
Market Research
Surveys

A MARKET RESEARCHER’S GUIDE TO WEB SURVEYS

CHAPTER 1

Web Surveys
for Market
Research
Market Research Surveys are similar to
any other Web Survey, except that they
need more advanced capabilities to deal
with things such as ensuring you have a
balanced sample, and minimizing bias
within the Survey Data.

Correctly managing these surveys
requires a powerful Web Survey tool
specifically designed to handle these
advanced capabilities.

IN THIS SECTION

1. Challenges facing Market Research
Professionals doing Web Surveys

1.1. Creating complex Web Surveys efficiently

1.2. Avoiding the Software “tax”

1.3. Need for high-quality, unbiased Responses

1.4. Need for a balanced group of Respondents

1.5. Keeping up with the move to mobile

1.6. Integration with other software packages

2. Recommended Solution for MR Surveys: Web
Survey Creator

SECTION 1

Introduction
Challenges facing Market Research
Professionals doing Web Surveys
Market Research professionals are faced with a rapidly
changing landscape for Web Surveys where clients are
expecting surveys that are more engaging, and that can be
completed on a large array of devices.

CREATING COMPLEX WEB SURVEYS EFFICIENTLY

As complexity has increased, Web Survey software tools have
had to meet the challenges faced in efficient ways to ensure
that the creation of MR surveys is still within the capabilities
of non-technical users.

Web Surveys are now expected to:

1. Support “flashy” interfaces that engage respondents

2. Allow advanced functionality like drag and drop for
responses, rather than more traditional choice questions
and grids

3. Provide complex validation based upon multiple rules

4. Manage respondent quotas so that a representative group
of respondents can be found

5. Provide real-time results to stakeholders through
interactive online portals

It is important for MR professionals to be able to meet all
these needs without excessive increases in their time - after

2

all, regardless of anything else clients always want things
cheaper as well!

AVOIDING THE SOFTWARE “TAX”

There are a number of players in the Market Research arena -
many of them quite large. They are used to dealing with the
big end of town where upfront costs and per response costs of
$1 or more are the norm.

This software “tax” hurts your bottom line every time you try
and do something. It makes good sense to try and find a
system that works well, and has unlimited responses, or low
per-response costs.

NEED FOR HIGH QUALITY, UNBIASED RESPONSES

Collection of accurate, high quality data is the most critical
goal for any market research survey. As researchers, we are
constantly fighting against:

• Apathetic & lazy respondents  
e.g. no care in answering, speedsters rushing to the reward

• Mis-aligned respondent goals  
e.g. some just want the biggest reward for their response

• Inappropriate respondents  
e.g. the wrong person completing a response

• Fatigued respondents  
e.g. a survey is too long to maintain respondent interest

While completely eradicating these problems is a tall order,
there are a number of things that can be done to minimize
their occurrence.

The next section explains the features of a Market Research
Survey that can be used to minimize bias.

NEED FOR A BALANCED GROUP OF RESPONDENTS

It is often important to ensure that your respondents match a
broad section of the community. Failure to do so could lead to
results that appear to be valid, but are in fact seriously
affected by the people that have been responding.

An extreme example of this would be asking the following
question:

Which of the following did you play with
when you were a child?

1. Toy Trucks

2. Barbie Dolls

3. Make-up

This question has a substantial gender bias, and is likely to
produce wildly different responses depending upon the
gender of the respondent.

Quota management is used for balancing respondents to a
survey - this is the subject of our next chapter.

3

KEEPING UP WITH THE MOVE TO MOBILE

One of the biggest changes in recent years is the move to
surveys that are responded to on mobile devices. In less than
two years, allowing respondents to complete their surveys on
their mobile phone or tablet has gone from a “nice to have” to
a “must have”.

Often, the best place to catch a respondent is on their phone.
They may not be willing to sit at their computer and answer a
survey because there are things they would prefer to be doing,
but if they are on a bus or train, or just sitting around, a
survey on their mobile might even be a welcome distraction.

No survey package can be considered in this market unless
one of it’s key features is high quality mobile survey delivery.

INTEGRATION WITH OTHER SOFTWARE PACKAGES

A survey is often the middle of a complete process. For
example, the process may start with an invitation sent out
from a Panel Management tool, and may end with an export
to a statistics package. It is important that the Web Survey
tool chosen can support this sort of integration.

Recommended Solution for MR Surveys:
Web Survey Creator
This book talks about the creation of Market Research Surveys
from the perspective of users of Web Survey Creator. This
software solves all the problems described in this section and
much more.

For further details about this product, or to download the free
version of the software, visit the Web site, which can be found
at http://www.websurveycreator.com.

General question type sample  
http://www.websurveycreator.com/c/survey-sample-1.aspx

GALLERY 1.1 Samples of Surveys Created with WSC

4

http://www.websurveycreator.com
http://www.websurveycreator.com

IN THIS SECTION

1. Choice Randomization

2. Matrix Randomization

3. Page Randomization

4. A/B Testing

SECTION 2

Dealing with Bias
In many ways, Market Research Surveys are just like any
other survey. You need to ask questions, and get responses to
those questions. As discussed in the previous section, there
are specific problems that must be dealt with when
performing market research that require added functionality
beyond a basic survey tool.

We will have a look at some of the fundamental functionality
needed for market research in this chapter. We will
demonstrate this functionality in Web Survey Creator.

You can not “convince” a respondent to be unbiased. What
surveys have to do is balance the effect of bias so that it is
effectively “cancelled out” when looking at the data as a whole.

Randomization simply refers to “shuffling” survey content so
that it will appear in a different order for different
respondents. This will give content an equal chance of being
considered by a respondent, and spreads the effect of:

1. Questions and choices earlier in a survey being given
more consideration (before a respondent’s attention
drifts)

2. Less care and thought being taken by a respondent the
longer a survey continues (as they become fatigued with
the whole process)

5

Choice Randomization
A choice question with randomized choices will “mix up” the
choices differently for each respondent. When randomized,
the same question may appear as follows:

PEGGING CHOICES

There are some situations when you don’t want to randomize
every single item in the list.

If we randomize this question, it could look as follows:

This doesn’t really work - having the choices “other” and
“don’t like fruit” in the middle of the list is confusing, and off-
putting (particularly since the “don’t like fruit” option is
exclusive and disables the other values).

6

Fortunately, Web Survey Creator has a simple solution to the
problem - individual values can be “pegged”.

Pegged choices will not change their position - other choices
are randomized around them.

GROUPING RELATED CHOICES

Another issue with randomization is where you want some
choices to be kept together within the random choice list.
These would be related choices, such as:

Even when randomizing all choices, you may want to keep the
Cola drinks together so that Cola lovers can easily choose
between diet and non-diet variants. What we ant to avoid, is a
question that looks something like this when randomized:

In Web Survey Creator, consecutive choices can be kept
together by using the same Block Code for the choices.

 

7

If we use a block code “COLA” for the Cola drinks, and “LEM”
for the Lemonade, we can then randomize the choices and the
related drinks will always be kept together.

A example of how the question might look is as follows:

RANDOMIZING CONSISTENTLY

It sounds strange, but “consistent randomization” can be
important in a survey. For example, if you are asking multiple
questions about a series of products, you may want the

products to be randomized in the same way for every
question. This is consistent randomization.

Web Survey Creator allows you to pick consistent
randomization as one of the options when you turn
randomization on.

8

Matrix Randomization
Rows and columns in a matrix can be randomized in exactly
the same way as choices.

MATRIX COLUMNS

Columns in a matrix are exactly the same as choices in a
choice question, and randomization is the same.

Columns can be pegged and grouped as well.

MATRIX ROWS

The rows of a matrix are usually questions or statements. You
may wish to randomize their order so that people aren’t “over
it” every time they hit the same last questions in the matrix.

The randomization options are the same as for choices,
though the way you peg a row is slightly different - you choose
pegging from a drop-down list of options (which include
hiding the question completely).

9

Page Randomization
Page randomization provides the most dramatic way of
randomizing survey content. You can change the order of
consecutive pages in the survey randomly for each respondent
using this capability.

To use page randomization, you need to:

1. Edit the first page you want to randomize  

2. Check the randomization check box 

3. If you want to group pages together in the random order,
enter an optional Block Code  

4. Save the page

5. Repeat for each subsequent page you wish to randomize.

TIPS FOR PAGE RANDOMIZATION

Page randomization can have a big effect on the flow of your
survey, and therefore is the most “destructive” method of
randomization if you get it wrong. It is therefore important to
be careful when implementing this type of randomization.

We have a couple of tips to ensure you get the most from page
randomization.

Tip 1: Ensure Your Random Pages Are Consecutive

The system will randomize all pages that are consecutive and
flagged as random. You can not have a non-random page in
the middle of a series of random pages and expect the random
pages to mix - you will end up with two groups of random
pages - either side of the non-random page.

Tip 2: Don’t Create Impossible Logic!

Whenever you randomize a page, you get an explicit warning:

It is up to you to ensure you don’t create a situation where the
page order created through randomization. Consider the
following example:

10

Page 1

Do you smoke?

Page 2 (Hide for people who don’t smoke)

Are you looking to quit smoking?

We could randomize these pages, but it would be a very bad
idea. One of the random orders of pages would be:

Page 1 (Hide for people who don’t smoke)

Are you looking to quit smoking?

Page 2

Do you smoke?

Flow control will not work in this instance, because a page
that is hidden by flow control appears before the question
used in the flow control is even asked...

