

CS196-2 Final Project

Post-Mortem

John Shields

Andy Bragdon

Yee-Cheng Chin

Michael Shim

May 16, 2006

 2

Design Concept

Today’s hottest video games boast photo-realistic graphics, humanlike movement,

facial expressions, and accurate physics models to boot. Many of these games also claim

to have “intelligent AI”—meaning that the in-game agents emulate human decision

processes. The reality is that although graphics, physics, and sound have made

remarkable strides towards realism, AI remains glaringly stupid. A primary cause of this

stupidity is that the all-powerful AI gives orders to every non-player agent in the game.

When “bosses” and “underlings” exist in a game, the AI controls them on an equal

contextual level. This monolithic AI model fails to consider real commands in military or

social organizations are passed down through a chain of command. Ideally, a non-player

agent’s choices are not only dependent the game state, but also on the goals of his

commanding officer or social superior. A second problem with the existing monolithic

AI model is that of global information: when one enemy grunt discovers the player’s

location, then all other enemies are also instantly made aware of this information. Real

social and military structures exhibit information lag, that is, that any information

detected at a low level in the organization will take time to propagate upwards to the

commanding ranks and then downwards to all concerned parties in the hierarchy.

ARES presents a solution to this problem: a hierarchal AI model where units

receive orders and information through a chain of command, then use that information to

make decisions for themselves and their inferiors. The ARES AI System will provide real

time strategy games with an enhanced sense of realism and enable new levels of

engagement for players. Our game ARES is not a “game” in the conventional sense of

continual player involvement, but rather a showcase of the ARES AI System: the user

constructs a scenario using the ARES Studio editor program, then runs the app and

watches the action unfold as troop movements are coordinated in an AI hierarchy. As the

game was conceived and implemented by a team of four people in one semester, we

chose to focus our efforts on a never-been-done-before AI model instead of implementing

gameplay elements found in other action and strategy games; this choice was inline with

the CS196-2 course goals. Any number of popular games—from Warcraft to Doom to

The Sims—could implement our AI System to enhance the player experience. Our

 3

ultimate goal is to hear the player exclaim: “I can't

believe the A.I. just did that!”—a reaction we’ve

had a few times ourselves when testing our engine.

There are many possibilities for AI

improvement in games research, and it is

appropriate to distinguish briefly between what

ARES is and is not. The ARES AI model does not

emulate a human video-game opponent but rather

a real-world human army. For this reason, ARES

has a primary application to Real-time Strategy

games. Note also that it can be used both as an

opponent AI and also a support AI; in the latter

case, the player would be able to issue orders to

groups of units which would be executed in a

realistic military fashion. We do not seek to create

an invincible AI which can beat a human player

every time (e.g. IBM’s Deep Blue Chess AI), or a

scalable AI which can be adjusted in difficulty to

provide the player with the optimum sense of

challenge. There many excellent opportunities for

AI improvement, some of which were explored in

other CS196-2 projects including Q-Boltz

Millenium Wars and Kung Fu Tamagotchi. In

ARES, we kept our goal focused on the

hierarchical AI model as a way to create an added

degree of in-game realism.

ARES at a glance

Team
Developers (full-time): 4
Budget: $30.00
Release Date: May 12, 2006
Development: < 12 weeks
Platform: Windows XP

Workstations (x4)
Intel Pentium D 3.0 Ghz w/ 2MB
2 GB DDR2 RAM
2x 250 GB Hard Drive
ATI X800 w/ 256 MB RAM
Windows XP Professional (32-bit)

Software
Visual Studio 2005 Professional
Autodesk 3ds max 8
Adobe Photoshop CS2
Tortoise SVN
Sony SoundForge
oFusion
Skype
Bugzilla
Windows XP Professional

Technologies
DirectX v9.0c
OGRE v1.2 “Dagon”
BASS Audio Library v2.2
CEGUI v0.4.1
.NET Framework 2.0
SandDock 1.0

Size
25,190 source code lines
20,206 game asset lines

 4

ARES AI System

Description

The ARES AI System is structured around four military ranks as follows: 1

General, 5 Colonels, 10 Captains, and 130 Grunts. A standard game configuration can

handle up to 300 units total on a 300x300 tile map; by comparison Blizzard

Entertainment’s StarCraft has a maximum map size of 256x256 tiles and roughly 125

total units in a game. The ARES AI operates in turns. Each turn, units perform basic

actions such as moving, detecting enemy units, and firing. Additionally, decision-making

units (Captains and above) think and give orders every couple of turns, with Captains

thinking more frequently than either Colonels or Generals. Different ranks use different

decision making algorithms as follows:

 The two Generals (one per side) are concerned with the whole map; they play “a

game of chess” using a Minimax look-ahead search algorithm to make orders to

move the Colonels. A General makes decisions based on the location of its troops

and the known locations of the enemy troops. Much like a realistic general,

however, ARES Generals take a broad view of the game state: they consider the

map as a 10x10 grid and look at groups of units rather than individuals.

 Colonels receive an order from the General to move to a broad region on the map,

then organize their subordinate Captains to best attack enemy units and capture

the target area.

 The Captains focus on most zoomed-in extent of the game, coordinating the

movements of Grunts to attack enemy forces. Unlike Generals, Colonels and

Captain make decisions using utility functions as follows:

1. Game state factors such as the number of combatants on each side are

considered. Then the AI walks through limited set of possible tactics

(predetermined attack routes) looking for chances to “flank” the enemy

from the side or rear. Using this model, a chance of winning is evaluated

for each tactic.

 5

2. The possible outcomes are then weighted by personality factors such as

Aggressiveness which are unique to the unit.

3. If the Utility Function evaluates below a certain threshold, the unit will

order its subordinates to retreat. Otherwise, the attack will proceed with

the tactic of greatest utility. The Captain generates routes for his troops by

mapping the attack route to a list of tiles using A* pathfinding

 Grunts implement only the most basic level of AI agent actions, including

detecting enemy units, moving, and firing. Like the real military, our model gives

grunts almost no opportunity for independent thinking; they are merely cogs in

the machine.

Conclusions

It important to distinguish between the macro-scale Minimax AI of the Generals

and the micro-scale “Utility function” decisions made by the Colonels and Captains; the

Generals are really in a whole different ballpark. Generals thought ahead quite a bit and

while it helped them make better decisions, it also didn’t help to a certain degree. Since

each unit was its own agent, it was very difficult to predict exactly what was going to

happen. The Minimax algorithm had to be simplified so that it would run in the right

time requirements which meant that we had to strip down the state to a significantly

smaller subset of what the real game was. Therefore, the decisions that the General

would make several turns in the future wouldn’t affect it that significantly. In that light,

we found that the Generals who made short term decisions (we found 3 turns to be pretty

good) did better. We also found that when the Generals would attack initially with one

brigade and then bring in the rest of the army would win most of the time. There was

actually a case where one brigade was sent forward, the rest of the army sent backwards

and then when the enemy attacked the advance brigade retreating and the rear brigades

advanced and wiped out the entire enemy force with minimal damage. Bringing

everybody up at the same time and attacking actually seemed to be a poor attack strategy.

Also, defending seemed to be very useful. Defending brigades have actually been known

to wipe out 2 – 3 enemy brigades by themselves on occasions. However, since the goal

 6

of the game is to defeat the other side, the general has been weighted to attack more often

than defend.

As for the Captains and Colonels, the different tactics they employed would yield

significantly different results. We experimented with various tactics using test-setups in

our ARES Studio editor. We found that, in general, tactics that split the units into multiple

squads randomly does not fare very well against a group of concentrated enemy units.

One reason for this is that usually the split squads approach the enemy one-at-time. The

group of concentrated units focuses its fire and can usually first destroy the first enemy

squad, then the second. Note that this could change if grenades were put into the game,

which could destroy a closely packed cluster of soldiers. When units move together in a

large group, they all face the same direction and are then vulnerable to flanking. Our

current build of the game gives a large attack bonus to flanking in part to make a

disincentive for having a large group. In our current release, we find that the best tactic is

one that splits the units into two flanking routes, especially if the squad’s enemies are in a

line formation. In a chaotic battlefield, however, the units are susceptible to attack before

they have a change to fan-out in their flank patter. Therefore, whether the flank tactic is

superior depends on how far and how safe it is for the units to fan out and form the

flanking pattern before they see the enemies. Another possible tactic is to split the units

into three squads: two squads will flank, and one will move forward in a straight line.

