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Abstract

In this paper, we examine a supply chain in which a single supplier sells to a downstream retailer.

We consider a multi-period model, with the following sequence of events. In period t the supplier

offers a contract to the retailer, and the retailer makes her purchasing decision in anticipation of

the demand. The demand then unravels and the retailer carries over any excess inventory to the

next period (unmet demand is lost). In period t+ 1 the supplier designs a new contract based on

his belief of the retailer’s inventory, and the game is played dynamically. We assume that short-

term contracts are used — i.e., the contracting is dynamic and is done at the beginning of each

period. We also assume that the inventory position of the retailer before ordering is not observed

by the supplier. This setting describes scenarios in which the downstream retailer does not share

inventory/sales information with the supplier. For instance, it captures the phenomenon of retailers

distorting past sales information to secure better contracting terms from their suppliers. In this

setting, under certain assumptions, we characterize and evaluate the supplier’s optimal contract.

To do so, we cast our problem as an adverse-selection model with dynamic contracting. We show

that, given relatively high production and holding costs, the optimal contract takes the form of

a batch-order contract, which minimizes the retailer’s information advantage. We then analyze

the performance of the optimal contract with respect to some useful benchmarks and quantify the

value of optimal contracting and the value of inventory information to the entire system. Dynamic

adverse-selection models which are Markovian (that is, the action in a period affects the hidden

state in the subsequent period) are recognized as being theoretically difficult and are thus relatively

less understood. We believe that in our analysis we provide a framework for analyzing such models

under short-term contracting and take an important first step towards understanding such models.
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1 Introduction

Consider a two-echelon supply chain in which a retailer (“she”) buys inventory from an upstream

supplier (“he”) in anticipation of random demand. The supplier decides on the type of contract

and its terms, naturally, subject to the retailer’s participation. Numerous studies have analyzed

various important phenomena in this setting using the above model in which all information is public

knowledge and there is exactly one period. Broadly speaking, this stream of research analyzes what

are referred to as “selling to the newsvendor” models. Important issues that have been analyzed

include supply chain coordination (Pasternack 1985, Cachon 2003, etc.), quantifying the loss to the

system under commonly used contracts (i.e., the price of anarchy — Lariviere and Porteus 2001,

Perakis and Roels 2006) and various other contracting issues.

In this paper, we make two assumptions that enrich this relatively well-understood model.

First, we look at a standard multi-period inventory model and assume that dynamic short-term

contracts are used by the players. Thus, in any period t, the supplier offers a purchasing contract to

the downstream retailer, who may choose to buy in anticipation of demand. Once the purchasing

decision is made by the retailer, inventory from the supplier is immediately transferred to the

retailer and payments are received as per the contracting terms. Then, the demand in period

t unravels. The retailer carries over excess inventory, if any, to the subsequent period t + 1 (we

assume unsatisfied demand is lost). In period t+1, the supplier offers a new contract to the retailer.

Second, we assume that the sales at the retailer in any period are unobservable by the supplier.

Since the supplier knows the distribution of the demand and the quantity purchased in period t, he

can merely infer the distribution of the retailer’s beginning inventory in period t+1. Thus, in any

period, the supplier has imperfect information about the retailer’s beginning inventory and factors

this in when designing the contract. As a result, we analyze a dynamic adverse selection model in

which the dynamics are Markovian, i.e., action taken by the retailer in period t affects the hidden

information in period t+ 1.

We believe that these extensions to the single-period model are important and realistic. Our

motivation for doing so is twofold. First, a multi-period model introduces dynamics in the analysis of

contracting that is typically absent in a single-period analysis. Even in the simplest settings, several

interesting phenomena have been documented. For instance, Anand et. al. (2006) consider a two-

echelon supply chain in a multi-period setting similar to ours, but with two important distinctions.

In their model, demand is price sensitive and deterministic and all information is public knowledge.

They show, for instance, that the retailer carries inventory from one period to another and the entire
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supply chain benefits by him doing so. This result is dramatic as one may expect that, in the absence

of nonlinear costs and uncertainty of any kind, inventory would be absent. Inventory in their model

arises purely due to strategic considerations — by carrying inventory, the retailer is able to force

the supplier to give him better wholesale prices. We expect that in our setting, due to information

asymmetry and dynamic contracting, the resulting strategic interactions will yield further important

insights. Second, our specific assumption on information asymmetry — i.e., that the supplier cannot

observe the sales at the retailer in any period t and thus does not know the retailer’s inventory

position in period t+1 — is very realistic. This setting encompasses a variety of situations in which

retailers do not share their sales information with their suppliers and thus leave the suppliers in

the dark about the exact purchasing requirements of the retailers. Indeed, numerous articles in

the business press tout the potential value of retailers sharing their sales and inventory information

with upstream players and lament the fact that, despite significant advancements in information

technology, retailers are reluctant to do so. One comprehensive study (Statistics Canada 2003) of

the Canadian logistics industry indicates that only about ten percent of Canadian retailers share

inventory data over established web platforms. Reasons cited to explain this phenomena include

a general lack of trust, confidentiality issues, and various strategic considerations by the retailers.

We provide several references to this phenomena in the next section.

In this paper, we analyze the aforementioned model, in which contracting is dynamic and short-

term and the action by the retailer in period t affects the state (unobserved by the supplier) in

period t+ 1. We thus study a dynamic contracting model using the principle-agent framework. A

summary of our main results are as follows. First, in the single-period setting, the supplier’s optimal

contract resembles a quantity discount scheme. Further, the supplier prefers to deal with retailers

whose initial inventory levels are small. Thus, one can say that the willingness of the supplier to

trade with a retailer increases with the magnitude of the retailer’s past sales. The magnitude of

this willingness depends on the shape of the demand distribution. This phenomena is related to

the “distortion from the bottom” effect observed in static adverse selection models (the “bottom”

in our model corresponds to the highest inventory level). To better illustrate this phenomena, we

explicitly calculate the optimal single-period contract with specific demand distributions.

Next, we extend the analysis to a multi-period setting in which we analyze the structure of the

optimal contract. We first analyze a two-period model under exponential demand, which generates

important insights on the structure of the optimal contracts. We then turn our attention to the

infinite-horizon problem. Among the many reasons to analyze the infinite horizon, an important one
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is that insights gleaned from finite-horizon models may be tarnished by end-of-horizon effects. We

analyze the infinite-horizon case assuming that the demand distribution is exponential. We chose

the exponential form of demand for several reasons. An important one is that the exact analytical

form of the optimal infinite-horizon contract is clean and its derivation is elegant in this case.

Further, the extant operations management literature has used the exponential form of demand

to get some traction on difficult problems when the analysis and insights are tricky to obtain. In

particular, in dynamic models in which demand (Iglehart 1964) or sales (Lariviere and Porteus

1999) information is unknown and updated periodically, the exponential family of distributions is

used. Some other examples include Cachon and Zhang (2006), Nagarajan and Rajagopalan (2007),

Lau and Lau (1998) and Greenberg (1964). We show that when demand is exponential and the

cost parameters are in a certain critical region of interest (we refer to this as the “high-cost region,”

to be made precise later), the optimal infinite-horizon contract is a “batch-order contract” (BOC).

That is, the supplier gives a take-it-or-leave-it offer to the retailer wherein a fixed quantity b can be

purchased for a payment of s. The only occasion in which a retailer accepts this contract is when

her inventory position is zero, which happens infinitely often. The specific parameters b and s can

be directly computed.

Given the mathematical difficulty of analyzing our problem, we take an approach similar in spirit

to papers that study limiting regimes of difficult stochastic control problems. Limiting regimes yield

insights on the structure of optimal policies. Policies constructed using this structural insight are

empirically shown to perform well in non-limiting regimes. Similarly, for our problem, in scenarios

in which either the costs do not fall in the above region or demand is not exponential, we empirically

demonstrate that optimizing over the class of batch-order contracts (BOCs) does extremely well for

the supplier. An interesting and useful property of the BOC is that the finite-horizon profit under

the optimal BOC converges to the infinite-horizon profit function. This offers some measure of the

stability of using the BOC. Observe that in an adverse selection setting such as ours, the stability

of a contract form is important but not immediate from known results in dynamic programming.

This is because of the complexity caused by the supplier’s belief distribution which needs to be

updated in every period. We note that even in static settings with information asymmetry in which

players make inventory or capacity decisions, the structure of the optimal contract is often that of

a nonlinear menu of contracts whose ease of implementation may raise some questions. Cachon and

Zhang (2006), for instance, analyze simple contracts that perform extremely well when the optimal

contract structure is complicated. An exception to this paradigm is a paper by Taylor and Xiao
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(2006), in which the optimal contracts have elegant and insightful structures. Thus, the optimal

characterization of a BOC in a dynamic setting such as ours may have some additional appeal.

We also make the following important observation. Our analysis of the infinite-horizon model

in certain cost domains produces results that may be structurally similar to those in the single

period setting. However, it is misleading to think that this is because of some inherent myopia

in our analysis. Dynamic adverse selection models such as ours are not myopic. Myopic policies

(or myopic equilibria in games) turn out to be a sufficient description of dynamic problems when

a certain notion of “reachability” (also known as feasibility of optimal actions) can happen with

probability one. This notion is irrelevant and absent from our analysis because the belief distribution

is dynamically updated. We mention this here lest readers who see a similarity in structure (which

happens only in certain cost domains) are tempted to think that a myopic solution sufficiently

describes the dynamic game.

The rest of the paper is organized as follows. We first provide a brief literature review in §2,

and in §3 we analyze the single-period model. In §4 we formalize the multi-period model and pay

special attention to the two-period model with exponential demand. In §5, we derive the optimal

contract for the infinite-horizon model with exponential demand and high costs, and numerically

test it against other commonly used contracts when the demand distribution and cost parameters

are more general. We conclude with a summary and discussion in §6. Finally, due to paucity of

space, all proofs of relevant results, along with several useful pieces of analysis, are relegated to a

fairly large online technical supplement. We have organized the supplement as follows. Appendix

A contains all the proofs for the single-period model described in §3, along with optimal contracts

for the exponential and uniform demand distributions; Appendix B contains all the proofs related

to the multi-period models examined in §4 and §5; and Appendix C includes an in-depth analysis

of a special multi-period model with only two periods and zero initial inventory.

2 Literature Review

There are a few streams of literature that are relevant to this paper. The first stream involves

papers that provide evidence to the fact that retailers do not share inventory information with

upstream suppliers and the various reasons for such actions. Strategic reasons against revealing

truthful information manifest themselves in many ways. The well-known bullwhip effect (Lee

et al. 1997) arises in part due to shortage gaming by retailers. Retailers may also choose to

underreport past sales to elicit steep discounts from suppliers. Moreover, it is quite possible that
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retailers contemplate the possibility that if all sales and inventory information is shared, suppliers

may use the knowledge of the retailers’ purchasing requirements to manipulate wholesale prices or

prioritize replenishment schedules based, for instance, on the relative importance of retailers. Lee

and Whang (2000) describe several hurdles against information sharing. Other papers that discuss

various aspects of the pitfalls of information sharing and reluctance of retailers to share information

include Fawcett et al. (2006), Stank et al. (2002), Simatupang and Srdiharan (2006), Hart and

Saunders (1993), Feldberg and van der Hejden (2003), and many others. An interesting stream

of research pioneered by Desphande et al. (2006) recognizes the above fact (i.e., the reluctance of

retailers to share purchasing requirements) and examines mechanisms that use the idea of secure

protocols. These mechanisms allow for a free exchange of private information without actually

disclosing it. Thus, these mechanisms may offer a way by which certain trust issues that besiege

information sharing in supply chains may be resolved.

The second stream involves dynamic principal-agent games. This topic is of great interest to

economists and its potential application to operations management is vast. However, the theory

is still immature and thus the extant literature has seen few papers that tackle applications in

operations management. Perhaps the first and only applications thus far are papers by Plambeck

and Zenios (2000, 2003), in which dynamic moral-hazard problems are analyzed. Moral-hazard

problems arise typically when the agent is risk averse (or with limited liability), unlike adverse-

selection problems that often deals with risk-neutral agent. Dynamic adverse-selection problems

are fraught with a host of well-known technical and expositional difficulties. Studies primarily

focus on one of the following two paradigms — the hidden state is either constant (here the agent

observes a realization exactly once, in period 1, unknown to the principal, and thereafter the

state is unchanged) or the state is sampled from time-independent distributions (Salanie 1997,

Bolton and Dewatripont 2005). These restrictive intertemporal information structures facilitate

the analysis of the models. For instance, the optimal long-term contract either simply replicates

the static contract (in the constant-information case) or gives a padded structure with an optimal

static contract followed by static first-best contracts (in the setting with independently distributed

random variables). These models do not account for a crucial and important phenomenon when

the action taken by the agent in a status-quo period affects the state distribution in the subsequent

period(s). Thus, intuition gained from these models may hold little value in more dynamic settings

such as the one that we are interested in.

The model examined in this paper can be viewed as a special case of the dynamic adverse-
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selection model proposed by Zhang and Zenios (2007). While they study long-term contracts, we

study short-term ones, which is a natural setting in many supply-chain contexts. The methodologies

and results under the two contracting modes are drastically different. The main result of the

short-term contracting literature is the “Ratchet effect” — because the principal can exploit the

information revealed in an early period, the agent will be reluctant to reveal the true information

early on, leading to a lot of pooling in the early period(s). To the best of our knowledge, this body

of literature has mainly dealt with two-period models and the majority of them assume only two

agent types. For instance, Freixas, Guesnerie, and Tirole (1985) study a problem between a central

planner and a firm, where the firm has private information about its production efficiency (which

can take two possible values) and the central planner offers a short-term contract in each of two

periods to maximize social welfare. Laffont and Tirole (1988, 1990, 1993) also study a two-period

short-term contracting problem between a regulator and a firm with private production costs. They

show that the optimal contract is very complicated and involves a lot of pooling in the first period.

The operations literature has seen several papers that deal with inventory and capacity decisions

in the presence of adverse selection. Illustrative examples are Corbett and de Groote (2000) and

Corbett et al. (2004), in which suppliers are not privy to the cost structure of the buyer and optimal

contracts for the supplier turn out to be quantity discount contracts, and Cachon and Zhang (2006),

which study a queueing model with information asymmetry on costs. The above papers are static

models; there are a few papers that look at supply chain contracts in multi-period settings. The

paper by Anand et al. mentioned earlier is an example in which the dynamics are the closest to

our work, with the crucial difference that their paper assumes complete public information. There

is a stream of research that analyzes relational contracts (see, for instance, Taylor and Plambeck

2007a, 2007b) in which the emphasis is on incomplete contracts and repeated interactions. Thus,

to the best of our belief, the operations literature has not seen a truly dynamic adverse selection

model such as ours.

3 Single-Period Model

We start by looking at a single-period model. The upstream supplier sells a product to a retailer

who faces random consumer demand. The supplier decides the contract and offers the terms of

trade to the retailer, and the retailer decides the order quantity. The distribution of the demand is

known to both parties, with cumulative distribution function (c.d.f.) F (·) and F (·) = 1−F (·). The
retailer privately owns an initial inventory, x ≥ 0, which cannot be observed by the supplier, but
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the supplier knows its distribution, described by a c.d.f. G(·). All other information on demand

forecasts, costs, revenues, etc. are public information. The retail price, r, is fixed, and the supplier’s

unit production cost is c. Thus, this is the well-known “selling to the newsvendor” model, with the

extra assumption that the retailer’s initial inventory is unknown to the supplier. Throughout this

paper, we consider models with lost sales and zero lead times. This has important implications for

the distribution of the initial inventory — in the presence of lost sales, the retailer’s initial inventory

distribution has a point mass at zero.

3.1 General Solution

We assume no salvage value at the end of the horizon. Given the post-order inventory level y1, the

retailer’s single-period revenue function obtained through sales is given by v1(y1) = rE[min{y1, D1}] =
∫ y1
0 rF (ξ)dξ. Clearly, v1(y1) is increasing and concave: v′1(y1) = rF (y1) ≥ 0, and v′′1(y1) =

−rf(y1) ≤ 0. The property v′′1(y1) ≤ 0 implies ∂2v1(x1+q1)
∂x1∂q1

≤ 0, which is the so-called single-

crossing property in the literature. Suppose the initial inventory distribution G(x1) is defined over

a bounded interval [0, y0] with 0 ≤ y0 ≤ +∞. We assume the probability density function (p.d.f.)

g(x1) > 0 over (0, y0] and G(0) ≥ 0 for generality. When the single-period problem is construed

as the last period of a finite-horizon model with lost sales, the initial inventory x1 is the result

of the previous period’s sales, i.e., x1 = (y0 −D0)+ ≡ max{y0 −D0, 0}, where y0 is the previous

period’s post-order inventory level. The distribution of x1 contains a point mass at 0 in that case,

i.e., G(0) > 0.

The sequence of events is as follows. First, the supplier proposes a menu contract {s1(x1), q1(x1)}x1∈[0,y0]
consisting of the quantity plan q1(x1) and payment plan s1(x1). If the retailer accepts the contract,

she will report her initial inventory x1 at the beginning of the period, which will trigger the order

quantity q1(x1) and payment s1(x1) (Alternatively, the retailer directly selects a quantity-and-

payment pair from the menu). Because the inventory cannot be observed by the supplier, he must

provide incentives for the retailer to reveal the true x1. The supplier’s problem can be written as:

max
{s1(x1),q1(x1)}

∫ y0

0
{s1(x1)− cq1(x1)}dG(x1) (1a)

s.t. v1(x1 + q1(x1))− s1(x1) ≥ v1(x1 + q1(x̂1))− s1(x̂1), x1, x̂1 ∈ [0, y0] (1b)

v1(x1 + q1(x1))− s1(x1) ≥ v1(x1), x1 ∈ [0, y0]. (1c)

The constraints (1b) are the incentive compatibility (IC) constraints and (1c) are the participation

(or individual rationality, IR) constraints. The IC constraints induce the retailer to report the
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Figure 1: Retailer’s profit as a function of x1 with or without purchasing. The shaded area

represents her information rent u1(x1)− v1(x1).

true state x1; the IR constraints ensure that choosing (s1(x1), q1(x1)) is at least as good as no

transaction.

The retailer’s net profit, as a function of the initial inventory x1, is given by

u1(x1) ≡ v1(x1 + q1(x1))− s1(x1). (2)

The IC constraints (1b) are equivalent to u1(x1) = maxx̂1{v1(x1 + q1(x̂1)) − s1(x̂1)}. Assume

q1(x1) continuous over (0, y0] (which can be verified later). By the envelope theorem, we obtain the

following local IC constraints:

u′1(x1) = v′1(x1 + q1(x1)), x1 ∈ (0, y0], (3)

or,

u1(x1) = u1(y0)−
∫ y0

x1

v′1(x̂1 + q1(x̂1))dx̂1, x1 ∈ [0, y0]. (4)

The fact that u1(x1) is continuous at x1 = 0 (where q1(x1) may be discontinuous) is implied by the

IC constraints (1b), as shown in the proof of Theorem 1 in Appendix A.

