JID: JSS

[m5G;August 11, 2015;19:59]

The Journal of Systems and Software 000 (2015) 1-14

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Continuous software engineering: A roadmap and agenda

Brian Fitzgerald, Klaas-Jan Stol*

Lero—the Irish Software Research Centre, University of Limerick, Ireland

ARTICLE INFO ABSTRACT

Article history:

Received 11 November 2014
Revised 24 April 2015
Accepted 25 June 2015
Available online xxx

Throughout its short history, software development has been characterized by harmful disconnects between
important activities such as planning, development and implementation. The problem is further exacerbated
by the episodic and infrequent performance of activities such as planning, testing, integration and releases.
Several emerging phenomena reflect attempts to address these problems. For example, Continuous Integra-
tion is a practice which has emerged to eliminate discontinuities between development and deployment. In a
similar vein, the recent emphasis on DevOps recognizes that the integration between software development
and its operational deployment needs to be a continuous one. We argue a similar continuity is required be-
tween business strategy and development, BizDev being the term we coin for this. These disconnects are even
more problematic given the need for reliability and resilience in the complex and data-intensive systems be-
ing developed today. We identify a number of continuous activities which together we label as ‘Continuous *’
(i.e. Continuous Star) which we present as part of an overall roadmap for Continuous Software engineering.
We argue for a continuous (but not necessarily rapid) software engineering delivery pipeline. We conclude

Keywords:

Continuous software engineering
Lean software development
DevOps

the paper with a research agenda.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Software development has been characterized by harmful discon-
nects between important activities, such as planning, analysis, design
and programming. This is clearly reflected in the traditional water-
fall process for software development described (and criticized) by
Royce (1987). In the last two decades, there has been a widespread
recognition that increasing the frequency of certain critical activities
helps to overcome many challenges. Practices such as ‘release early,
release often’ are well established in open source software develop-
ment (Feller et al., 2005), which offer several benefits in terms of
quality and consistency (Michlmayr et al., 2015). The pervasive adop-
tion of agile methods (Kurapati et al., 2012; Papatheocharous and
Andreou, 2014) provides ample evidence of the need for flexibility
and rapid adaptation in the current software development environ-
ment. Very complex and business- and safety-critical software is be-
ing developed, often by distributed teams. A tighter connection be-
tween development and execution is required to ensure errors are
detected and fixed as soon as possible. The quality and resilience of
the software is improved as a result. This is manifest in the increasing
adoption of continuous integration practices. The popularity of con-
tinuous integration is facilitated by the explicit recommendation of
the practice in the Extreme Programming agile method (Beck, 2000),

* Corresponding author. Tel.: +353 61 233737.
E-mail addresses: bf@lero.ie (B. Fitzgerald), klaas-jan.stol@lero.ie (K. Stol).

http://dx.doi.org/10.1016/j.jss.2015.06.063
0164-1212/© 2015 Elsevier Inc. All rights reserved.

and indeed the practice is highly compatible with the frequent iter-
ations of software produced by agile approaches. Also, many open
source toolsets such as Jenkins CI! are freely available to automate
the continuous integration process which makes this practice readily
available to potential adopters.

However, a number of recent trends illustrate that a more holis-
tic approach is necessary rather than one which is merely focused on
continuous integration of software. For example, the Enterprise Ag-
ile (Overby et al., 2005) and Beyond Budgeting (Bogsnes, 2008) con-
cepts have emerged as a recognition that the benefits of agile soft-
ware development will be sub-optimal if not complemented by an
agile approach in related organizational functions such as finance and
HR (Leffingwell, 2007; Overby et al., 2005). In a similar vein, the re-
cent emphasis on DevOps recognizes that the integration between
software development and its operational deployment needs to be
a continuous one (Debois, 2009). Complementing this, we argue that
the link between business strategy and software development ought
to be continuously assessed and improved, “BizDev” being the term
we coin for this process. Several researchers across the management,
information systems and software engineering disciplines have pro-
vided arguments which reinforce the BizDev concept and we elabo-
rate on this in Section 4 below.

Furthermore, the holistic approach mentioned above should not
assume that the process is complete once customers have initially

T https://jenkins-ci.org/

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063

Please cite this article as: B. Fitzgerald, KJ. Stol, Continuous software engineering: A roadmap and agenda, The Journal of Systems and Software



http://dx.doi.org/10.1016/j.jss.2015.06.063
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:bf@lero.ie
mailto:klaas-jan.stol@lero.ie
https://jenkins-ci.org/
http://dx.doi.org/10.1016/j.jss.2015.06.063
http://dx.doi.org/10.1016/j.jss.2015.06.063

JID: JSS

[m5G;August 11, 2015;19:59]

2 B. Fitzgerald, K.J. Stol/ The Journal of Systems and Software 000 (2015) 1-14

Table 1

Seven additional practices to scale agile to the enterprise level according to Leffingwell (2007).

Practice Description

Intentional Architecture

For large systems consisting of many subsystems, agile components team fit their components into an intentional

architecture, which is component-based and is aligned with the team’s core competencies, physical location and

distribution.
Lean requirements at scale

Non-functional/cross-cutting system requirements such as performance and reliability must be considered and

understood by all teams contributing to the system. Define a vision stating the overall objectives; a roadmap that defines an
implementation strategy, and defer specific requirements as long as possible, implement them just-in-time.

Systems of systems and the agile release train

Create a release schedule with fixed dates that is imposed upon all teams, and leave decisions regarding the delivered

features/functionality up to those teams.

