
Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 1

Taxi Service
Acceptance Test Plan

Version 1.0

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 2

Revision History

Date Version Description Author

2012-12-28 0.1 Initial Draft Luca Zangari

2012-12-29 0.2 Chapter 1, 10 Draft Igor Piljić

2012-12-29 0.3 Chapter 11, 12, 13 Draft Igor Piljić

2012-12-29 0.4 Chapter 2,8,9 Draft Jelena Jerat

2012-12-29 0.5 Chapter 1, 4 Draft Luca Zangari

2012-12-30 0.51 Chapter 2 edited Leon Dragić

2012-12-30 0.52 Chapter 3 edited Leon Dragić

2012-12-30 0.6 Chapter 4, 5, 6 edited Leon Dragić

2012-12-30 0.61 Chapter 6.1 edited Leon Dragić

2012-12-30 0.62 Chapter 2,3 edited Jelena Jerat

2012-12-30 0.7 Chapter 7 Draft Marko Coha

2012-12-30 0.71 Chapter 10 edited Karlo Zanki

2012-12-31 0.72 Chapter 10.1 edited Jelena Jerat

2012-12-31 0.8 Chapter 4, 7.1 edited, General revision Luca Zangari

2012-12-31 0.9 Chapter 10.2 Jelena Jerat

2012-12-31 1.0 General revision Leon Dragić

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 3

Table of Contents

1. Introduction 4

1.1 Purpose of this document 4
1.2 Intended Audience 4
1.3 Scope 4
1.4 Definitions and acronyms 4

1.4.1 Definitions 4
1.4.2 Acronyms and abbreviations 4

1.5 References 4

2. Test-plan introduction 5

3. Test items 5

3.1 Catch a Cab (Customer client Android Application) 5
3.2 Taxi Client Android Application 5
3.3 Server 5

4. Features to be tested 5

5. Features not to be tested 6

6. Approach 6

6.1 Approach to configuration and installation 6

7. Item pass/fail criteria 7

7.1 Installation and Configuration 7
7.2 Documentation problems 7

8. Suspension criteria and resumption requirements 7

9. Environmental needs 8

9.1 Hardware 8
9.2 Software 8
9.3 Other 8

10. Test procedure 8

10.1 Test case specifications 8
10.1.1 Customer Client Test Case – CCT 8
10.1.2 Taxi Client Test Case – TCT 10
10.1.3 Server Test Case – ST 11

10.2 Test plan 14

11. Responsibilities 14

11.1 Developers 14
11.2 User representative 14

12. Risks and contingencies 15

13. Approvals 15

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 4

1. Introduction

1.1 Purpose of this document

The objective of acceptance testing is to confirm that the developed application meets its requirements and to

ensure that the system works correctly and is usable before it is formally delivered to the end user. This

document is the acceptance test plan for the Taxi Service applications which includes three parts as main

components: Taxi Client, Central Server and Customer Client. It describes the scope of the work performed and

the approach taken to execute the tests created to validate that the system performs as required.

1.2 Intended Audience

This document is intended for the:

 Project customer and supervisor,

 Team members,

 All persons who are responsible for monitoring the project.

1.3 Scope

This document covers all tests cases for Taxi service android applications and server. It also includes results of

those tests, as well as techniques and tools needed for testing.

It doesn’t include test of network or external systems that Taxi Service uses (such as Google maps API, 3G

network connection).

1.4 Definitions and acronyms

1.4.1 Definitions

Keyword Definitions

Taxi service Project name

Android Mobile operating system

Catch A Cab Android application for the customers

Dispatch Android application for the taxi drivers

1.4.2 Acronyms and abbreviations

Acronym or

abbreviation
Definitions

GPS Global positioning system

AVD Android Virtual Device

1.5 References

 TaxiService Website

 TaxiService Project Vision

 TaxiService Requirement Definition

 TaxiService Design Description

 TaxiService Project Plan

http://www.fer.unizg.hr/rasip/dsd/projects/taxi_service
http://www.fer.unizg.hr/_download/repository/SupermarketSaver_-_project_proposal.pdf
http://www.fer.unizg.hr/_download/repository/SupermarketSaver_-_project_proposal.pdf
http://www.fer.unizg.hr/_download/repository/01_-_DSD_Project_Vision.pdf
http://www.fer.unizg.hr/_download/repository/01_-_DSD_Project_Vision.pdf
http://www.fer.unizg.hr/_download/repository/SupermarketSaver_-_project_proposal.pdf
http://www.fer.unizg.hr/_download/repository/Requirements_Definition%5B5%5D.pdf
http://www.fer.unizg.hr/_download/repository/Design_Description%5B2%5D.pdf
http://www.fer.unizg.hr/_download/repository/Project_Plan%5B4%5D.pdf

