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Why this paper is important 

 
This paper is important because it … 
 
1.  Addresses an important emerging production planning problem 
 
This paper addresses a production planning problem that is increasing in importance in the 
medical device industry and other industries that offer products subject to government regulatory 
approval.  This important operations/marketing interface problem involves the timing of the 
phase-in of a new product and the phase-out of an existing product.   
 
2.  Develops an innovative, new mathematical model for the problem 
 
The paper develops an innovative, new mathematical model for the problem.  The two decision 
variables include the date to start production of the new product and the date to stop production 
of the existing product.  Both dates need to be planned ahead of time in order to allow for 
procurement and manufacturing leadtimes.  The structure of the problem is essentially two 
newsvendor problems that share several parameters.   
 
3.  Provides helpful intuition to managers 
 
The model provides helpful intuitive insights into the value of improving the forecasts of the 
government approval date and shows that the cost of planning for the worst-case scenario for 
both decision variables can be quite high. 
 
4.  Reports on the successful implementation of the model 
 
The paper reports on the implementation of the model in a large medical device firm.  For 
competitive reasons, the firm did not give the authors permission to publish any cost savings 
data; however, the paper does provide an example with data that is representative for the 
industry.  The paper also reports management’s qualitative evaluation of the contribution of the 
model to their decision process and to their intuition.  
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ABSTRACT 

The demand for medical devices such as pacemakers, defibrillators, catheters, and heart 
valves is growing rapidly throughout the world.  This demand is driven by both the 
“technology push” of new medical device technologies and by the “demand pull” of an 
aging population in North America, Western Europe, and Japan.  Production planning for 
these products is increasing in importance as demand increases, global competition 
intensifies, and product lifecycles shorten. 
 
In all developed countries, medical devices must pass through a government approval 
process.  An uncertain government approval date makes it difficult to create production 
and inventory plans for both the phase-out of an existing product and the phase-in of a 
replacement product.  
 
This paper presents a mathematical model for finding the optimal dates to stop 
production of an existing product and to start production of a new product in the presence 
of an uncertain approval date.  The paper also presents an example and reports on an 
implementation in a Fortune 500 medical device firm.  
 
 
Subject Areas: Inventory Theory, Production Planning, Master Production 
Scheduling, Mathematical Optimization, Marketing-Operations Coordination, Medical 
Device Manufacturing.  
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INTRODUCTION 

 
The demand for medical devices such as pacemakers, defibrillators, cochlear implants, 

stents, catheters, and heart valves is growing rapidly throughout the world.  Industry leaders such 

as Medtronic, Guidant, St. Jude Medical, and Boston Scientific have experienced impressive 

growth rates.  For example, between 1992 and 2001, Medtronic’s sales grew by 18% per year 

and profits grew by 24% per year (Medtronic 2001 Annual Report).  Demand for medical 

devices is driven by both the “technology push” of new medical device technologies and by the 

“demand pull” of an aging population in North America, Western Europe, and Japan.  

Medical device production planning is complicated by a government approval process 

that has an uncertain approval date.  In all developed countries of the world, medical devices 

cannot be sold until a government approval body grants permission.  For example, the web page 

for the State Institute for Drug Control for the Slovak Republic (SIDC, 1999) outlines the 

approval process for medical devices in that country.  In the United States, the Food and Drug 

Administration (FDA) had an average time to approval for Premarket Approval Applications of 

12.4 months in 1998 (FDA Report, 1999, page 1).  It is common for the forecast interval for the 

approval date to be more than six months wide. 

The uncertainty of the approval date for new devices makes it difficult to create 

production and inventory plans for both the phase-out of the existing product and the phase-in of 

the replacement product.  Manufacturing and procurement leadtimes of unique parts require the 

firm to commit to phase-out and phase-in plans before the earliest approval date.  If production 
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of the existing product is stopped too early, the firm will lose profit and customer goodwill; 

conversely, if production is stopped too late, the firm will experience obsolescence cost for the 

existing product.  If production of the new product is started too early, the firm will experience 

inventory carrying cost; if the production is started too late, the firm will lose revenue.  

To further complicate the planning problem, it is often necessary to scrap much of the 

inventory of the existing product immediately when the new product is approved.  This is due to 

three market forces.  First, patients and their doctors want the latest medical device technology 

for treatment.  Second, higher demand, higher prices, and higher commissions drive sales 

organizations to shift to the new product.  Third, marketing organizations want products that 

accentuate the “leading edge” nature of the firm’s brand, and do not want to lose the opportunity 

to sell the “latest and greatest” product when approval is announced by the government agency.  

A recent article about Medtronic emphasized this point with the statement, “Because lives (and 

careers) require that a doctor use the best technology, a lag in a product introduction can chop a 

company’s market share in half almost overnight”  (McLean 1999, page 178).  On the other 

hand, if a medical device firm has clear technological superiority for an existing product, it may 

be possible to sell off existing inventory before introducing the new product.   