Tip 3: Test Thoroughly

Random pages are unpredictable by definition. It is important
to enter test responses multiple times so you can try many
variations of the page orders.

A/B Testing
Users of A/B testing will distribute multiple samples of a test
to see which single variable is most effective in increasing a
response rate or other desired outcome. The test, in order to
be effective, must reach an audience of a sufficient size that
there is a reasonable chance of detecting a meaningful
difference between the control and other tactics.

Web surveys are a great candidate to use A/B testing, since
gaining access to a large audience is relatively easy. A simple
example of an A/B test is shown below.

What we want is 50% of respondents to go to the page Option
A, and 50% to go to the page Option B. Achieving this result is
another example of randomization.

As soon as a respondent begins a response in Web Survey
Creator, they are allocated a random number. This number
can be used for various things - one of which is A/B testing.
Setting up an A/B test is actually done through flow control.

11

The true structure of a survey that has the A/B test above
would be:

The create our A/B test, we want to hide the Option A page
50% of the time, and hide the Option B page 50% of the time.

Hiding the option A page would require the following flow:

We use the A/B testing Random Number for the
Respondent (which is always a number between 1 and 100) to
do the flow. We want to hide the Option A page if the number
is less than 51 (i.e. the number is between 1 and 50).

The hiding of the option B page would be the opposite test -
hide the page when the A/B testing Random Number is
greater than 50 (i.e. the number is between 51 and 100).

Of course this methodology wouldn’t just apply to a two page
test - you could have up to 100 options that are randomly
chosen between, since the AB testing Random Number is
equal to 1 of a possible 100 values.

12

CHAPTER 2

Quota
Management

Quota management is a key element of
most market research surveys.

By controlling the quotas for a survey,
you can ensure you get a balanced
sample, and minimize your costs for
panel respondents by ensuring you only
pay for the people you actually need.

IN THIS SECTION

1. Why use Quotas?

1.1. The “More is Better” Rule

1.2. The “Balance is Better” Rule

2. How can quotas be managed?

2.1. Early Survey Termination

2.2. Setting Quota Rules

2.3. Dealing with Tough Quotas

3. Tips for Quota Management

3.1. Adding quotas after a survey has
commenced

3.2. Testing whether someone fails the quotas
in multiple places within a survey

SECTION 1

Quota Management
Explained

Why use Quotas?
THE “MORE IS BETTER” RULE

Many surveys work on the principle “the more respondents,
the better” and therefore place no limits on how many people
may answer the survey.

An example of such a survey would be a customer survey - you
want as many customers as possible to complete the survey,
and you don’t want to place any limitations on this.

The reason why this rule works for these surveys is that each
respondent’s “voice” is as important as any other respondent.
In our example, every respondent is a “customer”, and their
views are equally important.

THE “BALANCE IS BETTER” RULE

Let’s consider a different example - let’s say we have a survey
about what people like and dislike about a fast food brand.
This may seem to be another perfect candidate to apply the
“more is better” rule. This would be a mistake, and here’s
why:

1. As a general rule, men prefer (and eat more) fast food
than women

2. Younger men are likely to eat more fast food than older
men (once their cholesterol and age catch up with them
and they need to be more careful)

14

3. Middle-aged women and anybody over 60 are more likely
to respond to a survey than people under 25 (who think
Email is archaic, and surveys are a waste of their time)

OK, so what would this all mean if respondents are left to
their own devices?

People who like fast food the least would make up a
disproportionate number of survey responses - women and
older men. Extrapolating this to say something about the
community as a whole is meaningless. Young people who love
fast food won’t be represented sufficiently to provide a
balance.

The answer is to provide a balanced group of respondents, by
only taking a set number of people from various sections of
society. Once you have enough answers from middle aged
women, you simply don’t need any more. You need to go out
and find a sufficient number of young males!

A “Quota” can be based on anything you like, but commonly is
based upon:

• Age

• Gender

• Location

If you take these three things into account when considering
your respondents, you can make the respondent makeup

mimic the makeup of society, and therefore provide a more
accurate view of society’s views.

How can Quotas be managed?
EARLY SURVEY TERMINATION

You can not control who will click through to your survey, and
when they will do it. This means that an unbalanced sample of
people are likely to start the survey.

The goal of a quota management system is to stop
respondents you don’t want at the earliest possible point.

Being terminated in a survey will be at least mildly annoying
to someone who has taken the time to complete the survey.
The last thing you want to do is inflame the situation by
making them answer a lot of questions before they are
terminated.

Best practice when creating Web Survey for Market Research
is to have a survey with the following structure:

1. All questions to determine whether a respondent is
suitable for the survey are asked in the first few pages of
the survey

2. Terminate Pages for “Screen-Outs” (people who you
are not interested in) and “Quota-Outs” (people you are
interested in, but you want to limit the numbers) appear
next.

15

3. Flow control is used to skip appropriate people over the
terminate pages. Everyone else hits one of the terminate
pages, and the survey is over.

Terminate pages are simply pages that end the survey - they
don’t have a Next button like other pages - they simply have a
Submit button.

SETTING QUOTA RULES

Quota management all comes down to using a set of rules to
determine whether someone should be completing a survey.
Each quota basically deals with 2 things:

1. Who are we looking for? (eg. Males, 18-25)

2. How many of them do we want as respondents in our
survey?

Web Survey Creator keeps track of the rules that have been
created, and the number of people who have met each quota,
in its Quota Management System.

16

This video explains terminate pages in WSC  
http://vimeopro.com/websurveycreator/wsc-training-videos/video/31361203

MOVIE 2.1 Terminate Pages in WSC

DEALING WITH TOUGH QUOTAS

There are often particular quotas that are harder to fill than
others. A particular survey may be considered worthless if all
quotas are not filled, so this can be a serious issue.

If we consider our previous example, we can see where the
harder quotas are:

We can see that while there are plenty of people in most of the
other location quotas, we are still looking for 12 people from
Perth.

Tough quotas are normally dealt with by “opening up” a
survey until we get enough of the quota. This means going
over quota in other areas so that we can at least get to the
minimum level needed for the hard quota.

Opening up a survey is a very rough technique that has to be
manually handled.

Fortunately, Web Survey Creator provides two features that
make this process a whole lot easier and more controlled -
quota overflow, and priority quotas.

Quota Overflow

In the event original quota numbers have to be modified, an
“overflow” figure can be entered rather than changing the
original figure - making it a lot easier to see what changes we
have made.

In our example, Brisbane has an overflow of 20 respondents
(on top of the original quota of 100) and Melbourne has an
overflow of 28 respondents (on top of the original quota of
152).

“Priority” Quotas

Quotas in Web Survey Creator work as follows:

1. As soon as all questions relating to quotas are completed,
the system allocates every quota that a respondent meets
to them. For example, a respondent may have the
following quotas attached to him: 
 

17

2. Based on our example, we already have too many male
30-39 respondents  
 

 
 
Therefore this respondent would fail quota - even
though we really need people from Perth - because
letting them through would mean we end up with too
many 30-39 year old men.  
 

There are times when having one quota go over target is less
of a problem than not getting enough of another quota.

If we wanted to make sure we let someone from Perth
through, we could set our Perth quota as a “priority” quota.
This tells the system to allow anyone from Perth through as a
respondent, even if their other quotas are full. As soon as
Perth is full, the priority quota will no longer be in effect.

Priority quotas make it very easy to focus on your hard-to-get
people. They need to be used cautiously, however, as they will
lead to other quotas being over-subscribed.

Tips for Quota Management
ADDING QUOTAS AFTER A SURVEY HAS COMMENCED

The best advice that can be given about adding quotas after a
survey has commenced (and responses have been received) is
to avoid doing it! The main reasons to try and avoid the late
inclusion of quotas are:

1. You will have completed responses from people who were
never tested against your new quotas (since quotas are
calculated as a person enters their survey response).

2. You risk making mistakes like inclusion of questions in
quotas that appear after the quota out page (therefore
making the quota out page logic invalid).

If you do add or change a quota after a survey has
commenced, Web Survey Creator does help you play “catch-
up” with existing responses - you can generate the correct
quotas for existing responses by clicking the Re-calculate
Quotas toolbar button under the Survey Quotas menu.

18

TESTING WHETHER SOMEONE FAILS THE QUOTAS IN

MULTIPLE PLACES WITHIN A SURVEY

There is nothing worse than a respondent almost getting to
the end of a survey, and suddenly they are kicked out because
their quota is full. Web Survey Creator avoids this situation by
calculating quotas as early in the survey as possible, and from
that point on there is a simple rule:

Once you’re in, you’re in!

What this means is if at the time the quotas were calculated
there was still room for a respondent, they will be allowed to
complete the survey. This may lead to a slight over-run of
numbers for certain quotas if there are a number of people in
that quota who finish around the same time.

A person doesn’t raise the number in a quota until they have
submitted their completed response, so the quota out won’t
be triggered until the needed number of people have
completed their response.

There may be times when this default behavior will cause too
much of an over-run, or add unnecessary cost to a job. For
example:

1. A survey may be really long, so a lot of people could be in
the middle of the survey (beyond the quota test) when
their quota is finally filled.

2. A significant number get past the quota test, and then
leave their response in draft, to be completed later. No
matter when they come back (even long after their quota
is filled) they will be allowed to complete their response
and add to the number in their quota.

So, how do we test for quotas more than once in a survey?
Fortunately Web Survey Creator makes it simple.

If you add more than one Quota Fail Terminate Page to your
survey, quotas will be retested prior to the second and
subsequent terminate pages.

What this means is you can choose when a re-check occurs (if
at all). If you don’t care about annoying a respondent who has
spent their time completing the answers to the survey, you
could even have an additional quota fail page right near the
end of the survey.

19

IN THIS SECTION

1. Our Example Explained

1.1. Makeup of Respondents Required

2. Preparing our survey

2.1. Gender/age/location questions

2.2. Quota Fail Terminate Page

3. Creating our Quotas

3.1. Using the Quota Builder

3.2. Adding Quota Fail Terminate Page logic

3.3. Manual Adjustment of Quotas

4. Tracking Quotas

SECTION 2

Quota Management
Example

Our Example Explained
Our example survey will be for a fictitious Fast Food chain -
Worldburger. They have recently introduced a new “healthier
choices” menu that adds healthier options to their menu, and
they want to see whether people are aware of the change, and
what they think of the change.

MAKEUP OF RESPONDENTS REQUIRED

In order to get a good cross-section of respondents, they have
requested the following gender makeup for responses:

16-24 25-29 30-39 40-49 50-54 55-64 65+

FEMALE

MALE

33 36 48 43 25 37 46

34 36 47 41 25 36 38

This will provide a good spread of ages, and a slight skew
towards women (who are the primary focus of the “healthier
choices” campaign).

An additional requirement is to have a geographical spread of
respondents that roughly represents the proportional number
of people in various cities who visit Worldburger stores in any
given week.

SYDNEY MELBOURNE BRISBANE PERTH ADELAIDE

157 152 103 62 51

20

Both of these requirements add to a total of 525 people. They
are not interlocking quotas, so it doesn’t matter what the
gender/age makeup is for each geographical location.

Preparing Our Survey
GENDER/AGE/LOCATION QUESTIONS

Quotas are calculated based on responses entered into a
survey. For our survey, we therefore need to ask about a
person’s gender, age and location.

For a detailed explanation about adding questions, see our
basic survey guide. For the purposes of this example, we will
just look at the completed questions.

On our first page, we will ask for the respondent’s gender:

On the second page, we will ask for the respondent’s age:

On the third page, we will ask where the respondent lives:

We now have a survey with the following structure:

Once a respondent has answered these three questions, we
will know whether or not they fit a quota.

If a respondent doesn’t fit into a quota, we need to end the
survey for them.

The fourth page in the survey will therefore be a Quota Fail
Terminate Page. If a respondent does not fit into quotas, they
will see this page. If they do fit into a quotas, this page will be
hidden and they will move onto page 5.

21

http://itunes.apple.com/us/book/beginners-guide-to-creating/id510021050?ls=1
http://itunes.apple.com/us/book/beginners-guide-to-creating/id510021050?ls=1

This logic is explained in the following diagram:

QUOTA FAIL TERMINATE PAGE

We need to create the Quota Fail Terminate Page. This is
simply a matter of creating a page in the survey, then:

1. Clicking the Edit button to edit the page details  

2. Changing the type of page to indicate that it is a terminate
page. 

A terminate page is different to a normal page because:

1. It has a submit button, not a next button on it. This
means it will be the last page seen by the respondent in
the survey.

2. It has the ability to redirect to a specific location - which
is very important when integrating with external
respondent panels (a point we will discuss more fully in a
future chapter).

Creating Our Quotas
So far we have the questions that are used in our quota, and
we have a terminate page. What we are lacking is a calculation
of the quotas, and a survey flow to properly handle the
showing or hiding of the terminate page. Let’s look at these
issues in turn.

USING THE QUOTA BUILDER

We have to set up quite a few quotas in this survey. In fact, we
have to set up:

2 Genders x 7 Age Ranges = 14 Gender/Age Quotas 
and  
5 Location Quotas

That’s a total of 19 Quotas.

While setting each quota up manually can be done,
fortunately Web Survey Creator has a Quota Builder that

22

does most of the work for us. It let’s us create related quotas
in a single process.

Creating The Gender/Age Quotas

Let’s create the gender and age quotas first. The steps for
creating these quotas are as follows:

1. Click on the Survey Quotas menu under the Design tab 

2. Choose the Quota Builder from the toolbar 

3. Choose Gender as the first question we want to use in
our quotas  

4. Choose both of the values for this question to indicate
that they will both be used in the quota (note that we can
optionally change how they will be described in the quota)  
 

5. Choose Age Group as the second question we want to use
in our quotas  
 

23

6. Again, choose all values. We can do this quickly by
pressing the Toggle Selection link 

7. Press the Set Quota Limits button 

8. All combinations of the choices selected will be presented
ready for quota numbers to be entered 

9. Enter the quota numbers as per the original request from
Worldburger 

10. Press the Save Quotas button 

11. The Quotas will all be shown under the Survey Quotas
menu 

24

Creating The Location Quotas

The location quotas can be created in the same way as the
gender/age quotas - in fact, they are even easier to create,
since all the quotas are only based on a single question - City
lived in.

We need to choose all values except “None of the above”,
which would be inappropriate as a quota.

Quotas are shown alphabetically in the Quotas Browse - but
we want the cities to appear together. We can do this by
changing the descriptors for the cities before saving.

Once the location quotas are added, they will also be shown at
the top of the Survey Quotas Browse (because they are first in
the alphabetical order).

ADDING QUOTA FAIL TERMINATE PAGE LOGIC

We have already created our quota terminate - there’s just one
problem!

If survey flow logic is not added to hide a terminate page,
the page will always be shown - and every respondent will
be terminated!

Now that we have our quotas set up, we can correctly hide the
terminate page (since the hide rule will be directly related to
whether a respondent can fit in the quotas).

The steps for creating our terminate page logic are as follows:

25

1. Click on Survey Flow under the Design tab. 

2. Add a New Flow  

3. Choose to hide the terminate page  

4. Click the Save & Continue to Add Conditions button 

5. Click Add Condition  

6. Choose to test all the quotas, as shown below  

 

7. Click Save Condition 

26

The terminate page will now only be shown under the
following conditions:

1. The respondent matches at least one of the quotas

2. All of the quotas attached to the respondent still have
room (the only exception to this rule is if Priority Quotas
exist, as discussed in the previous section).

MANUAL ADJUSTMENT OF QUOTAS

If you need to add or edit single quotas, you can do this
through the Quota Management System.

Adding A Single Quota

To Add a single Quota, click on the Create Quota toolbar
button.

All details for the quota need to be entered, including a title
for the quota.

The Quota Rules can be added one at a time, in a similar way
to flow control.

Editing A Quota

Editing a Quota is simply a matter of clicking on the Quota
Title in the Quota Browse.

 

27

Editing Multiple Quotas At Once

If you need to modify quotas, quite often it’s going to be one
the following details that needs to be changed:

1. How many people you are looking for in the quota

2. How much of an overflow you will allow

3. The access code or description for the quota

Web Survey Creator makes it easy to modify these details en
masse by clicking on the Update All toolbar button under
Survey Quotas.

Titles, access codes, limits and overflow amounts can all be
adjusted from a single screen.

Edit Quota Condition

Edit Quota Details

Add Quota Condition

INTERACTIVE 2.1 Editing a Quota

1 2 3

28

Tracking Quotas
Quotas can be easily tracked under Survey Quotas, as we have
already seen. This works well if you have set up the survey,
and you are a Web Survey Creator user, but what if you are an
outsider - like a client?

Let’s assume that the management at Worldburger want to
keep an eye on the progress of the survey. Fortunately there is
a way for them to do this in WSC - through a Web Portal.

A Web Portal can show a number of things including:

CURRENT STATUS OF QUOTAS

All quotas are listed, together with the number of respondents
who are currently “In Quota” and how many are still needed.

RESPONSE COUNTS

A daily count of responses are shown, together with a
cumulative total - broken down by type (quota outs etc.)

INDIVIDUAL QUESTION STATISTICS

Current counts for responses to each of the questions in the
survey.

29

CHAPTER 3

Mobile
Surveys

The world of Surveys is currently
changing at a pace not seen since the
original shift to the Web. Having a Web
Survey is no longer enough - your
surveys now need to be accessible on
mobile devices.

“Smart phones” are your window into
higher response rates, and more satisfied
respondents.

IN THIS SECTION

1. Mobile vs Desktop

2. Mobile doesn’t have to mean basic

2.1. Layout Management

2.2. Text Entry

2.3. Question “Morphing”

2.4. Keeping the “sexy” in your surveys

3. Going Mobile: Working smarter, not harder

SECTION 1

The Move to Mobile
Mobile vs Desktop
The expectations that respondents now have when it comes to
Web Surveys are quite easy to quantify. Unfortunately they
are not so easy to meet, since many of the expectations are not
easy to achieve.

EXPECTATION PROBLEM

Survey completion on a mobile
device or a desktop computer -

not just one

Many survey solutions have full-
featured “desktop” and cut-down
“mobile” versions. Choose one or
other when setting up (not both).

“Sexy” surveys
“Sexy” usually equals flash-based

desktop questions. Not mobile
compatible.

If using a mobile device, survey is
still full-featured

Usually formatting and
functionality on mobile devices is

cut down

The existence of mobile devices with true Web browser
capabilities is a relatively new phenomenon (some suggest it
began with the iPhone in 2007) and many of the gaps between
expectations and the reality of Web Surveys on mobile devices
is simply a result of large, established software packages still
trying to “catch up” with the expectation.