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 5

2. Test-plan introduction

Catch A Cab Android application for customers, Dispatch Android application for taxi drivers and the main

server component will be tested before the final delivery. Testing will be conducted in several levels. Every

server and Android application component will be unit tested using unit testing tools integrated in IDE-s (low

level testing). Server will also be stress-tested using Apache JMeter tool which can be used for simulation of a

heavy load on the server. Finally, user acceptance testing will ensure that end users can use Taxi service

applications the way they were described in the use-cases. It is desirable that each component is tested by a third

party or at least a team member that wasn’t involved in the component development. Both client applications

will also be tested from a third party in order to test the user interface to verify is it user friendly. The main goal

of testing the applications is to verify that application meets the requirements described in Requirements

Definition document.

3. Test items

In the user acceptance testing phase we have identified two main test items: the Taxi Client application and

Customer Client application. Through the testing of the client applications, the logic of the main server will be

tested too. Although most of the server functionality can be tested using the two clients, there are some specific

cases which have to be tested separately (testing the server directly). In addition to this, unit testing will take

place on every of these components.

3.1 Catch a Cab (Customer client Android Application)

Catch a Cab is Android application intended for Taxi Service customers who want to order a taxi to a specified

location. The application communicates with the server application using RESTful API. During the acceptance

testing Catch a Cab application will be tested to verify that it meets all functional and non-functional

requirements defined in the Requirements Definition document.

3.2 Taxi Client Android Application

Taxi Client Android application is intended for taxi drivers who want to pick up the customers using Taxi

Service. The application communicates with the server application using RESTful API the same as the Catch a

Cab application does. It will also be tested to verify that it meets functional and non-functional requirements.

3.3 Server

Taxi Service server application is a RESTful web service which is used by both client Android applications to

provide their main functionality. Server will be tested to verify that it meets both functional and non-functional

requirements. Most of the server functional requirements will be tested through two client applications. One of

the most important non functional requirements, ability of the server to serve large number of clients (both taxi

and customer clients) at the same time, will be tested using stress testing tool JMeter.

4. Features to be tested

Features that will be tested are as following:

Identity
Sta

Tus
Prio

Rity
 Description

 Mobile application for taxi user shall be able to:

TCT-01

TCT-02

TCT-03

Done M Communicate with the server side, sharing repeatedly

current position and status

TCT-04

TCT-05
Done M Receive from the server side the order requests, accept

or decline it

TCT-04 Done M Receive information about the orders

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 6

 Server shall be able to:

 To Do S Work under high-load stress

ST-01

ST-02
Done M Receive constantly the taxi positions and statuses

ST-06 Done M Divide the city in different areas and make a queue for

every area
ST-06

ST-07
Done M Maintain the queues with the taxi positions and statuses

ST-03

ST-04
Done M Receive orders from customer clients, and dispatch them

to the nearest queues
 Mobile application for customer user shall be able to:

CCT-01

CCT-02

CCT-04

Done M Send an order for a taxi

CCT-05

CCT-06

CCT-07

CCT-08

Done S Receive information about the taxi which will pick the

customer up and its time of arrival

CCT-03

Done S Automatically get the phone number from the SIM card

or allow the customer to enter it manually

Requirement priority:

M – Must have this requirement to meet the business needs.

S – Should have this requirement if possible, but project success does not rely on it.

C – Could have this requirement if it does not affect anything else in the project.

5. Features not to be tested

The user acceptance testing phase will not test most of the server functionality directly. Instead, the server

application will be tested indirectly – as a result of users’ interaction with the mobile applications.

The system will not be tested for malfunctions on the physical level such as power outages, high network

delays, etc.

6. Approach

SCRUM model includes testing phase in every sprint. Throughout the development process, features were tested

before and after their integration in the system. The QA team of 2 people was also established and their task was

to test the whole system additionally in order to find bugs which went unnoticed to the developers of that system

part. The QA team changes its members for every sprint. Before the final delivery, additional testing such as

stress testing will take place in order to deliver fully working product.

Many tools were used for testing the system – Robotium, JUnit, MS VS integrated unit testing, JMeter, Fiddler,

etc.

6.1 Approach to configuration and installation

The main server is deployed with MS VS 2012 on Microsoft Azure which saves much time which is usually

spent on configuration and installation. The system is also deployed locally. Android clients are delivered as

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 7

.apk and are easily installable to Android devices or AVD Emulator.

7. Item pass/fail criteria

The general testing criteria:

 Whenever possible, acceptance tests will be automated using the Robotium framework. If a test is

automated, it passes if it compiles, runs, and passes all of its assertions. It is considered a failing test

otherwise.

 If a test case is not automated and is done properly, i.e. the preconditions are met and all input data is

as defined by the input definitions, the test is considered a pass if the result is according to the output

definition.

 If a test case is not automated and done properly, but the result isn’t as described in the output

definition, the test is considered a fail.

 If the test isn’t done properly, it cannot be said if the test has passed or failed.

7.1 Installation and Configuration

The server side of the application must be properly installed and set up for testing. In order to test each of the

clients, an Android application must be installed on a compatible device. The requirements for the device are a

working GPS module and an internet connection.

7.2 Documentation problems

Documents that can affect testing are the Requirements specification document, because it defines all the

necessary requirements which have to be fulfilled, and the Design description document, because it defines

software design in detail. However, those documents were reviewed in the previous project iterations, so there is

currently no need to do any major changes which would affect testing. Other documents can’t affect testing in

any way.

8. Suspension criteria and resumption requirements

During the testing period people who are performing the testing should be in touch with developers of the

applications or server component. Testing can be suppressed and then continued from the same point in

following situations:

 A smaller bug on the client applications that doesn’t affect the server

 A smaller bug in the server functionality that doesn’t affect more than one use-case

o In this particular case testers should be very careful, because if the bug affects more than one

use case it could also affect other tests that were previously run and therefore testing process

has to be started from the beginning

 If the server goes down for some reason

Before continuing with the testing the following requirements should be fulfilled:

 The cause of test suspension is no longer valid

o Bugs are fixed

o Server is up again and nothing was changed in server side logic

If the bug is found in test scenarios which involve more than one system component it is very risky to continue

with testing from the same point after fixing the bug. Almost every major change of the server side logic should

be the reason of starting the testing from the beginning.

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 8

9. Environmental needs

9.1 Hardware

 Two Smartphones or tablets with Android OS and GPS chip

 Server computer(s)

9.2 Software

 Android OS on the Smartphone

 Windows server or MS Azure account

 MVC4 framework

 Microsoft Entity framework

 MS SQL Database Server

 MS Visual Studio 2012

 Eclipse IDE

 Android Emulator

9.3 Other

 Internet connection

 Server should be running the Taxi service server application

10. Test procedure

10.1 Test case specifications

10.1.1 Customer Client Test Case – CCT

10.1.1.1 Making order – CCT-01

Description User makes an order at his current location

Test type Positive

Precondition Device connected to internet and has GPS turned on. Customer

defined his phone number. Customer orders taxi in Milano.

Input definition User opens “Catch a cab” application

 User clicks “Call a cab” button

 User clicks “Send order” button

 User clicks “Call” button on popup window

Output definition User gets message “Your order has been received”. Server gets new

order.

Remarks

10.1.1.2 Making order – CCT-02

Description Customer makes an order without specified location

Test type Negative

Precondition Device not connected to internet or GPS is turned off.

Input definition User opens “Catch a cab” application

 User clicks “Call a cab” button

 User clicks “Send order” button

 User clicks “Call” button on popup window

Output definition An error message “No GPS available, please try again” is displayed

to the user. Server doesn’t get new order

Remarks

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 9

10.1.1.3 Making order – CCT-03

Description Customer makes an order with no phone number

Test type Negative

Precondition Device connected to internet and has GPS turned on. Device doesn’t

have SIM card or user didn’t input his phone number in settings

Input definition User opens “Catch a cab” application

 User clicks “Call a cab” button

 User clicks “Send order” button

 User clicks “Call” button on popup window

Output definition An error message “No phone number provided, please put a SIM

card in your device or enter the number manually” is displayed to the

user. Server doesn’t get new order

Remarks

10.1.1.4 Making order – CCT-04

Description Customer makes an order outside of Milano

Test type Negative

Precondition Device connected to internet and has GPS turned on. Customer

defined his phone number. Customer orders a taxi that is out of

Milano.

