Change Vector Analysis (CVA)

Change Vector Analysis (CVA) uses two spectral
channels to map both the: 1) magnitude of change
and, 2) the direction of change between the two
(spectral) input images for each date.
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Change Vector Analysis
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Figure 9-22 Schematic diagram of the spectral change detection method (after Malila, 1980).
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Figure 9-23  Possible change sector codes for a pixel measured in
three bands on two dates.



Change Magnitude

Two dates, four bands
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where DIy 13 the digital nmumber recorded in band j for date 1



Change Directions

Two dates, two bands
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where

If (DIa2-DI 20 < 0 and (DIN24-DIy4) = 0 then direction = 1
I {DIa2-DI 20 = 0 and (DIN24-DI14) < 0 then direction = 2
I (DI22-DI 20 = 0 and (DM24-DI4) = 0 then direction =3
I ({DMNa2-DI 20 = 0 and (DIN24-DIN14) = 0 then direction =4
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Abstract

The Brazilian Amazon 1s an area where extensive tropical rainforest areas are being destined to agriculture and cattle
raising activities, contributing to the environmental and landscape change of this large region. In this context, the
main objective of this paper 1s to present and test a technique for change detection called Change Vector Analysis
(CVA) to analyze the vanability of land use/land cover dynamics in the region of Peixoto, Acre State. using
multitemporal analysis of multispectral TM-Landsat data. The results demonstrate the capacity of the CVA techmique
to stratify different types of change related to land use/land cover dynamics 1 this region.



*EXAMPLE CVA: The first step of the example CVA method was to apply a Tasseled Cap
transform which generates the components Greenness and Brightness, in order to reduce
the amount of redundant information of orbital images to be analyzed. This transform can
be understood as defining a new coordinate system, where data from different bands
occupy a new system of coordinates, where data from the different bands occupy new axes
associated with biophysical properties of targets. In this case, such axes are Greenness,
associated with the amount and vigor of vegetation, and Brightness, associated with
variations of soil reflectance.

*The position variation of the same pixel during different data-takes within the space
formed by these two axes, determines the magnitude and direction of the spectral change
vectors.

*The next step in the band transformation process into new coordinates axes was to
calculate the magnitude of variation among spectral change vectors between the images
pairs.

*The magnitude of vectors was calculated from the Euclidean Distance between the
difference in positions of the same pixel from different data-takes within the space
generated by the axes Greenness and Brightness, as follows:

Where: R = Euclidean Distance

2 2 yva = DN values of Greenness from date 2
R — \/Gb — :l ‘:i?) + (:'-b - Iﬂ) vb = DN wvalues of Greenness from date 1
xa = DN values of Bightness from date 1
xb = DN wvalues of Brightness from date 2




The angle of the vectors. which indicates the type of change that occurred, vanes according to the number of
components used (Table 1). In other words. each vector 1s a function of the combination of positive or negative
changes through channels or spectral bands. which allows to distinguishing 2" types of changes. Since only
components Greenness and Braghtness were used 1n this study., only four classes of change were possible.

Class Brightness Greenness Themes
= + Regrowth
:- + - Deforestation
+ + Biomass Loss
- - - Burming or Water

Table 1 — Possible change classes from both input components and related tvpes of change.

Class 1. which indicates increase in Greenness and decrease in Brightness. represents a direction of the vector that 1s
mainly related to the growth of vegetation biomass, while Class 2, indicating decrease i Greenness and increase in
Brightness, 1s strongly related to great losses of vegetation biomass as a result of the clear-cut of tropical forest. Class
3. indicating increase in Greenness and Brightness, 1s mamly related to smaller losses of biomass, such as
transformation of sections with regrowth or cultures, as large as bushes, to pasture. Examples of change classes are
shown in Figure 3.

A threshold of final magnitude was defined for each one of the change classes through an interactive adjustment
(Table 2). The final result of the CVA technique 15 an image of vector change, where the main function of the
threshold was to filter out the valueless spectral information, preserving just those mformation that are related to
each of the Classes of Change.

Classes of Change Thresholds Thresholds
1990/1997 1997/1999
Class 1 10 10
__ Class? 20 17
Class 3 22 7
- 40 40

Table 2 - Magnitude thresholds of change for each class duning each data-take analyzed.



Figure 3 — Examples of thematic changes: (A) Class of change 1 = biomass growth; (B) Class of change 2 =
deforestation; (C) Class of change 3 = low biomass loss.




*The final product generated using this technique, namely a mask related to 4 possible
Classes of Change, was obtained by crossing a grid containing the magnitude values of
Vector Changes with the four possible Classes of Change, following the threshold
procedure previously described.

