
Source: adapted from https://www.softwaretestinghelp.com/test-case-template-examples/

 Project Name: Homework 4

Test Case Template

Test Case ID: Test Designed by: Mike Weintraub

Test Priority (Low/Medium/High): Test Designed date: October 21, 2019

Module Name: Example

Test Title: homework 4 example

Description: test the method SQRT, which takes the square root of an int. Per the interface: public double sqrt(int n).

Pre-conditions:

Dependencies:

Case Expected Result Given input Notes/Environment

1 0 0 Boundary on input; boundary on output

2 1 1 Next to boundary on the positive case side

3
IllegalArgument-

Exception
-1 Next to boundary on the negative case side

4 256 216 (65536) Partition boundary I defined on input space. [0..65536]

5 256.002 216+1 (65537)
Left edge of partition boundary I defined on input space.

[65537…2,147,483,647]

6 46340.95
231-1

(2,147,483,647)

Right edge of range for second partition.

7 2 4 Perfect square

8 6.125 37.515625 Rational root

9 1.414214 2 Irrational root. Accuracy measured to 10-6

10 See table See table 1000 numbers from each partition.

Post-conditions:

Source: adapted from https://www.softwaretestinghelp.com/test-case-template-examples/

Explanation:

The range of valid inputs for this function, public double sqrt(int n), is [0…MAX_INT]. It’s a range, so we need to test on both

sides of the range and inside the range. If you considered only one partition, you’d want a number smaller than zero, one larger than

MAX_INT, and one somewhere in-between as a theoretical minimum. However, there aren’t any int’s bigger than MAX_INT, so that case

is moot.

In practice, you test on the boundary and one past the boundary (or two or three or…). So, the test suite needs to include inputs of 0 and

-1. It’s good practice to sample around the boundary, especially on the positive case side. So the test suite would include 1, and likely a

few more, like 2, 3, and 4. The test suite should include the other boundary, MAX_INT, even though it’s functional use is simply the

largest possible output.

In the example, it partitioned the input space into two parts. This decision is an example of experience driving a partition design. It

separates numbers where the higher ordered bytes are all zero versus when they are not. The test suite includes the boundary values on

the input based on this partitioning.

After that, the next useful tests to add use domain knowledge to define (divine?) test cases. Here, the example recognizes there are three

special cases: perfect squares (inputs whose square roots are ints), roots that are rational, and roots that are irrational. The test suite

should identify a sample of each of these. The example uses one example per type.

So the minimum total number of tests is nine. This isn’t over-whelming for confidence, but it does provide direction for what a larger

sampling should entail. After this, every input within a partition is equi-probable. At this point, it’s basically guessing inputs and your

only limits are the time and resources available to run tests. I’d add in a few hundred samples within each partition, likely creating a few

“sub-partitions” as a heuristic – for example: small, medium, and large numbers. You don’t need to list them in this assignment. But

you would in real-life.