Given that medical devices often have high prices and costs, the impact of production 

planning decisions can be significant.  For example, three of the leading medical device 

manufacturers in the United States reported inventory write-offs of over $12 million (roughly 1% 

of sales) in their 1998 annual reports.  The 1998 Guidant Annual Report stated: 

The second charge was a $28.8 million non-cash charge to cost of products sold 
resulting from the obsolescence of older-generation cardiac rhythm management 
products and programmers.  The charge resulted from accelerated regulatory 
approval for market release and customer acceptance of new-generation cardiac 
rhythm management products. 
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Boston Scientific’s 1998 Annual Report stated:  
 
During 1998, the Company initiated a full-time global program to focus on supply 
chain optimization.  The program is designed to lower inventory levels and the 
cost of manufacturing, improve absorption, and minimize inventory write-downs.  
By addressing the entire supply chain, including application of lean 
manufacturing techniques, the Company seeks to return gross margins to more 
acceptable levels and to improve working capital.  The decline in gross margins 
during 1997 is primarily attributable to write-downs for excess and obsolete 
inventory and a decline in average selling prices as a result of continuing pressure 
on healthcare costs and increased competition.  
 

The 1999 Medtronic Annual Report stated: 

Fiscal 1999 cost of products sold included $29 million in charges related to 
inventory obsolescence in the vascular and cardiac surgery product lines …” 
 

These and other medical device firms apparently tend to follow what we call the safe 

policy for product transition planning.  The safe policy plans to build enough of the existing 

product to carry the firm to the latest approval date and plans to have the new product available 

by the earliest approval date.  Parlar and Weng support the safe policy concept when they point 

out that, “An unsatisfied customer order not only results in lost potential revenue, but  … drives 

a firm to satisfy all demand, even at a loss” (Parlar & Weng, 1997, page 1343).  As we will show 

later in the paper, the safe policy minimizes stockout costs at the expense of high obsolescence 

and carrying costs. 

Many authors have argued that coordination between the production and marketing 

functions is critical to business success (Balakrishnan, Chakravarty, & Ghose, 1997; Berry, Hill, 

Klompmaker, & McLaughlin, 1991; Berry, Hill, & Klompmaker, 1995; Deane, McDougall, and 

Gargeya, 1991; Karmarkar, 1996; Meredith & McTavish, 1992).  For example, Berry, Hill, 

Klompmaker, and McLaughlin (1991, p. 295) state that:  

There is very little emphasis in operations strategy on how to acquire and apply 
market information and coordinate marketing and operations strategies ... 
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improved competitive performance can be obtained by incorporating market 
analysis and marketing strategy considerations in the formulation of operations 
strategy.  
 
Krishnan and Ulrich (2001) provide an excellent review of the product development 

literature, including discussion of product launch and ramp-up decisions.  Hultink, Griffin, Hart, 

and Robben (1997) argue that product launch strategy is an important success factor.  Kalish and 

Lilien (1986) find that significant penalties may be associated with mistiming the introduction of 

new products.  Billington, Lee, and Tang (1998, page 24) argue that planning for product 

introduction and product phase-out should be done jointly:  

To manage product rollovers efficiently, it is critical to plan the introduction of 
new products and the displacement of old products jointly.  Most of the literature 
treats the two processes separately.  Moreover, the execution of an effective plan 
also calls for coordination among different departments.  

 
They compare solo-product and dual-product strategies.  The solo-product strategy offers only 

one product to the market at a time; the dual-product strategy offers both products.  They explore 

many of the risk and cost factors related to these strategic decisions.  

Some research (Kurawarwala & Matsuo, 1996; Jain, 1998) has addressed 

marketing/operations coordination in the context of planning the transition from one product to 

another for short lifecycle products such as personal computers.  This research is based on the 

concept that “for many such products, the production and procurement decisions need to be 

made fairly in advance of the product’s introduction stage” (Kurawarwala & Matsuo, 1996, page 

131).  Their research concludes that it is often desirable to be the first firm to adapt the new 

product technology.  The research presented in this paper considers marketing/operations 

coordination for production transition planning in the context of medical device manufacturing 

with an uncertain approval date. 
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The first section of the paper develops a mathematical model that can be used to plan 

production for both the existing product and a replacement product.  The second section reports 

on the implementation of the model in a Fortune 500 medical device firm.  The third section 

illustrates the model with a hypothetical example.  The fourth section discusses limitations and 

extensions.  The last section concludes with an overview of the contributions of the research. 

 

THE PRODUCTION PLANNING MODEL 

The problem context requires a production plan for phasing out an existing product 

(hereafter called product 1) and phasing in a replacement product (product 2).  The 1t  decision 

variable is the date the firm plans to run-out of product 1.  The manufacturing and procurement 

leadtimes for product 1 are significant, making it necessary to commit to the 1t  planning date 

before the earliest approval date.  The planned stop-date for product 1 in the Master Production 

Schedule (MPS) is then determined by taking into account the trailing demand and back-

scheduling from the run-out date.  The MRP system uses this MPS stop-date to phase out all 

unique components for product 1. 

The 2t  decision variable is the date product 2 is planned to be available to sell.  Product 2 

is not available for sale until the distribution channel is filled with 2I  units.  The manufacturing 

and procurement leadtimes for product 2 are significant, making it necessary to commit to the 2t  

planned availability date long before the earliest approval date.  The planned start date for 

manufacturing product 2 in the MPS is then determined by back-scheduling from the 2t  planned 

availability date while taking into account learning curve and shop calendar issues.   
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The existing product is sold until the firm runs out of inventory or until an approved new 

product replaces it.  The firm’s policy is to scrap all product 1 units immediately when an 

approved product 2 is available for sale.  As mentioned earlier, this is justified by the higher 

margins for product 2 and by the need to maintain brand equity as a leading-edge provider.  We 

will relax this assumption later in the paper and allow for trailing demand for product 1 after 

product 2 has been introduced.   