This tactic, however, seems to spread the units thin too much, and the middle “frontal

assault” squad usually fares poorly. In summary, a tactic’s success rate is generally

determined by spread out the units are and what directions the units will end up facing,

but still superior tactics are no substitute for superior numbers in the majority of cases.

We explore possible improvements to our AI model in a subsequent section of this

document.

 7

Quantitative Evaluation

Our project met and exceeded the A+ Project Requirements as specified in our

proposal, reprinted here word-for-word:

AI

 Generals
o MiniMax algorithm is used to issue orders and take actions
o Evaluates state information based on a state evaluation function and chooses

the move it will make based on the highest possible state evaluation among
the examined states

o State evaluation function should take into account number of living friendly
units as well as number of killed enemy units, and it should use weights for
unit types (e.g. a captain is worth more than a grunt, etc.)

 Colonels
o Markov decision process is used to issue orders and take actions
o MDP takes into account number of friendly and enemy units in its vicinity

 Captains
o Markov decision process is used to issue orders and take actions
o MDP takes into account number of friendly and enemy units in its vicinity

Graphics

 Two views: symbolic view and battle view. Symbolic uses symbols to show battle
progress, battle view shows 3D isometric view of the battle complete with units

Game Logic

 Game logic system must function as an API for accessing elements within the game
as well as game concepts, including firing and the accuracy model, time, orders

 Command/information lag:
o Each unit will have their own perceived state that they will use to make

decisions

Formations

 Formations govern the relative motions of units to produce an overall shape or
formation of units

 Graphical formations editor
o Uses XML files to store formation data

Interactivity

 Clicking on a unit with information tool will display the unit’s current status in the UI
 GUI button-based UI:

o Ability to pause the simulation
o Ability to change views

Weekly Presentations

 Weekly update presentations beginning March 17, 2006 except during Spring Break

 8

Visuals

Troops advance and retreat in coordinated squads as directed by their

chain of superior officers.

Symbolic View shows troop the movements in a high framerate context.

 9

Soldiers use A* Pathfinding to maneuver around obstacles and

buildings—look at those two squeeze between the barrels!

Zoom to full extent and watch the carnage up close in stunning 3D.

Every soldier appears slightly different in terms of kit and weaponry.

 10

Smoke and blood particle systems and sound effects immerse the player

in a cinematic war environment

The Ares AI can be massive—can you see the 300 individual dots

on the 300x300 tile map shown above? That beats out most
contemporary Real-time Strategy games in terms of size!

 11

Click on a unit to view its attributes and battle statistics.

 12

The ARES Studio is Scenario Editor and game tool for ARES, enabling the player to
create scenario maps and AI features. The screenshots below detail its robust features:

Tactics Editor used to create preplanned

"attack routes" for squads of soldiers
which Captains will choose from when
attacking an enemy. Flanking can take

enemies by surprise—or leave your forces
in disarray!

Formation Editor used to create

formations used in moving and defending

Scenario Editor used to create a map for
the game, including place soldiers of all

ranks and objects such as trees, buildings,
shrubs, barrels, and burning cars.

Agent Editor edits attributes of soldiers
placed on the map in the Scenario Editor.

 13

3D Studio Max 8 was used for UVW mapping and skeleton animating the models

 14

Five Rights & Five Wrongs

Five Rights

1. Ogre3D Engine. Using the open-source Ogre3D graphics engine from the very
start turned out to be a great choice. The real plus to using Ogre was not that it
was necessarily more powerful than alternatives, but that it had strong community
support, lots of tutorials, and forums. Another huge advantage was the oFusion
plugin for 3dsmax 8, which allowed Johnny, our graphics man, to see how his
artwork would appear in-game before he exported models. The built-in
scenegraph was also a nice feature.

2. The C# Programming Language. Andy blew us all away when he created the
Win32 Ares Studio editor using C# in a little over a week (he should be a poster-
boy for Microsoft). This editor was a huge productivity gain and allowed us an
easy way to test the range of possible scenario configurations for our application.
The BiG Studios lecturers were right—game tools are important after all.

3. Graphic Assets from Battlefield 2. Before any graphics were implemented in
ARES, there was a big looming question—how can get game graphics that look
hot in our game? Johnny had a hunch that it may be possible to rip graphics from
EA’s popular war-game Battlefield 2 and put them in our game. After long hours
of trial and error, he was able to find a way to rip BF2 assets into 3dsmax, though
they were unanimated and unskinned—this was still in February! Obviously if
this were a commercial game we’d have to create our own original graphics, but
in terms of making a class project this BF2 ripping proved crucial for building the
“killer app” that the course staff demanded.

4. Superior Planning. Our schedule turned out to be perfect, as we were able to
implement everything in our ambitious A+ spec with little time to spare. This can
be attributed to a number of factors: good assessment of our individual abilities,
good division of labor, regular meetings, and designated weekly coding nights
where we all got on a Skype conference-call and coded at the same time. Forcing
ourselves to demo new features every week—an A+ spec requirement that we
met—was a good way to ensure that we never slacked behind on development.

5. Une certaine je ne sais quoi. From start to finish, we challenged each other to
think outside the box and devise new features—tactics, formations, personality—
to make meeting our specs easier. As we came to trust that we were all competent

 15

thinkers and coders—and that we were all putting in long hours to make this
project work—we were able to divide up the labor in such a way that each person
was doing a well-defined job that played to our strengths. This in turn boosted
team morale and encouraged us to put our best work into the project. We all
incorporated subtleties that went above and beyond the A+ spec—look closely to
see what you can find!

Five Wrongs

1. Debugging the AI. Debugging the AI was harder than anticipated because there
turned out to be so many special cases and combinations of unit actions. To
address this, we implemented an XML dump feature where we could press a
button and instantly dump all game state parameters into a well-organized format
and see what the heck was going on.

2. Skinning and Animating the Models. While ripping the graphics assets from
Battlefield 2 was a big boost, it turned out that that was merely the beginning of
graphics work. Skinning and animating the models was a larger than anticipated
task, and the only way to accomplish it was to slog through it by brute force.
Naturally, the oFusion Ogre3D plug-in aided in the graphics implementation, but
the graphics work was still a pain—we all have a better appreciation for what
graphics artists have to go through!

3. The ARES AI model is inherently computationally expensive. To address this
problem, we made a number of design choices to streamline our app. For instance,
we looked at ways to use A* pathfinding a minimal amount of times to form a
route, such as breaking the route into smaller segments and only using A* when
needed; there’s no reason to compute a whole path if a unit will be killed before
he can take three steps. Mike optimized the General’s Minimax search by cutting
down the state significantly. In the end, we got 300 units to run on screen with
reasonable framerate—better than many contemporary RTS games.

4. We worked our asses off. It’s possible that we could have done a simpler project,
spent less time, gotten more sleep, and still have done well in the class… but we
wanted to be unique and innovative, and that’s the price to pay.

5. If only we had more time… we could implement all of the really cool pipe dream
ideas we had. A big challenge with ARES was to stay focused on core features in
the A+ spec. Read the following pages and take a glimpse at what we could do
with more time!

 16

The Future of ARES

Throughout the development cycle, our team continually thought of ways to

expand the original ARES spec above and beyond what was required. Some of those

ideas, including the ARES Studio scenario manager, were so good that our team agreed

they were worth extra time investment; the rest were left as pipe dreams as we focused on

our core set of features. Here we present some of our best ideas that didn’t make into our

May 12th spec:

AI Improvements

 Promotions. If we had another month to work on Ares, our team agrees that
making unit promotions when a leader is killed is the first feature we’d
implement. In our May 12th release, a known er… feature is that when a unit’s
commander is killed, eventually he will cease doing new actions and stand in
place because he is no receiving orders. This is as should be; we don’t have any
system in place to create a new commanding officer. In our early designs, we
intended for units to have some period of time of chaos after their commander is
killed, at which point they elect a new captain and continue the war.

 Dynamic reorganization. Why stop at promotions? The army should be able to
dynamically reorganize itself. A colonel may decide to merge two of his
Captain’s units, or move soldiers from a heavily-staffed unit to an understaffed
unit. If one unit’s aggressive personality is bothering his comrades in arms, he
may be shuffled somewhere else in the army. Of course, for any switches or
merges to occur, the two units would have to be in physical proximity of one
another.

 Horizontal AI / peer-to-peer AI. Rather than a purely “vertical” hierarchical AI
structure—that is, Generals, Colonels, Captains, etc.—we could add a
“horizontal” structure where the Captains could know about other Captains in
their proximity and could team up to accomplish objectives. Captains may decide
to abstain from fighting if they know that more firepower is only a minute away.
Arguably this function could be managed entirely by the Colonel or General, but
it would be interesting to experiment with even on paper.