Going “half-way” with cut-down mobile-specific survey tools
misses the point - people have “cool” mobile devices and
expect the things they do on those devices to be “cool” as well.

31

There is an added benefit to getting to people via their
mobile phone or tablet - the sorts of people who use these
devices are often the younger demographic that are so hard
to get any response out of.

The Humble P.C. Is Far From Dead...

Regardless of how much people like using their mobile
devices, there is still an important place for desktop (and
laptop) computers. It is therefore critical that a Web Survey
continues to work well in a standard PC environment. There
are a number of benefits to this environment that will never
be eradicated by the onslaught of mobile devices:

• Large amounts of text are easier to enter on a full-sized
keyboard

• Virtually every household has a PC (and can share it, unlike
personal mobile devices) for completion of surveys

• A significant percentage of respondents do not have or want
smart mobile devices

• Older generations often feel more comfortable using a PC,
since that is what they are used to

Mobile doesn’t have to mean basic
With use of the right technologies, there is only really one
limitation that you have to work around on a mobile device...

Mobile devices have less screen real estate than desktops.
The interface provided must take this into account.

LAYOUT MANAGEMENT

Images need to be resized, and wide layouts changed to fit a
mobile screen.

32

Advanced text question types - like demographics - look best
using a form-style layout on a desktop. Again, on a mobile
device, the layout needs to be modified.

TEXT ENTRY

On a desktop, text entry is easy - the keyboard in the primary
input device. On a mobile, text fields not only need to be

formatted for the screen - they also need to work with the
input system on the device.

QUESTION “MORPHING”

Some question types simply can not be used on a mobile
because the screen size simply doesn’t allow for a useable
experience. An example is a matrix question, which requires

33

the full width of the screen to be able to be entered on a
desktop.

KEEPING THE “SEXY” IN YOUR SURVEYS

One of the biggest issues faced when supporting mobile
devices is to avoid losing all the “sexy” capabilities that
respondents have become used to.

Gotta Have Video!

Many market research surveys use video as a way to show
product material such as advertisements.

34

Touch-enabled Sliders

Sliders are used more and more in surveys. It’s important to
have the same capability on mobile devices - including
advanced implementations like the component breakdown
slider question below.

Drag ‘n’ Drop

Mobile users love their touch-screen smartphones. Drag ‘n’
drop needs to be available on the phone to mimic dragging
operations on the desktop version of survey questions.

35

Going Mobile: Working smarter, not
harder
If you want to create Web Surveys that support both mobile
and desktop respondents, you need to adhere to some rules
when looking for a Web Survey design tool:

1. Never use flash-based questions. They immediately
exclude mobile users

2. Avoid solutions that split mobile and desktop survey
design into separate modules - you’ll be doing twice the
work, and possibly have incompatibilities due to
limitations in the mobile version

3. Avoid survey solutions for desktop respondents that have
mobile capabilities “tacked on”. Mobile is too important
to be an afterthought.

4. Avoid overly basic mobile survey capabilities - you’ll be
able to get to mobile users, but not with the kind of survey
you need to create.

36

IN THIS SECTION

1. Our Example Survey

2. Making a WSC survey mobile-capable

3. Targeting specific platforms

3.1. Device targeting through flow control

SECTION 2

Mobile Survey Example
Our Example Survey
The example we will be reviewing in this section has been
created in Web Survey Creator. Images of mobile survey
capabilities in the previous section came from this example.

To see the full example, visit the WSC sample online:

http://www.websurveycreator.com/c/survey-sample-3.aspx

37

http://www.websurveycreator.com/c/survey-sample-3.aspx
http://www.websurveycreator.com/c/survey-sample-3.aspx

Making a WSC survey mobile-capable
A survey can tell what browser - and therefore what type of
device - it is being run on. Web Survey Creator uses this
information to determine how a survey will be displayed.

What do you need to do to make a WSC survey  
work on a mobile device?  

 
NOTHING

Any survey created in Web Survey Creator will work on a
mobile device - they whole basis of the system is you design a
survey once and it can be used everywhere.

Targeting Specific Platforms
While Web Survey Creator will manage surveys on a mobile
device automatically, there may be times when you actively
want to do something different for respondents who answer
on a mobile as opposed to people who answer on a PC (or on a
tablet for that matter).

Whenever Web Survey Creator shows a survey to a
respondent, it determines which of the following types of
device is being used to view the survey:

PC

Computer running a full PC operating system such
as Microsoft Windows or Mac OSX. These are the

types of machines that have traditionally been used
to complete surveys.

Tablet
Mobile devices that have moderately sized (7”+)
touch-screens, and are generally referred to as

“tablets” (e.g. iPad, Samsung Galaxy Tab)

Mobile
Mobile devices with relatively small screens (<5”)
that are generally referred to as “Smartphones”.

Web Survey Creator can determine the type of device from the
browser that is running on the device. Knowing which device
is being used can open opportunities to change the behavior
of the survey for different devices.

38

DEVICE TARGETING THROUGH FLOW CONTROL

Our Mobile Survey Sample doesn’t have a single introduction
page - it has three. One for each type of device.

While multiple introduction pages is certainly not mandatory
- since WSC will render a single page correctly on all three
styles of device - it does give some flexibility in survey design.
It allows the designer of the survey:

1. To show different introduction text based upon the type of
device being used. 

1.1. PC  

1.2. Tablet  

1.3. Mobile  

2. You can proactively limit content based upon the device. In
our example survey, the introduction for mobile phones is
shorter and does not contain any images - taking into
account the fact that the survey is likely to be done on a 3G
network.

Setting Up Flow Control

To set up the introduction pages in the sample, we did the
following:

1. We created three pages - one for each of the devices we
wanted to target 

2. We then created three survey flow rules - one rule each
for the introduction pages. The rules tested the type of
device that way being used to view the survey  
 

 

39

CHAPTER 4

Product
Testing

Product testing comes in many forms. In
this chapter we will look at one example
of product testing where we consider a
series of car brands, and then ask specific
questions about them.

This example brings together multiple
advanced concepts, including page
looping, data piping, flow control and
choice linking.

IN THIS SECTION

1. The problem with product testing

2. Using surveys to do a Product Tests

2.1. Base list of products

2.2. Questions for each product

2.3. Advanced functionality

2.3.1.Page Looping

2.3.2.Flow control

2.3.3.Data piping

2.3.4.Choice linking

SECTION 1

Product Testing Overview
The Problem with Product Testing
Product testing can be a powerful way of finding out
information about a large number of related products in a
single survey.

One of the biggest issues with setting up such a survey is the
large number of products. Let’s consider an example:

I want to product test 20 products. For each product I want 4
pages with 2 questions per page. So, what do I need to set up?

Pages: 20 x 4 = 80 pages 
Questions: 20 x 4 x 2 = 160 questions

We can see from the example above that it doesn’t take long
before the setup becomes unwieldy - and it only gets worse if
there is complex logic to be included as well.

Using Surveys to do Product Tests
When you create a survey for product tests, there are a
number of standard processes you need to go through to set
the survey up. These are briefly discussed in this sections.

Note that a more detailed explanation of these processes -
using the Web Survey Creator product - is the topic of the next
section.

41

BASE LIST OF PRODUCTS

A base list of the products we want to test will need to exist in
our survey.

For our example, we will be using car brands as our
“products”. This “list” will be a question with each of the
possible car brands as answers.

It is common for our base list to include a lot more
information than simply a piece of text. For example, images
can be used for brands:

QUESTIONS FOR EACH PRODUCT

Once you have determined that someone knows a brand, you
can start asking additional questions relating to that brand. In
our case, we are trying to get an overall opinion of a brand,
together with specific views on products within the brand’s
range of cars.

Our questions will include:

What is your overall opinion of the brand?

Would you recommend this brand to your friends?

Have you ever owned a car from this brand?

Which of the following models have you owned?

How would you rate the car(s) you have owned from this
brand?

We would want to ask these questions for each of the brands,
and we would like to customize them by brand as well. How
can all this be done? Through the use of advanced survey
functionality!

Advanced Survey Functionality
All survey tools will allow you to ask a simple set of questions.
Product testing, however, requires something much more
powerful. We need:

1. To be able to ask the same questions for each of the
products

2. To be able to refer to product-specific details - such as the
product name - when we ask the questions

3. To deal with advanced capabilities - like flow control - on a
product-by-product basis

All of these things require advanced functionality as described
below.

42

PAGE LOOPING

Let’s consider the first question we want to ask:

What is your overall opinion of the brand?

We clearly need to ask this question for each of our brands.
This question would be on it’s own page.

This page would need to be “Looped” for each brand.
“Looping” has two effects:

1. There will be a page for each brand asking this question

2. If someone does not chose a brand, the page relating to
that brand would be automatically hidden

FLOW CONTROL

Flow Control refers to the flow of the survey. More
specifically, it refers to the hiding of pages (and therefore
questions) that are not needed for a particular survey.

The flow of pages that are looped for a product test will
automatically be hidden when page loops are set up - but what
about pages within the loop?

Let’s consider an example. We have three questions in our list
of questions as follows:

Have you ever owned a car from this brand?

Which of the following models have you owned?

How would you rate the car(s) you have owned from this
brand?

If a respondent has never owned a car from a particular
brand, there is no point rating the cars owned (since there
won’t be any!)

Flow control can be used to ensure invalid pages are not
shown to a respondent.

DATA PIPING

All the questions we have are very generic. Data piping allows
you to pipe answers from earlier in the survey into later
survey content. For example, rather than:

What is your overall opinion of the brand?

we could have:

What is your overall opinion of BMW?

This would of course only appear in the BMW loop - the
appropriate brand would be used in each of the loops.

43

A more advanced use of data piping is the listing of models to
choose from. Without data piping, the model question would
have to be a generic question with a text answer.

Enter a list of models you have you owned from BMW

There is little we can do with a text list, and statistical analysis
would be average at best. We will see in the next section that
with data piping, we can pipe actual car models into this
question, so it would look more like:

Which of the following BWM models have you owned?

- 1 Series  
- 3 Series  
- 5 Series  
- 7 Series

CHOICE LINKING

Choice linking refers to showing a list of choices in a survey
based upon a previous list.

In our example, the best use of choice linking would be to
refer to the appropriate models for the question:

How would you rate the car(s) you have owned from this
brand?

We could show this as a matrix, with each of the cars owned
showing as a row - if I pick two models, for example, the
matrix would have two rows.

44

IN THIS SECTION

1. Our Example Explained

1.1. Our Products

1.2. Product Questions

1.3. Setting up the Product Test

2. Creating Our Example

2.1. Our Initial Question

2.2. Looping Source Pages

2.3. Product Questions

2.4. Flow Control

2.5. Choice Linking

3. Building the Page Loops

SECTION 2

Product Testing Example
Our Example Explained
For the purposes of this section, we will consider an example
that shows off all the key elements of a product test without
getting too crazy (we’ll test 4 brands - not 20!). Everything
discussed can be used with real product tests of any size of
course.

OUR PRODUCTS

In our example, our “products” will be Car Brands, and within
those car brands we will be looking at four models. The car
brands and models are listed below:

BRAND MODELS

BMW

1 Series  
3 Series  
5 Series  
7 Series

Ferrari

599 
458  

California 
F70

Honda

Civic  
Accord  

Odyssey  
NSX

Mercedes-Benz

A Class  
B Class  
C Class  
S Class

45

PRODUCT QUESTIONS

For each of the brands and models, we want to ask the
following questions:

Page 1

What is your overall opinion of the brand?

Would you recommend this brand to your friends?

Have you ever owned a car from this brand?

Page 2

Which of the following models have you owned?

Page 3

How would you rate the car(s) you have owned from this
brand?

SETTING UP THE PRODUCT TEST

We know what our products are, what models we have for
each product, and what questions we are going to ask. The
approach we will take will be as follows:

1. We will set up our list on products in our initial question

2. Three Pages (the Looping Source Pages) will be added

3. The Product Questions will be added to the pages

4. Flow control will be set up to ensure pages 2 and 3 are
hidden for people that haven’t owned a car of the particular
brand

5. Choice linking will be used for the matrix on Page 3

6. We will use Page Looping to build all the pages needed to
manage the Product Test

7. We will preview our product test!

Creating Our Example
We are going to build our example using Web Survey Creator.
We will skip over many of the basics, as these are covered in
our basic guide to Creating Web Surveys.

OUR INITIAL QUESTION

Setting up the initial question is very straightforward - we
create a new survey, and then on the first page click Add
Content Here.

46

http://itunes.apple.com/us/book/beginners-guide-to-creating/id510021050?ls=1
http://itunes.apple.com/us/book/beginners-guide-to-creating/id510021050?ls=1

We will add a Choice Question with multiple values - since
more than one brand can be selected.

When entering our choices, we can take advantage of the
quick entry of images by including the image details for each
choice:

The format of an entry in the choice list is as follows:

Choice Text | Choice Value | IMAGE:abc.png ; width ; height

For our choices, we don’t need either a value or an image
width. By only entering the image height, we are telling the
system to automatically make the width proportional to the
height.

Just for looks, we are also going to show the choices on one
row, and use 75% width.

When we add the question, it looks as follows:

LOOPING SOURCE PAGES

A “Looping Source Page” is simply a page that, when we come
to creating our page loops, will be used as one of the pages
that will be duplicated for each loop.

At this point, these pages are added just like any other page.
We can add all three pages in one go from the Pages toolbar
button.

47

PRODUCT QUESTIONS

Our questions about the products need to be added to each of
the pages in the order described earlier in this section.

Adding questions is a basic procedure covered in our previous
manual, so what we want to look at here are the things that
are different when creating questions in preparation for our
loops.

Data Piping The Brand Name

Our first question is as follows:

What is your overall opinion of the brand?

As we have discussed, we want this to be more specific to the
brand we are looking at - for example:

What is your overall opinion of BMW?

This is achieved through Data Piping. As with any data
piping, we have to start by adding a Question Access Code to
our product question. We will give this question a code of
CARBRAND:

OK, so how do we use this piping? Under normal
circumstances, our question would appear as follows:

What is your overall opinion of [@CARBRAND@]?

The question is, will this work? While your first instinct may
be that this would be right, you need to consider how we are
going to end up using this question - it will be copied 4 times -
once for each of the page loops.

Data piping must be thought of differently when it is used on
a page that will be copied for page looping. It must show
something different for each loop.

A Data Pipe must be used that directly refers to the choice
that relates to the current loop. To achieve this you must use
the following syntax:

What is your overall opinion of [@CARBRAND:N@]?

When this is copied by creating a page loop, the four pages
that will be generated will have the following data pipes:

What is your overall opinion of [@CARBRAND:1@]?

What is your overall opinion of [@CARBRAND:2@]?

What is your overall opinion of [@CARBRAND:3@]?

What is your overall opinion of [@CARBRAND:4@]?

These data pipes will be converted to:

48

What is your overall opinion of BMW?

What is your overall opinion of Ferrari?

What is your overall opinion of Honda?

What is your overall opinion of Mercedes-Benz?

Data Piping The Models For A Brand

For each brand that is chosen, a list of models needs to be
shown. We need to pipe these details into the possible
answers for the question:

Which of the following models have you owned?

This raises two questions:

1. Where are the models going to be stored for each of the
brands?

2. How are we going to pipe these models into the question
about models owned?

Let’s consider the issue of storage of the models first. The
answer to storing the models for a brand, and anything else
that may be applicable for the brand, is to use Choice Tags.

These tags can contain any text data you wish. Tags have a
simple structure:

TAGNAME: Value

Setting up tags on choices can be done by:

1. Editing the question with our choices by pressing the Edit
button. 

2. Editing a choice for the question. 

3. Enter new tags, one per line. 

 

4. Saving the choice, and repeating for the other choices.

49

Note that tags can be added along with the other choice
details when the choices are first added to - using the
following format:

Once we have added all our tags to our choices, they can be
used through data piping.

We want to pipe into the values for the question:

Which of the following models have you owned?

We can do this by setting up the choices in this question as
data-piped values:

These codes tell the system which choice to use for the data
pipe, and the tag to show from that choice. The question
would look as follows in the designer:

If BMW was chosen by a respondent, the question would
show in the survey as:

FLOW CONTROL

Flow control is used to hide pages based on answers in a
survey. In our example, we have the following questions:

Page 1

... 
Have you ever owned a car from this brand?

Page 2

Which of the following models have you owned?

Page 3

How would you rate the car(s) you have owned from this
brand?

Clearly pages 2 and 3 need to be hidden if the respondent has
never owned a car from the brand. Page 3 will also need to be
hidden if none of the models listed on page 2 were owned by
the respondent.

50

Before we set up survey flow, there is one piece of
“housekeeping” we will do to make the setup of flows easier.

Flow Control and page looping both refer to pages as part of
their setup. The time has come to name our pages to make
them easier to distinguish.

Renaming pages is simply a matter of editing each page as
follows:

1. We ensure we are on the page we want to name  

2. We click the Edit button to edit the page details  

3. We enter the new name for the page, and save it  

4. The new page name will be visible at the top of the page  

We will change all our page names as follows:

Page 1 Brand Selection

Page 2 Brand Opinion

Page 3 Models Owned

Page 4 Model Opinion

We are now ready to set up our flows. Flow control can all be
set from the Survey Flow menu in Web Survey Creator.

We can to add each flow by:

1. Clicking on the Survey Flow menu 

51

2. Clicking the New Survey Flow button on the toolbar 

3. Choosing the pages we want to hide for the flow  

4. Choosing the rule to use to hide the pages chosen 

The flow relating to models can be created in the same way.
The rule we would apply for hiding the “Model Opinion” page
would be to check if none of the models were selected.

CHOICE LINKING

Choice linking is used to only display appropriate choices in a
question based on choices made earlier in the survey. The best
way to understand this is to consider our example.

We have a question about models that can look as follows:

If we answer that we have owned a 1-Series and a 3-Series, it
doesn’t make sense for the next question to be:

52

It doesn’t make sense to ask about 5-Series and 7-Series
models, because I have indicated I have never owned them.
This is where Choice Linking is used - we only want to show
rows in the matrix for the models that have actually been
chosen.

We set up choice linking by:

1. Clicking on the Choice Linking menu 

2. Clicking the New Choice Link button 

3. Set up the Choice Link 

53

4. Accept the assistance to complete choice links for other
choices  

We now have a four page survey with all the content we need
to create our Page Loops.

Building the Page Loops
Setting up Page Loops is all about preparation. Everything we
have done so far in this section provides an indication of the
sort of preparation that is necessary.