Input definition User opens “Catch a cab” application

 User clicks “Call a cab” button

 User clicks “Send order” button

User clicks “Call” button on popup window

Output definition An error message “Out of Milan” is displayed to the user. Server

doesn’t get new order

Remarks

10.1.1.5 Checking current order – CCT-05

Description Customer checks position of taxi that is assigned to pick him

Test type Positive

Precondition Device connected to internet. Customer already has pending order

Input definition User opens “Catch a cab” application

 User clicks “Messages” button

Output definition Map with marker showing taxi and customer location is shown to

customer

Remarks

10.1.1.6 Checking current order – CCT-06

Description Customer checks position of taxi that is assigned to pick him

Test type Negative

Precondition Device not connected to internet.

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 10

Input definition User opens “Catch a cab” application

 User clicks “Messages” button

Output definition An error showing “No response from server” is shown to customer

Remarks

10.1.1.7 Checking current order – CCT-07

Description Customer checks position without ordering taxi

Test type Negative

Precondition Device connected to internet. Customer doesn’t have pending order.

Input definition User opens “Catch a cab” application

 User clicks “Messages” button

Output definition An error showing “Customer doesn’t have any pending order” is

shown to customer

Remarks

10.1.1.8 Checking current order – CCT-08

Description Customer checks detailed information about taxi that is assigned to

pick him

Test type Positive

Precondition Device connected to internet. Customer has pending order.

Input definition User opens “Catch a cab” application

 User clicks “Messages” button

 User clicks on a marker representing taxi on a map

Output definition New window pops up in which taxi name and time of receiving order

are shown

Remarks

10.1.2 Taxi Client Test Case – TCT

10.1.2.1 Changing status – TCT-01

Description User changes current taxi status from “on duty“ to “off duty“

Test type Positive

Precondition Device connected to internet and the current status is “on duty”

Input definition User opens “Taxi client“ application

 User clicks “on duty” button

Output definition Taxi status changes to “off duty“.

Remarks

10.1.2.2 Changing status – TCT-02

Description User changes current taxi status from “off duty“ to “on duty“

Test type Positive

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 11

Precondition Device connected to internet and the current status is “off duty”

Input definition User opens “Taxi client“ application

 User clicks “off duty” button

Output definition Taxi status changes to “on duty“.

Remarks

10.1.2.3 Inactive taxi goes to off duty – TCT -03

Description Taxi status changes to “off duty” if taxi didn’t update his location for

more than 5 minutes

Test type Positive

Precondition Device connected to internet and the current status is “free” or “busy”

Input definition User opens “Taxi client“ application

 Taxi client application continuously sends current taxi

location to the server

 User disconnects Android device from the internet and stays

disconnected for more than 5 minutes

Output definition Taxi status changes to “off duty“.

Remarks

10.1.2.4 Accepting order – TCT-04

Description User accepts an order offered to him

Test type Positive

Precondition Device connected to internet and has GPS turned on. Taxi client

application is up and running. Order is offered to taxi driver.

Input definition Popup window opens on “Taxi client“ application

 User clicks “Accept“ button

Output definition User gets message with order details. Taxi status is changed to busy.

Remarks

10.1.2.5 Rejecting order – TCT-05

Description User rejects an order offered to him

Test type Positive

Precondition Device connected to internet and has GPS turned on. Taxi client

application is up and running. Order is offered to taxi driver.

Input definition Popup window opens on “Taxi client“ application

 User clicks “Reject“ button

Output definition Taxi is moved to the last position in the queue.

Remarks

10.1.3 Server Test Case – ST

10.1.3.1 Detect Zone – ST-01

Description Server can detect zone from given GPS coordinates

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 12

Test type Positive

Precondition GPS coordinates received.

Input definition Server gets the zone for received coordinates

Output definition

Remarks

10.1.3.2 Coordinates validation – ST-02

Description Server detects invalid GPS coordinates

Test type Negative

Precondition GPS coordinates received.

Input definition Server detects invalid coordinates

Output definition Error message is sent in server response

Remarks

10.1.3.3 Make order – ST-03

Description Server receives order request and creates new order in the system.

Test type Positive

Precondition Order request received.

Input definition Server gets the order request message

 Server validates received request.

 Server creates new order in the system

Output definition Server responds with positive status message “ok”.

Remarks

10.1.3.4 Assign order to first taxi in queue – ST-04

Description Server receives order request and assigns it to first taxi in queue

Test type Positive

Precondition Order request received.

Input definition Server gets the order request message

 Server validates received request.