A standard analysis of the above static problem involves noting that any incentive-compatible

order plan q1(x1) is (weakly) decreasing in x1 and that the IR constraints are binding at y0 and

redundant at x1 ∈ [0, y0) (see Lemma A1 in Appendix A). A special feature of this model is that

the reservation profit function v1(x1) in the IR constraints is increasing (and concave) in x1, which

makes the retailer with a higher inventory a “worse type” because an additional unit has less value

to the retailer when x1 is larger. Thus, the information rent u1(x1)−v1(x1) (the extra profit yielded

to the retailer in exchange for her private information) decreases in x1, as illustrated in Figure 1.
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After replacing s1(x1) by v1(x1 + q1(x1)) − u1(x1) and using equation (4), we can rewrite the

objective function (1a) as

∫ y0

0+
J1(x1, q1(x1))g(x1)dx1 + J1(0, q1(0))G(0)− u1(y0),

where
∫ y0
0+ h(x1)dx1 is the short-hand notation for limx1→0+

∫ y0
x1

h(x1)dx1 and J1(x1, q1) is defined

as

J1(x1, q1) ≡
{

v1(q1)− cq1, x1 = 0,

v1(x1 + q1)− cq1 + v′1(x1 + q1)
G(x1)
g(x1)

, x1 ∈ (0, y0].
(5)

The function J1(x1, q1) isolates the part of the supplier’s profit that is directly affected by the order

quantity q1(x1), and is called virtual surplus in the literature. The effect of q1(x1) is two-fold,

consisting of an internal effect and an external effect. First, it affects the channel profit when the

initial inventory is x1, which is given by (v1(x1 + q1(x1)) − cq1(x1))g(x1). Second, it affects the

retailer’s profit, and hence the information rent, when the initial inventory is lower than x1 (the

retailer’s profit at x1 is unaffected because of the payment s1(x1)). By the local IC constraints (4),

the term v′1(x1+ q1(x1)) pulls the retailer’s profit downward over the entire range [0, x1), resulting

in a total gain of v′1(x1 + q1(x1))G(x1) for the supplier. Thus, the expression of J1(x1, q1) for

x1 ∈ (0, y0] follows. On the other hand, the order quantity q1(0) has no impact on the information

rent for any initial inventory. Therefore, apart from the standard models in the literature, our

model requires different forms of virtual surplus for x1 = 0 and x1 > 0, which is the result of the

point mass at zero inventory and is an important feature of the model. Consequently, as will soon

be seen, the quantity plan q1(x1) may be discontinuous at 0.

The optimal quantity plan, q1(x1), can then be determined from the first-order condition (FOC)

∂J1(x1, q1)/∂q1 = 0, given x1. We state the main results of the single-period model in the following

two theorems and leave the proofs and other technical details to Appendix A. Our first result

identifies a set of sufficient conditions for the first-order solution to be optimal. Before stating the

result, we note that if the retailer’s initial inventory can be observed by the supplier, the optimal

(first-best, FB) order-up-to level is y∗1 = F−1(r−cr ).

Theorem 1 Under conditions

g(x1)

G(x1)
+

f ′(x1 + q1)

f(x1 + q1)
≥ 0, for x1 > 0 and q1 > 0, (6)

and
d

dx1

(
G(x1)

g(x1)

)
≥ 0, for x1 > 0, (7)



10

the supplier’s optimal order plan q1(x1) satisfies: (1) q1(0) = F−1(r−cr ); (2) for x1 ∈ (0, y0], q1(x1)
solves the first-order condition

F (x1 + q1) + f(x1 + q1)
G(x1)

g(x1)
=

r − c

r
(8)

if it has a positive solution, otherwise q1(x1) = 0. Under this plan,

lim
x1→0+

q1(x1)

{
= q1(0), if G(0) = 0;

< q1(0), if G(0) > 0.

The conditions in the theorem are worth further discussion. Condition (6) is basically the

second-order condition that ensures J1(x1, q1) to be maximized by q1(x1) at x1. It is a common

condition in the adverse-selection literature, although it may assume different forms in various

models. This condition involves v′′′1 (y1), the third derivative of the retailer’s revenue function, be-

cause the virtual surplus J1(x1, q1) already involves its first derivative, v′1(y1). Condition (7), along

with (6), ensures that q1(x1) is weakly decreasing in x1. It is similar to the standard “increasing

hazard rate” condition in the literature, but in the opposite direction, because the types in our

model (values of x1) are ordered in an opposite way from those in a standard model. These two

conditions constitute a sufficient, but not necessary, set of conditions, and are satisfied by several

common distributions. However, to be prudent, these conditions should be verified when the so-

lution is found. All models and examples discussed in this paper and the appendices have passed

this test. For instance, in the exponential demand case with p.d.f. f(ξ) = λe−λξ, ξ ≥ 0, when the

initial inventory is derived from x1 = (y0 −D0)
+, we have G(x1) = e−λ(y0−x1), 0 ≤ x1 ≤ y0, and

g(x1) = λe−λ(y0−x1), 0 < x1 ≤ y0, and the two conditions reduce to λ− λ ≥ 0 and d
dx1

(
λ−1
)
≥ 0,

respectively.

Figure 2 illustrates the optimal quantity plans when G(·) is uniform over [0, 1] (with no point

mass) and F (·) is uniform, exponential or normal (F (·) is normalized so that F−1(r−cr ) = 5). The

order plan can be efficiently computed for most realistic scenarios. More details can be found in

Appendix A.

We note the special structure associated with the state in which the initial inventory is zero.

When the retailer reports this state, the first-best quantity is transacted. This agrees with the

“efficiency at the top” phenomenon observed in static adverse selection problems (“top” corresponds

to zero inventory in our setting). The inefficiency in the channel arises only due to the possibility of

the retailer inflating her inventory levels to downplay the value of additional units. The supplier’s

optimal contract protects him from the retailer’s actions and exhibits the standard feature of
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“downward distortion at the bottom.” As discussed above, the order quantity q1(x1) at any x1 >

0 has an external effect on the retailer’s profit at all x′1 < x1. The term v′1(x1 + q1)
G(x1)
g(x1)

in

the expression of J1(x1, q1) draws q1(x1) downward from the channel-optimal quantity, because

v′1(x1+q1) is decreasing in q1 (v
′′
1(·) ≤ 0). A side effect of this distortion is that, when G(·) contains

a point mass at 0, q1(x1) is discontinuous at 0 with a downward jump; if G(0) = 0, however, the

term v′1(x1 + q1)
G(x1)
g(x1)

vanishes at x1 = 0 and q1(x1) is still continuous. Later, in the multi-period

setting, we will push this discontinuity to the extreme to create an extremely simple contract such

that qt(xt) = 0 for all xt > 0, which is a somewhat drastic take-it-or-leave-it offer by the supplier.

Next, we show some properties of the optimal order plan and payment plan.

Theorem 2 Under the conditions of Theorem 1, the optimal contract exhibits the following prop-

erties:

1. (Order plan) q1(x1) is weakly decreasing in x1, and if (6) is satisfied strictly at x1 > 0, then

q′1(x1) ≤ −1 on (0, x1] for some x1 < y∗1 such that q1(x1) = 0;

2. (Payment plan) The optimal payment plan observes quantity discounting; that is, s1(x1) is

increasing and concave in terms of q1(x1).

Theorem 2 and Figure 2 show that the qualitative pattern of q1(x1) is consistent across demand

distributions and cost regions: q1(x1) starts from y∗1, decreases faster than −x1, and hits zero at

some x1 < y∗1. The first part of the theorem also implies a threshold structure — the trade takes

place if and only if the retailer reports an initial inventory less than x1.

In the next subsection, we derive the optimal contract when the demand is exponentially distrib-

uted and the single period is the last period of a finite-horizon problem. Thus, the initial inventory

distribution is derived and not assumed. In Appendix A, we compute the optimal contracts in some

other situations, including exponentially distributed demand with uniformly distributed initial in-

ventory, and uniformly distributed demand with derived or uniformly distributed initial inventory.

3.2 Special Case: Exponential Demand

In this subsection, we assume the demand distribution has c.d.f. F (ξ) = 1 − e−λξ and p.d.f.

f(ξ) = λe−λξ, ξ ≥ 0. If we consider a lost-sales system and assume there is no salvage value for

unsold items, a straightforward calculation reveals that the first-order derivative ∂J1(x1, q1)/∂q1,

for x1 > 0, becomes
∂J1(x1, q1)

∂q1
= r

[
1− λ

G(x1)

g(x1)

]
e−λ(x1+q1) − c. (9)
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Figure 2: Optimal quantity plan q1(x1) under uniform inventory distribution and uniform, expo-

nential, or normal demand distribution in (a) the low cost case, c = 0.2r, and (b) the medium cost

case, c = 0.5r.

Suppose the initial inventory is given by x1 = (y0−D0)
+, where D0 also follows the distribution

F (ξ). Then, G(x1) = e−λ(y0−x1) for 0 ≤ x1 ≤ y0, with a point mass at 0, and g(x1) = λe−λ(y0−x1)

for 0 < x1 ≤ y0. As a result, the first-order derivative (9) becomes ∂J1(x1, q1)/∂q1 = −c < 0, and

the optimal order plan and payment plan are

q1(x1) =

{
λ−1 ln(rc ), x1 = 0

0, x1 ∈ (0, y0]
; s1(x1) =

{
λ−1(r − c), x1 = 0

0, x1 ∈ (0, y0]
.

Thus, the static optimal contract with exponential demand distribution and derived initial-inventory

distribution exhibits a rather severe distortion due to information asymmetry. In such a case, the

supplier will not deal with any retailer who reports a positive initial inventory, i.e., the threshold

is x1 = 0. This is not always true, as can be seen from other examples in Appendix A.

4 Dynamic Model

We now analyze dynamic contracts in the multi-period problem with Markovian dynamics. In

this section, we formulate the problem, discuss some basic facts about the model, and derive the

optimal contract in the two-period case under exponential demand. This section prepares us for

studying the infinite-horizon model in §5, which will be the emphasis of the paper. The structure

of the optimal contract is more prominent in the infinite-horizon case — end-of-the-horizon effects

sort themselves out and, at least for a special case, we are able to characterize the optimal contract.
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The multi-period setting encompasses at least two well-known contracting modes, i.e., long-

term and short-term contracting. Under long-term contracting, the principal can make a credible

commitment to a contingency plan that covers the entire horizon. Under short-term contracting,

the principal only offers a single-period contract in each period. We consider short-term contracts in

this paper. Such a setting is appropriate if the principal prefers the relative simplicity of one-period

contracts, or if he (she) lacks the credibility of carrying out a multi-period contract. In practice,

both contracting schemes are used. A significant number of settings involve suppliers who do not

provide retailers with detailed long-term price schedules. Moreover, given some of the technical

and framing difficulties, a thorough understanding of short-term dynamic contracts with adverse

selection seems to be a rather challenging task of significant theoretical interest.

An important issue related to short-term contracting is the definition of equilibrium. Con-

ceivably, when designing the contract in period t given his belief about the retailer’s beginning

inventory xt, the supplier must foresee the retailer’s response in that period, which depends on

the retailer’s expectation of the contract to be offered in the next period that in turn depends on

the supplier’s belief about the beginning inventory in the next period, and so on. This leads to a

complex mutual belief process. A proper equilibrium concept for our setting is the perfect Bayesian

equilibrium (PBE), see e.g., Fudenberg and Tirole (1991) and Bolton and Dewatripont (2005). A

suitable solution concept for short-term contracting needs the following required characteristics:

(1) the contract offered by the supplier in period t maximizes his expected total profit-to-go given

his belief about the beginning inventory xt; (2) the retailer’s response in period t maximizes her

expected total profit-to-go given the contract in period t and those to be offered in all future peri-

ods; (3) the supplier’s belief about the beginning inventory xt+1 is updated according to the Bayes’

rule from his belief about xt and the retailer’s response in period t.

At the beginning of period t, the supplier designs the contract {st(xt), qt(xt)} to maximize his

expected profit-to-go, with respect to the belief Gt of the beginning inventory xt and subject to

the retailer’s IC and IR constraints (to be defined shortly). Following a typical way of finding a

PBE, we start with an assumption of the structure of the contract in period t. In view of the

optimal static contract, we postulate that the optimal contract in any period of a multi-period

model is made up of two continuous regions: a separating region, denoted by [0, xt], and a pooling

region, denoted by (xt,+∞) (xt depends on the belief Gt in general). The supplier will induce the

retailer to reveal the true inventory xt if xt falls in the separating region, but will otherwise leave

the retailer alone. In the pooling region, the order quantity is qt(xt) = 0. In the following analysis,
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we will focus on the separating region, because the pooling region is simply the complement of the

former and the contract therein is trivially found.

4.1 Supplier’s Problem in the Separating Region

First, we introduce some notation. Assume the demand Dt in every period follows the same

distribution F (·) (i.e. i.i.d.). If the retailer orders qt in period t, the next period’s beginning

inventory is given by xt+1 = max{xt+ qt−Dt, 0}, where xt+ qt is the post-order inventory level in

period t. The retailer’s expected revenue in period t from selling these xt + qt units, adjusted by

the cost of holding the leftovers to the next period, is captured by the function vt(xt + qt) (for the

last period T , vt need not include any inventory cost). Let Ut+1(yt | ŷt) be the retailer’s expected

profit-to-go from period t+1 onward if the true post-order inventory level in period t is yt yet the

supplier’s perception is ŷt (which determines the supplier’s belief about xt+1 and thus the contract

offered in period t+1). Let Πt+1(yt) and Ψt+1(yt) = Πt+1(yt)+Ut+1(yt | yt) be the supplier and the

channel’s expected profits-to-go, respectively, from period t + 1 onward given the true yt. Future

profits are discounted by a factor δ ∈ (0, 1) per period.

Then, the supplier’s problem given belief Gt and over the region [0, xt] is the following:

max
{st(xt),qt(xt)}xt∈[0,xt]

∫ xt

0
{st(xt)− cqt(xt) + δΠt+1(xt + qt(xt))} dGt (10a)

s.t. vt(xt + qt(xt))− st(xt) + δUt+1(xt + qt(xt) | xt + qt(xt))

≥ vt(xt + qt(x̂t))− st(x̂t) + δUt+1(xt + qt(x̂t) | x̂t + qt(x̂t)), xt, x̂t ∈ [0, xt]
(10b)

vt(xt + qt(xt))− st(xt) + δUt+1(xt + qt(xt) | xt + qt(xt))

≥ vt(xt) + δU t+1(xt), xt ∈ [0, xt]. (10c)

Note that the IC constraints (10b) only allow x̂t to vary in the separating region. To ensure full

incentive compatibility, x̂t should be allowed in the pooling region (xt,+∞) as well. That can be

easily done after the problem (10) is solved and thus is omitted from the formulation. The function

Ut+1(xt+qt(x̂t) | x̂t+qt(x̂t)) in (10b) deserves a closer inspection: its second argument, x̂t+qt(x̂t),

is the supplier’s perception about the post-order inventory level in period t resulting from the

reported beginning inventory x̂t and the observed order quantity qt(x̂t); while its first argument,

xt + qt(x̂t), is the actual post-order inventory. The function U t+1(xt) in the IR constraints (10c)

gives the retailer’s expected profit-to-go from period t + 1 onward in the default setting, that is,

ordering nothing from period t+ 1 onward.
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Let ut(xt) denote the retailer’s expected profit-to-go from period t onward given beginning

inventory xt. Then we have

ut(xt) = vt(xt + qt(xt))− st(xt) + δUt+1(xt + qt(xt) | xt + qt(xt)). (11)

The IC constraints (10b) are equivalent to

ut(xt) = max
x̂t∈[0,xt]

{vt(xt + qt(x̂t))− st(x̂t) + δUt+1(xt + qt(x̂t) | x̂t + qt(x̂t))}. (12)

Assume Ut+1(yt | ŷt) continuous and differentiable (which can be verified after the solution is found)

and define yt(xt) = xt + qt(xt). The envelope theorem implies

u′t(xt) = v′t(yt(xt)) + δ
∂Ut+1(yt(xt) | yt(xt))

∂yt
, (13)

where ∂Ut+1(yt(xt) | yt(xt))
∂yt

is an alternative expression of ∂Ut+1(yt | ŷt)
∂yt

∣∣∣
yt=ŷt=yt(xt)

. Then, the retailer’s

profit-to-go ut(xt) can be pinned down to ut(xt) as follows:

ut(xt) = ut(xt)−
∫ xt

xt

u′t(z)dz, xt ∈ [0, xt]. (14)

Similar to the static case, we define the following virtual surplus by taking future profits into

account: for xt ∈ [0, xt],

Jt(yt | xt) ≡
{

vt(yt)− cyt + δΨt+1(yt), xt = 0,

vt(yt)− cyt + δΨt+1(yt) +
(
v′t(yt) + δ ∂Ut+1(yt | yt)

∂yt

)
Gt(xt)
gt(xt)

, xt ∈ (0, xt].

The virtual surplus at xt is basically the slice of the supplier’s expected profit-to-go that is directly

affected by the inventory target (yt) chosen for xt. The function takes different forms at xt = 0 and

xt > 0, for the same reason as in the static case. We can show the following first-order result (see

Appendix B), which will be crucial in our latter analysis in the high cost domain.

Proposition 1 The optimal post-order inventory plan yt(xt) must satisfy

yt = xt and
∂Jt(yt | xt)

∂yt
≤ 0, or yt > xt and

∂Jt(yt | xt)
∂yt

= 0.

The functions Ψ′t+1(yt) and ∂Ut+1(yt | ŷt)/∂yt are needed for computing ∂Jt(yt | xt)/∂yt. They
depend upon the demand distribution and can be computed on a case-by-case basis. Note that

Ut+1(yt | ŷt) is in fact recursively defined through expression (11) — it is just the expectation

of ut+1(xt+1), in which the true distribution of xt+1 is determined from yt while the underlying

contract is based on ŷt.

We emphasize that the supplier’s belief Gt underlies everything discussed in this subsection

— the optimal contract {st(xt), qt(xt)}, the retailer’s profit-to-go function ut(xt), and the virtual

surplus Jt(yt | xt). This dependence is suppressed in the notation for the sake of simplicity.
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4.2 Belief Process under Exponential Demand

The complex nature of the belief process is a main source of difficulty for the short-term contracting

problem. In this subsection we show an important property of the belief process under exponential

demand that will significantly simplify our subsequent analysis.

We assume that the demand in every period follows the c.d.f. F (ξ) = 1−e−λξ and p.d.f. f(ξ) =

λe−λξ, ξ ≥ 0. If the post-order inventory in the previous period is yt−1, the beginning inventory

of the current period should be given by xt = (yt−1 − Dt−1)+, which has c.d.f. Gt(xt|yt−1) =
e−λ(yt−1−xt), for 0 ≤ xt ≤ yt−1, and p.d.f. gt(xt|yt−1) = λe−λ(yt−1−xt), for 0 < xt ≤ yt−1. In that

case, Gt(xt|yt−1)
gt(xt|yt−1) = λ−1 for 0 < xt ≤ yt−1. This property of the beginning-inventory distribution is

generalized by the following definition:

Definition 1 A distribution (c.d.f.) Gt(xt) defined on [0, xt] is weakly reverse exponential

(WRE) with rate λ if Gt(xt)
gt(xt)

≥ λ−1 for xt ∈ (0, xt].

We show that under exponential demand, regardless of the contract executed in period t − 1,
the distribution of the beginning inventory of period t is weakly reverse exponential. It is important

to note that in order to derive the optimal contract through backward induction we need to allow

arbitrary contract structures in the past. Thus, if the beginning inventory of the previous period

follows an arbitrary distribution Gt−1(xt−1) and an arbitrary contract was offered in that period,

then the retailer’s order quantity qt−1 may reveal an arbitrary set of beginning inventories in that

period, denoted by St−1, due to the possibility of pooling. For instance, if the supplier offers in

period t− 1 a contract consisting of a separating region [0, xt−1] and a pooling region (xt−1,+∞),
the choice of qt−1 = 0 by the retailer only suggests that the beginning inventory xt−1 belongs to

the pooling region (xt−1,+∞), i.e., St−1 = (xt−1,+∞). In the separating case, St−1 is a singleton

set. Let qt−1 + St−1 denote the set of possible post-order inventories {qt−1 + xt−1 : xt−1 ∈ St−1}.
We have the following result:

Theorem 3 Suppose an arbitrary contract is offered in period t − 1, and the retailer orders an

arbitrary quantity qt−1 ≥ 0 that implies the beginning inventory xt−1 ∈ St−1 for some set St−1. If the

demand in period t−1 is exponential, given any belief Gt−1(xt−1) of the beginning inventory of period

t−1, the supplier’s belief of the beginning inventory of period t, denoted by Gt(xt|yt−1 ∈ qt−1+St−1),

is weakly reverse exponential.

The theorem unveils a remarkable fact that the posterior belief Gt(xt) is WRE following any

prior belief Gt−1(xt−1) under exponential demand, which enables the optimal short-term contracts
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being constructed through backward induction when costs are high, as will soon be seen.

4.3 Batch-Order Contracts

As shown in the static case, if the belief G1(x1) has a point mass at zero, the optimal order plan

q1(x1) is discontinuous at x1 = 0 with a downward jump. An extreme example of this structure is

the case in which the supplier does not sell to the retailer when x1 is positive. In fact, this happens

when (holding and production) costs are high or when the initial inventory x1 is derived from

(y0 −D0)
+ and D0 is exponential. Here, the contract only offers two options, a fixed quantity or

zero. We call such a simple contract a batch-order contract (BOC), formally defined by a quantity

and payment pair (bt, st) in period t: the retailer can obtain bt units at the total price of st (if she

reports zero inventory) or nothing (otherwise). More precisely, the contract {st(xt), qt(xt)} is of

the following form:

qt(xt) =

{
bt, if xt = 0

0, if xt > 0
, st(xt) =

{
st, if xt = 0

0, if xt > 0
.

If the contract is incentive compatible, the retailer should voluntarily place the order when her

inventory hits zero. The BOC has some advantages — it is relatively easy to characterize, and easy

to implement in practice (it has already been used in some industries, although its implementation

may be driven by different reasons).

In the next subsection, we will extend the static result of the exponential-demand case to the

last two periods of a finite-horizon model. We will show that the optimal contract in the last

period is always a BOC, and that the same is true in the second-last period if the costs c and h

are relatively high. A similar result can be shown for the third-last period and so on, but to avoid

obscuring the focus of the paper, we will immediately move on to the infinite-horizon case in §5

and show that a stationary BOC (where bt ≡ b and st ≡ s for all t) is optimal given relatively high

costs.

4.4 Optimal Contracts in the Last Two Periods under Exponential Demand

In this subsection, we assume the demand is exponentially distributed with rate λ in every period.

The cost of holding one unit of inventory for one period is denoted by h. In the T -period case, the

retailer’s expected revenue (minus inventory cost) in period t is given by

vt(yt) =

{
rEmin{yt,Dt} = λ−1r(1− e−λyt), t = T,

rEmin{yt, Dt} − hE(yt −Dt)
+ = λ−1(r + h)(1− e−λyt)− hyt, t ≤ T − 1.
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The special form of the revenue function in the last period is due to the absence of holding cost at

the end of the horizon. Accordingly, the derivatives of vt(yt) are given by:

v′t(yt) =

{
re−λyt , t = T,

(r + h)e−λyt − h, t ≤ T − 1,
v′′t (yt) =

{
−λre−λyt , t = T,

−λ(r + h)e−λyt , t ≤ T − 1.

It can be shown that the optimal contract in the last period is a simple BOC.

Proposition 2 Under exponential demand, the optimal contract in the last period of a finite-

horizon problem is given by

qT (xT ) =

{
y∗T = λ−1 ln(rc ), xT = 0

0, xT > 0
; sT (xT ) =

{
λ−1(r − c), xT = 0

0, xT > 0
.

This result follows from Theorem 3 and implies that the weakly-reverse-exponential property

of the belief GT is enough to induce the BOC in the last period. Although this optimal contract is

identical to the static contract derived in §3.2, it is non-trivial in the sense that it is independent of

the history and serves as the basic step of the backward induction procedure in finding the sequence

of optimal short-term contracts.

To derive the optimal contract in the second-last period, we first compute the expected channel

profit and retailer’s profit in the last period, ΨT (yT−1) and UT (yT−1), given the true post-order

inventory yT−1 in the second-last period. Because the optimal contract in the last period is in-

dependent of the supplier’s belief GT , the perceived post-order inventory ŷT−1 in the second-last

period has no role to play, which is why we only need UT (yT−1) instead of UT (yT−1 | ŷT−1). With-

out loss of generality, the terminal channel- and retailer-profit functions, ΨT+1(·) and UT+1(·), are
normalized to zero.

Lemma 1 The expected channel profit and retailer’s profit in the last period, given the post-order

inventory level yT−1 in the previous period, are given by

ΨT (yT−1) = λ−1r − λ−1
(
c+ c ln

(r
c

)
+ rλyT−1

)
e−λyT−1 ,

UT (yT−1) = λ−1r − λ−1 (r + rλyT−1) e
−λyT−1 .

Then the optimal contract in the second-last period can be determined as follows.

Proposition 3 If the beginning inventory in the second-last period is xT−1 = (yT−2−DT−2)+ for

a given yT−2 ≥ 0, the optimal order plan in this period is:

qT−1(xT−1) =





y∗T−1, if xT−1 = 0,

x∗T−1 − xT−1, if h < δ(c+ c ln( rc ))− c and xT−1 ∈ (0, x∗T−1],
0, otherwise,
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where x∗T−1 = λ−1 ln
(

δc
c+h

[
1 + ln

(
r
c

)])
and y∗T−1 solves (c+h)eλy−δλry = (1−δ)r+δc

(
1 + ln

(
r
c

))
+

h. Furthermore, x∗T−1 < y∗T−1.

This proposition suggests that the optimal contract in the second-last period is more complex

than the one in the last period and consists of the following pieces: ordering the amount y∗T−1 when

xT−1 = 0, up to a level x∗T−1(< y∗T−1) when xT−1 ∈ (0, x∗T−1], and nothing when xT−1 > x∗T−1.

Similar to the static case, the discontinuity of the optimal contract at xT−1 = 0 is again caused

by the point mass at xT−1 = 0 and the different forms of the virtual surplus JT−1(yT−1 | xT−1)
around xT−1 = 0. This contract is similar to a BOC if x∗T−1 is close to zero or a base-stock policy

if x∗T−1 is close to y∗T−1, depending on the model parameters.

A troubling fact about this contract is that it depends on the exact distribution of xT−1. For

instance, if the yT−2 in the proposition is a random variable or if xT−1 is derived from (yT−3−DT−3−
DT−2)+, (yT−4−DT−4−DT−3−DT−2)+, and so on, the optimal contract will be even more complex.

Thus, the optimal contract in the second-last period is generally complicated and history dependent,

even under a special demand distribution like exponential. This is somewhat discouraging, and

echoes the observation from the existing literature that optimal short-term contracts for two-period

problems are often difficult to characterize (see §2).

However, Proposition 3 also implies that if xT−1 is derived from (yT−2 −DT−2)+ and if h ≥
δ(c + c ln(rc )) − c, the middle part of the optimal contract will disappear and the contract will

reduce to a simple batch-order contract. In fact, this result does not depend upon the assumption

xT−1 = (yT−2 −DT−2)+, as the next proposition shows.

Proposition 4 If h ≥ δ(1 + ln(rc ))c− c, the optimal order plan in the second-last period is given

by

qT−1(xT−1) =

{
y∗T−1, xT−1 = 0,

0, xT−1 > 0,

where y∗T−1 solves (c+ h)eλy − δλry = (1− δ)r + δc
(
1 + ln

(
r
c

))
+ h.

Intuitively, high costs diminish the benefit of orders, which will eventually eliminate the orders

at all positive xT−1 when the costs are high enough. The order may still be profitable when xT−1

is zero thanks to the gap between y∗T−1 and x∗T−1, or the downward jump in the order plan around

xT−1 = 0.

With the above mixed results, we conclude our analysis of the finite-horizon setting, because

a more thorough investigation may obscure our pursuit of the structure of the optimal contracts.
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We refer interested readers to Appendix C, in which we analyze a two-period model under general

demand distribution and zero initial inventory. The results there further illustrate that the optimal

contracts in a relatively general two-period setting can easily become too complex to carry any

interesting structure. This, on the other hand, justifies our emphasis on the elegant batch-order

contracts in this paper. We have seen from Propositions 2 and 4 that they can be optimal in the

finite-horizon case (in certain cost regimes), and we shall show the same in the infinite-horizon

case in §5. In the next subsection, we numerically demonstrate that even outside of the optimality

regime, the BOCs still perform very well.

4.5 Performance of the Batch-Order Contracts

The optimal BOC performs surprisingly well even outside of its optimality region. To demonstrate

that, we conduct a numerical study below, comparing the performances of the optimal BOC and

the optimal contract in the second-last period for a wide range of model parameters. To that end,

we first compute the expected channel profit and retailer’s profit under the two contracts. Let a∧ b

denote min(a, b).

Proposition 5 Suppose the post-order inventory in the third-last period is yT−2. Under the optimal

contract defined in Proposition 3, when h < δ(c + c ln( rc )) − c, the expected profits of the last two

periods for the channel and the retailer are given by:

ΨOpt
T−1(yT−2) =(vT−1(y

∗
T−1)− cy∗T−1 + δΨT (y

∗
T−1))e

−λyT−2

+

∫ x∗T−1∧yT−2

0+

(
vT−1(x

∗
T−1)− c(x∗T−1 − x) + δΨT (x

∗
T−1)

)
λe−λ(yT−2−x)dx

+

∫ yT−2

x∗
T−1∧yT−2

(vT−1(x) + δΨT (x))λe
−λ(yT−2−x)dx,

UOpt
T−1(yT−2) =(uT−1(x

∗
T−1 ∧ yT−2)− (x∗T−1 ∧ yT−2)u

′
T−1(x

∗
T−1))e

−λyT−2

+

∫ x∗
T−1∧yT−2

0+

(
uT−1(x

∗
T−1 ∧ yT−2)− ((x∗T−1 ∧ yT−2)− x)u′T−1(x

∗
T−1)

)
λe−λ(yT−2−x)dx

+

∫ yT−2

x∗
T−1∧yT−2

(vT−1(x) + δUT (x))λe
−λ(yT−2−x)dx,

where x∗T−1 = λ−1 ln
(

δc
c+h

[
1 + ln(rc )

])
and uT−1(xT−1) = vT−1(xT−1) + δUT (xT−1).

Under the BOC defined in Proposition 4 (ignoring the cost condition), the expected two-period

profits are:

ΨBOC
T−1 (yT−2) =(vT−1(y

∗
T−1)− cy∗T−1 + δΨT (y

∗
T−1))e

−λyT−2 +
∫ yT−2

0+
(vT−1(x) + δΨT (x))λe

−λ(yT−2−x)dx,

UBOC
T−1 (yT−2) =

∫ yT−2

0
(vT−1(x) + δUT (x))λe

−λ(yT−2−x)dx.
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Figure 3: Expected two-period channel profit and supplier’s profit (a) under the optimal short-term

contract, and (b) under the optimal BOC (relative to the profits under the optimal contract).

When yT−2 > x∗T−1, the two profit functions under the optimal contract both consist of three

parts: the expected profits when xT−1 = 0, xT−1 ∈ (0, x∗T−1], and xT−1 ∈ (x∗T−1, yT−2]; they

collapse into two parts when yT−2 ≤ x∗T−1. The two profit functions are much simpler under the

BOC because the order only occurs at xT−1 = 0 and the supplier sets the price such that the

retailer’s expected profit equals her reservation profit vT−1(0) + δUT (0), which is zero.

Without loss of generality, we can normalize the model by selecting λ = 1 and r = 1, because

the scaled order plan λqt(xt) is solely determined by δ, c
r , and

h
r . We also find that the discount

factor δ has a minimum impact on the profit functions as long as it is in a reasonable range,

say [0.8, 1], so we set δ = 0.9. Figure 3 exhibits the profits under the two types of contracts for

yT−2 = 0.3, c ∈ [0.3, 0.9], and h ∈ [0, 0.3]. Panel (a) shows the channel profit and supplier’s

profit under the optimal contract, i.e., ΨOpt
T−1 and ΨOpt

T−1 − UOpt
T−1; panel (b) shows the profits under

the optimal BOC relative to those under the optimal contract, i.e., the ratios ΨBOC
T−1

/
ΨOpt

T−1 and

(ΨBOC
T−1 − UBOC

T−1 )
/
(ΨOpt

T−1 − UOpt
T−1) . According to panel (b), in the given range of parameters the

supplier’s profit under the BOC is at least 98% of that under the optimal contract. We find this

result quite robust against the choice of yT−2. In panel (b), the two ratio functions coincide at the

top when the costs fall in the optimality region of the BOC, i.e., h ≥ δ(c+c ln( rc ))−c. Thus, we can

reach the conclusion that the optimal BOC performs extremely well compared with the optimal

contract even when it is sub-optimal.
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The numerical study provides a strong support for studying the BOC. Its ease of analysis

and implementation should more than compensate the few percentage loss of the supplier’s profit

(when it is sub-optimal). Later, in §5, we will conduct another numerical study to demonstrate the

effectiveness of the BOC in the infinite-horizon setting as well.

5 Infinite-Horizon Model with Exponential Demand and High

Costs

The analyses of the static contracts in §3 and two-period contracts in §4 (and Appendix C) manifest

the complexity of the actual expressions for the optimal contracts in the finite-horizon case. Thus,

it seems from the outset that there is little hope to derive closed-form expressions for the optimal

contract in the infinite-horizon model. With this in mind, our analysis takes the following approach.

We consider an exponential distribution for the demand. For this distribution, in the so-called

high-cost regime, we are able to derive in closed form the optimal short-term contract for the

supplier, which turns out to be a stationary BOC described by a quantity and payment pair

(b∗, s∗). Thus, throughout this section, the name “batch-order contract (BOC)” normally refers

to an infinite sequence of identical single-period BOCs, when it is clear from the context. As

mentioned in the introduction, the exponential demand is not a bad approximation to what we

see in practice in many situations, and is used in the literature to analyze intractable problems.

The question, then, remains as to whether the elegant contract structure we derive is useful in

situations in which we do not have a provable optimal structure. To answer this question, we

test the performance of the best BOC in (i) various cost domains and (ii) across several demand

distributions. Through numerical and simulation exercises, we find that the BOCs perform quite

well in most of these settings. Though we are unable to prove that the BOCs are optimal for

arbitrary demand distributions (except in the exponential case), we think that our analysis here

may actually be quite robust. All these reasons, we believe, make a strong case for studying BOCs

in settings such as ours, in which downstream inventory information is hidden.

Finally, we note that our philosophy here resonates with the approach used in attacking several

problems of interest to operations management researchers. A common tactic in the literature

on call center management, where calculating optimal scheduling policies is often infeasible, is to

obtain analytical results by using certain assumptions on the inputs in heavy traffic regimes. These

results are used to suggest policies in more practical settings, in which their performance is shown

empirically to be close to optimal. Another emerging area is in inventory management, where
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asymptotically optimal results (in the sense of service levels) suggest policies that perform well in

non-asymptotic domains.

5.1 Optimal Contract

Our analysis of the optimal contract proceeds as follows. We first prepare the background by

computing the expected profit-to-go functions under BOCs. Next, we find the optimal BOC (the

batch size b∗ and batch payment s∗ that maximize the supplier’s expected profit-to-go). Finally, we

show that when the model parameters lie in a critical region, the contract we obtain is the optimal

short-term contract. All proofs are given in Appendix B.

As in the finite-horizon case (§4.4), the retailer’s expected revenue in period t from the post-

order inventory yt is given by

v(yt) = λ−1(r + h)(1− e−λyt)− hyt,

taking the end-of-the-period holding cost into account. Its first derivative is

v′(yt) = (r + h)e−λyt − h.

Notice that v(·) and v′(·) are independent of t. Further, if the post-order inventory in period

t− 1 is yt−1, the beginning inventory xt in period t is distributed according to the following c.d.f.

Gt(· | yt−1) and p.d.f. gt(· | yt−1):

Gt(xt | yt−1) = e−λ(yt−1−xt), xt ∈ [0, yt−1],

gt(xt | yt−1) = λe−λ(yt−1−xt), xt ∈ (0, yt−1].

As the first step towards finding the optimal BOC, we compute the expected profit-to-go func-

tions under BOCs. Consider an arbitrary BOC (b, s) from period t onward, regardless of the

perceived post-order inventory ŷt−1 in the previous period. The retailer’s expected profit-to-go

Ut(yt−1 | ŷt−1) simplifies to Ut(yt−1), which can be computed recursively:

Ut(yt−1) =
∫ yt−1

0+
{v(xt) + δUt+1(xt)}dGt(xt | yt−1) + {v(b)− s+ δUt+1(b)}Gt(0 | yt−1). (15)

The first part of the expression is the retailer’s expected profit-to-go when xt > 0 (with no order

in period t) and the second part is that when xt = 0 (with an order of b units). Over an infinite

horizon, periods t and t+ 1 are identical and the functions Ut(·) and Ut+1(·) can both be replaced



24

by U∞(·) (the subscript “∞” means an infinite number of periods to go, contrary to the meaning

of the subscript “t”). Thus, equation (15) becomes

U∞(y) =
∫ y

0+
{v(x) + δU∞(x)}λe−λ(y−x)dx+ {v(b)− s+ δU∞(b)} e−λy. (16)

Note that, in the expression, y is the post-order inventory in the “previous” period, while x is the

beginning inventory of the “current” period.

Similarly, the retailer’s default profit-to-go given previous period’s inventory yt−1 (with no future

orders) can be determined recursively as

U t(yt−1) =
∫ yt−1

0

{
v(xt) + δU t+1(xt)

}
dGt(xt | yt−1)

=

∫ yt−1

0+

{
v(xt) + δU t+1(xt)

}
λe−λ(yt−1−xt)dxt + 0 · e−λyt−1,

which, over the infinite horizon, becomes

U∞(y) =
∫ y

0+
{v(x) + δU∞(x)}λe−λ(y−x)dx.

Finally, the supplier’s expected profit-to-go given the post-order inventory yt−1 in period t− 1
can be expressed recursively as

Πt(yt−1) =
∫ yt−1

0+
δΠt+1(xt)dGt(xt | yt−1) + {s− cb+ δΠt+1(b)}Gt(0 | yt−1),

which simplifies to

Π∞(y) =
∫ y

0+
δΠ∞(x)λe

−λ(y−x)dx+ {s− cb+ δΠ∞(b)} e−λy (17)

over the infinite horizon. The expected profit-to-go for the channel is simply Ψ∞(y) = U∞(y) +

Π∞(y).

Through the transformation h̃(y) = eλyh(y), the above recursive expressions can be transformed

into ordinary differential equations, which can be solved in closed form.

Proposition 6 Under a BOC (b, s) and exponential demand with rate λ, given post-order inventory

y of the previous period, the expected profits-to-go for the retailer, the supplier and the channel are

given by:

U∞(y) = ω(y) +Mue
−λ(1−δ)y, with Mu = −

r
δλ +

h
δ(1−δ)λ +

h
1−δ b+ s

1− δe−λ(1−δ)b
< 0, (18)

U∞(y) = ω(y) +Mue
−λ(1−δ)y, with Mu = −

(1− δ)r + h

δ(1− δ)2λ
< 0, (19)

Π∞(y) =Mπe
−λ(1−δ)y, with Mπ =

s− cb

1− δe−λ(1−δ)b
> 0 (20)

Ψ∞(y) = ω(y) +Mψe
−λ(1−δ)y, with Mψ = −

r
δλ +

h
δ(1−δ)λ +

h
1−δ b+ cb

1− δe−λ(1−δ)b
< 0, (21)
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where

ω(y) = − h

1− δ
y +

(1− δ)r + (2− δ)h

(1− δ)2λ
+

r + h

δλ
e−λy. (22)

Next, the best batch-order quantity b∗ and payment s∗ for the supplier can be uniquely deter-

mined.

Theorem 4 The optimal BOC (b∗, s∗) for the supplier is determined by:

eλ(1−δ)b
∗ − δ(1− δ)λb∗ = 1 +

(1− δ)2(r − c)

h+ (1− δ)c
, (23a)

and

r
δλ +

h
δ(1−δ)λ +

h
1−δ b

∗ + s∗

1− δe−λ(1−δ)b∗
=
(1− δ)r + h

δ(1− δ)2λ
. (23b)

Under this contract, the retailer only earns her reservation profits, i.e., U∞(y) = U∞(y) for all

y ≥ 0.

Under the above BOC, the retailer only orders when her beginning inventory hits zero. The

supplier can set the price s∗ high enough to make the retailer break even and earn her reservation

profit when she places the order. When the beginning inventory is positive, the retailer places no

order and only enjoys her reservation profit. Thus, under any circumstances, the retailer makes

exactly the reservation profit, or, in order words, the information rent is always zero. This is an

important reason the optimal BOC may be particularly attractive to the supplier — it minimizes

the retailer’s information advantage and maximizes the supplier’s leverage in splitting the channel

profits. On the other hand, the BOC is drastically different from the first-best policy (a base-stock

policy), which may result in severe loss of channel efficiency. This trade-off between information

rent and system efficiency is the main trade-off faced by the supplier, as in any other adverse

selection problems.

Our last step involves showing that the optimal BOC derived above is optimal at least when

the cost/price ratios, c
r and h

r , are high. Proposition 1 presents a necessary condition for the

period-t post-order inventory yt(xt) to be optimal, which suggests the examination of the term

∂Jt(yt | xt)
∂yt

. The optimal batch size b∗ found above is in fact the optimal yt(0), which indeed

satisfies ∂Jt(b∗ | 0)
∂yt

= 0 and the corresponding second-order condition (SOC). A main step in our

analysis is to verify that, for xt > 0, the optimal yt(xt) = xt, i.e., order nothing. To that end, it

suffices to show ∂Jt(yt | xt)
∂yt

< 0 for all yt ≥ xt > 0. In general, this is a daunting task because the

virtual surplus Jt(yt | xt) depends upon the supplier’s belief Gt, which is updated from Gt−1, Gt−2,

and so on, through Bayes’ rule. The belief process is typically extremely complicated and depends
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upon the entire history of the contracts and the retailer’s orders. However, under exponential

demand, the belief process has a strong property that Gt(xt)
gt(xt)

≥ λ−1 for xt ∈ (0, xt], for some upper

bound xt (Theorem 3). This property leads to the following sufficient condition for the optimality

of yt(xt) = xt when xt > 0.

Lemma 2 Suppose t ≥ 2. If a BOC (b, s) is offered from period t + 1 onward and δλb ≤ 1, then

in period t, ∂Jt(yt | xt)
∂yt

< 0 for all yt ≥ xt > 0.

We exclude the case t = 1 from the lemma, because G1 is a special distribution with G1(0) = 1

and hence it is unnecessary to consider x1 > 0. Ultimately, the simple condition δλb∗ ≤ 1 leads

to a cost region where the optimal BOC is the optimal short-term contract. Define the relative

production cost c̃ = c
r and relative holding cost h̃ = h

r . We now present the main result of this

section.

Theorem 5 Suppose the demand is exponential and i.i.d. in every period and the relative costs c̃

and h̃ lie above the following line:

[
e
1−δ
δ + δ − 2

]
h̃+ (1− δ)

[
e
1−δ
δ − 1

]
c̃ = (1− δ)2. (24)

Then, for any K ≥ 2, if the optimal BOC (b∗, s∗) defined by (23) is applied from period K onward,

the optimal contracts in periods 1 through K − 1 are also the (b∗, s∗) contract.

The theorem suggests that if the supplier will ever offer the (b∗, s∗) contract in the future, it

should be offered from the start. Because K can be arbitrarily large, the assumption about the

future offer is negligible although it cannot be completely assumed away. This is a strong result

that prevents deviations over any finite number of periods.

Figure 4 illustrates the boundary line of the high-cost region in which the BOC (b∗, s∗) is optimal,

for different values of the discount factor δ. As the figure shows, the larger δ is the higher the costs

should be. To get an idea of the type of products that are described by this cost regime, if we

rewrite the discount factor as a function of interest rate and impute the per-period holding cost as

being close to the per-period interest on the production cost c, we see that slow-moving items with

relatively low service levels fit the description. We note, however, that our numerical results show

that for different demand distributions the BOC performs very well for a larger class of products

(including ones with substantially higher service levels) that are not described theoretically.
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Figure 4: The region of relative costs for the optimal BOC to be the optimal short-term contract,

given δ.

5.2 Performance of the Batch-Order Contracts

In this subsection, we test the performance of the optimal BOC in various scenarios. Clearly, all

our assumptions that lead to the optimality result need to be relaxed and the performance thereof

tested. It is interesting and important to understand the loss to the system due to information

asymmetry even when the BOCs are optimal (i.e., in the high-cost domains with exponential

demand). This gives us an idea of the value of information. We also compare the BOC to simple

wholesale-price contracts (where a unit price wt is used in period t). We then check the performance

of the contract derived by optimizing over the class of BOCs in situations in which the BOC may

not be optimal. These include situations in which the costs are not in the high-cost domain and

when the demand distribution is not necessarily exponential.

In the single-period case, we have performed extensive numerical experiments using various

combinations of demand and initial-inventory distributions, which are omitted here due to space

limitations. A few noteworthy facts emerge from this analysis. For any distribution of the demand,

the supplier’s profits are at the lowest when the initial-inventory distribution is uniform. In the

worst possible case, our numerical results indicate that the optimal BOC brings about an increase

in profits that is significantly greater than when optimizing over classes of certain simpler contracts

such as linear or piecewise-linear contracts. We have presented some numerical results for the

two-period model under exponential demand in §4.5. The results show that the BOC performs

extremely well compared with the optimal contract, for a wide range of parameters.
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For the infinite-horizon case, we begin with a numerical comparison of the optimal BOC with

the optimal wholesale-price contract (WPC) and the first-best contract (FBC) under exponential

demand distribution. We note that the optimal WPC and the FBC are both stationary base-stock

policies, which can be computed relatively easily, and hence their derivations are omitted. We shall

focus on the channel profits and the supplier’s profits when the system starts with zero inventory,

i.e., Ψ∞(0) and Π∞(0). For brevity and clarity, we denote the profits by symbols such as ΨBOC and

ΠBOC , where the subscript represents the contract type and the (zero) initial inventory is implicit.

Assume δ = 0.9, λ = 0.1, 0.4 ≤ c/r ≤ 0.9, and 0 ≤ h/r ≤ 0.3; Figure 5 illustrates the expected

channel profits and supplier’s profits under the three contracts, in both absolute and relative terms

(panels a and b, respectively). Under an optimal BOC, when the beginning inventory is zero, the

supplier can extract all channel profit (by Theorem 4 and the fact that U∞(0) = 0), and therefore

ΨBOC = ΠBOC . The same is true for the FBC and hence ΨFBC = ΠFBC . Thus, there are only

four distinctive absolute-profit measures, ΨFBC , ΨBOC , ΨWPC and ΠWPC , which are depicted in

Figure 5(a). Figure 5(b) depicts three relative-profit measures:

ΨBOC

ΨFBC
,
ΨWPC

ΨFBC
, and

ΠWPC

ΠFBC
.

Notice that ΠBOC
ΠFBC

= ΨBOC
ΨFBC

. Another interesting measure, ΠWPC

ΠBOC
, can be simply obtained from

ΠWPC

ΠFBC

/
ΨBOC
ΨFBC

.

Obviously, as the relative costs c/r and h/r increase, the expected channel profits and supplier’s

profits under all contracts decline. A closer examination of Figure 5(b) tells that: (1) the channel

profit (supplier’s profit) under the optimal BOC captures 85% - 95% of the first-best channel profit

(supplier’s profit); (2) the channel profit under the optimal WPC captures 76% - 81% of the first-

best channel profit; and (3) the supplier’s profit under the optimal WPC only captures 52% - 63%

of his first-best profit. Therefore, the BOC performs very well against the FBC and significantly

better than the WPC across the given cost region. The performance enhances as the relative costs

increase (and moves into the optimality region of the BOC). If the relative costs are low, the BOC

may no longer be optimal but is still a good heuristic solution. Because it already captures at least

85% of the first-best profit, the benefit of a more sophisticated contract in order to achieve supplier

optimality seems not very substantial (at the boundary of the high-cost region, even the optimal

short-term contract can only capture about 86.6% of the first-best profit). These observations are

consistent with the two-period results presented in §4.5.

Next, we expand this study to a wider range of model parameters and to other demand distri-

butions through simulation. An interesting numerical inference we observe from our experiments
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(a) (b) 

Figure 5: (a) Expected channel profits and supplier’s profits under the three contracts: ΨFBC

(ΠFBC), ΨBOC (ΠBOC), ΨWPC , and ΠWPC , in decreasing order. (b) Profit ratios ΨBOC/ΨFBC ,

ΨWPC/ΨFBC , and ΠWPC/ΠFBC , in decreasing order. Assume δ = 0.9, 0.4 ≤ c/r ≤ 0.9, 0 ≤ h/r ≤
0.3, and exponential demand with rate λ = 0.1.

is that in high-cost domains, the optimal BOC for several often-used distributions performs quite

well when compared to the first-best. This leads us to think that it is plausible that BOCs are

either optimal or close to optimal for a wider set of scenarios than what we have characterized in

our paper, although we are unable to prove this conjecture analytically.

We use the following relative performance benchmarks: ΨBOC
ΨFBC

, ΨWPC

ΨFBC
, and ΠWPC

ΠBOC
. The other

interesting measure, ΠWPC

ΠFBC
, can be obtained through ΠWPC

ΠBOC
× ΨBOC

ΨFBC
. We report results for four

distributions: Exponential, Uniform, Normal, and Gamma. The performance benchmarks were

quite robust to the specific parameters of these distributions and the discount factor. Thus, we do

not report these. However, the cost parameters are more important. We look at values c
r ∈ (0, 1)

and h
r ∈ (0, 0.5), which we believe covers all realistic scenarios and includes both the high-cost

domain as well as cost regions where we may not have BOCs as being optimal.

As can be seen from the table, the general trend is that the use of the optimal BOC on average

results in less than 15% of loss as compared to the first-best situation. This is noteworthy in

that we are looking at a system in which the supplier is unable to observe downstream inventory

information over the entire horizon. Thus, the value of optimal dynamic contracting seems to be

quite high. This is especially the case when we compare with simpler mechanisms such as wholesale-

price contracts, in which the loss is considerable, especially for the supplier. We do not report here

the results obtained when we used a slightly more complicated quantity discount schedule (with
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Measure ΨBOC/ΨFBC ΨWPC/ΨFBC ΠWPC/ΠBOC

Mean St.dev. Mean St.dev. Mean St.dev.

Distribution % % % % % %

Exponential 91 6.7 79 8.2 53 8.5

Uniform 86 7.3 74 5.3 46 4.0

Truncated Normal 90 5.8 72 4.6 58 8.0

Gamma 90 5.8 81 5.9 48 4.7

Table 1: Performance of the BOC: the channel-profit ratio between the optimal BOC and the FBC,

channel-profit ratio between the optimal WPC and the FBC, and supplier-profit ratio between the

optimal WPC and optimal BOC.

a few linear pieces). We find that quantity discount schedules in general perform much better

than simple wholesale-price mechanism. This should not come as a surprise, as the optimal static

contract displayed a quantity discount property (with infinite number of pieces). However, when

we extend the length of the horizon, BOCs dominate simple quantity discount schedules as well.

In summary, the BOC performs quite well as compared to first-best and much better than often

used simpler contracts.

As mentioned, the results are robust to discount factors, though the general trend indicates that

BOCs perform slightly better when δ is smaller. As the relative costs increase, the performance of

the BOC for the supplier becomes more significant, though obviously the size of the total pie gets

smaller.

As a final remark of this section, we note that the mode of contracting has a significant impact

on the supplier’s profit. If the system starts with zero inventory, the supplier can implement the

first-best order plan and extract all channel profit through a long-term contract: he can simply

charge a unit price c in every period, to induce first-best actions from the retailer, and a lump-sum

fee at the beginning of the horizon, to extract the channel profit. This contract is feasible only if the

supplier can make a credible commitment that he will not raise the price later or take the money and

run. Further, it can extract all channel profit only if the initial inventory is public information. The

above numerical and simulation results show that the inability to carry out a long-term contract

costs the supplier 5% - 15% of the potential profit. Although this may be viewed as an argument

in favor of long-term contracts, we must keep in mind that the type of contract which can actually

be used is often dictated by real-world conditions and that short-term contracts are widely used in

supply chain environments.
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6 Conclusion

We have analyzed a dynamic adverse selection model in which a supplier sells to a downstream

retailer. Our analysis yields insights that are potentially valuable to academics and practitioners.

First, we demonstrate that information asymmetry has a clear and negative impact on system

efficiency. In the single-period case, the supplier’s optimal contract structure is such that when

the retailer reports a high initial inventory, the contract deems the situation as unfavorable to

the supplier (because the retailer’s purchasing requirement is small) and there will be no trade.

Though this seems somewhat extreme, the obvious intuition is that the optimal contract ensures

that the retailer will not inflate her inventory position to secure deep discounts from the supplier.

Clearly, due to this distortion effect, the system loses as compared to the first-best benchmark.

Our numerical analysis suggests that the optimal contract captures significantly greater profits

than simpler contracts such as linear or simple piecewise-linear contracts. Similar results are shown

in the two-period case, which demonstrate the value of optimal contracting under asymmetric

inventory information in the finite-horizon setting.

When we analyze the infinite-horizon contract with exponential demand, we show that the

optimal contract in the high cost region is a stationary batch-order contract. A BOC is reminiscent

of the well known (s, S) policy in inventory systems with fixed costs. Thus, one insight that we

get is that the effect of asymmetric information imputes a fixed charge to this supply chain. While

the relationship between this charge and the exact value of information is not obvious, the above

structure is nevertheless somewhat interesting. Further, the BOC is of value to the supplier even

when it is not optimal. Extensive numerical experiments (in the exponential demand case and

otherwise) indicate that optimizing over BOCs dominates using simple well-understood contracts

such as linear and piecewise-linear wholesale-price contracts. An important feature of BOCs is

their elegant form and ease of implementation. The fact is particularly striking in a problem like

this when even the optimal two-period contract can be extremely complex.

In our analysis, we have made several assumptions, some of which are somewhat strong. How-

ever, given the difficulty of the analysis and the fact that this is the first piece of work in this area,

we feel that the assumptions may be warranted. Further, we are able to obtain sharp results for this

problem once these assumptions are made. As we have seen, the results by themselves seem robust

when we check them on various scenarios in which our assumptions may not hold, which leads us

to believe that they may have significant practical value. Further, we hope that the progress we

have made on a challenging problem encourages future research in this area.
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Appendix A - Solving the Single-Period Model

First, recall that

v1(y1) = rEmin{y1, D1} =
∫ y1

0
rF (ξ)dξ, (A1a)

v′1(y1) = rF (y1) ≥ 0, (A1b)

v′′1(y1) = −rf(y1) ≤ 0. (A1c)

Because u′1(x1) = v′1(x1 + q1(x1)), we can show that u1(y0) = v1(y0) and

u1(x1) = u1(y0)−
∫ y0

x1

v′1(x̂1 + q1(x̂1))dx̂1, x1 ∈ [0, y0].

In order to prove Theorems 1 and 2, we first show the following lemma.

Lemma A1 1. An incentive compatible order plan q1(x1) must be (weakly) decreasing in x1.

2. At an optimal solution, the IR constraint (1c) must be binding at y0 and redundant at x1 ∈
[0, y0).

3. A contract {s1(x1), q1(x1)} satisfies the global IC constraint (1b) if and only if (4) holds and

q1(x1) is weakly decreasing in x1.

P���� �� L���� A1. (1) In the single-period setting, if there exist x′1 �= x′′1 such that q1(x
′
1) =

q1(x
′′
1), then the contract must ensure s1(x

′
1) = s1(x

′′
1); otherwise, the retailer facing inventory x′1

(x′′1) will report x′′1 (x′1) when s1(x′1) < (>)s1(x′′1) and incentive compatibility is violated. Thus,

any possible q1(x1) is paired with a unique s1(x1) and the revelation contract {(s1(x1), q1(x1)} is

equivalent to a tariff {s1(q1)}. Facing a tariff, the retailer will choose q1(x1) = argmaxq1{v1(x1 +

q1) − s1(q1)}. Since ∂2v1(x1+q1)
∂x1∂q1

= v′′1(x1 + q1) ≤ 0, v1(x1 + q1) − s1(q1) has decreasing differences

and q1(x1) must be (weakly) decreasing in x1 (Topkis 1998).

(2) From (1b), we have v1(x1+q1(x1))−s1(x1)−v1(x1) ≥ v1(x1+q1(y0))−s1(y0)−v1(x1). From

v′′1(y1) ≤ 0 and part (1), we have v1(x1+q1(y0))−v1(x1)−s1(y0) ≥ v1(y0+q1(y0))−v1(y0)−s1(y0) ≥

0. Since the supplier’s problem maximizes s1(·), v1(y0 + q1(y0))− v1(y0)− s1(y0) = 0 at optimum.

(3) Consider the “⇒” direction and assume the contract {s1(x1), q1(x1)} satisfies the global IC

constraint (1b). Then, the analysis in the main text (the envelope theorem) leads to the local IC

constraint (3), and part (1) above proves the (weak) monotonicity of q1(x1). From expression (3)
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to (4), we need to verify that u1(x1) is continuous at 0 (even when q1(x1) is discontinuous at 0 in

the case of G(0) > 0). Consider the IC constraints (1b) involving x1 = 0 or x̂1 = 0:

v1(x1 + q1(x1))− s1(x1) ≥ v1(x1 + q1(0))− s1(0), x1 ∈ (0, y0],

v1(q1(0))− s1(0) ≥ v1(q1(x1))− s1(x1), x1 ∈ (0, y0].

