·O(

√
log(n)

n
)−→ 0 as n→∞.
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Putting all this together yields, for n large enough

bq
n
c−bn−1∑
k=0

πn(k)≤ sbnn
1− sn

≤ s̃bnn
1− s̃n

=
exp

(
− bn · (1− s̃n) +O(bn(1− s̃n)2)

)
1− s̃n

Eq.(C-15)
=

exp
(
−
(
− b2n

4ρnz̃3n
+ b2n

2ρnn

)
+O(

√
log(n)3

n
)
)

1− s̃n

=
n
−

(
− C2n

4ρnz̃
3
n

+ C2n
2ρnn

)
exp

(
O(
√

log(n)3

n
)
)

1− s̃n
,

observe that the exponential term above converges to 1. Also, the denominator is O(
√

log(n)

n
) while

− C2n

4ρnz̃3
n

+
C2n

2ρnn
→ C2

2

(
1−1{α=1/3} ·

1

2(β · r(β))3/2

)
,

where r(β) = limn→∞ r0,n(ρn), and the term in brackets in the expression above is strictly positive

when α= 1/3 and β > β∗1 . So if we choose C such that

C2

2

(
1−1{α=1/3} ·

1

2(β · r(β))3/2

)
>

1

2

then we have that

lim
n→∞

bq
n
c−bn−1∑
k=0

πn(k) = 0,

as desired. �


