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Abstract

We present Boundary IoU (Intersection-over-Union), a

new segmentation evaluation measure focused on bound-

ary quality. We perform an extensive analysis across dif-

ferent error types and object sizes and show that Boundary

IoU is significantly more sensitive than the standard Mask

IoU measure to boundary errors for large objects and does

not over-penalize errors on smaller objects. The new qual-

ity measure displays several desirable characteristics like

symmetry w.r.t. prediction/ground truth pairs and balanced

responsiveness across scales, which makes it more suitable

for segmentation evaluation than other boundary-focused

measures like Trimap IoU and F-measure. Based on Bound-

ary IoU, we update the standard evaluation protocols for

instance and panoptic segmentation tasks by proposing

the Boundary AP (Average Precision) and Boundary PQ

(Panoptic Quality) metrics, respectively. Our experiments

show that the new evaluation metrics track boundary qual-

ity improvements that are generally overlooked by current

Mask IoU-based evaluation metrics. We hope that the adop-

tion of the new boundary-sensitive evaluation metrics will

lead to rapid progress in segmentation methods that im-

prove boundary quality.1

1. Introduction

The Common Task Framework [23], in which standard-

ized tasks, datasets, and evaluation metrics are used to track

research progress, yields impressive results. For exam-

ple, researchers working on the instance segmentation task,

which requires an algorithm to delineate objects with pixel-

level binary masks, have improved the standard Average

Precision (AP) metric on COCO [24] by an astonishing 86%

(relative) from 2015 [9] to 2019 [20].

However, this progress is not equal across all error

modes, because different evaluation metrics are sensitive (or

insensitive) to different types of errors. If a metric is used

for a prolonged time, as in the Common Task Framework,

∗Work done during an internship at Facebook AI Research.
1Project page: https://bowenc0221.github.io/boundary-iou

Ground Truth (LVIS [13]) Mask R-CNN [14]

BMask R-CNN [6] PointRend [18]

Mask R-CNN BMask R-CNN PointRend

Mask IoU 89% 92% (+3%) 97% (+8%)

Boundary IoU 69% 78% (+9%) 91% (+22%)

Figure 1: Given the bounding box for a horse, the mask predicted

by Mask R-CNN scores a high Mask IoU value (89%) relative to

the ground truth despite having low-fidelity, blobby boundaries.

The recently proposed BMask R-CNN [6] and PointRend [18]

methods predict masks with higher fidelity boundaries, yet these

clear visual improvements only marginally improve Mask IoU

(+3% and +8%, respectively). In contrast, our proposed Bound-

ary IoU measure demonstrates greater sensitivity to boundary er-

rors, and thus provides a clear, quantitative gradient that rewards

improvements to boundary segmentation quality.

then the corresponding sub-field most rapidly resolves the

types of errors to which this metric is sensitive. Research

directions that improve other error types typically advance

more slowly, as such progress is harder to quantify.

This phenomenon is at play in instance segmentation,

where, among the multitude of papers contributing to the

impressive 86% relative improvement in AP (e.g., [36, 4, 1,

16, 21]), only a few address mask boundary quality.

Note that mask boundary quality is an essential aspect

of image segmentation, as various downstream applications

directly benefit from more precise object segmentations [34,

29, 30]. However, the dominant family of Mask R-CNN-

based methods [14] are well-known to predict low-fidelity,

blobby masks (see Figure 1). This observation suggests that

the current evaluation metrics may have limited sensitivity

to mask prediction errors near object boundaries.

To understand why, we start by analyzing Mask

Intersection-over-Union (Mask IoU), the underlying mea-
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sure used in AP to compare predicted and ground truth

masks. Mask IoU divides the intersection area of two masks

by the area of their union. This measure values all pixels

equally and, therefore, is less sensitive to boundary qual-

ity in larger objects: the number of interior pixels grows

quadratically in object size and can far exceed the number

of boundary pixels, which only grows linearly. In this paper

we aim to identify a measure for image segmentation that is

sensitive to boundary quality across all scales.

Towards this goal we start by studying standard segmen-

tation measures like Mask IoU and boundary-focused mea-

sures such as Trimap IoU [19, 5] and F-measure [26, 8, 28].

We study error-sensitivity characteristics of each measure

by generating a variety of error types on top of the high-

quality ground truth masks from the LVIS dataset [13]. Our

analysis confirms that Mask IoU is less sensitive to errors in

larger objects. In addition, the analysis reveals limitations

of existing boundary-focused measures, such as asymme-

tries and instability to small changes in mask quality.

Based on these insights we propose a new Boundary

IoU measure. Boundary IoU is simple and easy to com-

pute. Instead of considering all pixels, it calculates the

intersection-over-union for mask pixels within a certain dis-

tance from the corresponding ground truth or prediction

boundary contours. Our analysis demonstrates that Bound-

ary IoU measures boundary quality of large objects well,

unlike Mask IoU, and it does not over-penalize errors on

small objects. An illustrative examples compares Boundary

IoU to Mask IoU in Figure 1.

Boundary IoU enables new task-level evaluation met-

rics. For the task of instance segmentation [24], we pro-

pose Boundary Average Precision (Boundary AP), and for

panoptic segmentation [17], we propose Boundary Panop-

tic Quality (Boundary PQ).

Boundary AP assesses all relevant aspects of instance

segmentation, simultaneously taking into account catego-

rization, localization, and segmentation quality, unlike prior

boundary-focused metrics for instance segmentation like

AF [22] that ignore false positive rates. We test Bound-

ary AP on three common datasets: COCO [24], LVIS [13],

and Cityscapes [7]. With real predictions from recent in-

stance segmentation methods that directly aim to improve

boundary quality [18, 6], we verify that Boundary AP tracks

improvements better than Mask AP. With synthetic predic-

tions, we show that Boundary AP is significantly more sen-

sitive to large-object boundary quality than Mask AP.

For panoptic segmentation, we apply Boundary PQ to

the COCO [17] and Cityscapes [7] panoptic datasets. We

test the new metric with synthetic predictions and show that

it is more sensitive than the previous metric based on Mask

IoU. Finally, we evaluate the performance of various recent

instance and panoptic segmentation models with the new

evaluation metrics to ease comparison for future research.

These new metrics reveal improvements in boundary

quality that are generally ignored by Mask IoU-based eval-

uation metrics. We hope that the adoption of these new

boundary-sensitive evaluations can enable faster progress

towards segmentation models with better boundary quality.

2. Related Work and Preliminaries

Image segmentation tasks like semantic, instance, or

panoptic segmentation are evaluated by comparing segmen-

tation masks predicted by a system to ground truth masks

provided by annotators. Modern evaluation metrics for

these tasks are based on segmentation quality measures that

evaluate consistency between ground truth object shape G
and prediction shape P represented by binary masks of a

fixed resolution. We define the most common segmenta-

tion quality measures and the new Boundary IoU measure

in Table 1 using the unified notation presented in Table 2.

We split the measures into mask- and boundary-based types

and discuss their differences next.

Mask-based segmentation measures take into account all

pixels of an object mask. The first PASCAL VOC semantic

segmentation track in 2007 [11] used Pixel Accuracy mea-

sure to evaluate predictions. For each class it calculates the

ratio of correctly labeled ground truth pixels (see Table 1).

Pixel accuracy is not symmetric and biased toward predic-

tion masks that are larger than ground truth masks. Subse-

quently, PASCAL VOC [10] switched its evaluation to the

Mask Intersection-over-Union (Mask IoU) measure.

Mask IoU segmentation consistency measure divides the

number of pixels in the intersection of the prediction and

ground truth masks by the number of pixels in their union

(see Table 1). The measure is widely used in the evaluation

metrics for most popular semantic, instance, and panoptic

segmentation tasks [10, 24, 17] and datasets [7, 3, 35, 24].

Unlike Pixel Accuracy, Mask IoU is symmetric, however,

as we will show in this paper, it demonstrates unbalanced

responsiveness to the boundary quality across object sizes.

Boundary-based segmentation measures evaluate seg-

mentation quality by estimating contour alignment between

predicted and ground truth masks. Unlike mask-based mea-

sures, these measures only evaluate the pixels that lie di-

rectly on the masks’ contours or in their close proximity.

Trimap IoU [19, 5] is a boundary-based segmentation

measure that calculates IoU in a narrow band of pixels

within a pixel distance d from the contour of the ground

truth mask (see Table 1). In contrast to Mask IoU, Trimap

IoU reacts similarly to comparable pixel errors across ob-

ject scales because it calculates IoU only for pixels around

the contour. However, unlike Mask IoU, the measure is not

symmetric and favors predictions whose masks are larger

than the corresponding ground truth masks. Moreover, the
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Name Type Definition Symmetric Preference Insensitivity

Pixel accuracy mask-based
|G ∩ P |

|G|
✗

larger

prediction
−

Mask IoU mask-based
|G ∩ P |

|G ∪ P |
✓ −

boundary

errors

Trimap IoU boundary-based
|Gd ∩ (G ∩ P )|

|Gd ∩ (G ∪ P )|
=

|(Gd ∩G) ∩ P |

|(Gd ∩G) ∪ (Gd ∩ P )|
✗

larger

prediction

errors far from

ground truth boundary

F-measure boundary-based
2 · p̃ · r̃

p̃+ r̃
, p̃ =

|P1 ∩Gd|

|P1|
, r̃ =

|G1 ∩ Pd|

|G1|
✓ −

errors on

small objects

Boundary IoU boundary-based
|(Gd ∩G) ∩ (Pd ∩ P )|

|(Gd ∩G) ∪ (Pd ∩ P )|
✓ −

errors far from predicted

and ground truth boundaries

Table 1: Existing segmentation measures and the new Boundary IoU defined with the unified notation from Table 2. For each measure

we detail several properties. Symmetric: whether the swap of ground truth and prediction masks changes measure’s value. Preference:

whether the measure biases better scores to a certain type of prediction. Insensitivity: types of errors the measure is less sensitive to.

Notation Definition

G ground truth binary mask

P prediction binary mask

G1, P1 set of pixels on the contour line of the binary mask

Gd, Pd set of pixels in the boundary region of the binary mask

d pixel width of the boundary region

Table 2: Notation used in this paper. We define a contour as the

1d line comprised of the set of mask pixels that touches the back-

ground. The boundary is a 2D region consisting of pixels within

pixel distance d from the contour pixels. A boundary region can

be constructed by dilating the contour line by d pixels.

measure ignores prediction errors that appear outside the

band around the ground truth contour.

F-measure was initially proposed for edge detection [27],

but it is also used to evaluate segmentation quality [8, 28].

F-measure = 2 · p · r/ (p+ r), where p and r denote pre-

cision and recall. In the original definition, p and r are

calculated by matching prediction and ground truth con-

tour pixels within the pixel distance threshold d via bipartite

matching. However, the matching process is computation-

ally expensive for high resolution masks and large datasets

and, therefore, [8, 28] proposed an approximation proce-

dure to compute the precision and recall by allowing dupli-

cate matches, which we denote by p̃ and r̃. In this case, p̃
computes the ratio of pixels in the prediction contour that lie

within a distance d from the ground truth contours, whereas

r̃ computes a similar ratio for the pixels of the ground truth

contour, see Table 1. In the rest of the paper we use the ap-

proximate formulation of F-measure. The measure is sym-

metric and tolerates small contour misalignments that can

be attributed to ambiguity, however, it ignores significant

errors when the object size is comparable to d. For example,

this occurs with reasonable choices of d and small objects

commonly found in datasets (e.g., COCO [24]).

Trimap and F-measure are often used to evaluate bound-

ary quality for semantic segmentation tasks in an ad-hoc

fashion. For example, Trimap IoU is used as an extra evalu-

ation to show boundary quality improvement [5, 25], but it

is not reported by most segmentation methods. In the next

section we will study both measures in detail and analyze

their behavior across different error types and object sizes.

3. Sensitivity Analysis

In §4 and §5 we will compare several mask consistency

measures by observing how a measure’s value changes in

response to errors of different magnitudes. We will observe

and interpret these curves to draw conclusions about the be-

havior of these measures, a methodology that we refer to as

sensitivity analysis.

To enable a systematic comparison, we simulate a set

of common segmentation errors across different mask sizes

by generating pseudo-predictions from ground truth anno-

tations. This approach allows us explicitly control the type

and severity of the errors used in the analysis. Moreover,

the use of pseudo-predictions avoids any bias toward spe-

cific segmentation models which makes the analysis more

robust and general. A potential limitation of this approach

is that simulated errors may not fully represent errors cre-

ated by real models. We aim to counteract this limitation

by using a diverse set of error types. Figure 2 depicts an

example of each error type we consider:

• Scale error. Dilation/erosion are applied to the ground

truth masks. The error severity is controlled by the kernel

radius of the morphological operations.

• Boundary localization error. Random Gaussian noise

is added to the coordinate of each vertex in polygons that

represent ground truth masks. The error severity is con-

trolled by the standard deviation (std) of the Gaussian noise.

• Object localization error. Ground truth masks are

shifted with random offsets. The error severity is controlled

by the pixel length of the shift.
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(a) Scale (dilation) (b) Scale (erosion) (c) Boundary localization

(d) Object localization (e) Boundary approximation (f) Inner mask

Figure 2: Examples of error types generated from a single

ground truth mask. The red contour represents the ground truth

contour. Scale errors: (a) dilation and (b) erosion of the mask.

Boundary localization error: (c) adding random Gaussian noise

to each vertex in polygons. Object localization error: (d) shifting

masks. Boundary approximation error: (e) simplifying polygons.

Inner mask error: (f) adding holes to masks.

• Boundary approximation error. The simplify

function from Shapely [12] removes vertices from the poly-

gons that represent ground truth masks while keeping the

simplified polygons as close to the original ones as possi-

ble. The error severity is controlled by the error tolerance

parameter of the simplify function.

• Inner mask error. Holes of random shape are added

to ground truth masks. The error severity is controlled by

the number of holes added. While this error type is not com-

mon for modern segmentation approaches, we include it to

assess the effect of interior mask errors.

Implementation details. For the analysis, we randomly

sample instance masks from the LVIS v0.5 [13] validation

set. The dataset is selected due to its high-quality annota-

tions. Using these masks, for each segmentation error type

we create multiple sets of pseudo-predictions by varying

the severity of the error. To analyze a segmentation mea-

sure, we report its mean and standard deviation across a set

of pseudo-predictions that represent a given error type of a

fixed severity. We will also compare segmentation measures

across different object sizes by generating a separate set of

pseudo-predictions using ground truth objects within a spe-

cific mask area range. For all boundary-based measures that

use pixel distance parameter, d, we set it to 2% of the image

diagonal for fair comparison.

4. Analysis of Existing Segmentation Measures

First, we analyze the standard Mask IoU segmentation

consistency measure from both theoretical and empirical

perspectives. Then, we study two existing alternatives –

Trimap IoU and F-measure boundary-based measures.

Figure 3: The two objects from LVIS [13] dataset annotated inde-

pendently twice. While the fridge (left) has more than 100 times

larger area than the wing (right), on the crop of the same resolu-

tion the discrepancy between annotations is visually similar. This

simple example supports the observation that the boundary qual-

ity in the ground truth is independent of the object size. Mask IoU

counts all pixels equally and gives a higher score to fridge, 0.97, vs

wing, 0.81, due to the larger internal region with consistent label-

ing. The bias toward larger objects render Mask IoU inadequate

for boundary quality evaluation across object sizes. In contrast,

the new Boundary IoU yields much closer scores (0.87 vs. 0.81).

4.1. Mask IoU

Theoretical analysis. Mask IoU is scale-invariant w.r.t. ob-

ject area. For a fixed Mask IoU value, a larger object will

have more incorrect pixels and the change in incorrect pixel

count grows in proportional to the change in object area (as

Mask IoU is a ratio of areas). However, when scaling up a

typical object, the number of interior pixels grows quadrati-

cally, whereas the number of contour pixels only grows lin-

early. These different asymptotic growth rates cause Mask

IoU to tolerate a larger number of misclassified pixels per

each unit of contour length for a larger object.

Empirical analysis. This property corresponds to an as-

sumption that boundary localization error in ground truth

annotations (i.e., intrinsic annotation ambiguity) also grows

with the object size. However, a classic study on multi-

region segmentation [26] shows that the pixel distance be-

tween two contours of the same object labeled by different

annotators seldomly exceeds 1% of the image diagonal, ir-

respective of the object size. We confirm this observation by

exploring double annotations that are provided for a subset

of images in LVIS [13]. In Figure 3 we present a random

pair of objects with significant size difference. While one

of the objects is 100 times larger, the boundary discrepancy

within the cropped part, which has the same resolution, is

similar between the two objects. Observed results suggest

that boundary ambiguity is fixed and independent of objects

area. This is likely a consequence of the annotation tool,

which includes the ability to zoom while drawing contours.

Using simulated scale errors (described in §3) we con-

firm Mask IoU’s bias in favor of large objects. The dila-

tion/erosion of the ground truth mask by a fixed number of

pixels significantly decreases Mask IoU for small objects

while Mask IoU grows as object area increases (see Fig-
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Figure 4: Sensitivity analysis across object scales for Mask IoU (a), Trimap IoU (b), and F-measure (c) with scaling error type.

ure 4a). Note that Mask IoU’s insensitivity to boundary er-

rors on large objects cannot be addressed by simply increas-

ing the lowest Mask IoU threshold in evaluation metrics like

AP or PQ. Such a change does not remedy the bias and will

lead to relative over-penalization for smaller objects.

4.2. Boundary­Based Measures

Next, we will analyze the boundary-based measures

Trimap IoU and F-measure. These measures focus on pixels

within a distance d from object contours. The parameter d
is usually fixed on the dataset [5] or image level [28] which

results in these measures treating boundary localization er-

rors independently of the size of the object. By matching the

natural characteristic of the ground truth segmentation data,

these boundary-based measures are better suited to evaluate

improvements in boundary quality across object sizes.

Trimap IoU computes IoU for a region around the ground

truth boundary only (i.e., the region is independent of the

prediction), and therefore is not symmetric: swapping the

prediction and ground truth masks will give a different

score. In Figure 4b we show that this asymmetry favors pre-

dictions that are larger than ground truth masks. For larger

(dilated) pseudo-predictions Trimap IoU does not drop be-

low some positive value irrespective of the error severity,

whereas for smaller (eroded) pseudo-predictions it drops to

0. Moreover, the measure ignores any errors outside of the

ground truth boundary region, penalizing inner mask errors

less than Mask IoU (see the supplement for details).

F-Measure matches the pixels of the predicted and ground

truth contours if they are within the pixels distance thresh-

old d. Hence, it ignores small contour misalignments that

can be attributed to ambiguity. While robustness to ambi-

guity is good in principle, in Figure 4c we observe that F-

measure can be nearly discontinuous, rapidly stepping from

1 to 0 when the error severity changes by a small amount.

Sharp response curves can lead to task metrics with high

variance. In comparison, Mask IoU is more continuous.

Further, d may be large relative to small objects, causing

F-measure to award significant errors a perfect score.

Discussion. Given the limitations presented above, we con-

clude that neither Trimap IoU nor F-measure can replace

Area

Area

Boundary IoU = 

Ground Truth Prediction

|(𝐺! ∩ 𝐺) ∩ (𝑃! ∩ 𝑃)|

|(𝐺! ∩ 𝐺) ∪ (𝑃! ∩ 𝑃)|

Figure 5: Boundary IoU computation illustration. (top) Ground

truth and prediction masks. For both, we highlight mask pixels that

are within distance d from the contours. (bottom) Boundary IoU

segmentation consistency measures computes the intersection-

over-union between the highlighted regions. In this example,

Boundary IoU is 0.73, whereas Mask IoU is 0.91.

Mask IoU as the main segmentation consistency measure

for a broad range of evaluation metrics. At the same time,

Mask IoU is biased towards large objects in a way that dis-

courages improvements to boundary segmentations. Next,

we propose Boundary IoU as a new measure to evaluate

segmentation boundary-quality that does not have any of

the previously mentioning limitations.

5. Boundary IoU

In this section we introduce a new segmentation measure

and compare it with existing consistency measures using

simulated errors. The new measure should have a weaker

bias toward large objects than Mask IoU. Furthermore, we

aim for a measure that neither over-penalizes nor ignores

errors in small objects similarly to Mask IoU.

Guided by these principals, we propose the Boundary

IoU segmentation consistency measure. The new mea-

sure is simultaneously simple and satisfies the principals

charted above. Given two masks G and P , Boundary IoU

first computes the set of the original masks’ pixels that are

within distance d from each contour, and then computes the

intersection-over-union of these two sets (see Figure 5). Us-

ing the notation from Table 2:

Boundary IoU(G,P ) =
|(Gd ∩G) ∩ (Pd ∩ P )|

|(Gd ∩G) ∪ (Pd ∩ P )|
, (1)
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Figure 6: Boundary IoU sensitivity curves across error severities. We use pseudo-predictions for objects with area > 96
2. For each error

type, Boundary IoU makes better use of the 0-1 value range demonstrating an improved ability to differentiate between error severity.
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Figure 7: Boundary IoU sensitivity curves across object sizes. We use pseudo-predictions for objects of different sizes with fixed error

severities. Objects are binned by their area with 16
2 increment. For larger objects, Boundary IoU remains flat given the fixed error severity,

while Mask IoU demonstrates a clear preferential bias for large objects. For small objects, both metrics have similar curves indicating that

neither over-penalizes small objects w.r.t. to the other.

where boundary regions Gd and Pd are the sets of all pix-

els within d pixels distance from the ground truth and pre-

diction contours respectively. Note, that the new measure

evaluates only mask pixels that are within pixel distance d
from the contours. A simpler version with IoU calculated

directly for boundary regions Gd and Pd loses information

about sharp contour corners that are smoothed by consider-

ing all pixels within distance d from the contours.