They are equivalent to:

u1(x1) ≥ u1(0) + v1(x1 + q1(0))− v1(q1(0)), x1 ∈ (0, y0], (A2)

u1(0) ≥ u1(x1) + v1(q1(x1))− v1(x1 + q1(x1)), x1 ∈ (0, y0]. (A3)

By letting x1 = 0+ in (A2) and (A3), we obtain 0 ≥ u1(0) − u1(0
+) ≥ 0 by continuity of v1(·).

Thus, u1(0) = u1(0
+).

For the reverse direction “⇐”, consider the case x1 > x̂1 (the case x1 < x̂1 is similar). We have

u1(x1)− [v1(x1 + q1(x̂1))− s1(x̂1)]

=

[
u1(y0)−

∫ y0

x1

v′1(z1 + q1(z1))dz1

]
− [u1(x̂1) + v1(x1 + q1(x̂1))− v1(x̂1 + q1(x̂1))]

=

[
u1(x̂1) +

∫ x1

x̂1

v′1(z1 + q1(z1))dz1

]
−
[
u1(x̂1) +

∫ x1

x̂1

v′1(z1 + q1(x̂1))dz1

]

=

∫ x1

x̂1

[
v′1(z1 + q1(z1))− v′1(z1 + q1(x̂1))

]
dz1.

Because q1(z1) ≤ q1(x̂1) and v′′1(·) ≤ 0, the above expression must be non-negative and the global

IC constraint is satisfied.

P���� �� T����� 1. Substituting s1(x1) = v1(x1 + q1(x1))− u1(x1) in the objective function

(1a) and using (4), we obtain
∫ y0

0
{v1(x1 + q1(x1))− u1(x1)− cq1(x1)}dG(x1)

=

∫ y0

0
{v1(x1 + q1(x1))− cq1(x1)}dG(x1) +

∫ y0

0

∫ y0

x1

v′1(x̂1 + q1(x̂1))dx̂1dG(x1)− u1(y0)

=

∫ y0

0
{v1(x1 + q1(x1))− cq1(x1)}dG(x1) +

∫ y0

0

∫ x̂1

0
v′1(x̂1 + q1(x̂1))dG(x1)dx̂1 − u1(y0)

=

∫ y0

0
{v1(x1 + q1(x1))− cq1(x1)}dG(x1) +

∫ y0

0
v′1(x̂1 + q1(x̂1))G(x̂1)dx̂1 − u1(y0)

=

∫ y0

0+

{
v1(x1 + q1(x1))− cq1(x1) + v′1(x1 + q1(x1))

G(x1)

g(x1)

}
g(x1)dx1

+ {v1(q1(0))− cq1(0)}G(0)− u1(y0)

=

∫ y0

0+
J1(x1, q1(x1))g(x1)dx1 + J1(0, q1(0))G(0)− u1(y0).
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The above function is maximized by q1(x1) = argmaxq1≥0 J1(x1, q1(x1)), x1 ∈ [0, y0]. If this

q1(x1) is weakly decreasing, Lemma A1(3) implies that it is incentive compatible and thus solves

the supplier’s problem. Note that for any x1 ∈ (0, y0], the solution to maxq1≥0 J1(x1, q1) is either

0 or solves the FOC ∂J1(x1,q1)
∂q1

= 0. For x1 = 0, the FOC v′1(q1(0)) − c = 0 leads to F (q1(0)) =

r−c
r . If G(0) = 0, we have limx1→0+ G(x1) = 0 and limx1→0+ J1(x1, q1) = v1(q1) − cq1, and

hence limx1→0+ q1(x1) = q1(0). If G(0) > 0, because q1(0
+) ≡ limx→0+ q1(x1) solves F (q1(0

+)) +

f(q1(0
+))G(0

+)
g(0+)

= r−c
r and f(q1(0

+))G(0
+)

g(0+)
> 0, we must have F (q1(0

+)) < r−c
r and thus q1(0

+) <

q1(0). The SOC amounts to

∂2J1(x1, q1)/∂q
2
1 = v′′1(x1 + q1) + v′′′1 (x1 + q1)

G(x1)

g(x1)
≤ 0, or

g(x1)

G(x1)
+

v′′′1 (x1 + q1)

v′′1(x1 + q1)
≥ 0.

To ensure the above q1(x1) decreasing in x1, it is sufficient to show that

∂2J1(x1, q1)/∂x1∂q1 = v′′1(x1 + q1) + v′′′1 (x1 + q1)
G(x1)

g(x1)
+ v′′1(x1 + q1)

d

dx

(
G(x1)

g(x1)

)
≤ 0

(Topkis 1998). The inequality holds when d
dx1

(
G(x1)
g(x1)

)
≥ 0. The remaining results follow by

substituting expressions for derivatives of v1(·), (A1b) and (A1c).

P���� �� T����� 2. Since q1(x1) solves F (x1 + q1) + f(x1 + q1)
G(x1)
g(x1)

= r−c
r for any x1 > 0,

the first-order derivative with respect to x1 of the left hand side yields:

f(x1 + q1)
(
1 + q′1(x1)

)
+ f ′(x1 + q1)

G(x1)

g(x1)

(
1 + q′1(x1)

)
+ f(x1 + q1)

d

dx1

(
G(x1)

g(x1)

)

=

(
f(x1 + q1) + f ′(x1 + q1)

G(x1)

g(x1)

)(
1 + q′1(x1)

)
+ f(x1 + q1)

d

dx1

(
G(x1)

g(x1)

)

= f(x1 + q1)
G(x1)

g(x1)

(
g(x1)

G(x1)
+

f ′(x1 + q1)

f(x1 + q1)

)(
1 + q′1(x1)

)
+ f(x1 + q1)

d

dx1

(
G(x1)

g(x1)

)
.

We know that g(x1)
G(x1)

+ f ′(x1+q1)
f(x1+q1)

≥ 0 and d
dx1

(
G(x1)
g(x1)

)
≥ 0 from conditions (6) and (7). Further, if

the first inequality is strict, we must have 1 + q′1(x1) ≤ 0 for the above expression to equal zero,

and hence q′1(x1) ≤ −1.

The functions q1(x1), v1(x1), u1(x1) and s1(x1) are continuous for x1 > 0. By equation (2),

s1(x1) = v1(x1 + q1(x1))− u1(x1), and by equation (3),

s′1(x1) = v′1(x1 + q1(x1))(1 + q′1(x1))− v′1(x1 + q1(x1)) = v′1(x1 + q1(x1))q
′
1(x1).

Equation (A1b) implies
ds1
dq1

=
s′1(x1)
q′1(x1)

= rF (x1 + q1(x1)) ≥ 0.
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Furthermore,

d2s1
(dq1)2

=
d

dx1

(
ds1
dq1

)/
q′1(x1)

=
−rf(x1 + q1(x1)) (1 + q′1(x1))

q′1(x1)

= −rf(x1 + q1(x1))
(
(q′1(x1))

−1 + 1
)
.

Because (q′1(x1))
−1 ≥ −1 from part (1), d2s1

(dq1)2
≤ 0.

Exponential demand distribution

We now look at some special distributions. We first consider exponential demand with rate

λ. The demand distribution has c.d.f. F (ξ) = 1 − e−λξ and p.d.f. f(ξ) = λe−λξ, ξ ≥ 0. This

distribution has the following properties (a ∧ b denotes min(a, b)):

F (ξ) = 1− e−λξ, ξ ≥ 0,

f(ξ) = λe−λξ, ξ ≥ 0,

f ′(ξ) = −λ2e−λξ = −λf(ξ), ξ ≥ 0,

E(y ∧D) = λ−1(1− e−λy), y ≥ 0.

Under the assumptions of lost sales and no salvage value for unsold items, according to (A1),

the retailer’s revenue function and its derivatives are given by: v1(y1) = λ−1r(1− e−λy1), v′1(y1) =

re−λy1 , and v′′1(y1) = −rλe−λy1 , and the first-order derivative ∂J1(x1,q1)
∂q1

is given by (9).

Consider two cases of the initial-inventory distribution G(x1). First, assume G(x1) is uniform.

Since G(x1)
g(x1)

= x1, the FOC (8) reduces to r (1− λx1) e
−λ(x1+q1) − c = 0. The optimal order plan

q1(x1) can be computed from Theorem 1 and equation (8). Notice that there is a unique x1 < λ−1

such that r (1− λx1) e−λx1 − c = 0, or, λ−1 ln
[
r
c (1− λx1)

]
− x1 = 0. For x1 ≤ x1, the conditions

(6) and (7) hold true: g(x1)
G(x1)

+ f ′(x1+q1)
f(x1+q1)

= x−11 − λ ≥ (x1)−1−λ > 0, and d
dx1

(
G(x1)
g(x1)

)
= 1 > 0. The

optimal payment plan s1(x1) can be computed accordingly, which leads to the following results.

Proposition A1 Suppose the demand distribution F (ξ) is exponential with rate λ and the initial-

inventory distribution G(x1) is uniform over [0, y0]. Then, the optimal order plan is given by:

q1(x1) =

{
λ−1 ln

[
r
c (1− λx1)

]
− x1, x1 ∈ [0, x1 ∧ y0],

0, x1 ∈ (x1 ∧ y0, y0],
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where x1 < λ−1 solves λ−1 ln
[
r
c (1− λx1)

]
− x1 = 0. The optimal payment plan is given by:

s1(x1) =





λ−1c
(

1
1−λ(x1∧y0) −

1
1−λx1 + ln

(
1−λx1

1−λ(x1∧y0)

))
, x1 ∈ [0, x1 ∧ y0],

0, x1 ∈ (x1 ∧ y0, y0].

P���� �� P���������� A1. The payment plan can be computed as

s1(x1) = v1(x1 + q1(x1))− u1(x1)

= v1(x1 + q1(x1))−
[
u1(x1 ∧ y0)−

∫ x1∧y0

x1

v′1(x̂1 + q1(x̂1))dx̂1

]

= v1(x1 + q1(x1))− v1(x1 ∧ y0) +

∫ x1∧y0

x1

v′1(x̂1 + q1(x̂1))dx̂1

= λ−1r(1− e−λ(x1+q1(x1)))− λ−1r(1− e−λ(x1∧y0)) +
∫ x1∧y0

x1

re−λ(x̂1+q1(x̂1))dx̂1

= λ−1r

(
c/r

1− λ(x1 ∧ y0)
− c/r

1− λx1

)
+

∫ x1∧y0

x1

c

1− λx̂1
dx̂1

= λ−1c

(
1

1− λ(x1 ∧ y0)
− 1

1− λx1

)
− λ−1c ln(1− λx̂1)

∣∣x1∧y0
x1

= λ−1c

(
1

1− λ(x1 ∧ y0)
− 1

1− λx1
+ ln

(
1− λx1

1− λ(x1 ∧ y0)

))
.

Second, assume the initial inventory x1 = (y0 −D0)+, where D0 also follows the exponential

distribution with rate λ. In this case, G(x1) = e−λ(y0−x1), 0 ≤ x1 ≤ y0, with a point mass at 0,

and g(x1) = λe−λ(y0−x1), 0 < x1 ≤ y0. The first-order derivative (9) reduces to
∂J1(x1,q1)

∂q1
= −c < 0.

Theorem 1 then implies that q1(x1) = 0 for x1 ∈ (0, y0] and q1(0) solves 1 − e−λq1 = r−c
r . The

optimal payment plan can be derived accordingly. Thus, we obtain the following results.

Proposition A2 Suppose the demand distribution F (ξ) is exponential with rate λ and the initial

inventory is given by x1 = (y0−D0)
+, where D0 is also exponentially distributed with rate λ. Then,

the optimal order and payment plans are

q1(x) =

{
λ−1 ln(rc ), x1 = 0,

0, x1 ∈ (0, y0],
s1(x1) =

{
λ−1(r − c), x1 = 0,

0, x1 ∈ (0, y0].

Uniform demand distribution

We next discuss the case in which the demand is uniformly distributed over [0,D] (i.e., F (ξ) = ξ

D

and p.d.f. f(ξ) = 1
D
, ξ ∈ [0,D]). The retailer’s expected revenue and its derivatives are given by:

v1(y1) =

{
rEmin{y1, ξ} = ry1 − r

2D
y21, if y1 ≤ D

1
2rD, if y1 ≥ D

,
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v′1(y1) =

{
rF (y1) = r(1− y1

D
), if y1 ≤ D

0, if y1 ≥ D
, v′′1(y1) =

{
−rf(y1) = − r

D
, if y1 ≤ D

0, if y1 ≥ D
.

Again, we consider two cases of the initial-inventory distribution G(x1). First, assume G(x1) is

uniform over [0, y0]. The FOC (8) reduces to:

x1 + q1

D
+

x1

D
=

r − c

r
or 2x1 + q1 = y∗1,

where y∗1 =
r−c
r D. Let x1 be the solution of 2x1 + 0 = y∗1, or x1 =

y∗1
2 (x1 is the smallest x1 such

that q1(x1) = 0). The optimal quantity plan is therefore given by:

q1(x1) =

{
y∗1 − 2x1, x1 ∈ [0, x1]

0, x1 ∈ [x1, y0]

}
. (A4)

We see that q1(x1) hits zero at
y∗1
2 and q′1(x1) = −2 on x1 ∈ [0, y

∗
1
2 ]. The retailer’s profit u1(x1) can

be computed from (4) and the payment plan can be obtained from s1(x1) = v1(x1+q1(x1))−u1(x1).

Next, assume the initial inventory x1 = (y0−D0)
+, where D0 also follows the distribution F (·).

The optimal order quantity q1(x1) can be computed from Theorem 1. After some straightforward

algebra, we obtain

q1(x1) =





y∗1, x1 = 0

2x1 − 2x1, x1 ∈ (0, x+1 ]
0, x1 ∈ (x+1 , y0]





,

where x1 =
1
2(y0 − c

rD) and x+1 = max{x1, 0}. Notice that 2x1 < y0 ≤ x1, hence q1(0+) < q1(0),

which confirms that q1(x1) is discontinuous at 0. The retailer’s profit u1(x1) can be computed

from (4) and the payment plan can be obtained from s1(x1) = v1(x1+ q1(x1))− u1(x1). Note that

although u1(x1) is continuous at 0, s1(x1) is not.

To simplify expressions, we make the following assumption with no loss of generality:

Assumption (Normalization). Assume the retail price r = 1, the production cost c ∈ [0, 1], and

the inventory holding cost h ∈ [0, 1]. The demand is uniformly distributed on [0, 1], i.e., D = 1.

Under this assumption, given “previous” inventory position y0, the distribution of the initial

inventory x1 in period 1 follows G(x1|y0) = x1+1−y0, x1 ∈ [(y0−1)+, y0]. The retailer’s expected

revenue and its derivatives in period 1 are simplified to:

v1(y1) =

{
y1 − 1

2y
2
1, if y1 ≤ 1

1
2 , if y1 ≥ 1

, v′1(y1) =

{
1− y1, if y1 ≤ 1
0, if y1 ≥ 1

, v′′1(y1) =

{
−1, if y1 ≤ 1
0, if y1 ≥ 1

.
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The period-1 channel-optimal inventory position is y∗1 = 1 − c, and the upper bound for positive

order is x1(y0) =
1
2(y0−c). The solution to the single-period problem can be summarized as below.

Proposition A3 Suppose previous inventory position is y0. Under the normalization assumption,

the supplier’s optimal contract in period 1 can take one of four different forms, depending on y0:

(a) 0 ≤ y0 ≤ c,

q1(x1|y0) =
{
1− c, x1 = 0

0, x1 ∈ (0, y0]
; u1(x1|y0) = v1(x1), x1 ∈ [0, y0] ;

(b) c ≤ y0 ≤ 1,

q1(x1|y0) =





1− c, x1 = 0

y0 − c− 2x1, x1 ∈ (0, x1(y0))
0, x1 ∈ [x1(y0), y0]

;

u1(x1|y0) =
{

v1(x1) + (x1(y0)− x1)2, x1 ∈ [0, x1(y0))
v1(x1), x1 ∈ [x1(y0), y0]

;

(c) 1 ≤ y0 ≤ 2− c,

q1(x1|y0) =
{

y0 − c− 2x1, x1 ∈ [y0 − 1, x1(y0))
0, x1 ∈ [x1(y0), y0]

;

u1(x1|y0) =
{

v1(x1) + (x1(y0)− x1)
2, x1 ∈ [y0 − 1, x1(y0))

v1(x1), x1 ∈ [x1(y0), y0]
;

(d) y0 ≥ 2− c,

q1(x1|y0) = 0, x1 ∈ [y0 − 1, y0]; u1(x1|y0) = v1(x1), x1 ∈ [y0 − 1, y0].

The optimal contract is illustrated in Figure A1.

P���� �� P���������� A3. The order quantity plan q1(x1|y0) is derived in the previous section.

The retailer’s profit function u1(x1|y0) follows from (4): when x1 ∈ [x1(y0)+, y0], u1(x1 | y0) =

v1(x1); when x1 ∈ [(y0 − 1)+, x1(y0)+) and x1(y0) > 0 (otherwise the interval [(y0 − 1)+, x1(y0)+)
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1y  *

1y  

Figure A1: Optimal quantity plan q1(x1|y0) under uniform demand: (a) 0 ≤ y0 ≤ c; (b) c ≤ y0 ≤ 1;
(c) 1 ≤ y0 ≤ 2− c; (d) y0 ≥ 2− c.

will be empty),

u1(x1 | y0) = v1(x1(y0))−
∫ x1(y0)

x1

v′1 (z1 + q1(z1|y0)) dz1

= v1(x1(y0))−
∫ x1(y0)

x1

[1− z1 − q1(z1|y0)]dz1

= v1(x1(y0))−
∫ x1(y0)

x1

(1− z1)dz1 +

∫ x1(y0)

x1

q1(z1|y0)dz1

= v1(x1) +

∫ x1(y0)

x1

q1(z1|y0)dz1

= v1(x1) + 2

∫ x1(y0)

x1

(x1(y0)− z1)dz1

= v1(x1) + (x1(y0)− x1)
2.

Normal demand distribution

The analysis for this case is omitted due to space limitations. It can be obtained from the

authors upon request.
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Appendix B - Proofs for the Multi-Period Model

P���� �� P���������� 1. Let gt(xt) be the p.d.f. corresponding to the c.d.f. Gt(xt), which

exists on (0, xt). The objective function (10a) can be rewritten as
∫ xt

0
{st(xt)− cqt(xt) + δΠt+1(xt + qt(xt))}dGt(xt)

=

∫ xt

0
{vt(xt + qt(xt))− cqt(xt) + δΨt+1(xt + qt(xt))− ut(xt | Gt)}dGt(xt)

=

∫ xt

0

{
vt(xt + qt(xt))− cqt(xt) + δΨt+1(xt + qt(xt)) +

∫ xt

xt

u′t(z | Gt)dz

}
dGt(xt)

− ut(xt | Gt)Gt(xt)

=

∫ xt

0
{vt(xt + qt(xt))− cqt(xt) + δΨt+1(xt + qt(xt))} dGt(xt) +

∫ xt

0
u′t(z | Gt)Gt(z)dz

− ut(xt | Gt)Gt(xt)

=

∫ xt

0+

{
vt(xt + qt(xt))− cqt(xt) + δΨt+1(xt + qt(xt)) + u′t(xt | Gt)

Gt(xt)

gt(xt)

}
gt(xt)dxt

+ {vt(qt(0))− cqt(0) + δΨt+1(qt(0))}Gt(0)− ut(xt | Gt)Gt(xt)

=

∫ xt

0+

{
vt(yt(xt))− cyt(xt) + δΨt+1(yt(xt))

+
(
v′t(yt(xt)) + δ ∂Ut+1(yt(xt) | yt(xt))

∂yt

)
Gt(xt)
gt(xt)

}
g(xt)dxt +

∫ xt

0+
cxtgt(xt)dxt

+ {vt(qt(0))− cqt(0) + δΨt+1(qt(0))}Gt(0)− ut(xt | Gt)Gt(xt).