The goal is to maximize the expected contribution to profit, which is the sum of the 

contribution to profit for products 1 and 2 less the scrap loss for product 1, the carrying cost for 

both products, and lost goodwill during the time the firm cannot sell either product.  The 

planning horizon is fairly short (about a year), so it is not necessary to discount cash flows. 

The government approval date is a random variable, T, with density function ( )f T , 

distribution function ( )F T , and mean Tµ .  The demand rates for products 1 and 2 are 1d  and 2d  

units per period, respectively. 

The solution space can be divided into three cases.  For Case 1, the firm plans to run-out 

of product 1 before product 2 becomes available (e.g., 1 2t t< ), which means the firm plans to 

have neither product available during the time interval ( 1 2,t t ).  For Case 2, the firm plans to have 

the product 2 available on the same date that product 1 runs out (e.g., 1 2t t= ).  For Case 3, the 

firm plans to have the new product available before the date product 1 runs out (e.g., 2 1t t< ), 

which means that the firm plans to carry inventory for product 2 during the time interval ( 2 1,t t ) 

and scrap some product 1 units if 1T t< .  The next three subsections show that Case 1 is never 

optimal, derive optimal closed-form policies for Cases 2 and 3, and develop a decision rule for 

determining if the optimal solution can be found in Case 2 or Case 3. 
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Case 1: Phase-out before phase-in ( 1 2t t< ) 

For Case 1, the firm plans to run-out of product 1 before having product 2 available.  

Figure 1 shows the problem structure for this case.  The random approval date, T, falls into one 

of three cases, min 1T T t≤ < , 1 2t T t≤ < , and 2 maxt T T≤ ≤ .  For all three cases, the firm sells 

product 1 during ( min 1,T t ).  The contribution to profit per period for product 1 is 

1 1 1 1 1 1( )m d p c hc I= − − , where 1 1 1( )d p c−  is the demand rate times the gross margin, 1I  is the 

channel inventory needed to support product 1 in the field, and h  is the carrying charge per 

period.  For all three cases, the firm has neither product to sell between 1t  and 2t  and loses 

goodwill of g  per period.  The lost goodwill per period is assumed to be independent of T . 

 
Figure 1.  Case 1 problem structure ( 1 2t t< ) 
 
 

 

 

 

 

For cases 1a and 1b, product 2 is sold from 2t  to maxT  with contribution per period of 

2 2 2 2 2 2( )m d p c hc I= − − .  For case 1c, the random approval date is after product 2 becomes 

available ( 2T t≥ ), which means that product 2 contributes 2m  per period for maxT T−  periods.  

Tmin Tmax t1 t2 

+m1 

T 

T 

T 

Case 1a:  Tmin ≤ T < t1 

Case 1b:  t1 ≤ T < t2 

Case 1c:  t2 ≤ T ≤ Tmax 

+m1 

+m1 

−g 

−g 

−g 

+m2 

+m2 

+m2 −ch−g 
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Between 2t  and T , the firm has neither product to sell with a goodwill loss of g  per period and 

carries 2I  units of product 2 with a carrying cost of 2 2hc hc I=  per period. 

For any realization of the random approval date (T ), Case 1 contribution to profit is: 

 
1 1 min 2 1 2 max 2 min 1

1 1 2 1 1 min 2 1 2 max 2 1 2

1 1 min 2 1 2 2 max 2 max

( ) ( ) ( ) for 

( , , ) ( ) ( ) ( ) for 

( ) ( ) ( )( ) ( ) for h

m t T g t t m T t T T t

CP t t T m t T g t t m T t t T t

m t T g t t c g T t m T T t T T

− − − + − ≤ <
= − − − + − ≤ <
 − − − − + − + − ≤ ≤

(1)  

It is clear from Figure 1 and equation (1) that for any given value of 2t , the firm can 

always increase the contribution to profit and reduce lost goodwill by increasing 1t .  This means 

that the optimal policy can always be found in either Case 2 or 3.  The next two sections develop 

optimal closed-form solutions for Case 2 and Case 3.  

 

Case 2:  Same-date policy ( 1 2t t= ) 

For Case 2, the firm plans to run-out of product 1 on the same-date that product 2 

becomes available (e.g., 1 2t t= ).  From Figure 1, we can see that for any realization of the 

random approval date (T ), the contribution to profit for Case 1 is given by: 

 1 1 min 2 max 1 min 1
2 1

1 1 min 1 2 max 1 max

( ) ( ) for 
( , )

( ) ( )( ) ( ) for h

m t T m T t T T t
CP t T

m t T c g T t m T T t T T

− + − ≤ <
=  − − + − + − ≤ ≤

 (2) 

The expected contribution to profit function is given by: 

 

max

min

1

min

max

1

1 1

1 1 min 2 max 1

1 1 min 1 2 max

( ) ( , ) ( )

[ ( ) ( )] ( )

[ ( ) ( )( ) ( )] ( )

T

T T

t

T T

T

h
T t

ECP t CP t T f T dT

m t T m T t f T dT

m t T c g T t m T T f T dT

=

=

=

=

= − + −

+ − − + − + −

∫

∫

∫

 (3) 
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where, ( )f T  is the density function for the random approval date T in the interval ( min max,T T ).  

