
Change Vector Analysis (CVA)
Change Vector Analysis (CVA) uses two spectral 
channels to map both the: 1) magnitude of change 
and, 2) the direction of change between the two 
(spectral) input images for each date. 
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Change Detection: CVA

• No-change = 0 length
• Change direction may be 

interpretable
• Pick a threshold for change



Change Vector Analysis
Band Math followed by change vector
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Change Magnitude

Two dates, four bands



Change Directions

Two dates, two bands Two dates, three bands





•EXAMPLE CVA:  The first step of the example CVA method was to apply a Tasseled Cap 
transform which generates the components Greenness and Brightness, in order to reduce 
the amount of redundant information of orbital images to be analyzed. This transform can 
be understood as defining a new coordinate system, where data from different bands 
occupy a new system of coordinates, where data from the different bands occupy new axes 
associated with biophysical properties of targets. In this case, such axes are Greenness, 
associated with the amount and vigor of vegetation, and Brightness, associated with 
variations of soil reflectance. 

•The position variation of the same pixel during different data-takes within the space 
formed by these two axes, determines the magnitude and direction of the spectral change 
vectors.

•The next step in the band transformation process into new coordinates axes was to 
calculate the magnitude of variation among spectral change vectors between the images 
pairs.

•The magnitude of vectors was calculated from the Euclidean Distance between the 
difference in positions of the same pixel from different data-takes within the space 
generated by the axes Greenness and Brightness, as follows:







•The final product generated using this technique, namely a mask related to 4 possible 
Classes of Change, was obtained by crossing a grid containing the magnitude values of 
Vector Changes with the four possible Classes of Change, following the threshold 
procedure previously described. 
•It was further defined that Class 1, which represents biomass growth, would be 
represented by green; Class 2, that represents deforestation, by red; Class 3, that 
represents, among other things, biomass loss derived not from primary forest to bare soil 
or pasture (lower biomass loss), would be represented by yellow. Class 4, which refers 
either to the increase in water body coverage area or to areas burned during the second 
data-take, would be represented by blue.



•The results obtained by the application of the Change Vector Analysis technique demonstrate the 
capacity to detect and stratify different types of changes in terms of biomass gain and loss. The 
Change Vector image of the two periods studied allowed to verify that the deforested area was 
850 Km2 in the 1990-99 period. 

•The annual rate deforestation is 86 Km2 /year for the period between 1990 and 1997, increasing 
to 165 Km2 /year between 1997 to 1999. In future studies we intend to test the components from 
other types of linear transformations, such as those components derived from processes such as 
Spectral Mixture Linear Model and Principal Components. 

•Taking into account that the CVA procedures were derived from the Tasseled Cap analysis 
(Greenness and Brightness components), in temperate and sub-tropical regions, these techniques 
must be further analyzed and adapted to be used in tropical regions.

•Changes introduced in the the study area by human activity and their relationship with primary 
and secondary vegetation were evaluated by the information obtained from field survey about 
present and past land use/land cover characteristics. These data were saved on a database that 
along with the results obtained from satellite data analysis  could facilitate the understanding of 
the changes that took place in the landscape.



•The December 2004 tsunami strongly impacted coastal ecosystems along the 
Andaman Sea coast of Thailand. 
•In this paper tsunami-induced damage of five different coastal forest 
ecosystems at the Phang-Nga province coast is analyzed with a remote 
sensing driven approach based on multi-date IKONOS imagery. 
•Two change detection algorithms, change vector analysis (CVA) and direct 
multi-date classification (DMC), are applied and compared regarding
their applicability to assess tsunami impacts. 







•A first step of CVA involves the calculation of the tasseled
cap components brightness (TC 1) and greenness (TC 2), in
order to reduce the amount of redundant information of digital
images to be analyzed (Kauth and Thomas, 1976). This
process can be compared to defining a new two-dimensional
feature space, in which the multispectral data occupy two
new axis associated with biophysical properties in the areas
of interest. 

•According to Lorena et al. (2002), the brightness
axis is correlated to variations of soil reflectance whereas
the greenness axis is associated with amount and vitality
of vegetation. 

•Tasseled cap components were calculated
for IKONOS multispectral data according to the equations
(Horne, 2003):

TC 1=0.326·xblue+0.509·xgreen+0.560·xred+0.567·xnir 

TC 2=−0.311·xblue−0.356·xgreen−0.325·xred+0.819·xnir 



The direction or angle of the change vector is determined
by the type of occurring change. Due to the fact that only
two components are used for CVA, only four major change
directions are possible:

– 0–90: increase in both components,
– 90–180: increase in brightness, decrease in greenness,
– 180–270: decrease in both components,
– 270–360: decrease in brightness and increase in greenness.



•Similar to a decision tree classification, the final definition
of change classes (Table 4) was carried out by user defined
thresholds of direction and magnitude values. Spectral
statistics of training areas, computed for the multi-date
Classification, were used for decision support. 

•The threshold distinguishing between change- and
no-change-information (31.49) was defined based on the first
standard deviation from the mean magnitude calculated for
training class IDs 1 and 2 . Another threshold of
46.06 was defined based on 1.5 times the standard deviation
of the vector’s magnitude.



•The analysis shows that DMC outperforms CVA in terms of accuracy
(Kappa values for DMC ranging between 0.947 and 0.950
and between 0.610–0.730 for CVA respectively) and the degree
of detail of the created change classes. 

•Results from DMC show that mangroves were the worst damaged among
the five forests, with a 55% of directly damaged forest in the
study area, followed by casuarina forest and coconut plantation.

•Although technical implementation of CVA is easier than
DMC, both methods require producer’s expertise in order to
correctly interpret change detection results. Disadvantages
in DMC involve the problem of considering many different
types of change classes during the classification process and
the fact that the degree of automation is relatively low. 

•Performing CVA is quicker in the beginning phase, since rough
change information can be automatically extracted from the
change vector’s magnitude and direction. The challenge here
lies in the selection of appropriate change thresholds and further
differentiations of change classes (interpretation). Thus,
expenditure of time and work is almost the same for both
methods with some advantages for CVA.











•Another technique is an automatic scattergram-controlled regression 
(ASCR) method, developed by Elvidge et al. (1995) for use with large sets of 
Landsat images.
• This method uses scattergrams of the near-infrared bands of image date 1 
and date 2 to identify stable land and water data clusters and generate an 
initial regression line between the two cluster centers.
• A no-change pixel set is selected by placing thresholds about this line. 
These pixels are then used in the regression analysis of each band to derive 
gains and offsets for the radiometric normalization. Requirements for this 
method are that: 

1. Images are acquired under similar solar and phenological conditions. 
2. Land cover for a large portion of the image in the time covered by the 
images to be rectified has not changed. 
3. There are both land and water pixels in the scene. 



•This method is shown to significantly reduce haze, making 
images more comparable spectrally. The researchers also list 
advantages of this procedure over other linear relative 
normalization methods: 
1. Cloud/shadow/snow effects are reduced compared with 
simple regression methods. 
2. A large percentage of the total number of image pixels is used. 
3. Normalization errors are distributed among different land 
cover types. 
4. The necessity of identifying bright and dark radiometric 
control pixels is eliminated. 
5. The speed of the normalization procedure is accelerated by 
reducing human intervention (though it may not reduce the 
computation time). 
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