The distance to the contour parameter d in Boundary IoU

controls the sensitivity of the measure. With d large enough

to include all pixels inside the prediction and ground truth

masks, Boundary IoU becomes equivalent to Mask IoU.

With a smaller parameter d Boundary IoU ignores interior

mask pixels, which makes it more sensitive to the bound-

ary quality than Mask IoU for larger objects. For smaller

objects, Boundary IoU is very close or even equivalent to

Mask IoU depending on the parameter d which prevents

it from over-penalizing errors in smaller objects where the

number of inner pixels is comparable with the number of

pixels close to the contours.

In Figure 6 and Figure 7 we present the results of our

analysis for Boundary IoU. The analysis shows that Bound-

ary IoU is less biased than Mask IoU towards large object

sizes across all considered error types (Figure 6). Varying

object sizes while keeping error severities constant (Fig-

ure 7), Boundary IoU behaves identically to Mask IoU

for smaller objects avoiding over-penalization for any error

type. For larger objects Boundary IoU reduces the bias that

Mask IoU exhibits and its value grows more slowly with the

object area given fixed error severities.

Comparison with Trimap IoU. We note that the new mea-

sure appears quite similar to Trimap IoU (see Table 1).

However, unlike Trimap IoU, Boundary IoU considers pix-

els close to the contours of both prediction and ground truth

together. This simple change remedies two main limita-

tions of Trimap IoU. The new measure is symmetric and

penalizes the errors that appear away from the ground truth

boundary (see Figure 6 (a), (b), and (f)).

Comparison with F-measure. F-measure uses hard

matching between the contours of the predicted and ground

truth masks. If the distance between contour pixels is within

d pixels, then both precision and recall are perfect, but once

the distance goes beyond d the matching does not happen

at all. In contrast, Boundary IoU evaluates consistency in a

soft manner. Intersection over union is 1.0 if two contours

are perfectly aligned and as the contours diverge Boundary

IoU gradually decreases. In the supplement, we also com-

pare Boundary IoU with a soft generalization of F-measure

that averages multiple scores across different parameters d.

Our analysis shows that it under-penalizes errors in small

objects in comparison with Mask IoU and Boundary IoU.

The pixel distance parameter d. If d is large enough

Boundary IoU is equivalent to Mask IoU. On the other hand,

if d is too small, Boundary IoU severely penalizes even the

smallest misalignment ignoring possible ambiguity of the

contours. To select d that does not over-penalize possible

ambiguity of the contours, we use Boundary IoU to measure

the consistency of two expert annotators who independently

delineated the same objects. The creators of LVIS [13] have

collected such expert annotations for images in COCO [24]

and ADE20k [35] datasets. Both datasets have images of

similar resolution and we find that median Boundary IoU

between the annotations of the two experts exceeds 0.9 for

both datasets when d equals 2% of an image diagonal (15

pixels distance on average). For Cityscapes [7] that has
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higher resolution images and excellent annotation quality

we suggest to use the same distance in pixels which results

in d set to 0.5% of an image diagonal for the dataset.

For other datasets, we suggest two considerations for se-

lecting the pixel distance d: (1) the annotation consistency

sets the lower bound on d, and (2) d should be selected

based on the performance of current methods and decreased

as performance improves.

Limitations of Boundary IoU. The new measure does not

evaluate mask pixels that are further than d pixels away

from the corresponding ground truth or prediction bound-

ary. Therefore, it can award a perfect score to non-identical

masks. For example, Boundary IoU is perfect for a disc-

shaped mask and a ring-shaped mask that has the same cen-

ter and outer radius as the disk, plus the inner radius that

is exactly d pixels smaller than the outer one (we show this

example in the supplement). For these two masks, all non-

matching pixels of the disc-shaped mask are further than d
pixels away from its boundary. To penalize such cases, we

suggest a simple combination of Mask IoU and Boundary

IoU by taking their minimum. In our experiments with both

real and simulated predictions, we found that Boundary IoU

is smaller or equal to Mask IoU in the absolute majority of

cases (99.9%) and the inequality is violated when a pre-

diction with accurate boundaries misses interior part of an

object (similar to the toy example above).

6. Applications

The most common evaluation metrics for instance and

panoptic segmentation tasks are Average Precision (AP or

Mask AP) [24] and Panoptic Quality (PQ or Mask PQ) [17]

respectively. Both metrics use Mask IoU and inherit its bias

toward large objects and, subsequently, the insensitivity to

the boundary quality observed before in [18, 31].