*|t was further defined that Class 1, which represents biomass growth, would be
represented by green; Class 2, that represents deforestation, by red; Class 3, that
represents, among other things, biomass loss derived not from primary forest to bare soil
or pasture (lower biomass loss), would be represented by yellow. Class 4, which refers
either to the increase in water body coverage area or to areas burned during the second
data-take, would be represented by blue.

Figure 4 - Change Vector image 1990-1997 (background scene: Brightness image 1990).




*The results obtained by the application of the Change Vector Analysis technique demonstrate the
capacity to detect and stratify different types of changes in terms of biomass gain and loss. The
Change Vector image of the two periods studied allowed to verify that the deforested area was
850 Km2 in the 1990-99 period.

*The annual rate deforestation is 86 Km2 /year for the period between 1990 and 1997, increasing
to 165 Km2 /year between 1997 to 1999. In future studies we intend to test the components from
other types of linear transformations, such as those components derived from processes such as
Spectral Mixture Linear Model and Principal Components.

*Taking into account that the CVA procedures were derived from the Tasseled Cap analysis
(Greenness and Brightness components), in temperate and sub-tropical regions, these techniques
must be further analyzed and adapted to be used in tropical regions.

*Changes introduced in the the study area by human activity and their relationship with primary
and secondary vegetation were evaluated by the information obtained from field survey about
present and past land use/land cover characteristics. These data were saved on a database that
along with the results obtained from satellite data analysis could facilitate the understanding of
the changes that took place in the landscape.
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*The December 2004 tsunami strongly impacted coastal ecosystems along the
Andaman Sea coast of Thailand.

*In this paper tsunami-induced damage of five different coastal forest
ecosystems at the Phang-Nga province coast is analyzed with a remote
sensing driven approach based on multi-date IKONOS imagery.

*Two change detection algorithms, change vector analysis (CVA) and direct
multi-date classification (DMC), are applied and compared regarding

their applicability to assess tsunami impacts.



4.1 Pre-processing

Before applying change detection analyses, the digital
numbers from TKONOS mmagery (DN, ) were converted into
at sensor’s aperture radiance values (L;). according to the
equation (Taylor, 2009):

_ 10*.DN;
* " CalCoef; - Bandwidth;

where,

DN; = digital value for spectral band J..

CalCoef; = Radiometric calibration coefficient
(DN/(mW/cm?-sr))

Bandwidth, =Bandwidth of spectral band X (nm).
Both CalCoef), and Bandwidth; are given in Table 1.

Table 1. TKONOS band dependent parameters of the scenes ac-
quired on 13 January 2003, 04:11 GMT (pre-tsunami) and 15 Jan-
vary 2005 04:12 GMT (post-tsunamu), after Taylor (2009), Geo-
eye (2000).

IKONOS  spectral  band- resolution CalCoef]

band range width

() (nm) (om)  (m) (DN/(mW/
nadir26°  cm?-sr)
off nadir

Pan 526-020 403 0.82/1.0 161

Blue 445-516 713 3240 728

Green 506-505 336 3240 727

Red 632608 658 3240 040

NIR 757-833 0954 3240 843

* Only for image production date Post 22 February 2001
(coefficients are for the 11-bit products).

Geometric correction (co-registration) was carried out by
using a set of ground control points from the pre-tsunami
scene. The post-tsunami scene was then warped to the base
image. The dark object subtraction, one of the simplest
and most widely used image-based absolute atmospheric cor-
rection approaches, was applied for radiometric correction
(Spanner et al., 1990; Ekstrand, 1994).

Image pan-sharpening was applied using the Gram-
Schmudt Spectral Sharpening approach (Laben and Brower,
2000). Therewith, the low resolution multispectral data (4 m)
were sharpened using the high spatial resolution panchro-
matic band (1m). The resulting high-resolution multispec-
tral dataset (Fig. 3) was used to visually select training areas
and for identifving appropriate test sites for the accuracy as-
sessment of change classifications.

oD W R
‘"‘-'!::. @ .
# - 2 A
[KONDS mulispectral date (RGH) from [KDNGS pan-sharpanad multispectral data
January 13, 2003 (RGE) from January 13, 2003

Fig. 3. IEONOS pan-sharpening based on the Gram-Schmidt-
spectral sharpening technique (northermn Khao Lak).
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*A first step of CVA involves the calculation of the tasseled

cap components brightness (TC 1) and greenness (TC 2), in
order to reduce the amount of redundant information of digital
images to be analyzed (Kauth and Thomas, 1976). This

process can be compared to defining a new two-dimensional
feature space, in which the multispectral data occupy two

new axis associated with biophysical properties in the areas

of interest.

eAccording to Lorena et al. (2002), the brightness

axis is correlated to variations of soil reflectance whereas
the greenness axis is associated with amount and vitality
of vegetation.

*Tasseled cap components were calculated

for IKONOS multispectral data according to the equations
(Horne, 2003):

TC 1=0.326-xblue+0.509-xgreen+0.560-xred+0.567-xnir

TC 2=-0.311-xblue-0.356-xgreen—0.325-xred+0.819-xnir



The direction or angle of the change vector is determined
by the type of occurring change. Due to the fact that only
two components are used for CVA, only four major change
directions are possible:

— 0-90: increase in both components,

—90-180: increase in brightness, decrease in greenness,
— 180-270: decrease in both components,

— 270-360: decrease in brightness and increase in greenness.



*Similar to a decision tree classification, the final definition
of change classes (Table 4) was carried out by user defined
thresholds of direction and magnitude values. Spectral
statistics of training areas, computed for the multi-date
Classification, were used for decision support.

*The threshold distinguishing between change- and
no-change-information (31.49) was defined based on the first
standard deviation from the mean magnitude calculated for
training class IDs 1 and 2 . Another threshold of

46.06 was defined based on 1.5 times the standard deviation
of the vector’s magnitude.

Table 4. Change class definition based on CVA

change classes aggregated change classes direction (*)/ test
(ID/name) magnitude area n*
1  nodamage no damage —/=31.49 088
2 regrowth 0-90/=3149

3 other other 270-360/=-31.49 -

4  sand — water understory/soils to water 250-270/=31.49 150
5  mud— water 225-250/31.49-46.06

6 understory — water 225-250/-46.06

7  forest — water direct forest damage (forest to water/mmd)  180-225/-46.06 187
8 forest— mud 180-225/31.49-46.06 143
0 degradation degradation 00-180/>31.49 613

= number of pixels (total number of image pixels 5.04x 10° preels).



*The analysis shows that DMC outperforms CVA in terms of accuracy
(Kappa values for DMC ranging between 0.947 and 0.950

and between 0.610-0.730 for CVA respectively) and the degree

of detail of the created change classes.

*Results from DMC show that mangroves were the worst damaged among
the five forests, with a 55% of directly damaged forest in the
study area, followed by casuarina forest and coconut plantation.

*Although technical implementation of CVA is easier than
DMC, both methods require producer’s expertise in order to
correctly interpret change detection results. Disadvantages
in DMC involve the problem of considering many different
types of change classes during the classification process and
the fact that the degree of automation is relatively low.

*Performing CVA is quicker in the beginning phase, since rough
change information can be automatically extracted from the
change vector’s magnitude and direction. The challenge here

lies in the selection of appropriate change thresholds and further
differentiations of change classes (interpretation). Thus,
expenditure of time and work is almost the same for both
methods with some advantages for CVA.



3 Sampling Scheme

3.1 Sample Design

Assessing the accuracy of maps derived from remote sensing data is both time- and
money-consuming. Due to the fact that it is not possible to check whole mapped
areas, sampling becomes the means by which the accuracy of land-cover maps can
be derived (Congalton, 1988a). As stated by Ginevan (1979) any sampling scheme
should satisfy three criteria:

1. It should have a low probability of accepting a map of low accuracy.

2. It should have a high probability of accepting a map of high accuracy.

3. It should require & minimum number, N, of ground truth samples,

Therefore researchers have published formulas to caleulate the numbers of sam-
ple plots which are dependent on the objectives of the project {van Genderen and
Lock, 1977; Rosenfield, Fitzpatrick-Lins and Ling 1982; Rosenfield, 19582; Congal-
ton, 1991). These formulas are discussed in 3.3, The sampling schemes that have
been used are:

¢ Simple Random Sampling {SRS).
o Stratified Random Sampling (STRAT).



Figure 3: Sampling designs used for accuracy assessment and rough evaluation of

the different approaches,
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o Systematic Sampling (SYS).

o Stratified Systematic Unaligned Sampling (S5US).

o Cluster Sampling (CLUSTER).
Figure 3illustrates the various sampling approaches and lists their major advantages
and drawhacks. The choice of sampling technique will depend upon several factors,

including the size of the study area, the type and distrilbution of features being
mapped, and the costs of acquiring verification data.