 Game abstraction layer. To make the ARES AI system a true middleware
application, we’d need some kind of game abstraction layer that would allow our

 17

system to be dropped into any game—i.e. any end user could implement it. Such
an abstraction should be able to work in a variety of genres, including Real-time
Strategy, First Person Shooter, and Simulation.

 Parallel processing. The architecture employed by ARES is inherently
parallelizable, and could benefit greatly from modern symmetric mult-core CPU
architectures. Units would be divided into processing groups; at the beginning of
each turn, units would “think” on an appropriately assigned processor. This
would require a locking layer to make our data structures thread safe.

 AI priorities. The AI should have different possible objectives or overall strategies
to guide it’s choice of tactics. For instance, “kill the enemy general” is different
from “kill the maximum number of enemy units” is different from “occupy as
much terrain as possible.” Allowing a player to set these objectives for Colonels
he commands would produce some pretty cool results.

 Location context. This means having some way to give the AI understanding of
terrain more than just “open space”. The AI General should be able to prioritize
controlling bridges, roads, and hills as would be done in a real war. The AI should
know that by controlling a bridge, it will open future opportunities, and
conversely, giving the enemy control will expose his weaknesses.

 Unit emotions. The AI should implement behavior responses to emotions such as
intimidation, high or low morale, rage, etc. All this was spec’d out pretty well in
our design stage but got cut when we were determining our spec.

 Bases / Patrolling. Another idea we had early on is that when units reach an
order’s target destination, they would then set up a base and “dig-in” so to speak
which would give them a defensive bonus. From the base they set up, the captain
would send squads of grunts to go out and scout/patrol the area to extend the
unit’s sight range. This is not an easy feature to build and was cut early on.

 General George S. Patton said “A good plan violently executed now is better than
a perfect plan executed next week.” This quote inspires an idea for ARES: what if
Captains were able to take more than one turn to make plans, but plans would get
better with the amount of time given to plan them. Currently every time a Captain
makes a battle plan, he searches the space of tactics for an optimal plan (see
“ARES AI System” section). What if players could tell Captains to take additional
turns of planning and search a wider space of possible actions? This would add a
very human touch to the AI system.

 18

 At the moment, the AI considers tactics based on results—not on move times or
current destinations of units. Thus units in the same squad can be assigned routes
which will make them do criss-cross patterns on the battlefield. With another
month of coding, this would be resolved cleanly.

ARES AI Studio

 AI studio could be expanded to provide additional properties which affect the
agents, including physical attributes (speed, armor, etc.) and emotional attributes
(morale, moodiness, integrity, etc.)

 More usability features could be added such as group select, copy and paste, and
undo/redo.

 An XML style sheet (.xsl) could be provided to visualize game XML files in web
browsers, both locally and on the Internet.

Graphics and Presentation

 Add more types of obstacles to the AI studio, providing a more realistic in-game
experience while in realistic view. ARES currently supports 15 types of obstacles.

 Add moving obstacles such as animals and civilians

 Add transit systems such as roads and bridges could add to the game’s realism.
Units could have different movement speeds on different terrain types. In
addition, weather particle systems such as rain, snow, and sand storms could also
enhance realism.

 More animations, including prone position…

 Add different camera angles, including a chase-cam or “first-person perspective”

Gameplay Variety

 Add vehicle units such as tanks, armored vehicles, helicopter gunships, artillery,
and warplanes. Such units would exist in game logic as simply units with a large
number of hit points, making them more difficult to destroy. Their strategic value
would need to be taken into account by the MDP and minimax AI systems. In
addition, they would require extensive animations, models, textures and sound.

 Add grenades, landmines, and other explosive weapons. In addition to looking
sweet, explosive weapons would add a new dimension of AI realism—captains
would now have to balance units between clustering up and spreading too far out.

 19

 Add third-person RTS-style control or even first-person shooter style control of
individual units.

 Make a God-game or General-game where you not only play against the AI, but
your units use the AI system to carry out your orders in an organized fashion.

 The AI Obstacles/targets such as bridges. Objectives could be tiered so that
accomplishing one objective opens up other possible objectives.