We update the evaluation metrics for these tasks by re-

placing Mask IoU with min(Mask IoU, Boundary IoU) as

suggested in the previous section. We name the new evalua-

tion metrics Boundary AP and Boundary PQ. The change is

simple to implement and we demonstrate that the new met-

rics are more sensitive to the boundary quality while able to

track other types of improvements in predictions as well.

We hope that adoption of the new evaluation metrics will

allow rapid progress of boundary quality in segmentation

methods. We present our results for instance segmentation

in the main text and refer to the supplement for our analysis

of Boundary PQ.

Boundary AP for instance segmentation. The goal of the

instance segmentation task is to delineate each object with

a pixel-level mask. An evaluation metric for the task is si-

multaneously assessing multiple aspects such as categoriza-

tion, localization, and segmentation quality. To compare

different evaluation metrics, we conduct our experiments

Evaluation metric AP APS APM APL

Mask AP 96.5 98.9 95.7 95.0

Boundary AP 85.9 98.9 93.0 73.0

Table 3: Boundary AP and Mask AP on COCO val set for syn-

thetic 28×28 predictions generated from the ground truth. Unlike

Mask APL, Boundary APL successfully captures the lack of fi-

delity in the synthetic prediction for large objects (area > 96
2).

with both synthetic predictions and real instance segmen-

tation models. Synthetic predictions allow us to assess the

segmentation quality aspect in isolation, whereas real pre-

dictions provide insights into the ability of Boundary AP to

track all aspects of the instance segmentation task.

We compare Mask AP and Boundary AP on the COCO

instance segmentation dataset [24] in the main text. In ad-

dition, our findings are supported by similar experiments on

Cityscapes [7] and LVIS [13] presented in the supplement.

Detailed description of all datasets can be found in the sup-

plement, along with Boundary AP evaluation for various

recent and classic models on all three datasets. These re-

sults can be used as a reference to simplify the comparison

for future methods.

6.1. Evaluation on Synthetic Predictions

Using synthetic predictions we evaluate the segmenta-

tion quality aspect of instance segmentation in isolation

without a bias that any particular model can have. We sim-

ulate predictions by capping the effective resolution of each

mask. First, we downscale cropped ground truth masks to a

28 × 28 resolution2 mask with continuous values, we then

upscale it back using bilinear interpolation, and finally bi-

narize it. Such synthetic masks are close to the ground truth

masks for smaller objects, however the discrepancy grows

with object size. In Table 3 we report overall AP and APS ,

APM , and APL for object size splits defined in COCO [24].

Mask AP follows the behavior of Mask IoU, showing little

sensitivity to the error growth between APS and APL. In

contrast, Boundary AP successfully captures the difference

with significantly lower score for larger objects. In the sup-

plement, we provide an example of the synthetic predictions

and more results using different effective resolutions.

6.2. Evaluation on Real Predictions

We use outputs of existing segmentation models to fur-

ther study Boundary AP. Unless specified, to isolate the seg-

mentation quality from categorization and localization er-

rors for purposes of analysis, we supply ground truth boxes

to these methods and assign a random confidence score to

each box. We use Detectron2 [32] with a ResNet-50 [15]

backbone unless otherwise specified.

2This is a popular prediction resolution used in practice [14].
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Method Evaluation metric AP APS APM APL

Mask R-CNN Mask AP 52.5 44.9 55.0 66.0

Mask R-CNN Boundary AP 36.1 44.8 46.5 25.9

(a) AP of Mask R-CNN with ground truth boxes. Mask R-CNN

makes blobby predictions with large defects around boundaries

for large objects (see Figure 1). Boundary AP successfully cap-

tures these errors with much lower APL than Mask AP.

Ground truth boxes Predicted boxes

Method Backbone APmask APboundary APmask APboundary

Mask R-CNN R50 53.6 37.7 37.2 23.1

Mask R-CNN R101 53.8 (+0.2) 38.2 (+0.5) 38.6 (+1.4) 24.5 (+1.4)

Mask R-CNN X101 53.4 (-0.2) 38.1 (+0.4) 39.5 (+2.3) 25.4 (+2.3)

(b) Larger backbones do not improve segmentation quality signifi-

cantly (i.e., Boundary AP stays roughly the same when ground truth

boxes are used). With real box predictions, Boundary AP tracks the

categorization and localization improvements similarly to Mask AP.