Defining the partial expectation 
min

( ) ( )
t

T T

G t Tf T dT
=

= ∫  and recognizing that the mean approval 

time is max( )T G Tµ = , the expected contribution to profit for Case 2 simplifies to: 

 2 1 1 min 2 max 1 1 2 1 1 1( ) ( ) ( )[ ( ) ( )]h h TECP t m T m T m c g t m c g t F t G tµ= − + + + + − + + + −  (4) 

Setting the first derivative with respect to 1t  to zero and taking advantage of the fact that 

( ) / ( )G t t tf t∂ ∂ = , we find the optimal Case 2 same-date policy is given by: 

 
2 1 1 1 2 1

1 1
1 2

2

( ) / ( ) ( ) 0

* *

h h

h

h

ECP t t m c g m c g F t

m c g
t t F

m c g
−

∂ ∂ = + + − + + =

 + +
⇒ = =  + + 

 (5) 

The second derivative is 2 2
2 1 1 2 1( ) / ( ) ( )hECP t t m c g f t∂ ∂ = − + + .  Given that ( ) 0f t ≥  and that all 

parameters are non-negative, this is strictly non-positive for all 1t , which proves that equation (5) 

is the global optimal solution for Case 2.  This is a newsvendor-type result with a continuous 

time decision variable.  If the firm plans to have the combined run-out/availability date one 

period earlier than the random approval date, the underage cost is 1 hm c g+ + , one period of the 

lost contribution for product 1, one period of carrying cost for product 2, and one period of lost 

goodwill for having neither product to sell.  If the firm plans the date one period later than the 

approval date, the overage cost is 2 1m m− , the difference between the contributions for the two 

products.  The optimal same-date policy increases as the difference between contributions per 

period decreases.  When 1 2m m= , the optimal policy is 1 2 max* *t t T= = .   
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Case 3: Phase-in before phase-out ( 2 1t t< ) 

For Case 3 the firm has an availability date for product 2 before the run-out date of 

product 1.  Figure 2 shows the problem structure for Case 3 with the random approval date again 

falling into one of three time intervals.  For case 3a, the approval date is before product 2 

becomes available ( 2T t< ), and the firm sells product 1 with contribution 1m  per period from the 

beginning of the planning horizon ( minT ) until product 2 becomes available at 2t .  If approval is 

before 2t , the model assumes the firm loses no goodwill in selling only product 1 after product 2 

is approved.  Product 2 is sold with contribution 2m  per period from 2t  to the end of the 

planning horizon ( maxT ).  At time 2t  all remaining units of product 1 are scrapped with scrap cost 

of 1 1 1( )ss d c p= −  per period, where sp  is the scrap revenue (salvage value) per unit.  The firm 

has planned ahead to have enough inventory of product 1 to last until time 1t , which means that 

1 1 2( )d t t− units will be scrapped.  (Later in the paper we will extend the model to allow for 

trailing demand.) 

 
Figure 2.  Case 3 problem structure ( 2 1t t< ) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Case 3a:  Tmin ≤ T < t2  

Case 3b:  t2 ≤ T < t1  

Case 3c:  t1 ≤ T ≤ Tmax 

T 

T 

T 

Tmin 

+m1 

+m1 

–ch 

+m2 

–g 

–s1 

–ch –s1 

+m2 

+m2 

t2 t1 Tmax 

+m1 
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For case 3b ( 2 1t T t≤ < ), the firm sells product 1 until the approval date (T) when product 

2 is sold for the remainder of the planning horizon ( max,T T ).  The firm incurs a cost for carrying 

2I  units of product 2 for 2T t−  time periods.  At time T, the remaining 1 1( )d t T−  units of product 

1 are scrapped at scrap cost 1s  per period. 

For case 3c ( 1 maxt T T≤ ≤ ), the firm sells product 1 until it runs out at time 1t .  At that 

time, no units of product 1 are remaining and product 2 is not yet approved for sale.  The firm 

does not have either product to sell during the time interval ( 1,T t ) and loses goodwill of g  per 

period.  At time T  product 2 is approved and contributes to profit during the time interval 

( max,T T ).  However, the firm incurs an unnecessary carrying cost of hc  per period during ( 2 ,t T ). 

For any realization of the approval date T, the Case 3 contribution to profit is given by:  

 
1 2 min 2 max 2 1 1 2 min 2

3 1 2 1 min 2 max 1 1 2 2 1

1 1 min 2 max 1 2 1 max

( ) ( ) ( ) for 

( , , ) ( ) ( ) ( ) ( ) for  

( ) ( ) ( ) ( ) for  
h

h

m t T m T t s t t T T t

CP t t T m T T m T T s t T c T t t T t

m t T m T T g T t c T t t T T

− + − − − ≤ ≤
= − + − − − − − < ≤
 − + − − − − − < ≤

 (6) 

The expected contribution to profit for Case 3, therefore, is given by:  

 

max

min

2

min

1

2

1

3 1 2 3 1 2

1 2 min 2 max 2 1 1 2

1 min 2 max 1 1 2

1 1 min 2 max 1 2

( , ) ( , , ) ( )

[ ( ) ( ) ( )] ( )

[ ( ) ( ) ( ) ( )] ( )

[ ( ) ( ) ( ) ( )] ( )

