

 Arcade Game Maker
Product Line – Unit
Test Plan Template

ArcadeGame Team

July 2003

CMU/SEI-2001-TR-001 i

Table of Contents

1 Overview 1
1.1 Identification 1
1.2 Document Map 1
1.3 Concepts 2
1.4 Readership 2

2 Template Plan 3

3 Analyses and Standards 5
3.1 Coverage Standards 5

3.1.1 Functional 5
3.1.2 Structural 5

3.2 Analyses 5
3.2.1 Test suite construction 5
3.2.2 Incremental test analyses 5

3.2.2.1 Change Impact Analysis 6
3.2.2.2 Diff 6

4 Modifying the Unit Test Plan 7
4.1 Test effectiveness 8

5 References and Further Reading 9

Revision Control Table

Version
Number

Date
Revised

Revision
Type A-
Add, D-
Delete,

M-
Modify

Description
of Change

Person
Responsible

ii CMU/SEI-2001TR-001

V2.0 6/1/04 M
Responding
to review
comments

JDMcGregor

 1

1 Overview

1.1 Identification
The Arcade Game Maker Product Line organization will produce a series of arcade games
ranging from low obstacle count to high with a range of interaction effects. More detailed
information can be found in the Arcade Game Maker scope document. This document
describes how individual code assets are tested in the AGM product line.

1.2 Document Map
The Arcade Game Maker Product Line is described in a series of documents. These
documents are related to each other as shown in Figure 1. This map shows the order in which
the documents should be read for the first time. Once the reader is familiar with the
documents, the reader can go directly to the information needed.

This is the unit test plan template. Product Line organizations use this document to capture
how each code unit is tested. This document follows the outline provided in [McGregor 01b].

2 CMU/SEI-2001-TR-001

Figure 1- Document Map

1.3 Concepts
For definitions of basic concepts see the Glossary document.

1.4 Readership
This document is intended to provide some level of information to all of the stakeholders in
the Arcade Game Maker framework but is primarily intended for core asset development
teams. The unit test plan describes for a manager the resources that are needed to test an
asset. Technical members of the organization can use the unit test plan template as the guide
for developing a complete unit-specific test plan.

 3

2 Template Plan

The AGM product line organization has decided to follow the IEEE 829 standard for test
plans. The following template is filled in for each unit. See [McGregor 01b] for definitions of
each section.

1. Introduction

2. Test Items

3. Tested Features

Increment Functionality Schedule

1

2

3

4. Features Not Tested (per cycle)

5. Testing Strategy and Approach

5.1 Syntax

5.2 Description of Functionality

5.3 Arguments for tests

5.4 Expected Output

5.5 Specific Exclusions

5.6 Dependencies

5.7 Test Case Success/Failure Criteria

6. Pass/Fail Criteria for the Complete Test Cycle

7. Entrance Criteria/Exit Criteria

 The unit test phase runs concurrently with the unit development phase. The construction of
test cases begins while the specification of the unit is being developed. Feedback from test
case development allows the developer to see inconsistencies and ambiguities in the
specification and to correct these.

The unit test phase is exited when the developer has implemented the required unit and it has
passed all of the tests required by the standards defined in the test plan template.

4 CMU/SEI-2001-TR-001

8. Test Suspension Criteria and Resumption Requirements

Unit tests are suspended for one of two reasons:

1. the available functionality has been adequately tested and passed those tests but
additional functionality remains to be developed, or

2. the available functionality has not passed the tests and the developer has sufficient
information to make another development pass.

Tests are resumed when the developer has constructed additional functionality of
revised the existing functionality.

9. Test Deliverables/Status Communications Vehicles

10. Testing Tasks

11. Hardware and Software Requirements

 No special hardware is required for the tests of this cluster.

The DotUnit executable and the accompanying framework classes are required for building
test classes.

12. Problem Determination and Correction Responsibilities

The developer has responsibility for corrections. The users of the cluster are responsible for
reporting any problems to the listed owner of the cluster.

13. Staffing and Training Needs/Assignments

14. Test Schedules

Increment Functionality Schedule

15. Risks and Contingencies

 5

3 Analyses and Standards

In this section we describe the techniques and the agreed-upon standards used to test each
code asset in the AGM product line. These are justified and put into context in [McGregor
01b].

3.1 Coverage Standards
3.1.1 Functional
For each service on a component, a test case is constructed for every clause of the post-
condition.

Test the unit invariant before and after each service invocation. This can be done in
conjunction with the service test cases.

3.1.2 Structural
A test case is constructed for each sequence of statements. This effort can be optimized by
first executing the functional tests with a code coverage tool running. Then only construct test
cases to cover sequences of statements that were not covered by the functional test cases.

Be certain that this includes all exceptional sequences.

3.2 Analyses
3.2.1 Test suite construction
The AGM product line organization has decided to use the test case selection techniques
described in [McGregor 01b]. Read that information before constructing test suites.

3.2.2 Incremental test analyses
After the initial test suites have been created, different techniques are used to maintain the
test suites. Every time the unit is changed, apply these techniques.

6 CMU/SEI-2001-TR-001

3.2.2.1 Change Impact Analysis
Use the results from the Change Impact Analysis that was conducted by the developers. That
analysis will have identified those portions of the asset that will be modified when the change
is implemented.

3.2.2.2 Diff
A tool such as diff can be used to show exactly what the difference is between two versions
of the unit. Then tests can be modified to address just those differences.

 7

4 Modifying the Unit Test Plan

A specific unit test plan is modified every time the unit being tested is changed using
techniques discussed in section 3.2. The generic unit test plan is modified when it is shown
that the techniques are not producing effective test cases and the standards are not producing
satisfactory results. That is the focus of this attached process.

 Collect test
effectiveness
data

End of
increment?

Compute test
effectiveness
(TE) statistics

no
yes

Modify the
standards and
techniques

TE < 75%? no

yes

Figure 2-Attached process

8 CMU/SEI-2001-TR-001

4.1 Test effectiveness
Test effectiveness is measured by how many defects escape detection by the tests that are run.
For the unit test phase, any defect found in a component after unit test counts against the test
effectiveness of the unit test. It is computed as:

tsTotalDefec
tndAfterTesDefectsFoutsTotalDefecTE −

=

Defects are cataloged as they are identified and analyzed to determine their origin. At the end
of a product line increment the test effectiveness is computed on a component by component
basis. When the average TE goes below 75% the test coverage standards are made more
comprehensive.

 9

5 References and Further Reading

For references see the Bibliography document.