 Make game bigger—our early specs envisioned battles taking place over a 50
square mile area, but in the finished game it seems to take place in a section of a
small village. In order to make the game have a bigger area, we’d need vehicles
and roads to move the troops; it wouldn’t be believable or interesting to see two
squads take an hour to run 5 miles on foot towards each other for a 30 second fire-
fight.

 20

Conclusion

ARES was an outstanding success. The CS196-2 class challenged us to break the

mold on the same tired video game models on the market now, and our team responded

by designing an innovative new hierarchical model for AI—something never been done

before. Three months and 25,109 lines of code later, our four-man team had a “killer app”

to demo our AI system. Truth be told, every member of our team gave his utmost effort

in developing this app and every member shined in his respective work. We wish to thank

the CS196-2 staff for giving us the unique opportunity to work on a semester-long

project. This course was a valuable experience for all of us, and many lessons about

design, application structure, coding, graphics, and teamwork were learned along the

way. While at the moment we’re all a bit tired of developing this app, who knows what

we may cook up next semester?

“I shall return.”

 - General Douglas MacArthur

 21

ARES Instructions for Use

Prerequisites

ARES is a complex project and relies on a number of external dependencies, all of which

must be satisfied for ARES to function. Please ensure that the following recommended

minimum system specifications are met:

 Intel Pentium 4 3.0 Ghz CPU

 1 GB DDR RAM

 NVIDIA GeForce 6800 with 256 MB RAM or ATI X800 with 256 MB RAM

 Microsoft Windows XP Professional SP2

 DirectX 9.0c and latest video card drivers

 1 GB Disk Space

 2-button mouse with scroll wheel

Note that in the above configuration a video card that is Shader Model 2.0 compliant is

required. ARES is a graphically and computationally intense application, and therefore

deviating from the above specifications will produce sub-optimal performance.

In addition to the base system requirements listed above, the following software packages

are required as well:

 Microsoft Visual Studio 2005 (supplies necessary runtime libraries)

 NET Framework 2.0 (required for ARES AI Studio which is C#-based)

 Microsoft Internet Explorer 6.0 or later (supplies MSXML library)

 Microsoft Windows XP Service Pack 2

 DirectX 9.0c (please ensure that you are running revision “c” of version 9.0)

 22

Quick-start

Once you have reviewed and applied the above operating environment you are ready to

use ARES. Extract the binary distribution using Windows Explorer into a new folder

called, say, “ARES”. Ensure that this folder and its contents have read/write access (do

not run ARES off of a CD-ROM/DVD-ROM).

To begin ARES, run /bin/release/AresStudio.exe using Windows Explorer. ARES is

distributed with a sample game.xml file. To load it, access “Open…” from the File

menu. Open the file /media/game.xml to open the default scenario.

You are now ready to try ARES. Notice that there is a drop down list labeled

“Scenario:”. Select a scenario of your choice and then choose “Start Scenario” from the

View menu.

The “OGRE Engine Rendering Setup” dialog box will open. From the “Rendering

Subsystem:” drop down list, choose “Direct3D9 Rendering System”. If this option is

not available, then press cancel and refer to the prerequisites listed above.

Under Rendering Device, ensure that your video card is selected. Specify a resolution

preference as well as whether to run in Full Screen mode. Click OK to begin the demo.

ARES starts in pause mode. To unpause, click the play button. To quit, choose Q from

the buttons at left. Click the O button to switch views (battle view or symbolic). For

larger battles, symbolic is recommended. Click the V button to turn on order hierarchy

(this option is only available in symbolic view). Clicking on a unit will display a window

of the unit’s details. Pan by moving the mouse to each edge of the screen; zoom using

the scroll wheel.

 23

Known Issues

 Ray-scene intersection is imperfect, and can produce erroneous unit selections. In

larger maps, sometimes units may only be selected when they are near the central

area of the map.

 Staring OGRE with the wrong video card selected may cause problems.

 Illegal tactics and formations are not validated by game logic, and so deliberately

specifying invalid tactics or formations will cause a crash.

 Zooming with the scroll wheel was only tested using Microsoft Intellimouse 4.0

mice, and so using other mice (such as a Dell wired mouse) will result in slow

zooming.

 Zooming very close to the terrain in battle view may cause the terrain to

disappear. This is caused by a bug in the HLSL post filter. Zooming out will

cause the terrain to re-appear. This only happens on certain video cards under

certain conditions.