Setting up of Page Loops themselves is always the last thing
you should do in your design. Page Looping is effectively a
massive copy operation, so anything you have missed prior
to building the loops will be missed in every single loop.
Check and double check your work!

Building Page Loops is a very straightforward process. To
build them we:

1. Click on the Page Loop toolbar button and choose Create
Page Loop from the drop-down menu  

54

2. Choose the Brand Question as the basis for the loop, and
the three brand pages for looping  

3. Click the Create New Page Loop button  

4. We will be returned immediately to the Design tab - the
looped pages will be created in the background. A
warning message will show indicating that the looped
pages are not yet created 

5. Once the process is completed, the warning will
disappear, and we will be left with our looped pages in our
design 

55

PAGE LOOPING - WHAT JUST HAPPENED?!

It is important to understand exactly what happens when we
use page looping. Let’s consider what happened to the four
pages we had in our “pre-looped” survey.

Brand Selection Page

This page remained exactly as it was - it was not looped itself.
Other pages were looped based on what the brand question on
this page had as choices.

Original Opinion Pages

Our original pages are still in the survey. They formed the
basis of all the looped pages. They are exactly like they always
were, except:

1. They are now flagged as “Looped Source” pages

2. They are now hidden

These pages will never be shown to a respondent. They are
kept in the survey mainly as a backup - if you ever need to
delete your looped pages, and recreate them, you will want to
recreate them from these original pages.

Looped Opinion Pages

These are the pages that have been created for each of the
choices in the source question. They use the original name of
the page as part of the page name (another good reason we
named these pages properly) together with the value of each
of the choices that the pages have been copied for.

WHAT DO I DO WITH ALL THESE PAGES?

It’s not hard to see that the number of pages shown in a
survey can grow very quickly if page loops based on a large
number of choices are set up. This can get unwieldy very
quickly. Fortunately you can turn Loop Source Pages and
Loop Result Pages off very easily from the Page Loop toolbar
button.

56

If we turned off Page Loop Result Pages, our list of pages
looks very familiar to the pre-looping design.

Note that you can not do certain functions, like Page merging
or moving, unless all pages are shown.

PAGE LOOPING DOS AND DON’TS

DO ensure you have set up all flows, piping and choice linking
in the pages that will be included in the loop

DON’T modify loop result pages unless you have a specific
reason for doing so. Any changes will ONLY be made on that
one specific page

DON’T add or remove looped pages in a piecemeal fashion if
you can avoid it.

DO delete all loop result pages and rebuild the entire page
loop if there are changes to the source question (assuming
there are no responses)

57

CHAPTER 5

Scripting

Providing the ability to write script in a
Web Survey gives a level of flexibility that
is simply not possible using built-in
functionality.

Scripting provides a “do anything”
capability to surveys that takes the
customizability of your Web Surveys to a
whole new level.

IN THIS SECTION

1. Scripting in Contact Profiler

1.1. Using Javascript

2. Hooking into Events

3. Scripting Objects

SECTION 1

Survey Scripting
Scripting in Contact Profiler
Regardless of what capabilities exist in a Web Survey tool, the
most complex market research surveys always need
“something else”. There is no way to prepare for every
possible situation, so the alternative is to provide a really
customizable scripting language that allows the survey
designer to create any logic they need, and manipulate
existing questions and data.

The Premium and Ultimate MR versions of Web Survey
Creator provide scripting capabilities using the Javascript
client-side scripting language.

USING JAVASCRIPT

The key to any good scripting system is a strong scripting
language. Fortunately all modern browsers support
JavaScript.

“JavaScript was formalized in the ECMAScript language
standard and is primarily used in the form of client-side
JavaScript, implemented as part of a Web browser in order
to provide enhanced user interfaces and dynamic websites.
This enables programmatic access to computational objects
within a host environment.” - Wikipedia

59

Hooking into Events
Javascript is a client-side scripting tool, so any script that is
run has to be initiated when a particular “event” occurs. There
are five events that can have custom JavaScript executed.

1. When the Survey Page has Loaded

2. When the Next or Submit Buttons are tested for their
Visibility

3. Before the Survey Page is Validated

4. When the Next or Submit Buttons are Pressed

5. When the Previous Button is Pressed

Scripting Objects
When a custom JavaScript is executed you will have access to
two objects. These objects allow you access to the questions
that are exposed on the current page and additional help
methods that can help you to perform various tasks.

1. args

2. wscScripting

args

args contains a single item isValid that can be used to set the
status of an event. This is particularly relevant for confirming
to the event engine that you wish to continue the current
process. For example, you must set the value to true on Next

or Previous Button events or those processes halted and will
not continue.

Property: isValid

Return Value: boolean - Is the current process Valid

Example: var isOkay = true;
if (isOkay) {
	

 // All my changes allow me to continue  
	

 args.isValid = true;
}

wscScripting

The following methods available in the wscScripting object.
Some methods contain a method and an identical method
post-fixed with the number 2. These methods are used where
the question has two (2) choice ranges.

For example, Dual Range Matrix questions consist of a
Primary Range and a Secondary Range.

In these circumstances the Secondary Range can be utilized
by using the methods with a post-fix of 2. For example.
getChoiceByValue2(question, value). In this document
methods post-fixed with a number of 2 will be documented
only in their primary method. Each method explanation will
denote if the method has a second range capability.

A listing of the methods available for the wscScripting object
are shown below. Detailed explanations are provided in the
next section.

• clearValidation(question)

• derankChoice(question, choice)

60

• deselectChoice(question, choice)

• deselectChoice2(question, choice)

• deselectChoiceByValue(question, value)

• deselectChoiceByValue2(question, value)

• deselectMatrixChoice(question, choice, row)

• disableQuestion(question)

• enableQuestion(question)

• getABTesting()

• getBrowserData()

• getChoiceByTagValue(question, tagName, value)

• getChoiceByTagValue2(question, tagName, value)

• getChoiceByValue(question, value)

• getChoiceByValue2(question, value)

• getDateStringFromDate(date)

• getDirection()

• getDisplayType()

• getDistribution()

• getElementById(id)

• getEventData(name)

• getLanguageId()

• getQuestionByDataPipingCode(dataPipingCode)

• getQuestionByIdentity(identity)

• getQuotaByCode(code)

• getQuotaByIdentity(identity)

• getRecallCode()

• getRowByTagValue(question, tagName, value)

• getSelectedChoices(question)

• getSelectedChoices2(question)

• getSelectedMatrixChoices(question, row)

• getSelectedMatrixChoices2(question, row)

• getSelectedRanks(question)

• getSubstringLeft(str, n)

• getSubstringRight(str, n)

• getTrimString(str)

• getValidators(question)

• getValue(question)

61

• hideElement(element)

• isAnyChoiceSelected(question, choices)

• isAnyChoiceSelected2(question, choices)

• isAnyChoiceSelectedByValue(question, values)

• isAnyChoiceSelectedByValue2(question, values)

• isAnyMatrixChoiceSelected(question, choices, row)

• isAnyMatrixChoiceSelected2(question, choices, row)

• isAnyMatrixChoiceSelectedByValue(question, values, row)

• isAnyMatrixChoiceSelectedByValue2(question, values, row)

• isChoiceSelected(question, choice)

• isChoiceSelected2(question, choice)

• isChoiceSelectedByValue(question, value)

• isChoiceSelectedByValue2(question, value)

• isMatrixChoiceSelected(question, choice, row)

• isMatrixChoiceSelected2(question, choice, row)

• isMatrixChoiceSelectedByValue(question, value, row)

• isMatrixChoiceSelectedByValue2(question, value, row)

• rankChoice(question, choice, rank)

• selectChoice(question, choice)

• selectChoice2(question, choice)

• selectChoiceByValue(question, value)

• selectChoiceByValue2(question, value)

• selectMatrixChoice(question, choice, row)

• selectMatrixChoice2(question, choice, row)

• selectMatrixChoiceByValue(question, value, row)

• selectMatrixChoiceByValue2(question, value, row)

• setEventData(name, value)

• setValidation(question, text)

• setValue(question, value)

• showElement(element)

62

SECTION 2

Function Reference

Method: clearValidation(question) 	

 	

 	

 	

 	

 	

	

 	

Parameters: question object - object of the question

Return Value: Nil

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 wscScripting.clearValidation(question); 
}

Method: derankChoice(question, choice) 	

 	

 	

 	

 	

	

 	

 	

 	

 	

Parameters: question object - object of the question 
choice object - object of a choice

Return Value: Nil

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 var choice = wscScripting.getChoiceByValue(question, 1); 
	

 if (choice) {
	

 	

 wscScripting.derankChoice(question, choice); 
	

 }  
}

Method: deselectChoice(question, choice) 	

 	

 	

 	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
choice object - object of a choice

Return Value: boolean - confirmation that the choice was deselected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 var choice = wscScripting.getChoiceByValue(question, 1); 
	

 if (choice) {
	

 	

 var isUnselected = wscScripting.deselectChoice(question,
choice); 
	

 }  
}

Method: deselectChoiceByValue(question, number) 	

 	

 	

	

 	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
number - value of the question choice to check

Return Value: boolean - confirmation that the choice was deselected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var isUnselected = wscScripting.deselectChoiceByValue(question, 1); 
}

Method: deselectMatrixChoice(question, choice, row) 	

 	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
choice object - object of a choice  
row object - object of a row

Return Value: boolean - confirmation that the choice was deselected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 var row = wscScripting.getRowByTagValue(question, 'bankcode',
'AMER'); 
	

 if (row) {
	

 	

 var choice = wscScripting.getChoiceByValue(question, 1); 
	