3.1.1 Random sampling

The simple random sampling (SRS) vields too many samples in larger areas and too
few samples in smaller areas (Congalton, 1988a). As the SRS is arca-weighted, it
is generally accepted that some kind of stratified sampling should be used, thereby
ensuring that each class is adequately tested {Arvonoff, 1985), The definition of
strata requires knowledge of the population that will be assessed; classification of
the remotely sensed data must therefore be performed before field verification {Fen-
stermaker, 1991). This can lead, in some projects, to serions problems becanse of
the temporal change of land-cover between the time of image acquisition and field
verification [Congalton, 19401,

3.2 Systematic Sampling

In systematic sampling approaches, the sampling unit is selected at an equal interval
over space. The advantage of svstematic sampling is the convenience of obtaining

Table 1. Sample schemes discussed by different anthors.

sSR! STRAS? SYE' SE1757 CLUSTER?
Cargalton, 1985 Card, 1082 Congalton, 10888 Berry and Baker, 1968 Congralton 19908

Arcnoft, 1985 Hay, 1474 Warren «f al, LN Aronct, THES Stedian, 1997
Ciinewvan, 1079 Jansmsen ot ol, T

Congalton 1988
Fitzpatrick-Lins, 1931
Hord amd Bronwer, 1976
Van Genderen and Lock, 1077

1 = simple random sampling, 2 = stratified random sampling, 3 = svstematic sampling, 4 =
stratified svstematic unaligned sampling, 5 = cluster sampling.

the sample and the uniform spread of the sampled observations over the entire
population {Cochran, 1977). An obvious problem in systematic sampled population
is the bias that exists if the population shows some kind of spatial autocorrelation. 1f
the presence, absence, or degree of certain characteristics affects those in neighboring
units, then the phenomenon is said to exhibit spatial antocorrelation (Cliff and
Ord, 1973). Work by Congalton {1988b) on Landsat MSS data from three areas of
varying spatial diversity (agricultural land, range land, and a forest site) showed a
positive influence, as much as 30 pixels, I spatial autocorrelation analysis indicates
periodicity within the data, then the use of systematic sampling schermes may result
in poor estimates of classification aceuracy (Fenstermaker, 19017,



3.2.1 Stratified systematic unaligned sampling

A gystematic sampling ensures that ssainple points of one class are sampled from
the entire area (see Figure ). This assumes that the class areas are randomly
distributed over the area, but commonly most classes show some form of elumped
distribution {e.g., urban areas), or regular distribution {e.g., regular road network)
{Aronoff, 1985). If the distribution of the polygons tends toward a direction parallel
to the transects of the svstematic sampling, a significant bias can be introduced.
An unalipned systematic sample can be used to eliminate this bias. As described
by Berry and Baker {1986), a stratified svstematic unaligned sampling combines the
advantage of randomization and stratification with the useful aspects of systematic
sampling, while avoiding the possibilities of bias due to the presence of pericdicities.

3.2.2 Cluster sampling

Cluster sampling is a techmigque of sampling in which units are not single pixels
but groups of pixels. The idea is that 1t is much easier and cheaper to visit a few
large areas than many small areas. Congalton (1988L) suggest that the rate of
homogeneity, a coefficient of intraclass correlation, determines whether the chosen
clusters are wseful for accuracy assessment. The more heterogeneous the pixels
within one cluster, the higher the intraclass coefficient; which is favorable when
using cluster sampling. The size of the clusters should be smaller than 10 pixels and
should never exceed 25 pixels.

3.2.3 Recommendations for the sampling design

Congalton (1991} suggested a combination of stratified and random sampling. The
stratified sampling can be done in conjunction with training data collection in an
carly phase of the project. After the first classification results, stratified random
sampling completes the data collection necessary for accuracy assessment.  Fen-
stermaker (1991) proposes a multistage sample approach for large area sampling.



eAnother technique is an automatic scattergram-controlled regression
(ASCR) method, developed by Elvidge et al. (1995) for use with large sets of
Landsat images.

* This method uses scattergrams of the near-infrared bands of image date 1
and date 2 to identify stable land and water data clusters and generate an
initial regression line between the two cluster centers.

* A no-change pixel set is selected by placing thresholds about this line.
These pixels are then used in the regression analysis of each band to derive
gains and offsets for the radiometric normalization. Requirements for this
method are that:

1. Images are acquired under similar solar and phenological conditions.
2. Land cover for a large portion of the image in the time covered by the
images to be rectified has not changed.

3. There are both land and water pixels in the scene.



*This method is shown to significantly reduce haze, making
images more comparable spectrally. The researchers also list
advantages of this procedure over other linear relative
normalization methods:

1. Cloud/shadow/snow effects are reduced compared with
simple regression methods.

2. A large percentage of the total number of image pixels is used.
3. Normalization errors are distributed among different land
cover types.

4. The necessity of identifying bright and dark radiometric
control pixels is eliminated.

5. The speed of the normalization procedure is accelerated by
reducing human intervention (though it may not reduce the
computation time).
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