T

T T

t

T T

t

h
T t

T

h
T t

ECP t t CP t t T f T dT

m t T m T t s t t f T dT

m T T m T T s t T c T t f T dT

m t T m T T g T t c T t f T dT

=

=

=

=

=

= − + − − −

+ − + − − − − −

+ − + − − − − −

∫

∫

∫
max

∫

 (7) 

This simplifies to: 

 3 1 2 1 min 2 max 2 1 1 2

1 1 1 1 1 2 1 1 2 2 2

( , ) ( ) ( )

( )[ ( ) ( )] ( )[ ( ) ( )]
h T h

h

ECP t t m T m T m c g m g t c t

m g s G t t F t m m c s G t t F t

µ= − + − + + + + +

+ + + − + − + − −
 (8) 
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Setting the first derivative with respect to 1t  to zero, we find the optimal Case 3 policy: 

 

3 1 2
1 1 1 1

1

1 1
1

1 1

( , )
( ) ( ) 0

*

ECP t t
m g m g s F t

t

m g
t F

m g s
−

∂
= + − + + =

∂

 +
⇒ =  + + 

 (9) 

The second derivative is 2 2
3 1 2 1 1 1 1( , ) / ( ) ( )ECP t t t m g s f t∂ ∂ = − + + .  Given that ( ) 0f t ≥  and that 

all parameters are non-negative, this is strictly non-positive for all 1t , which proves that equation 

(9) is the global optimal solution for Case 3.  This is a newsvendor-type result with a continuous 

time decision variable.  The underage cost for planning the run-out time one period too early is 

1m g+  (product 1 contribution per period plus lost goodwill per period).  The overage cost for 

planning a run-out time for product 1 one period too late is 1s , the product 1 scrap cost per 

period.  The optimal planned run-out time for product 1 increases with product 1 contribution per 

period and goodwill loss and decreases with product 1 scrap cost. 

 For the planned availability date for product 2 for Case 3, we find: 
 

 

3 1 2
2 1 1 2

2

1
2

2 1 1

( , )
( ) ( ) 0

*

h h

h

h

ECP t t
c c m m s F t

t

c
t F

c m m s
−

∂
= − + − − =

∂

 
⇒ =  + − − 

 (10) 

 
This is a proven optimal solution when the Case 3 condition ( 2 1t t< ) is satisfied and when the 

following condition is satisfied: 

 2 2
3 1 2 2 2 1 1 2( , ) / ( ) ( ) 0hECP t t t c m m s f t∂ ∂ = − + − − ≤  (11) 

 
Given that all parameters are non-negative and that ( ) 0f t ≥ , this condition is satisfied when 

2 1 1 0hc m m s+ − − ≥ .  The product 2 contribution to profit per period is almost always greater 
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than the product 1 contribution ( 2 1m m> ), but the carrying cost per period for 2I  units is not 

necessarily greater than the scrap cost for one period of demand.  Therefore, it is necessary to 

check condition (11) in order to find the optimal policy for product 2.  It is also necessary to 

confirm that the Case 3 solution does in fact satisfy the Case 3 condition (e.g., 2 1t t< ). 

When either condition (11) or the Case 3 condition is not satisfied, the optimal solution 

will be found with the Case 2 equation (5) (e.g., 1 2t t= ).  When both conditions are satisfied, 

equation (10) is the optimal policy and the underage cost for planning product 2 availability one 

period earlier than the approval date is the cost of carrying 2I  units of product 2 for one period.  

The overage cost for planning product 2 availability one period later than the approval date is 

2 1 1m m s− − , which means the firm loses one period of contribution to profit for product 2, gains 

one period of contribution to profit for product 1, and has one period less scrap for product 1.  

The product 2 availability date, therefore, increases with hc , 1m , and 1s , but decreases with 2m .   

In order to graph the entire response surface, we use equation (1) to develop an 

expression for the expected contribution to profit for Case 1:  

 1 1 2 1 min 2 max 1 1 2 2 2 2 2( , ) ( ) ( )[ ( ) ( )]h h tECP t t m T m T m g t c t c g m G t t F tµ= − + + + + + + + − −  (12) 

It is intuitively satisfying to know that the optimal same-date policy (equation (5)) is equivalent 

for the ECP  functions for all three cases (equations (12), (4) and (8)).   

In summary, Case 1 is never optimal.  This paper has derived closed-form newsvendor-

type results for the Case 2 and Case 3 optimal policies.  Case 2 is optimal when condition (11) is 

not satisfied (e.g., when 2 1 1 0hc m m s+ − − ≤ ) and when the Case 3 solution does not satisfy the 

Case 3 condition (e.g., 2 1t t< ).  When these two conditions are satisfied, Case 3 is optimal.   
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IMPLEMENTATION EXPERIENCE 

The proposed model was implemented at a Fortune 500 medical device firm.  The dual 

risks of very high stockout cost and very high obsolescence cost made the problem important to 

the senior management of the firm, with marketing, operations, purchasing, finance, and 

regulatory affairs all bringing different viewpoints to the problem.  Before implementation, the 

practice was to plan to have the new product available at the earliest approval date and plan to 

produce enough of the existing product to last until the latest approval date.  This safe policy is 

defined as 1 2 max min( , ) ( , )t t T T= .   