 	

 if (choice) {
	

 	

 	

 var isUnselected =
wscScripting.deselectMatrixChoice(question, choice, row); 
	

 }  
}

63

Method: disableQuestion(question) 	

 	

 	

 	

 	

 	

	

 	

 second range

Parameters: question object - object of the question

Return Value: boolean - confirmation that the choice was disabled

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 var isDisabled = wscScripting.disabledQuestion(question); 
}

Method: enableQuestion(question) 	

 	

 	

 	

 	

 	

	

 	

 second range

Parameters: question object - object of the question

Return Value: boolean - confirmation that the choice was enabled

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 var isDisabled = wscScripting.enabledQuestion(question); 
}

 

Method: getABTesting()

Parameters: Nil

Return Value: integer – Value (range 1..100) of for use by AB Testing

Example: var ABTest = wscScripting.getABTesting();
if (ABTest <= 50) { // Split 50:50
}

Method: getBrowserData()

Parameters: Nil

Return Value: object - Browser Object
o.browser = Browser Name 
o.version = Browser Version 
o.OS = Operating System

Example: var browser = wscScripting.getBrowserData();
if (browser.OS == 'Windows') { // The respondent is on a Windows computer
}

Method: getChoiceByTagValue(question, tagName, value)	

 	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
string - name of the tag to search for 
string - value of the tag being searched

Return Value: object or undefined

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var choice = wscScripting.getChoiceByTagValue(question, 'position',
'Manager'); 
	

 if (choice) {
	

 	

 // I can do something with this choice  
	

 }  
}

Method: getChoiceByValue(question, value)	

 	

 	

 	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
number - value of the question choice to retrieve

Return Value: object or undefined

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var choice = wscScripting.getChoiceByValue(question, 1); 
	

 if (choice) {
	

 	

 // I can do something with this choice  
	

 }  
}

Method: getDateStringFromDate(date)

Parameters: Date = Value of Date type to be converted to a string in format usable by WSC

Return Value: string = Newly created string in format of YYYY.MM.DD.HH.mm

Example: var newDate = new Date();  
var newString = wscScripting.getDateStringFromDate(newDate);
// newString contains today's date  
// e.g. 2012.01.31.16.24

64

Method: getDirection()

Parameters: Nil

Return Value: string containing:- 
ltr = Left to Right
rtl = Right to Left e.g. Arabic

Example: var direction = wscScripting.getLanguageId();
if (direction == 'rtl') {
	

 // This is a survey using a RTL language
}

Method: getDisplayType()

Parameters: Nil

Return Value: string containing:- 
standard = Standard Display  
tablet = Tablet Computer e.g. iPad  
mobile = Mobile Phone / Cellular Phone e.g. iPhone

Example: var display = wscScripting.getDisplayType();
if (display == 'tablet') {
	

 // This is a tablet based display
}

Method: getDistribution()

Parameters: Nil

Return Value: object or undefined

Example: var object = wscScripting.getDistribution();
if (object) {
	

 // I can do something with this object  
}

Method: getElementById(id)

Parameters: string - Identity of an Html Element

Return Value: object or undefined

Example: var object = wscScripting.getElementById('mycontrol'); 
if (object) {
	

 // I can do something with this element  
}

Method: getEventData(name)

Parameters: string - Identity of an item of data temporarily stored for later use on the
current page only

Return Value: value or undefined

Example: var object = wscScripting.getEventData('myvalue'); 
if (object) {
	

 // I can do something with this value  
	

 // Value contains the text 'Hello World!'  
}

Method: getLanguageId()

Parameters: Nil

Return Value: string - Two Character Language Code

Example: var language = wscScripting.getLanguageId();
if (language == 'fr') {
	

 // This is a survey using French Language
}

Method: getQuestionByDataPipingCode(dataPipingCode)

Parameters: string - Data Piping Code of a Question - Must be a WSC Data Piping Code. If
the question is not on the current page then you should use a Data Piping
ShortCut to include the question on the current page

Return Value: object or undefined

Example: // Using a data piping code  
var object = wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (object) {
	

 // I can do something with this question  
}  
 
// Using a data piping symbol if the Question is not on the same page
// The data piping symbol with the code #data# is required to  
// tell the system to have the question available  
var object2 =
wscScripting.getQuestionByDataPipingCode('[@mydatapipingcode#data#@]'); 
if (object2) {
	

 // I can do something with this question  
}  

65

Method: getQuestionByIdentity(identity)

Parameters: string - Identity of a Question - Must be a WSC internal identity

Return Value: object or undefined

Example: var object = wscScripting.getQuestionByIdentity('61ce3764-1288-
e111-8eae-0019b9c4ecf3'); 
if (object) {
	

 // I can do something with this question  
}

Method: getQuotaByCode(code)

Parameters: string – Code of the Quota

Return Value: quota object – object of the quota

Example: var oQuota = wscScripting.getQuotaByCode(‘GENDER');

Method: getQuotaByIdentity(identity)

Parameters: string - Identity of a Quota - Must be a WSC internal identity

Return Value: quota object – object of the quota

Example: var object = wscScripting.getQuotaByIdentity(‘61ce3764-1288-
e111-8eae-0019b9c4ecf3); 
if (object) {
	

 // I can do something with this quota  
}

Method: getRecallCode()

Parameters: Nil

Return Value: string - Unique Code which identifies the response

Example: var recallCode = wscScripting.getRecallCode();

Method: getRowByTagValue(question, tagName, value)

Parameters: question object - object of the question 
string - name of the tag to search for 
string - value of the tag being searched

Return Value: object or undefined

Method: getSelectedChoices(question)	

 	

 	

 	

 	

	

 	

 	

 	

 second range

Parameters: question object - object of the question

Return Value: array or undefined

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var selectedChoices = wscScripting.getSelectedChoices(question); 
	

 if (selectedChoices) {
	

 	

 // I can do something with this array  
	

 }  
}

Method: getSelectedMatrixChoices(question, row)	

 	

 	

 	

	

 	

 	

 	

 second range

Parameters: question object - object of the question 
row object - object of a row

Return Value: array or undefined

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var row = wscScripting.getRowByTagValue(question, 'bankcode',
'AMER'); 
	

 if (row) {
	

 	

 var selectedChoices =
wscScripting.getSelectedMatrixChoices(question, row); 
	

 	

 if (selectedChoices) {
	

 	

 	

 // I can do something with this array  
	

 	

 }  
	

 }  
}

Method: getSelectedRanks(question)	

 	

 	

 	

 	

 	

	

 	

Parameters: question object - object of the question

Return Value: array or undefined

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var ranks = wscScripting. getSelectedRanks(question);
 }

66

Method: getSubstringLeft(string, number)

Parameters: string = Base string from which a new string will be extracted  
number = Number of Characters from the Left side of the string to be extracted

Return Value: string = Newly extracted string

Example: var newString = wscScripting.getSubstringLeft('Hello World!', 5);
// newString contains 'Hello'

Method: getSubstringRight(string, number)

Parameters: string = Base string from which a new string will be extracted  
number = Number of Characters from the Right side of the string to be
extracted

Return Value: string = Newly extracted string

Example: var newString = wscScripting.getSubstringLeft('Hello World!', 5);
// newString contains 'orld!'

Method: getTrimString(string)

Parameters: string = Base string from which a new string will be created with spaces at
either end of the string removed

Return Value: string = Newly created string

Example: var newString = wscScripting.getTrimString(' Hello World! ');
// newString contains 'Hello World!'

Method: getValidators(question)

Parameters: question object - object of the question

Return Value: array

Example: Var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var validators = wscScripting.getValidators(question); 
	

 if (validators) {
	

 	

 // I can do something with this array of validators  
	

 }  
}

Method: getValue(question)

Parameters: question object - object of the question

Return Value: value or undefined dependent on the question type  
value only suitable for SingleText, MultipleText, DemographicEmail,
DemographicPhone, Number, Slider and DateTime Questions

Example: Var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var value = wscScripting.getValue(question); 
}

Method: hideElement(string)

Parameters: string = id of an Html control to hide

Return Value: boolean - confirmation that the control was hidden

Example: wscScripting.hideElement('mydiv');

Method: isAnyQuestionChoiceSelected(question, choices)	

 	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
array - array of choice objects to check

Return Value: boolean - confirmation that the choice is selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question && question.choices) {  
	

 // Make an array of just 1 choice
	

 var arrayChoices = new Array();
	

 arrayChoices.push(question.choices[0]);
	

 var isSelected = wscScripting.isAnyQuestionChoiceSelected(question,
arrayChoices); 
}

67

Method: isAnyQuestionChoiceSelectedByValue(question, values)	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
array - array of number values to check

Return Value: boolean - confirmation that the choice is selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question && question.choices) {  
	

 // Make an array of values
	

 var arrayChoices = new Array(1, 2, 3);
	

 var isSelected =
wscScripting.isAnyQuestionChoiceSelectedByValue(question, arrayChoices); 
}

Method: isAnyQuestionMatrixChoiceSelected(question, choices)	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
array - array of choice objects to check 
row object - object of the row

Return Value: boolean - confirmation that the choice is selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question && question.choices) {  
	

 var row = wscScripting.getRowByTagValue(question, 'bankcode',
'AMER'); 
	

 if (row) {
	

 	