Method APmask APboundary APboundary

S
APboundary

M
APboundary

L

Mask R-CNN 52.5 36.1 44.8 46.5 25.9

PointRend-28 57.0 (+4.5) 41.6 (+5.5) 48.2 (+3.4) 52.3 (+5.8) 33.3 (+7.4)

PointRend-224 57.2 (+4.7) 42.1 (+6.0) 48.3 (+3.5) 52.5 (+6.0) 34.4 (+8.5)

(c) PointRend (with either 28 × 28 or 224 × 224 output resolu-

tion) is designed to give higher-quality output masks than Mask

R-CNN (which has 28× 28 output resolution). Boundary AP cap-

tures these improvements well, especially for the higher-resolution

output variant of PointRend and for APL.

Method APmask APboundary APboundary

S
APboundary

M
APboundary

L

Mask R-CNN 52.5 36.1 44.8 46.5 25.9

PointRend 57.2 (+4.7) 42.1 (+6.0) 48.3 (+3.5) 52.5 (+6.0) 34.4 (+8.5)

BMask R-CNN 57.4 (+4.9) 42.3 (+6.2) 48.7 (+4.1) 52.7 (+6.2) 33.9 (+8.0)

(d) Boundary-preserving Mask R-CNN (BMask R-CNN) which

uses 28 × 28 output vs. PointRend which uses 224 × 224 output.

The Boundary AP metric reveals that BMask R-CNN outperforms

PointRend for small objects but trails it for large objects where the

high output resolution of PointRend improves boundary quality.

Table 4: Comparison of Mask AP and Boundary AP on COCO val set for different instance segmentation models fed with ground truth

boxes unless specified otherwise. Using ground truth boxes disentangles segmentation errors from localization and classification errors.

Mask AP vs. Boundary AP. Table 4a shows both Mask

AP and Boundary AP for the standard Mask R-CNN

model [14]. Mask R-CNN is well-known to predict blobby

masks with significant visual defects for larger objects (see

Figure 1). Nevertheless, Mask APL is larger than Mask

APS . In contrast, we observe that Boundary APL is smaller

than Boundary APS for Mask R-CNN suggesting that the

new measure is more sensitive to the boundary quality of

the large objects. Note that in this experiment the use of

ground truth boxes removes any categorization and local-

ization errors that are usually larger for small objects.

Segmentation vs. categorization and localization. A gen-

eral evaluation metric for instance segmentation should

track the improvements in all aspects of the task including

segmentation, categorization, and localizations. In Table 4b

we first evaluate Mask R-CNN with several backbones

(ResNet-50, ResNet-101, and ResNeXt-101-32×8d [33]),

again supplying ground truth boxes. Note that both Mask

AP and Boundary AP do not change significantly with dif-

ferent backbones, suggesting that more powerful backbones

do not directly influence the segmentation quality. Next, we

evaluate Boundary AP requiring each model to predict its

own boxes as is standard. We observe that Boundary AP

is able to track improvements from better localization and

categorization similarly to Mask AP.

Mask quality improvements. We explore Boundary AP’s

ability to capture the improvements in segmentation qual-

ity by the methods designed for this purpose in Tables 4c

and 4d. To compare the segmentation quality aspect across

models we again supply ground truth boxes to each model.

PointRend [18] was developed to improve pixel-level

prediction quality of models like Mask R-CNN and can

produce predictions of varying resolution. PointRend sig-

nificantly improves mask quality, while this can be mea-

sured via mask AP, it is more pronounced in Boundary

AP, especially for large objects and for a higher resolution

PointRend variant. See Table 4c for details.

Boundary-preserving Mask R-CNN [6] (BMask R-

CNN) improves boundary quality by adding a direct bound-

ary supervision loss and increasing the resolution of fea-

ture maps used in its mask head. In Table 4d Boundary AP

shows that BMask R-CNN with its 28 × 28 output resolu-

tion outperforms PointRend for small objects, whereas for

larger objects the 224× 224 resolution output of PointRend

is preferable, which matches a subjective visual quality as-

sessment (see an example in Figure 1). We hope that the

improved sensitivity of the new Boundary AP metric will

lead to a rapid progress in the methods that improve bound-

ary quality for instance segmentation.

7. Conclusion

Unlike the standard Mask IoU, Boundary IoU segmen-

tation quality measure provides a clear, quantitative gradi-

ent that rewards improvements to boundary segmentation

quality. We hope that the new measure will challenge our

community to develop new methods with high-fidelity mask

predictions. In addition, Boundary IoU allows a more gran-

ular analysis of segmentation-related errors for the complex

multifaceted tasks like instance and panoptic segmentation.

Incorporation of the measure in the performance analysis

tools like TIDE [2] can provide better insights into specific

error types of instance segmentation models.
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