Insights from the mathematical model 

The model was particularly helpful in giving management new insights in many different 

dimensions.  First, the research was judged by management to be surprising and important 

because it found that the two decision variables could be optimized independently as 

newsvendor-type problems.  This was counter-intuitive to most managers, who believed that the 

two decisions were intimately related and that one decision affected the other.  Management 

understood correctly that the ECP  was a function of both decision variables, but incorrectly 

assumed the function had interaction terms where one decision affected the other. 

Second, the two decisions are related only through the common parameters 1m  and 1s  

and the parameters of the approval date distribution.  A change in any of these parameters results 

in a change in both 1t  and 2t .  Both 1t  and 2t  increase as 1m  increases and/or as 1s  decreases.  In 

other words, if the contribution to profit for product 1 increases and/or the scrap loss associated 

with product 1 decreases, it makes sense to delay the planned run-out date of product 1 and the 

planned availability date for product 2.  The carrying cost and product 2 contribution parameters 
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only affect the planned availability date for product 2; they have no impact on the optimal 

planned run-out date for product 1.   

Third, the model showed that the safe policy max min( , )T T  was very costly due to large 

scrap loss.  The model showed that savings on the order of millions of dollars might be available.  

The product 1 safe policy ( 1 maxt T= ) is only optimal when 1 1 1( ) /( ) 1m g m g s+ + + =  and only 

advisable when 1 1s m g<< + .  Similarly, the product 2 safe policy ( 2 mint T= ) is only optimal 

when 2 1 1/( ) 0h hc c m m s+ − − =  and only advisable when 2 1 1 0m m s− − >>  and/or 0hc ≅ .  

Neither of these conditions was satisfied for the firm. 

Fourth, the model made it clear that it was best to plan to have significant obsolescence 

when introducing new products.  This helped senior management set more realistic expectations 

for the transition planning process. 

Fifth, the model results were sensitive to approval date distribution parameters.  This 

motivated more attention to the forecasting process, particularly the frequency of updates and 

accountability for forecast bias.   

Sixth, the model helped management frame the problem more as an economic 

optimization problem and less as a political one.  The model provided a new paradigm and 

vocabulary that enabled management to have a more intelligent debate of the problem.   

The model provided exchange curves that management could use for sensitivity analysis 

for several important issues.  These included decreasing procurement and manufacturing 

leadtimes (Hill & Khosla, 1992), increasing component part commonality and modularity (Eynan 

& Rosenblatt, 1996; Billington, Lee, and Tang, 1998), and using common platforms for more 

products (Lee & Tang, 1997).  The model convinced management that the expected benefits of 

these three programs were much higher than anticipated. 
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Approval date distribution 

The proposed model can be implemented with any approval date distribution.  However, 

the time random variable must be bounded at zero, which suggests the beta, gamma, lognormal, 

Weibull, or triangular distributions.  Law and Kelton (1992) recommend the triangular 

distribution for subjective forecasting situations such as this.  Forecasters only needed to estimate 

the minimum, most likely, and maximum dates ( min ml max, ,T T T ).  The triangular distribution is also 

useful because we have closed-form expressions for the density function, ( )f T , and distribution 

function, ( )F T .  From these expressions we derived useful closed-form expressions for the 

inverse distribution and partial expectation functions for the triangular distribution:   

 11

2

for 0

2 / for 0 ( ) /( )
( )

2(1 ) / for ( ) /( ) 1

for 1

min

min ml min max min

max ml min max min

max

T p

T p a p T T T T
F p

T p a T T T T p

T p

−

≤


+ < ≤ − −= 
− − − − < <

 ≤

 (13) 
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1 min ml

2 ml max
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[ ( , ) ( , )] for 
( )

[ ( , ) ( , )] for 

for 

min min min

T max max max

T

t T

a H t T H T T T t T
G t

a H t T H T T T t T

T T

µ
µ

≤
 − < ≤=  − − < <
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 (14) 

with 1 max min ml min2 /( ) / )a T T T T= − − , 2 max min max ml2 /( ) /( )a T T T T= − − , min ml max( ) / 3T T T Tµ = + + , 

and 3 2
1 2 1 2 1( , ) / 3 / 2H T T T T T= − .  Alternative distributions such as the beta, gamma, and Weibull 

may be more accurate, but do not have closed-form expressions for the distribution, inverse 

distribution, or partial expectation functions and therefore require numerical integration.  A test 

was conducted to determine the impact of using these distributions instead of the triangular.  The 

optimal policy parameters and the corresponding optimal expected contribution to profit were 

nearly identical for all four distributions. 
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The parameters for the approval date distribution were determined from four parameters 

estimated by the management of the regulatory affairs department -- the earliest, 50-th percentile, 

90-th percentile, and latest approval dates.  The triangular distribution was fit to these 

parameters.  The firm’s regulatory affairs department had a challenging job in estimating and 

updating these parameters.  These forecasts had many “customers” such as the external medical 

community, marketing, manufacturing, purchasing, and product design.  As a result, the forecasts 

tended to be biased toward late government approval.  The firm was explicitly using the safe 

policy and implicitly using “safe” forecasts, which together resulted in extremely “safe” plans 

and millions of dollars of obsolete inventory. 

Translating the model results into the master production schedule 

The above mathematical model assumes that the demand for the old product drops to zero 

immediately after the new product is approved and available.  However, most medical device 

products experience a trailing demand that is the result of some customers being reluctant to 

change to the new product and demand in other countries that have longer approval processes.  