 // Make an array of just 1 choice
	

 	

 var arrayChoices = new Array();
	

 	

 arrayChoices.push(question.choices[0]);
	

 	

 var isSelected =
wscScripting.isAnyQuestionChoiceSelected(question, arrayChoices);
	

 }
}

Method: isAnyQuestionMatrixChoiceSelectedByValue(question, values, row)
	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
array - array of number values to check 
row object - object of the row

Return Value: boolean - confirmation that the choice is selected

Method: isQuestionChoiceSelected(question, choice)	

 	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
choice object - object of a choice

Return Value: boolean - confirmation that the choice is selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var choice = wscScripting.getChoiceByValue(question, 1); 
	

 if (choice) {
	

 	

 var isSelected =
wscScripting.isQuestionChoiceSelected(question, choice);
	

 }  
}

Method: isQuestionChoiceSelectedByValue(question, value)	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
number - value of the question choice to check

Return Value: boolean - confirmation that the choice is selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var isSelected =
wscScripting.isQuestionChoiceSelectedByValue(question, 1); 
}

Method: isQuestionMatrixChoiceSelected(question, choice, row)	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
choice object - object of a choice  
row object - object of the row

Return Value: boolean - confirmation that the choice is selected

68

Method: isQuestionMatrixChoiceSelectedByValue(question, value, row)	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
number - value of the question choice to check 
row object - object of the row

Return Value: boolean - confirmation that the choice is selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var row = wscScripting.getRowByTagValue(question, 'bankcode',
'AMER'); 
	

 if (row) {
	

 	

 var isSelected =
wscScripting.isQuestionChoiceSelectedByValue(question, 1, row); 
	

 }  
}

Method: selectChoice(question, choice) 	

 	

 	

 	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
choice object - object of a choice

Return Value: boolean - confirmation that the choice was selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 var choice = wscScripting.getChoiceByValue(question, 1); 
	

 if (choice) {
	

 	

 var isSelected = wscScripting.selectChoice(question, choice); 
	

 }  
}

Method: selectChoiceByValue(question, number) 	

 	

 	

 	

	

 	

 	

 	

 	

 second range

Parameters: question object - object of the question 
number - value of the question choice to check

Return Value: boolean - confirmation that the choice was selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 var isSelected = wscScripting.selectChoiceByValue(question, 1); 
}

Method: selectMatrixChoice(question, choice, row) 	

	

 	

 	

	

 	

 	

 	

 second range

Parameters: question object - object of the question 
choice object - object of a choice  
row object - object of a row

Return Value: boolean - confirmation that the choice was selected

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 var row = wscScripting.getRowByTagValue(question, 'bankcode',
'AMER'); 
	

 var choice = wscScripting.getChoiceByValue(question, 1); 
	

 if (row && choice) {
	

 	

 var isSelected = wscScripting.selectMatrixChoice(question,
choice, row); 
	

 }  
}

Method: setEventData(name, value)

Parameters: string - Identity of an item of data temporarily stored for later use on the
current page only 
object - Value of an item of data temporarily stored for later use on the current
page only

Return Value: boolean - confirmation that the value was correctly added

Example: wscScripting.setEventData('myvalue', 'Hello World!');

Method: setValidation(question, text) 	

 	

 	

 	

 	

	

Parameters: question object - object of the question 
string - text of the validation message

Return Value: Nil

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {  
	

 wscScripting.setValidation(question, 'Something doesnt make sense!'); 
}

69

Method: setValue(question, value) 	

 	

 	

 	

 	

 	

	

 	

 	

Parameters: question object - object of the question 
value - type dependent on question type  
value only suitable for SingleText, MultipleText, DemographicEmail,
DemographicPhone, Number, Slider and DateTime Questions

Return Value: Nil

Example: var question =
wscScripting.getQuestionByDataPipingCode('mydatapipingcode'); 
if (question) {
	

 wscScripting.setValue(question, 'Hello World!');
}

Method: showElement(string)

Parameters: string = id of an Html control to show

Return Value: boolean - confirmation that the control was shown

Example: wscScripting.showElement('mydiv');

Additional Objects
The following objects exist and have the properties as
described with type and name.

Note: You do not have the ability to affect the rendering of a
standard question by altering a property.

SURVEYQUESTION

• string addressType

• string allRankedText

• array [surveychoice] choices

• array [surveychoice] choices2

• string clearText

• string containerName

• string dataPipingCode

• number defaultValue

• string fieldWidth1

• string fieldWidth2

• string formatType

• string gridHeadingFormat

• number gridTotal

• string identity

• number increment

• number interval

• boolean isCommentsEnabledByDefault

• boolean isHeadingTextVertical

• boolean isLargeComments

• boolean isLength

• boolean isMandatory

70

• boolean isPivot

• boolean isQuestionOnPage

• boolean isResetAllowed

• boolean isSpecify

• string javascriptBodyName

• string listDirection

• string listType

• number maxIncrement

• number maxValue

• number minValue

• string noneRankedText

• number numberGrids

• string popupType

• string primaryRangeTitle

• string questionNumber

• string rankedText

• number repeatRows

• string resetText

• string rowHeight1

• string rowHeight2

• array [surveyrow] rows

• number scaleIncrement

• string secondaryRangeTitle

• string text

• string textPosition

• string type

• string unRankedText

SURVEYCHOICE

• number grid

• string identity

• string imageHeight

• string imageToolTip

• string imageUrl

• string imageWidth

• boolean isComments

• boolean isDefault

71

• boolean isExclusive

• boolean isPegged

• string labelText

• string numberPostText

• string numberPreText

• array [surveychoicetag] tags

• string text

• number value

SURVEYCHOICETAG

• string identity

• string name

• string text

SURVEYROW

• string identity

• string imageHeight

• string imageToolTip

• string imageUrl

• string imageWidth

• array [surveyrowtag] tags

• string text

SURVEYHIERARCHICALLISTITEM

• string identity

• string description

• string parent Identity

SURVEYROWTAG

• string identity

• string name

• string text

SURVEYQUOTA

• string code

• string identity

• bool isPriority

• int numberLimit

• int numberAllowed

• int numberResponded

• int numberOverflow

• string title

72

SURVEYDISTRIBUTION

• string identity

• array [surveydistributiontag] tags

• string title

SURVEYDISTRIBUTIONTAG

• string identity

• string name

• string text

BROWSER

• string browser

• string OS

• string version

73

CHAPTER 6

On-Premise
Software

The On-Premise release of Web
Survey Creator provides the ultimate
control over data and processing
capacity.

SECTION 1

WSC On-Premise Version

A discussion of Web Survey Creator for Market Research
wouldn’t be complete without a brief mention of the On-
Premise version. This release is the highest version of the
software, featuring:

• Unlimited Surveys

• Unlimited Responses

• Unlimited Users

While the hosted version of Web Survey Creator runs on our
servers, the on-premise version can either be:

• Run on your own servers

• Run as an isolated installation on our servers

On-Premise Exclusive Features
The On-Premise version of Web-Survey Creator has some
exclusive features as follows:

• Exclusive database & processing (no sharing)

• New User Signup Capabilities

• Quick signup for new users

• Domain name based control of signup

• User auto verification

• Online chat support for defined supported users

• User Groups for Collaboration

• Setting of sending details for Emails

75

A/B testing Random Number

Whenever a response is commences in Web Survey Creator, a random number is
calculated and placed on the response. This number can be used for a number of
things, however the primary use is to provide a consistent “A/B testing random
number” that can be used by flow control. Pages can be hidden based on the value of
the testing number (a number between 1 and 100).

Related Glossary Terms

Index

Chapter 1 - Dealing with Bias

Drag related terms here

Find Term

Choice Linking

Choice linking refers to the ability to hide a choice in a question based on whether a
choice has been selected in another question. A classic use of choice linking would be:

The respondent’s favorite car brand has to come from the list of those cars owned.

The cars that weren’t chosen are not shown - they are hidden using choice linking.

Related Glossary Terms

Index

Chapter 4 - Product Testing Example

Drag related terms here

Find Term

Choice Tags

Choice tags are pieces on information on choices that go beyond just the choice name.
For example, a choice for a car brand question could be “BMW. Choice tags can be
used to store additional information about the choice, such as the history of the
company, or models available.

Related Glossary Terms

Index

Chapter 4 - Product Testing Example

Drag related terms here

Find Term

Data Piping

Data piping allows details to be piped from earlier questions in a survey to later
questions.

Related Glossary Terms

Index

Chapter 4 - Product Testing Example

Drag related terms here

Find Term

Quota Builder

The quota builder uses a wizard-style interface to take you step-by-step through the
creation of quotas based on multiple questions. For example, the quota builder can
take these questions:

Gender	

 - Male  
	

 	

 - Female

Age	

 	

 - 18 to 30 
	

 	

 - 31 to 60 
	

 	

 - 61 and older

and build the following quotas:

Male - 18 to 30 
Male - 31 to 60 
Male - 61 and older 
Female - 18 to 30 
Female - 31 to 60 
Female - 61 and older 
 

Related Glossary Terms

Index

Chapter 2 - Quota Management Example

Drag related terms here

Find Term

Terminate Pages

A Terminate Page ends the survey. It will have a submit button on it, rather than a next
button, even if it appears early in the survey. Terminate pages are generally used to
Quota Out and Screen Out respondents who are not needed in the survey.

Related Glossary Terms

Index

Chapter 2 - Quota Management Explained

Drag related terms here

Find Term