The above analysis used two facts: (1) the distribution Gt(xt) may have a point mass at xt = 0

and thus dGt(0) = Gt(0) > 0 in general; (2)
∫ xt
0

∫ xt
xt

u′t(z | Gt)dzdGt(xt) =
∫ xt
0 u′t(z | Gt)Gt(z)dz,

by switching the order of integrations.

The above expression implies that in the separating region the optimal order plan, qt(xt), or

the optimal post-order inventory level, yt(xt), maximizes Jt(yt | xt) for any xt ∈ [0, xt] subject to

yt ≥ xt. The FOC and the lower-bound constraint imply the results. The first-order derivative

∂J(yt | xt)
∂yt

, which is used later in our analysis, is given by

∂J(yt | xt)
∂yt

=

{
v′t(yt)− c+ δΨ′t+1(yt) +

(
v′′t (yt) + δ d

dyt

(
∂Ut+1(yt | yt)

∂yt

))
Gt(xt)
gt(xt)

, xt ∈ (0, xt]
v′t(yt)− c+ δΨ′t+1(yt), xt = 0

. (B1)

P���� �� T����� 3. Recall that, for any fixed yt−1, the distribution Gt(xt|yt−1) = e−λ(yt−1−xt),

for 0 ≤ xt ≤ yt−1, and gt(xt|yt−1) = λe−λ(yt−1−xt), for 0 < xt ≤ yt−1, which satisfies Gt(xt|yt−1)
gt(xt|yt−1) =
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λ−1, for 0 < xt ≤ yt−1. We generalize the domains of Gt and gt such that Gt(xt|yt−1) = 1 and

gt(xt|yt−1) = 0 for 0 ≤ yt−1 < xt. Then, we have gt(xt|yt−1) = ∂Gt(xt|yt−1)
∂xt

for all xt > 0 and

yt−1 ≥ 0 and

Gt(xt|yt−1)
gt(xt|yt−1)

=

{
λ−1, 0 < xt ≤ yt−1
+∞, 0 ≤ yt−1 < xt

}
≥ λ−1, for xt > 0 and yt−1 ≥ 0. (B2)

Because

Gt(xt|yt−1 ∈ qt−1 + St−1) =

∫
xt−1∈St−1 Gt(xt|xt−1 + qt−1)dGt−1(xt−1)∫

xt−1∈St−1 dGt−1(xt−1)
,

gt(xt|yt−1 ∈ qt−1 + St−1) =

∫
xt−1∈St−1 gt(xt|xt−1 + qt−1)dGt−1(xt−1)∫

xt−1∈St−1 dGt−1(xt−1)
,

expression (B2) implies that

Gt(xt|yt−1 ∈ qt−1 + St−1)
gt(xt|yt−1 ∈ qt−1 + St−1)

=

∫
xt−1∈St−1 Gt(xt|xt−1 + qt−1)dGt−1(xt−1)∫
xt−1∈St−1 gt(xt|xt−1 + qt−1)dGt−1(xt−1)

≥ λ−1, for 0 < xt ≤ b,

(B3)

where b = max{xt−1 + qt−1 : xt−1 ∈ St−1}.

P���� �� P���������� 2. Given belief GT (xT ) of the beginning inventory (assuming xT ∈

[0, xT ]), because Ψ
′
T+1(·) = U ′′T+1(·) = 0, v′T (yT ) = re−λyT , and v′′T (yT ) = −rλe−λyT , the first-order

partial derivative of the virtual surplus becomes

∂JT (yT | xT )/∂yT =
{

re−λyT − c, xT = 0,

r
[
1− λGT (xT )

gT (xT )

]
e−λyT − c, xT ∈ (0, xT ].

(B4)

Thus, qT (0) satisfies re−λy
∗

T − c = 0, or, y∗T = λ−1 ln( rc ). By Theorem 3, GT (xT ) is weakly reverse

exponential and hence GT (xT )
gT (xT )

≥ λ−1 for xT > 0. Thus, when xT ∈ (0, xT ], ∂JT (yT | xT )
∂yT

≤ −c < 0 for

all yT ≥ 0, implying that qT (xT ) = 0. The payment function sT (·) can be determined accordingly.

P���� �� L���� 1. By definition and Proposition 2,

UT (yT−1) =
∫ yT−1

0+
vT (xT )λe

−λ(yT−1−xT )dxT = re−λyT−1
∫ yT−1

0+
(eλxT − 1)dxT

= re−λyT−1(λ−1(eλyT−1 − 1)− yT−1) = λ−1r − λ−1(r + rλyT−1)e
−λyT−1,

ΨT (yT−1) = (vT (y
∗
T )− cy∗T )e

−λyT−1 +
∫ yT−1

0+
vT (xT )λe

−λ(yT−1−xT )dxT

= λ−1(r − c− c ln(
r

c
))e−λyT−1 + λ−1r − λ−1(r + rλyT−1)e

−λyT−1

= λ−1r − λ−1
(
c+ c ln

(r
c

)
+ rλyT−1

)
e−λyT−1 .



11

P���� �� P���������� 3. When xT−1 = 0, by Lemma 1,

∂JT−1(yT−1 | xT−1)
∂yT−1

= v′T−1(yT−1)− c+ δΨ′T (yT−1)

= (r + h)e−λyT−1 − h− c+ δ
[
λryT−1 − r + c+ c ln

(r
c

)]
e−λyT−1 ,

and hence qT−1(0) (or y∗T−1) solves the first-order equation (c + h)eλy − δλry = (1 − δ)r +

δc
(
1 + ln

(
r
c

))
+ h. We can verify that the SOC holds.

When xT−1 > 0, by Lemma 1,

∂JT−1(yT−1 | xT−1)
∂yT−1

=v′T−1(yT−1)− c+ δΨ′T (yT−1) + λ−1
(
v′′T−1(yT−1) + δU ′′T (yT−1)

)

=(r + h)e−λyT−1 − h− c+ δ
[
λryT−1 − r + c+ c ln

(r
c

)]
e−λyT−1

− (r + h)e−λyT−1 + δ(r − λryT−1)e
−λyT−1

=δ
(
c+ c ln

(r
c

))
e−λyT−1 − c− h.

If h ≥ δ
(
c+ c ln

(
r
c

))
− c, ∂JT−1(yT−1 | xT−1)

∂yT−1
≤ 0 for all yT−1 ≥ 0 and the optimal order plan is

qT−1(xT−1) = 0 for xT−1 ∈ (0, yT−2]. If h < δ(c+ c ln( rc ))− c, the FOC becomes

δ
(
c+ c ln(

r

c
)
)
e−λy − c− h = 0,

and hence the optimal yT−1 (the x∗T−1 in the proposition) equals λ−1 ln
[

δc
c+h

(
1 + ln

(
r
c

))]
, which

is valid on 0 < xT−1 ≤ yT−1; when xT−1 > λ−1 ln
[

δc
c+h

(
1 + ln(rc )

)]
, ∂JT−1(yT−1 | xT−1)

∂yT−1
≤ 0 for all

yT−1 ≥ xT−1 and hence qT−1(xT−1) = 0. We can also verify that the SOC holds.

Furthermore, compared with the case xT−1 = 0, when xT−1 > 0, the expression of ∂JT−1(yT−1 | xT−1)
∂yT−1

contains an extra part −(r + h)e−λyT−1 + δ(r − λryT−1)e−λyT−1 = −(1− δ)re−λyT−1 − he−λyT−1 −

δλryT−1e−λyT−1 < 0. This negative term drags the function ∂JT−1(yT−1 | xT−1)
∂yT−1

downward and thus

its root must be smaller in this case than in the case of xT−1 = 0. Therefore, x∗T−1 < y∗T−1.

P���� �� P���������� 4. By Theorem 3, the beginning-inventory distribution GT−1(xT−1) is

weakly reverse exponential and hence GT−1(xT−1)
gT−1(xT−1)

≥ λ−1. Because v′′T−1(yT−1)+ δU ′′T (yT−1) < 0, we

have ∂JT−1(yT−1 | xT−1)
∂yT−1

≤ v′T−1(yT−1)− c+ δΨ′T (yT−1) + λ−1(v′′T−1(yT−1) + δU ′′T (yT−1)). Following

the proof of Proposition 3, we can show that
∂JT−1(yT−1 | xT−1)

∂yT−1
≤ 0 for all yT−1 ≥ 0 when h ≥

δ(c+ c ln(rc ))− c and thus the BOC is optimal.
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P���� �� P���������� 5. The proof is by straightforward algebra.

(1) Consider the optimal contract first. According to Proposition 3, the optimal order quantity is

y∗T−1 when xT−1 = 0, is x∗T−1−xT−1 when xT−1 ∈ (0, x∗T−1∧yT−2], and is zero when xT−1 ∈ (x∗T−1∧

yT−2, yT−2] (non-empty if x∗T−1 < yT−2). Thus, the expected channel profit is given by vT−1(y∗T−1)−

cy∗T−1 + δΨT (y
∗
T−1), vT−1(x

∗
T−1)− c(x∗T−1 − xT−1) + δΨT (x

∗
T−1), and vT−1(xT−1) + δΨT (xT−1) in

those cases, respectively, resulting in the three parts of ΨOpt
T−1(yT−2). The expected retailer-profit

function UOpt
T−1(yT−2) can be derived in three parts as well. When xT−1 ∈ (0, x∗T−1∧yT−2], the local

incentive-compatibility constraint (14) and the fact u′T−1(xT−1) = v′T−1(x
∗
T−1) + δU ′T (x

∗
T−1) =

u′T−1(x
∗
T−1) (by expression 13) lead to the retailer’s expected profit uT−1(x∗T−1 ∧ yT−2)− ((x∗T−1 ∧

yT−2)−xT−1)u′T−1(x
∗
T−1); when xT−1 = 0, the retailer’s profit equals uT−1(x∗T−1∧yT−2)− (x∗T−1∧

yT−2)u′T−1(x
∗
T−1), because uT−1(xT−1) is continuous at 0; when xT−1 ∈ (x∗T−1 ∧ yT−2, yT−2], her

expected profit is simply vT−1(xT−1) + δUT (xT−1). Thus, the expression of UOpt
T−1(yT−2) follows.

(2) The profit functions under the BOC are much simpler because the order only occurs at

xT−1 = 0 and the supplier charges the price to make the retailer’s expected profit (at xT−1 = 0)

exactly her reservation profit vT−1(0) + δUT (0), which is zero.

P���� �� P���������� 6. (1) Multiplying both sides of (16) by eλy yields

eλyU∞(y) =
∫ y

0+
{v(x) + δU∞(x)}λeλxdx+ {v(b)− s+ δU∞(b)}

=

∫ y

0+

{
λeλxv(x) + δλeλxU∞(x)

}
dx+

{
v(b)− s+ δe−λbeλbU∞(b)

}
.

By a transformation Ũ∞(y) = eλyU∞(y), we obtain

Ũ∞(y) =
∫ y

0+

{
λeλxv(x) + δλŨ∞(x)

}
dx+

{
v(b)− s+ δe−λbŨ∞(b)

}
. (B5)

This gives rise to a first-order ordinary differential equation (ODE):

Ũ ′∞(y) = λeλyv(y) + δλŨ∞(y),

Ũ ′∞(y)− δλŨ∞(y) = eλy{(r + h)(1− e−λy)− λhy} = −λhyeλy + (r + h)eλy − (r + h).

Through some straightforward algebra, the general solution to this ODE can be found as

Ũ∞(y) = −
h

1− δ
yeλy +

(1− δ)r + (2− δ)h

(1− δ)2λ
eλy +

r + h

δλ
+Mue

δλy, (B6)
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in which Mu is a constant to be determined from a boundary condition. Equation (B5) gives the

following boundary condition:

Ũ∞(0) = λ−1(r + h)(1− e−λb)− hb− s+ δe−λbŨ∞(b).

Substituting the general solution (B6) to this boundary condition, we have:

(1− δ)r + (2− δ)h

(1− δ)2λ
+

r + h

δλ
+Mu

= λ−1(r + h)(1− e−λb)− hb− s+ δe−λb
{
− h

1− δ
beλb +

(1− δ)r + (2− δ)h

(1− δ)2λ
eλb +

r + h

δλ
+Mue

δλb

}

=
r + h

λ
− h

1− δ
b− s+ δ

(1− δ)r + (2− δ)h

(1− δ)2λ
+ δMue

−λ(1−δ)b.

This, together with U∞(y) = e−λyŨ∞(y), gives (18).

(2) Next, with transformation Ũ∞(y) = eλyU∞(y), we arrive at

Ũ∞(y) =
∫ y

0+

{
λeλxv(x) + δλŨ∞(x)

}
dx.

This equation leads to the same ODE as equation (B5) does and hence has the same general solution

(B6), but with a different constant Mu. The constant can be determined from the boundary

condition Ũ∞(0) = 0:

Mu = −
(1− δ)r + (2− δ)h

(1− δ)2λ
− r + h

δλ
= −(1− δ)r + h

δ(1− δ)2λ
.

The function U∞(·) is the same as U∞(·) in expression (18) after the constant is replaced by Mu.

(3) By a similar transformation, Π̃∞(y) = eλyΠ∞(y), we obtain from (17) that

Π̃∞(y) =
∫ y

0+
δλΠ̃∞(x)dx+

{
s− cb+ δe−λbΠ̃∞(b)

}
.

It leads to a simple first-order ODE, Π̃′∞(y) = δλΠ̃∞(y), which has a general solution Π̃∞(y) =

Mπe
λδy. The constant Mπ can be determined from the boundary condition Π̃∞(0) = s − cb +

δe−λbΠ̃∞(b) as Mπ = s − cb + δMπe−λ(1−δ)b. Thus, we obtain (20). The inequality holds because

it must be true that s > cb for the supplier to make any profit. Clearly, Π∞(y) = e−λyΠ̃∞(y) =

Mπe
−λ(1−δ)y.

(4) Lastly, (21) follow immediately from Ψ∞(y) = U∞(y) + Π∞(y) and Mψ =Mu +Mπ.

P���� �� T����� 4. The retailer’s information rent is simply given by U∞(y) − U∞(y) =

(Mu −Mu)e
−λ(1−δ)y, which is nonnegative if and only if Mu ≥Mu.
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From the supplier’s profit-to-go function and (20), we see that the supplier’s profit is increasing

in s. On the other hand, from expression (18), the constant Mu is decreasing in s. Since Mu is

bounded by Mu from below, the optimal s∗ must force Mu =Mu, and hence equation (23b) holds,

which also implies U∞(y) = U∞(y) for all y ≥ 0.

Also from (20), the supplier should choose the batch size b to maximize the constant Mπ. Since

Mπ =Mψ−Mu =Mψ−Mu and Mu is independent of b, it is equivalent to maximizing Mψ. From

expression (21) and the FOC dMψ/db = 0, we have

(
h

1− δ
+ c

)(
1− δe−λ(1−δ)b

)
=

(
r

δλ
+

h

δ(1− δ)λ
+

h

1− δ
b+ cb

)
λ(1− δ)δe−λ(1−δ)b, (B7)

h

1− δ
+ c =

(
h

1− δ
+ c+ λ(1− δ)

(
r

δλ
+

h

δ(1− δ)λ
+

h

1− δ
b+ cb

))
δe−λ(1−δ)b,

h

1− δ
+ c =

(
h

1− δ
+ c+

1− δ

δ
r +

h

δ
+ λhb+ λ(1− δ)cb

)
δe−λ(1−δ)b,

[h+ (1− δ)c]
eλ(1−δ)b

δ(1− δ)
= c+

1− δ

δ
r +

h

δ(1− δ)
+ λb[h+ (1− δ)c],

eλ(1−δ)b − δ(1− δ)λb = 1 +
(1− δ)2(r − c)

h+ (1− δ)c
.

Since the left-hand side of (23a) is increasing in b (and equals 1 when b = 0) and the right hand

side is greater than 1, the equation has a unique solution b∗ > 0. It is straightforward to verify that

the SOC dM2
ψ/(db)

2 < 0 holds at b∗. From (23b), s∗ is uniquely determined.

P���� �� L���� 2. According to expression (B1), we need to compute

∂Jt(yt | xt)
∂yt

= v′(yt)− c+ δΨ′∞(yt) +
(
v′′(yt) + δU ′′∞(yt)

) Gt(xt)

gt(xt)
,

where the partial derivative ∂Ut+1(yt | ŷt)
∂yt

becomes dU∞(yt)
dyt

because the continuation contract from

period t is independent of ŷt. The components in the above expression can be summarized as:

v′(y) = (r + h)e−λy − h, v′′(y) = −λ(r + h)e−λy,

Ψ′∞(y) = −
h

1− δ
− r + h

δ
e−λy − λ(1− δ)Mψe

−λ(1−δ)y,

U ′∞(y) = −
h

1− δ
− r + h

δ
e−λy − λ(1− δ)Mue

−λ(1−δ)y,

U ′′∞(y) =
λ

δ
(r + h)e−λy + λ2(1− δ)2Mue

−λ(1−δ)y.
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Because Gt(xt)
gt(xt)

≥ λ−1 from Theorem 3, we obtain:

∂Jt(yt | xt)
∂yt

=(r + h)e−λyt − h− c− δ

[
h

1− δ
+

r + h

δ
e−λyt + λ(1− δ)Mψe

−λ(1−δ)yt
]

+
[
−λ(r + h)e−λyt + λ(r + h)e−λyt + λ2δ(1− δ)2Mue

−λ(1−δ)yt
] Gt(xt)

gt(xt)

≤(r + h)e−λyt − h− c− δ

[
h

1− δ
+

r + h

δ
e−λyt + λ(1− δ)Mψe

−λ(1−δ)yt
]

+ λδ(1− δ)2Mue
−λ(1−δ)yt

=− h

1− δ
− c+ λδ(1− δ)e−λ(1−δ)yt [(1− δ)Mu −Mψ]

=− h

1− δ
− c+ λδ(1− δ)e−λ(1−δ)yt [(1− δ)Mu −Mψ]

=− h

1− δ
− c+ λδ(1− δ)e−λ(1−δ)yt

[
r
δλ +

h
δ(1−δ)λ +

h
1−δ b+ cb

1− δe−λ(1−δ)b
− (1− δ)r + h

δ(1− δ)λ

]
. (B8)

The inequality above holds because Mu < 0. If the term inside the square brackets is non-positive,

we immediately have ∂Jt(yt | xt)
∂yt

< 0 for all yt; if it is positive,
∂Jt(yt | xt)

∂yt
is maximized at yt = 0, so

it is sufficient to specify model parameters such that ∂Jt(0 | xt)
∂yt

≤ 0 (i.e., when yt = 0). Note that

the requirement yt ≥ xt in the definition of Jt(yt | xt) is relaxed here, so the result is stronger than

what is really needed.