Trailing demand can be modeled as a geometric decay time series (Hill, Giard & Mabert, 1989; 

Brown, 1982).  Assuming that product 2 is available and approved at the beginning of period T , 

the demand for product 1 in period t T>  is 1
1, 1

t T
td dρ − += , where 1, 1, 1/t td dρ −=  is the common 

ratio with 1ρ < .  Based on the sum of an infinite geometric series, the cumulative product 1 

trailing demand from period 1T +  to infinity is 1 1 /(1 )D d ρ ρ= − .  Regression was applied to 

estimate ρ from ten historical time series using the non-linear model 1, 1 exp( )t
t td dρ ε= .  The fit 

was very good, with all 2R  values over 90%.  The common ratios for all models within a product 

family were nearly equal.  The firm maintained a finished goods and distribution channel 

inventory of I1 units of product 1.  Therefore, the last net requirement in the Master Production 
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Schedule for product 1 was planned on 1 1 1 1* ( ) /t I D r− − , where 1r  is the production rate for 

product 1.  In other words, even though the model assumes trailing demand is zero, trailing 

demand can be considered by adjusting the stop-date for product 1 in the MPS.  Petruzzi and 

Dada (1999) recently developed pricing models for clearing residual inventory such as this. 

Cost parameter estimation 

Parameters such as 1m , 2m , and hc  were fairly easy to estimate.  The scrap cost per 

period parameter, 1s , should reflect the cost of producing product 1 for one period too long.  

Upon approval, the firm will likely have to scrap all completed units in the system (less trailing 

demand) plus all unique components purchased (or committed to be purchased) from suppliers.  

If approval is early, some shorter leadtime components may not need to be purchased.  Scrap 

write-off costs are mitigated by the tax savings associated with the write-off.  The lost goodwill 

per period, g , should not include the lost margin, which is already imbedded in the model, but 

should include the reduction in future demand due to doctors “defecting” to use another product, 

bad word-of-mouth, etc. 

 

A HYPOTHETICAL EXAMPLE  

 A hypothetical example is presented here to illustrate the model.  (The data from the 

actual implementation is not available.)  The example data is derived from our experience with 

several large medical device firms.  The medical device firm is selling 1 10d =  units per day of 

product 1 and has submitted product 2 for FDA approval on January 1, 2003.  Product 2 is 

expected to be approved sometime between October 1, 2003 and June 1, 2004, with a most likely 

approval date of December 1, 2003 and demand of 2 10d =  per day.  A triangular distribution for 
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the approval date is used to make it easy to solicit the parameters of the distribution and 

implement the code.  Table 1 shows the parameters for the example problem. 

 

Table 1.  Example problem parameters. 
 
Product 2 earliest approval date ( minT ) October 1, 2003 
Product 2 most likely approval date ( mlT ) December 1, 2003 
Product 2 latest approval date ( maxT ) June 1, 2004 
Demand per day ( 1 2d d= ) 10 units/day  
Goodwill lost per day with neither product to sell ( g ) $100,000/day 
Product 1 salvage cost per day ( 1s ) $5,000 
Carrying charge per dollar per year 36.5% 
Product 2 carrying cost per day for 2I  units ( hc ) $5000 
Product price per unit ( 1 2,p p ) ($10,000, $16,000) 
Product cost per unit ( 1 2,c c ) ($5000, $5000) 
Contribution to profit per day ( 1 2,m m ) ($45,000, $105,000) 
Channel inventory ( 1 2,I I ) (1000 units, 1000 units) 
Product 1 common ratio for trailing demand (ρ) 95% 

 
 

Applying the model with the above parameters found the optimal planned run-out date 

for product 1 was 1*t = February 14, 2004 and the optimal planned availability date for product 2 

was 2*t = December 11, 2003.  This means we are planning to have a 66-day safety period.  The 

expected contribution to profit of ECP =$15.7 million.  Both the Case 3 condition 2 1( )t t< and 

condition (11) are satisfied. 

The forecast of the cumulative trailing demand for product 1 is 

1 1 (1 ) 10(.95 / .05) 190D d ρ ρ= − = =  units.  Therefore, the leadtime offset for back-scheduling 

product 1 is 1 1 1( ) / 81I D d− =  days and the last net requirement in the MPS for product 1 is 

scheduled on 1 * 81t − , which is November 27, 2003.  Considering learning curve and shop 
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calendar issues, product 2 should be started in production on May 28, 2003.  This means that 

both products will be in production from May 28, 2003 until November 27, 2003, which might 

have capacity implications for the firm. 

The firm has a cumulative manufacturing and procurement leadtime for long leadtime 

components of 6 months.  Therefore, the February 16, 2004 planned MPS stop-date for product 1 

should drive the firm to stop procurement of long lead time components on August 20, 2003, 

long before the earliest approval date for the new product.  Similarly, the planned MPS start date 

for product 2 on June 14, 2003 should drive the firm to begin procurement of long leadtime 

components on January 31, 2003.   

Figure 3 displays the 1 2( , )ECP t t  response surface for this example.  The response 

surface is like a paper airplane with a fold along the same-date 1 2( )t t=  policy.  When the 

solution moves into the Case 1 region, the costs take a sharp downturn due to the penalty cost of 

the lost goodwill.  The safe policy max min( , )T T is the front corner of the graph.  For this example, 

the safe policy has an expected contribution to profit of $11.9 million, which is about $3.7 

million less than the $15.7 million for the optimal policy -- almost a 25% difference.   