 Server detects zone from which the request was made

 Server gets the first taxi from the queue for the specified

zone

 Server assigns order to that taxi

 Taxi's status is changed to busy, and taxi is removed from

the queue

Output definition

Remarks

10.1.3.5 Taxi with assigned order changes status to “off duty” – ST-05

Description Taxi with assigned order changes status to “off duty”, order is offered

to next taxi in queue

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 13

Test type Positive

Precondition Order assigned to the taxi. Taxi has accepted the order. Change status

message received

Input definition Server gets the change status request message

 Server changes taxi status to “off duty”, and taxi is removed

from the queue

 Server detects zone from which the request was made

 Server gets the next taxi in the queue for the specified zone

 Server assigns order to that taxi

 Taxi's status is changed to busy, and taxi is removed from

the queue

Output definition

Remarks

10.1.3.6 Taxi with assigned order changes status to “off duty” after order is offered to him, but before

he accepted or rejected the order – ST-06

Description Taxi with assigned order changes status to “off duty”, order is offered

to next taxi in queue

Test type Positive

Precondition Order assigned to the taxi. Taxi hasn't accepted or rejected the order.

Change status message received

Input definition Server gets the change status request message

 Server changes taxi status to “off duty”, and taxi is removed

from the queue

 Server detects zone from which the request was made

 Server gets the next taxi in the queue for the specified zone

 Server assigns order to that taxi

 Taxi's status is changed to busy, and taxi is removed from

the queue

Output definition

Remarks

10.1.3.7 All taxis in queue go to “off duty” after order request is made – ST-07

Description All taxis in queue go to “off duty”, server sends error message to

client

Test type Negative

Precondition Order request is made.

Input definition Server gets the change status request message

 Server changes taxi status to “off duty”, and taxi is removed

from the queue

 Server detects zone from which the request was made

 Server gets the next taxi in the queue for the specified zone

 Server assigns order to that taxi

 Taxi's status is changed to busy, and taxi is removed from

the queue

 Server gets the change status request message from second

taxi

 Server changes taxi status to “off duty”, and taxi is removed

from the queue

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 14

 Server detects zone from which the request was made

 Server detects that there are no more taxis in the queue for

the specified zone

Output definition Server responds with negative status message “No taxis in queue”.

Remarks

10.1.3.8 Administrator can add taxi – ST-08

Description Administrator can add new taxis to system

Test type Positive

Precondition Administrator is successfully logged in the web application

Input definition Administrator selects option “manage taxis”

 Administrator fills in necessary data

 Administrator presses button “Add”

 New taxi is added to the system

Output definition New taxi is visible under existing taxis.

Remarks

10.1.3.9 Administrator can remove taxi – ST-09

Description Administrator can remove taxi from system

Test type Positive

Precondition Administrator is successfully logged in the web application

Input definition Administrator selects option “manage taxis”

 Administrator presses button “Delete” next to the taxi he

wants to remove

 Taxi is removed from the system

Output definition Taxi is no longer visible under existing taxis.

Remarks

10.2 Test plan

Server tests can be executed apart from the other tests, because they don’t depend on the test results of other

parts of the system. In order for both applications to work properly it has to be confirmed that server application

meets the requirements.

Some test scenarios are dependent on the others, so testing both applications will have to be done at the same

time. For example, in order to execute test scenario TCT-04 (Accepting order), an order already has to be

received, and therefore test scenario CCT-04 (Making order) has to be executed.

11. Responsibilities

11.1 Developers

 Unit testing every feature before integrating them into the system

 Testing whole system

 Fixing bugs

11.2 User representative

 Changing and adding requirements on time

Taxi Service Version: 1.0

Acceptance Test Plan Date: 2012-12-31

 Page 15

 Report if any bugs are found

12. Risks and contingencies

 Android applications are tested for some smart phones and tablets, not for all, so there is possibility that

applications won’t work on some of them

How to avoid risk: Check application on as many smart phones and tablets it is possible, work with

widely used API’s

 Not enough time to test the system and fix bugs

How to avoid risk: Test every feature as soon as it is done; define QA team that will be responsible on

checking eventual bugs; set strict deadlines on finishing and testing each feature

 Possibility of crashing the system when large number of customers access the server

How to avoid risk: Simulate situation where large number of customers uses the system and check if

everything is working as it should

 Not all aspects of the application are easily tested through automatic tools. For example, it may not be

possible to mock a GPS location, so any feature that relies on getting a GPS fix may not be testable by

automatic means

How to avoid risk: Refactor and re-architect the design in order to enable easy mocking of components

where possible in order to automate testing. Failing that, fall back on manual testing.

13. Approvals

Name Title
Date

yyyy-mm-dd
Signature

Elisabetta Di Nitto Supervisor