Equation (B7) leads to

h+ (1− δ)c

λ(1− δ)2δ
eλ(1−δ)b

∗

=

r
δλ +

h
δ(1−δ)λ +

h
1−δ b

∗ + cb∗

1− δe−λ(1−δ)b∗
.

Substituting yt = 0 into expression (B8) and using the above identity, we obtain

∂Jt(0 | xt)
∂yt

= − h

1− δ
− c+ λδ(1− δ)

[
h+ (1− δ)c

λ(1− δ)2δ
eλ(1−δ)b

∗ − (1− δ)r + h

δ(1− δ)λ

]

= − h

1− δ
− c+

h+ (1− δ)c

1− δ
eλ(1−δ)b

∗ − [(1− δ)r + h]

=
h+ (1− δ)c

1− δ

(
eλ(1−δ)b

∗ − 1
)
− [(1− δ)r + h]

=
h+ (1− δ)c

1− δ

[
eλ(1−δ)b

∗ − 1− (1− δ)
(1− δ)r + h

h+ (1− δ)c

]
,

and by substituting equation (23a) into the last expression, we have

∂Jt(0 | xt)
∂yt

=
h+ (1− δ)c

1− δ

[
δ(1− δ)λb∗ − (1− δ)2c+ (1− δ)h

h+ (1− δ)c

]
= (h+ (1− δ)c) (δλb∗ − 1) .



16

Therefore, the inequality ∂Jt(0 | xt)
∂yt

≤ 0 (and hence ∂Jt(yt | xt)
∂yt

< 0 for all yt ≥ xt > 0) follows from

the simple inequality δλb∗ ≤ 1.

P���� �� T����� 5. We first prove the following claim:

Claim: Given the assumptions in the theorem, for any K ≥ 3, if the optimal BOC (b∗, s∗) is

offered from period K onward, the optimal contracts in periods 2 through K−1 are also the (b∗, s∗)

contract.

We leave the first period out because the initial-inventory distribution G1 is special and different

from Gt of later periods. The proof of the claim is by induction on K:

(Basic step.) Consider the case K = 3. By Lemma 2, we need to determine the boundary

values of c and h such that δλb∗ = 1. Substituting δλb∗ = 1 into (23a), we have:

e(1−δ)/δ − (1− δ) = 1 +
(1− δ)2(r − c)

h+ (1− δ)c
,

[
e(1−δ)/δ + δ − 2

]
(h/r) + (1− δ)

[
e(1−δ)/δ − 1

]
(c/r) = (1− δ)2,

which gives expression (24). It is easy to verify that any point (c̃, h̃) on or above the specified line

will cause δλb∗ ≤ 1. Therefore, if (c̃, h̃) is in the region bounded by this line and the optimal BOC

(b∗, s∗) is offered from period 3 onward, by Lemma 2 it must be the optimal contract in period 2.

(Induction step.) Suppose the claim is true for some K ≥ 3. Consider the case K′ = K + 1.

Because the number of periods between (and including) periods 3 and K ′ − 1 is the same as that

between periods 2 and K−1, the induction hypothesis implies that if the (b∗, s∗) contract is offered

from period K ′ onward, the optimal contracts between periods 3 and K ′ − 1 are also the (b∗, s∗)

contract. Thus, the (b∗, s∗) contract is now offered from period 3 onward, which brings us back to

the basic case of K = 3 and the optimal contract in period 2 must also be the (b∗, s∗) contract.

Therefore, the claim is proved. It can be easily extended to the first period because G1(0) = 1

and we only need to verify the optimality of the contract (b∗, s∗) at x1 = 0, which follows directly

from Theorem 4. Thus, the theorem is proved.
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Appendix C - The Two-Period Model

In this appendix, we study a two-period model in which the retailer’s initial inventory in period 1

is zero. Thus, the information asymmetry kicks in only in the second period. The optimal contract

in this case can be derived using a backward-induction argument. An important point that will

become evident from the analysis is that the supplier is able to extract the entire channel profit

in this setting. The retailer’s expected profit with two periods-to-go is zero, because the supplier

can choose payment s1 big enough to make the IR constraint binding in the first period. As seen

in the single-period model with a point mass at zero, the optimal contract for the second period is

not smooth: the supplier would force the retailer to order a large quantity when x2 = 0, but much

less if x2 is positive. When the production and holding costs are sufficiently high, the supplier

may not want to sell anything to the retailer if x2 is positive. (A generalization of this observation

motivated our study of the BOCs in the infinite-horizon setting in high-cost domains.)

The system starts in the first period with zero inventory, x1 = 0. Suppose the post-order

inventory in the first period is y1. Assume demand in the first period has c.d.f. F (ξ), ξ ∈ [0, D],

with the possibility that D = +∞. In a lost-sales system, the beginning inventory in the second

period, x2 = max{y1 −D1, 0}, has distribution G(x2|y1) = F (y1− x2), x2 ∈ [(y1 −D)+, y1], which

contains a point mass F (y1) at x2 = 0 when y1 < D. Because G(·|y1) depends on y1, the contract

offered by the supplier in the second period depends on y1 as well, and thus can be expressed as

{s2(x2|y1), q2(x2|y1)}x2∈[(y1−D)+,y1] for any given y1. Notice that y1 is also the quantity ordered in

the first period and hence known by the supplier, but x2 is only known by the retailer.

As in the static case, the retailer’s second-period revenue function given post-order inventory y2,

without the order payment, is given by v2(y2) = rE[min{y2, D2}] =
∫ y2
0 rF (ξ)dξ, and her net-profit

function is given by u2(x2|y1) = v2(x2+ q2(x2|y1))− s2(x2|y1). We denote by Π2(y1) the supplier’s

expected profit in the second period under the optimal second-period contract given y1, by U2(y1)

the corresponding expected profit of the retailer, and by Ψ2(y1) = Π2(y1) + U2(y1) the expected

channel profit. Given the first period post-order inventory y1, these profit functions can be written



18

as:

U2(y1) =

∫ y1

(y1−D)+
u2(x2|y1)dG(x2|y1), (C1)

Π2(y1) =

∫ y1

(y1−D)+
[v2(x2 + q2(x2|y1))− u2(x2|y1)− cq2(x2|y1)]dG(x2|y1), (C2)

Ψ2(y1) =

∫ y1

(y1−D)+
[v2(x2 + q2(x2|y1))− cq2(x2|y1)]dG(x2|y1). (C3)

In the first period, the retailer’s profit is reduced by the cost of the leftover inventory. Let h

denote the retailer’s unit holding cost. Her revenue in the first period adjusted by the inventory

cost is given by v1(y1) = rEmin{y1,D1} − hE(y1 −D1)
+. We can see that v1(y1) is concave and

the derivatives v′1(y1) and v′′1(y1) are well-behaved. The supplier chooses the optimal inventory y1

(or order quantity q1) and payment s1 to maximize his expected profit, as the following:

max
s1∈R,y1≥0

s1 − cy1 + δΠ2(y1)

s.t. v1(y1)− s1 + δU2(y1) ≥ 0.

By choosing s1 optimally — i.e., letting s1 = v1(y1) + δU2(y1) — the problem can be simplified

to maxy1≥0{v1(y1) − cy1 + δΨ2(y1)}. That is, the supplier should maximize the channel profit

J1(y1) ≡ v1(y1) − cy1 + δΨ2(y1) in the first period. Note, however, that J1(y1) is inferior to the

first-best channel profit due to information asymmetry in the second period.

The first-order condition (FOC) along with the constraint y1 ≥ 0 imply that the optimal y1

either equals zero or solves v′1(y1)−c+δΨ′2(y1) = 0, i.e., rF (y1)−hF (y1)−c+δΨ′2(y1) = 0. In this

equation, the most intriguing term is Ψ′2(y1). The expression ofΨ′2(y1) can be derived directly under

some demand distributions, such as exponential and uniform; under a general demand distribution,

however, Ψ′2(y1) does not have a simple expression, as can be seen below.

General Case: General Demand Distribution

In this subsection, we express Ψ′2(y1) directly from model parameters, under general demand dis-

tributions. This is the key step in determining the optimal inventory y1 in the first period. For

comparison purposes, we conduct this analysis for the first-best (FB) and second-best (SB) scenar-

ios simultaneously. By “second best,” we mean the case with asymmetric information. Note that

the first-order condition rF (y1)− hF (y1)− c+ δΨ′2(y1) = 0 also applies to the FB scenario if we

use the FB channel-profit function Ψ∗2(y1) in place of Ψ2(y1).



19

The essential difference between the FB and SB scenarios lies at the second-period order plan

q2(x2|y1). In the FB scenario, given the optimal second-period order-up-to level y∗2 = F−1( r−cr ), if

y1 −D ≤ y∗2, the optimal second-period order plan is

q2(x2|y1) =
{

y∗2 − x2, x2 ∈ [y1 −D, y∗2]

0, x2 ∈ (y∗2, y1]
.

In the SB scenario, according to the static solution, q2(x2|y1) solves the equation

F (x2 + q2) + f(x2 + q2)
F (y1 − x2)

f(y1 − x2)
=

r − c

r
. (C4)

Define x2(y1) as the threshold inventory level so that q2(x2|y1) = 0 if and only if x2 ≥ x2(y1).

Then, in the FB scenario when y1 −D ≤ y∗2, x2(y1) equals y∗2 and satisfies F (x2) =
r−c
r ; in the SB

scenario, by equation (C4) and G(x2|y1) = F (y1−x2), x2(y1) satisfies F (x2)+f(x2)
F (y1−x2)
f(y1−x2) =

r−c
r .

We can show the following properties for q2(x2|y1) and x2(y1):

Lemma C1 In the FB scenario,

∂

∂x2
q2(x2|y1) = −1,

∂

∂y1
q2(x2|y1) = 0, and

dx2(y1)

dy1
= 0.

In the SB scenario,

∂

∂x2
q2(x2|y1) ≤ −1,

∂

∂y1
q2(x2|y1) ≥ 0 and 0 ≤ dx2(y1)

dy1
≤ 1.

Furthermore, in the SB scenario, q2(x2|y1) = ε+ q2(x2 + ε|y1 + ε) for any ε ∈ (−x2, q2(x2|y1)].

P���� �� L���� C1. The FB scenario is straightforward; we show the SB scenario in four steps:

(1) Since q2(x2|y1) solves F (x2 + q2) + f(x2 + q2)
F (y1−x2)
f(y1−x2) =

r−c
r , for any given y1, the partial

derivative with respect to x2 on the left-hand side gives

f(x2 + q2)

(
1 +

∂q2
∂x2

)
+ f ′(x2 + q2)

F (y1 − x2)

f(y1 − x2)

(
1 +

∂q2
∂x2

)
+ f(x2 + q2)

∂

∂x2

(
F (y1 − x2)

f(y1 − x2)

)

=

(
f(x2 + q2) + f ′(x2 + q2)

F (y1 − x2)

f(y1 − x2)

)(
1 +

∂q2
∂x2

)
+ f(x2 + q2)

∂

∂x2

(
F (y1 − x2)

f(y1 − x2)

)

= f(x2 + q2)
F (y1 − x2)

f(y1 − x2)

(
f(y1 − x2)

F (y1 − x2)
+

f ′(x2 + q2)

f(x2 + q2)

)(
1 +

∂q2
∂x2

)
+ f(x2 + q2)

∂

∂x2

(
F (y1 − x2)

f(y1 − x2)

)
.

From conditions (6) and (7), we know

f(y1 − x2)

F (y1 − x2)
+

f ′(x2 + q2)

f(x2 + q2)
≥ 0 and

∂

∂x2

(
F (y1 − x2)

f(y1 − x2)

)
≥ 0.
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Therefore, for the above partial derivative to be 0, we must have 1 + ∂q2
∂x2

≤ 0 and thus ∂q2
∂x2

≤ −1.

(2) Given x2, the partial derivative with respect to y1 of the left-hand side of F (x2 + q2) +

f(x2 + q2)
F (y1−x2)
f(y1−x2) =

r−c
r yields

f(x2 + q2)
∂q2
∂y1

+ f ′(x2 + q2)
F (y1 − x2)

f(y1 − x2)

∂q2
∂y1

+ f(x2 + q2)
∂

∂y1

(
F (y1 − x2)

f(y1 − x2)

)

= f(x2 + q2)
F (y1 − x2)

f(y1 − x2)

(
f(y1 − x2)

F (y1 − x2)
+

f ′(x2 + q2)

f(x2 + q2)

)
∂q2
∂y1

− f(x2 + q2)
∂

∂x2

(
F (y1 − x2)

f(y1 − x2)

)
.

Again, conditions (6) and (7) imply that ∂q2
∂y1

≥ 0.

(3) Since x2(y1) satisfies F (x2) + f(x2)
F (y1−x2)
f(y1−x2) =

r−c
r , the derivative with respect to y1 on the

left-hand side gives

f(x2)
dx2
dy1

+ f ′(x2)
F (y1 − x2)

f(y1 − x2)

dx2
dy1

+ f(x2)
d

dy1

(
F (y1 − x2)

f(y1 − x2)

)

=

(
f(x2) + f ′(x2)

F (y1 − x2)

f(y1 − x2)

)
dx2
dy1

− f(x2)

(
f2(y1 − x2) + F (y1 − x2)f

′(y1 − x2)

f2(y1 − x2)

)(
1− dx2

dy1

)

= f(x2)
F (y1 − x2)

f(y1 − x2)

(
f(y1 − x2)

F (y1 − x2)
+

f ′(x2)
f(x2)

)
dx2
dy1

− f(x2)
∂

∂x2

(
F (y1 − x2)

f(y1 − x2)

)(
1− dx2

dy1

)
.

Conditions (6) and (7) suggest that the above expression equals zero only if dx2
dy1

≥ 0 and dx2
dy1

≤ 1.

(4) Suppose q2(x2|y1) > 0 satisfies the FOC (C4): F (x2+ q2) + f(x2+ q2)
F (y1−x2)
f(y1−x2) =

r−c
r . If y1

and x2 are replaced by y1 + ε and x2 + ε with a small perturbation ε, the FOC will be satisfied by

q2(x2|y1)− ε, because

F (x2+q2)+f(x2+q2)
F (y1 − x2)

f(y1 − x2)
= F ((x2+ε)+(q2−ε))+f((x2+ε)+(q2−ε))

F ((y1 + ε)− (x2 + ε))

f((y1 + ε)− (x2 + ε))
.

That is, q2(x2 + ε|y1 + ε) = q2(x2|y1)− ε, for ε ∈ (−x2, q2(x2|y1)). The range of ε doesn’t include

the point −x2 because the above FOC may not be satisfied when the inventory is zero.

In order to quantify the impact of y1 on the second-period order plan q2(x2|y1), we define the

function h(ε|x2, y1) = ε + q2(x2 + ε|y1 + ε). The above lemma leads to the following property of

h(ε|x2, y1), which will be used to derive Ψ′2(y1) later.

Lemma C2 In both FB and SB scenarios, we have:

∂h(0|x2, y1)
∂ε

= 1 +
∂q2(x2|y1)

∂x2
+

∂q2(x2|y1)
∂y1

=





0, x2 < x2(y1)

undefined, x2 = x2(y1)

1, x2 > x2(y1)

.
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P���� �� L���� C2. (a) Consider the FB scenario. Since the optimal order plan is q2(x2|y1) =
{

y∗2 − x2, x2 ∈ [y1 −D, y∗2)

0, x2 ∈ [y∗2, y1]
, we have ∂q2(x2|y1)

∂y1
= 0 and ∂q2(x2|y1)

∂x2
=





−1, x2 < y∗2
undefined, x2 = y∗2

0, x2 > y∗2

.

Therefore, the expression for ∂h(0|x2,y1)
∂ε holds.

(b) Consider the SB scenario, in three cases:

• Suppose x2 < x2(y1) and hence q2(x2|y1) > 0. From Lemma C1, q2(x2|y1) = ε + q2(x2 +

ε|y1 + ε) = h(ε|x2, y1) for ε ∈ [−x2, q2(x2|y1)]. As a consequence, ∂h(0|x2,y1)
∂ε = 0.

• If we assume x2 > x2(y1), we have q2(x2|y1) = 0 and the FOC is violated at q2(x2|y1). When

ε is small enough, we must have q2(x2 + ε|y1 + ε) = 0 as well, and hence h(ε|x2, y1) = ε.

Consequently, ∂h(0|x2,y1)
∂ε = 1.

• At the threshold level x2 = x2(y1), we have q2(x2|y1) = 0 and the FOC is still satisfied. For any

ε > 0, the perturbed FOC is satisfied by q2(x2|y1)−ε < 0, which implies q2(x2+ε|y1+ε) = 0

due to the boundary condition and thus limε→0+
h(ε|x2,y1)−h(0|x2,y1)

ε = 1; for any ε < 0, we still

have q2(x2 + ε|y1 + ε) = q2(x2|y1)− ε > 0 and limε→0−
h(ε|x2,y1)−h(0|x2,y1)

ε = 0. So, ∂h(0|x2,y1)
∂ε

is undefined at x2 = x2(y1).

Now, we derive an expression for Ψ′2(y1) which contains the term ∂h(0|x2, y1)/∂ε.

Lemma C3 In both FB and SB scenarios, if the optimal order plan in the second period is denoted

by q2(x2|y1) given first-period inventory y1, the derivative of Ψ2(y1) is given by:

Ψ′2(y1) =





∫ y1
0+

[
rF (x2 + q2(x2|y1))− c

] ∂h(0|x2,y1)
∂ε f(y1 − x2)dx2

+cF (y1) + [v2(q2(x2|y1))− cq2(x2|y1)]|x2=0
+

x2=0
f(y1),

0 ≤ y1 ≤ D

∫ y1
y1−D

[
rF (x2 + q2(x2|y1))− c

] ∂h(0|x2,y1)
∂ε f(y1 − x2)dx2 + c, y1 ≥ D

.

P���� �� L���� C3. The expression (C3) is valid in both FB and SB scenarios. It implies:

Ψ2(y1) =





∫ y1
0+ [v2(x2 + q2(x2|y1))− cq2(x2|y1)]f(y1 − x2)dx2

+[v2(q2(0|y1))− cq2(0|y1)]F (y1),
0 ≤ y1 ≤ D

∫ y1
y1−D[v2(x2 + q2(x2|y1))− cq2(x2|y1)]f(y1 − x2)dx2, y1 ≥ D

.

(1) Consider the case 0 ≤ y1 ≤ D. In this case, the contract may be discontinuous at 0 where we

must pay special attention. Specifically, we assume q2(0|y1) �= q2(0
+|y1) without loss of generality.
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Notice that q2(0|y1) = F−1( r−cr ), which is independent of y1. We first show the following fact:

d

dy

(∫ y

0+
µ(x|y)f(y − x)dx+ µ(0|y)F (y)

)

=

∫ y

0+

∂ [µ(x|y)f(y − x)]

∂y
dx+ µ(y|y)f(0) + d

dy

[
µ(0|y)F (y)

]

=

∫ y

0+

∂µ(x|y)
∂y

f(y − x)dx+

∫ y

0+
µ(x|y)f ′(y − x)dx+ µ(y|y)f(0)− µ(0|y)f(y) + F (y)

d

dy
µ(0|y)

=

∫ y

0+

∂µ(x|y)
∂y

f(y − x)dx+

∫ y

0+

∂µ(x|y)
∂x

f(y − x)dx+ µ(x|y)|0+0 f(y) + F (y)
d

dy
µ(0|y)

=

∫ y

0+

(
∂µ(x|y)

∂x
+

∂µ(x|y)
∂y

)
f(y − x)dx+ µ(x|y)|x=0+x=0 f(y) + F (y)

d

dy
µ(0|y).