Management has to make a difficult trade-off between the risk of not having the new 

product available on the approval date and the risk of having significant obsolescence cost.  The 

model helps managers by recommending the optimal dates based on estimates of the cost 

parameters and approval date distribution -- and “takes the problem out of the world of politics 

and brings it into the world of economic analysis.” 
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Figure 3.  Example problem response surface 

 

 

 

 

 

 

 

 

 

 

 

 

LIMITATIONS AND EXTENSIONS 

The proposed model assumes that discounting cash flows is not necessary.  Given that the 

time horizon for this planning problem is about a year, this should not be a major limitation.   

The model requires several parameters.  The scrap cost and lost goodwill parameters are 

fairly difficult to estimate.  All parameters should be adjusted to reflect after-tax cash flows. 

The model ignores competitive action that might impact the demand for the new product 

if the new product is introduced later than the competition’s product.  However, requests for 

product approvals are public information, which gives management some forewarning about 

competitive actions.  It is likely, therefore, that the firm can anticipate the market reaction to new 

product offerings and estimate appropriate price and demand parameters for the model. 
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In some situations, the old and new products share some machine and labor capacity.  We 

can still use the model to optimize the run-out date for product 1 and the availability date for 

product 2; however, capacity contention should be considered in the back-scheduling process. 

The model can be implemented with any approval date distribution.  However, the 

triangular distribution is much easier to implement than other reasonable continuous distributions 

because it has closed-form expressions for the distribution, inverse distribution, and partial 

expectation functions.   

Demand is assumed to be constant for each product.  Procurement leadtimes, 

procurement yields, manufacturing leadtimes, and manufacturing yields are also assumed to be 

deterministic.  A stochastic simulation model could be implemented to explore these issues.   

If the product development time for product 2 is highly uncertain, the firm will plan 

production on product 2 at the earliest date.  We can define a new random variable U  called the 

“available and approved” date that is the maximum of two random variables -- the random 

product 2 availability date and the random government approval date.  In other words, the firm’s 

forecasters estimate the parameters of the distribution for max( , )available approvalU T T= .  If we 

replace T with U, the optimal planned run-out time for product 1 can be found with equation (9).   

 

CONCLUSIONS 

Improved marketing-operations coordination is widely viewed as an opportunity for 

improving firm performance (Meredith & McTavish, 1992).  One key need for marketing-

operations coordination is planning product transitions when an existing product is phased out 

and a replacement product is phased in.  This problem is particularly difficult in the context of 

medical device manufacturing that has an uncertain approval date for new products.  This class 
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of problems is increasing in importance due to the growing demand for medical products 

requiring government approval. 

This paper formulated this class of production planning problems as a stochastic 

optimization problem in continuous time.  The expected total contribution to profit model is 

analogous to the newsvendor problem except that it has two continuous-time decision variables, 

the planned run-out date for the existing product and the planned availability date for the 

replacement product.  The paper developed optimal closed-form expressions for both decision 

variables.  The math modeling effort found the unexpected result that the two decision variables 

could be treated as independent, continuous time newsvendor problems.  The two problems are 

related only through the approval date distribution parameters, the product 1 contribution to 

profit per period and the product 1 scrap loss parameters.  

The paper proves that the optimal policy is always to plan to run-out of product 1 on or 

before the availability date for product 2.  The model also shows that the safe policy of planning 

to run-out of product 1 at the latest approval date and planning to have product 2 available at the 

earliest approval date can be very costly to the firm. 

Several practical suggestions for implementing the model are presented.  Closed-form 

expressions for the inverse distribution and partial expectation functions for the triangular 

distribution were developed in order to make the model easy to implement in a spreadsheet.  

Attention was also paid to forecasting the trailing demand for product 1. 

The application of the model in a large medical device firm was judged to be useful by 

the firm’s management, both in terms of analysis and intuition.  The model provided a new 

paradigm and vocabulary that led the management to a more intelligent analysis and discussion 

of the problem. 
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APPENDIX A.  SUMMARY OF TERMS 
 

hc  Carrying cost per period for carrying 2I  units of product 2. 

ic  Unit cost for product i . 

id  Demand rate for product i .   

1D  Cumulative trailing demand for product 1 after product 2 is introduced. 
ECP  Expected contribution to profit over the planning horizon. 

( )f T  Density function for the approval date distribution. 
( )F T  Distribution function for the approval date distribution. 
( )G t  Partial expectation function for the approval date distribution evaluated at t , where 

min

( ) ( )
t

T T

G t Tf T dT
=

= ∫ . 

g  Lost goodwill per period when the firm has neither product available to sell. 
h  Carrying charge per dollar of inventory carried per period. 

iI  Channel inventory of product i required to support the sales of the product. 

Tµ  Mean of the approval date distribution, where max( )T G Tµ = . 

im  Contribution to profit per period for product i . 

ip  Unit price for product i . 
ρ  Common ratio for the geometric time series used to forecast the cumulative trailing 

demand for product 1 with 0 1ρ< < . 

1r   Production rate for product 1.   

1s  Scrap cost per period for product 1. 

1t  Planned run-out date for inventory of the existing product (product 1). 

2t  Planned availability date for the new product (product 2). 
T  The random approval date for the new product (product 2).  This is a random variable 

with density function ( )f T , distribution function ( )F T , and mean Tµ . 