Managing highly distributed development

Large-scale software development is inherently distributed, as developers are necessarily located in different physical

locations, ranging from different rooms, floors, and buildings to different countries and time zones. Additional
coordination practices and enterprise-level tool support are necessary.

Impact on customers and operations

More frequent delivery has an impact to a variety of stakeholders, including sales and marketing, operations, support,

distribution organizations, and ultimately customers. The interaction with each of these stakeholders must be considered
and adapted to fit enterprise-level agile adoption.

Changing the organization

Transforming the enterprise to an agile one requires a combination of top-down leadership, bottom-up adoption and

expansion and empowered managers in the middle, all with a common vision.

Measuring business performance

Whereas the key measure of small-scale agile is the presence of working software, enterprise agile requires a number of

additional measures to monitor efficiency, value delivery, quality, and agility.

adopted a software product. Digital natives, the term for those who
have been born in the technology era (Vodanovich et al., 2010)
have high expectations of software and are not put off by the high
switching costs associated with moving to alternatives. Frequently,
third-party opinions and word-of-mouth can cause customers to
switch, and software providers must be more proactive in such a
market-place. Also, privacy and trust issues loom much larger in
the data-intensive systems being used today. Run-time adaptation is
increasingly a factor as software is expected to exhibit some degree
of autonomy to respond to evolving run-time conditions.

We believe that rather than focusing on agile methods per se,
a useful concept from the lean approach, namely that of ‘flow’
(Reinertsen, 2009) is useful in considering continuous software en-
gineering. Rather than a sequence of discrete activities, performed
by clearly distinct teams or departments, the argument for contin-
uous software engineering is to establish a continuous movement,
which, we argue, closely resembles the concept of flow found in lean
manufacturing and product development (Morgan and Liker, 2006),
a school of thought that is called ‘Lean Thinking’ (Womack and Jones,
2003). In recent years, there has been much interest in lean software
development (Conboy and Fitzgerald, 2004; Fitzgerald et al., 2014;
Maglyas et al., 2012; Petersen, 2011; Wang et al., 2012), however,
there has been a frequent tendency to adopt a somewhat narrow view
on the topic by closely linking it to agile practices only.

In this paper we review a number of initiatives that are termed
‘continuous.’ This paper extends our preliminary view on this topic
(Fitzgerald and Stol, 2014). The goal of this paper is to sketch a holis-
tic view of these initiatives and position them within the continu-
ous software engineering context, and illustrate how Lean Thinking
is a useful and relevant lens to view continuous software engineer-
ing. Furthermore, we look beyond software development, and con-
sider issues such as continuous use, continuous trust, etc. and coin
the term ‘Continuous *’ (pronounced as “Continuous Star”) to refer to
this holistic view.

The various developments are by and large at different levels of
maturity—continuous integration is a concept and practice that has
gained widespread currency, probably in large part due to it being
a formal practice in XP. However, recent research shows that differ-
ent organizations implement this practice in different ways (Stdhl
and Bosch, 2013). In contrast, continuous delivery is an idea that
has not widely been established in the software industry. Thus, we
consider our holistic overview as a conceptual research agenda, and
we envisage future research to operationalize each of the concepts
identified, much as Stahl and Bosch have initiated for continuous
integration.

This paper proceeds as follows. Section 2 describes a number of
developments that have attempted to scale up the agile paradigm,
such as Enterprise Agile, Beyond Budgeting and DevOps. Section 3 re-
views a number of key concepts from the school of Lean Thinking, of
which the concept of ‘flow’ is the most important as it can be used as a
suitable foundation for the holistic concept of ‘Continuous *’ that we
propose in this paper. Section 4 presents the activities which com-
prise Continuous * in more detail, and we observe how the various
concepts of lean thinking can be identified within these activities.
Section 5 discusses a number of directions for future research and
implications for practice.

2. Trends in the software engineering landscape

A number of recent trends have focused on the need to transform
organizations to deliver software more rapidly. We discuss these in
turn.

2.1. Enterprise agile

Agile methods were initially considered to be only suitable for
small teams, and research on agile methods has long focused quite
narrowly on the software development function only. In recent years,
several authors have identified the need to scale the agile concept to
the enterprise level (Kettunen and Laanti, 2008; Reifer et al., 2003).
Leffingwell (2007), for example, documented a set of seven practices
to complement the practices that are common to agile methods such
as Scrum, XP and DSDM (see Table 1). These seven principles address
several dimensions in which agile approaches should scale, such
as the link to other functions of the organization (e.g., marketing,
operations), the product (e.g., architecture, requirements), and the
development process (e.g., distributed development). Leffingwell
also initiated the Scaled Agile Framework (SAFe).2 The SAFe is based
on experiences of organizations that have adopted agile at enterprise
scale and describes practices and activities, roles, and artifacts.

Overby et al. (2005) defined ‘enterprise agility’ as “the ability of
firms to sense environmental change and respond appropriately,” hence
identifying the two main components of ‘sensing’ and ‘responding’
appropriately. As organizations may possess different capabilities to
sense and respond, these can be seen respectively as two dimensions
along which organizations may be positioned. For instance, an orga-
nization may have well-developed capabilities to sense new market

2 http://www.scaledagileframework.com/

(2015), http://dx.doi.org/10.1016/j.jss.2015.06.063

Please cite this article as: B. Fitzgerald, K.J. Stol, Continuous software engineering: A roadmap and agenda, The Journal of Systems and Software



http://www.scaledagileframework.com/
http://dx.doi.org/10.1016/j.jss.2015.06.063

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/95532