This fact implies:

Ψ′2(y1) =
∫ y1−D

0+

[
v′2(x2 + q2(x2|y1))− c

](
1 +

∂q2(x2|y1)
∂x2

+
∂q2(x2|y1)

∂y1

)
f(y1 − x2)dx2

+

∫ y1−D

0+
cf(y1 − x2)dx2 + [v2(x2 + q2(x2|y1))− cq2(x2|y1)]|x2=0

+

x2=0
f(y1)

=

∫ y1−D

0+

[
rF (x2 + q2(x2|y1))− c

] ∂h(0|x2, y1)
∂ε

f(y1 − x2)dx2 + cF (y1)

+ [v2(q2(x2|y1))− cq2(x2|y1)]|x2=0
+

x2=0
f(y1).

(2) Consider the case y1 ≥ D, where there is no discontinuity in the contract. We first show

the following:

d

dy

(∫ y

y−D
µ(x|y)f(y − x)dx

)

=

∫ y

y−D

∂ [µ(x|y)f(y − x)]

∂y
dx+ [µ(x|y)f(y − x)]|x=y

x=y−D

=

∫ y

y−D

∂µ(x|y)
∂y

f(y − x)dx+

∫ y

y−D
µ(x|y)f ′(y − x)dx+ [µ(x|y)f(y − x)]|x=y

x=y−D

=

∫ y

y−D

∂µ(x|y)
∂y

f(y − x)dx+

∫ y

y−D

∂µ(x|y)
∂x

f(y − x)dx

=

∫ y

y−D

(
∂µ(x|y)

∂y
+

∂µ(x|y)
∂x

)
f(y − x)dx.

This result implies:

Ψ′2(y1) =
∫ y1

y1−D

[
v′2(x2 + q2(x2|y1))− c

](
1 +

∂q2(x2|y1)
∂x2

+
∂q2(x2|y1)

∂y1

)
f(y1 − x2)dx2

+

∫ y1

y1−D
cf(y1 − x2)dx2

=

∫ y1

y1−D

[
rF (x2 + q2(x2|y1))− c

] ∂h(0|x2, y1)
∂ε

f(y1 − x2)dx2 + c.
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It completes the proof of the lemma.

According to Lemma C2, the term ∂h(0|x2, y1)/∂ε is either 0 or 1 almost everywhere. Thus,

the expression of Ψ′2(y1) in Lemma C3 can be simplified so that it only involves model parameters,

as described in the next two corollaries.

Corollary C1 In the FB scenario, Ψ′2(y1) is given by:

Ψ′2(y1) =





cF (y1)− f(y1)
∫ y∗2
0

[
rF (ξ)− c

]
dξ, 0 ≤ y1 ≤ y∗2,∫ y1

y∗2

[
rF (x2)− c

]
f(y1 − x2)dx2 + cF (y1), y∗2 ≤ y1 ≤ D,

∫ y1
y∗2

[
rF (x2)− c

]
f(y1 − x2)dx2 + c, D ≤ y1 ≤ y∗2 +D,

or equivalently,

Ψ′2(y1) =

{
cF (y1)− f(y1)

∫ y∗2
0

[
rF (ξ)− c

]
dξ, 0 ≤ y1 ≤ y∗2,

cF (y1)−
∫ y1
y∗2

rf(x2)F (y1 − x2)dx2, y∗2 ≤ y1 ≤ y∗2 +D.
(C5)

By default, F (y1) = 1 when y1 > D.

P���� �� C�������� C1. The first part of the corollary is obvious. For the second part, when

y∗2 ≤ y1 ≤ y∗2 +D, we have:

Ψ′2(y1) =
∫ y1

y∗2

[
rF (x2)− c

]
f(y1 − x2)dx2 + cF (y1)

= −
[
rF (x2)− c

]
F (y1 − x2)

∣∣y1
y∗2
−
∫ y1

y∗2

rf(x2)F (y1 − x2)dx2 + cF (y1)

= cF (y1)−
∫ y1

y∗2

rf(x2)F (y1 − x2)dx2.

Corollary C2 In the SB scenario, Ψ′2(y1) is given by:

Ψ′2(y1) =





∫ y1
0

[
rF (x2)− c

]
f(y1 − x2)dx2 + cF (y1)

−f(y1)
∫ y∗2
0

[
rF (ξ)− c

]
dξ,

0 ≤ y1 ≤ y01,

∫ y1
x2(y1)

[
rF (x2)− c

]
f(y1 − x2)dx2 + cF (y1)

−f(y1)
∫ q2(0|y1)
q2(0+|y1)

[
rF (ξ)− c

]
dξ,

y01 ≤ y1 ≤ D,

∫ y1
x2(y1)

[
rF (x2)− c

]
f(y1 − x2)dx2 + c, y1 ≥ D,

(C6)

where q2(0|y1) = y∗2, q2(0
+|y1) solves F (q2)+f(q2)

F (y1)
f(y1)

= r−c
r , x2(y1) solves F (x2)+f(x2)

F (y1−x2)
f(y1−x2) =

r−c
r , and y01 solves F (0) + f(0)

F (y01)

f(y01)
= r−c

r .
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The above results, along with the discussion at the beginning of this appendix, can be summa-

rized as follows.

Theorem C1 The optimal inventory y1 in the first period solves the FOC

rF (y1)− hF (y1)− c+ δΨ′2(y1) = 0, (C7)

where Ψ′2(y1) can be computed from expression (C5) in the FB scenario or from expression (C6) in

the SB scenario.

Describing Ψ′2(y1) from model parameters greatly facilitates our ultimate task of finding y1.

However, evidently, the expressions are still non-trivial. Thus, the optimal contract in the first

period (the optimal inventory y1) does not have a closed-form expression and does not possess any

obvious structure under a general demand distribution. Nevertheless, if the demand is exponential

or uniform, the optimal solution can be determined explicitly, as shown in the next two subsections.

The exponential-demand case is easy, because we have analyzed a more general case in §4.4. The

uniform-demand case is still involved, as will be seen.

Special Case: Exponential Demand

The two-period model studied in this appendix is in fact a special case of the last-two-period model

studied in §4.4. In the latter model, if the beginning inventory of the second-last period xT−1 is

derived from (yT−2−DT−2)+ with yT−2 = 0, xT−1 must be zero with probability 1 and the model

reduces to the two-period model considered in this appendix. Thus, Proposition 3 directly implies

the following:

Proposition C1 In a two-period model with exponential demand and zero initial inventory, the

optimal order quantity (inventory level) y1 in the first period solves

(c+ h)eλy1 − δλry1 = (1− δ)r + δc
(
1 + ln

(r
c

))
+ h.

In addition, Lemma 1 can be rewritten as follows.

Proposition C2 Given first-period inventory y1, the expected second-period channel profit Ψ2(y1)

and retailer’s profit U2(y1) are given by:

Ψ2(y1) = λ−1r − λ−1
(
c+ c ln

(r
c

)
+ rλy1

)
e−λy1,

U2(y1) = λ−1r − λ−1 (r + rλy1) e
−λy1 .



25

The retailer’s expected total profit for the two periods is zero because the supplier can choose

the first-period payment s1 so as to make the retailer exactly break even:

s1 = v1(y1) + δU2(y1) = λ−1(r + δr + h)(1− e−λy1)− hy1 − δry1e
−λy1 .

Further, the supplier’s expected total profit for the two periods is the same as the channel profit

J1(y1):

J1(y1) = v1(y1)− cy1 + δΨ2(y1)

= λ−1(r + h)(1− e−λy1)− (h+ c)y1 + δrλ−1 − δ
[
ry1 + λ−1c

(
1 + ln

(r
c

))]
e−λy1 .

Special Case: Uniform Demand

Now, we consider the uniform demand case with c.d.f. F (ξ) = ξ

D
and p.d.f. f(ξ) = 1

D
, ξ ∈ [0, D].

Without loss of generality, we normalize the model parameters as in Appendix A:

Assumption (Normalization). Assume the retail price r = 1, the production cost c ∈ [0, 1], and

the inventory holding cost h ∈ [0, 1]. The demand is uniformly distributed on [0, 1], i.e., D = 1.

The optimal contract in the second period is given by Proposition A3. To find the optimal

order quantity y1 in the first period, we need to solve the FOC (C7). From expression (C6) (or

Proposition A3), through straightforward algebra, we can obtain that

Ψ′2(y1) =





−1
2y
2
1 + y1 − 1

2(1− c)2, y1 ∈ [0, c]
−78y21 +

(
3
2 +

1
4c
)
y1 −

(
3
8c
2 − 1

2c+
1
2

)
, y1 ∈ [c, 1]

1
8y
2
1 −
(
1
2 +

3
4c
)
y1 − 3

8c
2 + 3

2c+
1
2 , y1 ∈ [1, 2− c]

.

The case y1 ≥ 2− c is trivial and irrelevant (as will become clear) and is therefore omitted.

The derivative of the two-period channel profit, J ′1(y1) = v′1(y1)−c+δΨ′2(y1), can be computed

accordingly. Although the parameters c, δ, and h all affect the optimal solution, it can be demon-

strated that the production cost c has the biggest impact on the structure of the solution. So, we

will focus on the benchmark case of δ = 1 and h = 0 in this subsection and only study the impact

of c on the optimal solution. In that case, we have v′1(y1) =

{
1− y1, if y1 ≤ 1
0, if y1 ≥ 1

, and

J ′1(y1) =





−1
2y
2
1 +

1
2 − 1

2c
2 ≡ Ka(y1), y1 ∈ [0, c]

−7
8y
2
1 +
(
1
2 +

1
4c
)
y1 − 3

8c
2 − 1

2c+
1
2 ≡ Kb(y1), y1 ∈ [c, 1]

1
8y
2
1 −
(
1
2 +

3
4c
)
y1 − 3

8c
2 + 1

2c+
1
2 ≡ Kc(y1), y1 ∈ [1, 2− c]

.
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Figure C1: Examples of J ′1(y1) under uniform demand: (a) c = 0.8; (b) c = 0.6; (c) c = 0.1.

That is, given any c ∈ [0, 1], J ′1(y1) consists of three segments, Ka(·), Kb(·), and Kc(·), over the

domain [0, 2−c]. The optimal solution y1 is the root of function J ′1(y1), depending on the parameter

c. The function J ′1(y1) is illustrated in Figure C1 for three different values of c, where the root of

J ′1(y1) lies in [0, c], [c, 1], and [1, 2− c], respectively.

The optimal y1 is determined by c as follows.

Proposition C3 The optimal inventory y1 in the first period is given by: (a) If c ∈ [
√
2
2 , 1),

y1 =
√
1− c2 ∈ [0, c]; (b) If c ∈ [13 ,

√
2
2 ], y1 =

1
7(2 + c) + 2

7

√
(2 + c) (4− 5c) ∈ [c, 1]; (c) If c ∈ [0, 13 ],

y1 = (2 + 3c)− 2
√

c(2 + 3c) ∈ [1, 2− c].

P���� �� P���������� C3. First, we compute the three possible roots ya1 , y
b
1, and yc1, of the

three segments Ka(·), Kb(·), and Kc(·), respectively:

(a) From Ka(y1) = 0, we have

−1
2
y21 +

1

2
− 1
2
c2 = 0,

or ya1 =
√
1− c2;

(b) From Kb(y1) = 0, we have

−7
8
y21 +

(
1

2
+
1

4
c

)
y1 −

3

8
c2 − 1

2
c+

1

2
= 0,

y21 −
2

7
(2 + c)y1 +

1

7

(
3c2 + 4c− 4

)
= 0,

or yb1 =
1
7(2 + c) + 2

7

√
(2 + c) (4− 5c);
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(c) From Kc(y1) = 0, we have

1

8
y21 −

(
1

2
+
3

4
c

)
y1 −

3

8
c2 +

1

2
c+

1

2
= 0,

y21 − 2(2 + 3c)y1 − 3c2 + 4c+ 4 = 0,

or yc1 = (2 + 3c)− 2
√

c(2 + 3c).

Next, we consider the corresponding range of c in which ya1 , y
b
1, or y

c
1 is the actual root of J

′
1(y1).

That happens when ya1 , y
b
1, or yc1 lies in the domain of its corresponding segment, [0, c], [c, 1], or

[1, 2− c].

(a) When c ∈ [
√
2
2 , 1), we see that ya1 =

√
1− c2 ∈ [0, c] and hence y1 = ya1 .

(b) When c ∈ [13 ,
√
2
2 ], we see that yb1 ∈ [c, 1], because c ≤ 1

7(2 + c) + 2
7

√
(2 + c) (4− 5c) ≤ 1 is

equivalent to 6c− 2 ≤ 2
√
−5c2 − 6c+ 8 ≤ 5− c, which is exactly

√
2
2 ≥ c ≥ 1

3 . Thus, y1 = yb1.

(c) When c ∈ [0, 13 ], we see that yc1 ∈ [1, 2− c], because 1 ≤ (2 + 3c)− 2
√

c(2 + 3c) ≤ 2 − c is

equivalent to 3c+ 1 ≥
√
12c2 + 8c ≥ 4c, which is exactly c ≤ 1

3 . Thus, y1 = yc1.

As discussed earlier, the retailer’s expected total profit for the two periods is zero since the

supplier can choose the first period payment s1 = v1(y1) + δU2(y1) to make the IR constraint

binding in the first period. For instance, when h = 0, s1 is determined by

s1 =

{
y1 − 1

2y
2
1 + δU2(y1), if y1 ≤ 1

1
2 + δU2(y1), if y1 ≥ 1

.

The corresponding supplier’s expected total profit for the two periods is given by

J1(y1) = v1(y1)− cy1 + δΨ2(y1) =

{
(1− c)y1 − 1

2y
2
1 + δΨ2(y1), if y1 ≤ 1

1
2 − cy1 + δΨ2(y1), if y1 ≥ 1

.

To complete the analysis, the second-period profit functions U2(y1), Ψ2(y1) and Π2(y1) can be

computed directly as follows, which concludes this appendix.

Proposition C4 Given the first period inventory y1, the expected second-period channel profit

Ψ2(y1), retailer’s profit U2(y1), and supplier’s profit Π2(y1) can be computed as follows, in three

cases: (a) If y1 ∈ [0, c],

U2(y1) =
1

2
y21 −

1

6
y31,

Ψ2(y1) =
1

2
y21 −

1

6
y31 +

1

2
(1− c)2(1− y1),

Π2(y1) =
1

2
(1− c)2(1− y1);
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(b) If y1 ∈ [c, 1],

U2(y1) =
1

2
y21 −

1

6
y31 + (1− y1)x2(y1)

2 +
1

3
x2(y1)

3,

Ψ2(y1) =
1

2
y21 −

1

6
y31 + (1− y1)x2(y1)

2 + x2(y1)
3 +

1

2
(1− c)2(1− y1),

Π2(y1) =
2

3
x2(y1)

3 +
1

2
(1− c)2(1− y1);

(c) If y1 ∈ [1, 2− c],

U2(y1) =
1

3
+
1

2
(y1 − 1)−

1

2
(y1 − 1)2 +

1

6
(y1 − 1)3 +

1

24
(2− c− y1)

3,

Ψ2(y1) =
1

3
+
1

2
(y1 − 1)−

1

2
(y1 − 1)2 +

1

6
(y1 − 1)3 +

1

8
(2− c− y1)

3,

Π2(y1) =
1

12
(2− c− y1)

3.

P���� �� P���������� C4. We compute U2(y1), Π2(y1) and Ψ2(y1) following their definitions

(C1)-(C3). We consider the three regions of y1 and apply the result of Proposition A3.

(a) When y1 ∈ [0, c], we have

U2(y1) =

∫ y1

0
v2(x2)dx2 + v2(0)(1− y1) =

∫ y1

0

(
x2 −

1

2
x22

)
dx2 =

1

2
y21 −

1

6
y31,

Π2(y1) = [v2(1− c)− c(1− c)](1− y1) =
1

2
(1− c)2(1− y1), and

Ψ2(y1) = U2(y1) + Π2(y1) =
1

2
y21 −

1

6
y31 +

1

2
(1− c)2(1− y1).

(b) When y1 ∈ [c, 1], noticing x2(y1) =
y1−c
2 , we have

U2(y1) =

∫ x2(y1)

0

[
v2(x2) + (x2(y1)− x2)

2
]
dx2 +

∫ y1

x2(y1)
v2(x2)dx2 + x2(y1)

2(1− y1)

=

∫ y1

0
v2(x2)dx2 +

∫ x2(y1)

0
(x2(y1)− x2)

2dx2 + x2(y1)
2(1− y1)

=
1

2
y21 −

1

6
y31 + (1− y1)x2(y1)

2 +
1

3
x2(y1)

3,

Ψ2(y1) =

∫ y1

0
v2(x2)dx2 +

∫ x2(y1)

0
[v2(y1 − c− x2)− c(y1 − c− 2x2)− v2(x2)] dx2

+ [v2(1− c)− c(1− c)](1− y1)

=

∫ y1

0
v2(x2)dx2 +

∫ x2(y1)

0

1

2
(2− c− y1) (y1 − c− 2x2) dx2 +

1

2
(1− c)2(1− y1)

=

∫ y1

0
v2(x2)dx2 +

1

2
(2− c− y1)x2(y1)

2 +
1

2
(1− c)2(1− y1)

=
1

2
y21 −

1

6
y31 + (1− y1)x2(y1)

2 + x2(y1)
3 +

1

2
(1− c)2(1− y1), and

Π2(y1) =Ψ2(y1)− U2(y1) =
2

3
x2(y1)

3 +
1

2
(1− c)2(1− y1).
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(c) When y1 ∈ [1, 2− c], noticing x2(y1) =
y1−c
2 ≤ 1− c and v2(x2) =

1
2 for x2 ≥ 1, we have

U2(y1) =

∫ y1

y1−1
v2(x2)dx2 +

∫ x2(y1)

y1−1
(x2(y1)− x2)

2dx2

=

∫ 1

y1−1
(x2 −

1

2
x22)dx2 +

∫ y1

1

1

2
dx2 +

∫ x2(y1)

y1−1
(x2(y1)− x2)

2dx2

=

(
1

2
x22 −

1

6
x32

)∣∣∣∣
1

y1−1
+
1

2
(y1 − 1) +

1

3
[x2(y1)− (y1 − 1)]3

=
1

3
+
1

2
(y1 − 1)−

1

2
(y1 − 1)2 +

1

6
(y1 − 1)3 +

1

24
(2− c− y1)

3,

Ψ2(y1) =

∫ y1

y1−1
v2(x2)dx2 +

∫ x2(y1)

y1−1
[v2(y1 − c− x2)− c(y1 − c− 2x2)− v2(x2)] dx2

=

∫ y1

y1−1
v2(x2)dx2 +

∫ x2(y1)

y1−1

1

2
(2− c− y1) (y1 − c− 2x2) dx2

=

∫ y1

y1−1
v2(x2)dx2 +

1

2
(2− c− y1) [x2(y1)− (y1 − 1)]2

=
1

3
+
1

2
(y1 − 1)−

1

2
(y1 − 1)2 +

1

6
(y1 − 1)3 +

1

8
(2− c− y1)

3, and

Π2(y1) = Ψ2(y1)− U2(y1) =
1

12
(2− c− y1)

3.


