
Master Thesis
Software Engineering
Thesis no: MSE-2007:02
January 2007

School of Engineering
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Metrics in Software Test Planning and Test
Design Processes

Wasif Afzal

This thesis is submitted to the School of Engineering at Blekinge Institute of Technology in
partial fulfillment of the requirements for the degree of Master of Science in Software
Engineering. The thesis is equivalent to 20 weeks of full time studies.

Contact Information:
Author(s):
Wasif Afzal
Address:
Folkparksvägen 16: 14, 37240,
Ronneby, Sweden.
E-mail:
mwasif_afzal@yahoo.com

University advisor(s):
Dr. Richard Torkar
Assistant Professor
Department of Systems and Software Engineering
Blekinge Institute of Technology
School of Engineering
PO Box 520, SE – 372 25 Ronneby
Sweden
 ii

School of Engineering
Blekinge Institute of Technology
Box 520
SE – 372 25 Ronneby
Sweden

Internet : www.bth.se/tek
Phone : +46 457 38 50 00
Fax : + 46 457 271 25

ABSTRACT

Software metrics plays an important role in measuring attributes that are critical to the
success of a software project. Measurement of these attributes helps to make the
characteristics and relationships between the attributes clearer. This in turn supports
informed decision making.

The field of software engineering is affected by infrequent, incomplete and inconsistent
measurements. Software testing is an integral part of software development, providing
opportunities for measurement of process attributes. The measurement of software testing
process attributes enables the management to have better insight in to the software testing
process.

The aim of this thesis is to investigate the metric support for software test planning and test
design processes. The study comprises of an extensive literature study and follows a
methodical approach. This approach consists of two steps. The first step comprises of
analyzing key phases in software testing life cycle, inputs required for starting the software
test planning and design processes and metrics indicating the end of software test planning
and test design processes. After establishing a basic understanding of the related concepts,
the second step identifies the attributes of software test planning and test design processes
including metric support for each of the identified attributes.

The results of the literature survey showed that there are a number of different measurable
attributes for software test planning and test design processes. The study partitioned these
attributes in multiple categories for software test planning and test design processes. For
each of these attributes, different existing measurements are studied. A consolidation of
these measurements is presented in this thesis which is intended to provide an opportunity
for management to consider improvement in these processes.

Keywords: Metrics, Attributes, Software Test Planning and Test Design.

 ii

CONTENTS
ABSTRACT .. I

CONTENTS ... II

1 INTRODUCTION ... 1
1.1 BACKGROUND.. 1
1.2 PURPOSE .. 1
1.3 AIMS AND OBJECTIVES .. 1
1.4 RESEARCH QUESTIONS .. 2

1.4.1 Relationship between Research Questions and Objectives... 2
1.5 RESEARCH METHODOLOGY ... 2

1.5.1 Threats to Validity .. 3
1.6 THESIS OUTLINE .. 3

2 SOFTWARE TESTING.. 5
2.1 THE NOTION OF SOFTWARE TESTING... 5
2.2 TEST LEVELS ... 5

3 SOFTWARE TESTING LIFECYCLE.. 8
3.1 THE NEED FOR A SOFTWARE TESTING LIFECYCLE... 8
3.2 EXPECTATIONS OF A SOFTWARE TESTING LIFECYCLE ... 9
3.3 SOFTWARE TESTING LIFECYCLE PHASES ... 9
3.4 CONSOLIDATED VIEW OF SOFTWARE TESTING LIFECYCLE.. 11
3.5 TEST PLANNING ... 11
3.6 TEST DESIGN ... 14
3.7 TEST EXECUTION ... 17
3.8 TEST REVIEW... 18
3.9 STARTING/ENDING CRITERIA AND INPUT REQUIREMENTS FOR SOFTWARE TEST PLANNING
AND TEST DESIGN PROCESSES .. 19

4 SOFTWARE MEASUREMENT.. 23
4.1 MEASUREMENT IN SOFTWARE ENGINEERING .. 23
4.2 BENEFITS OF MEASUREMENT IN SOFTWARE TESTING.. 25
4.3 PROCESS MEASURES.. 25
4.4 A GENERIC PREDICTION PROCESS ... 27

5 ATTRIBUTES FOR SOFTWARE TEST PLANNING PROCESS...................................... 28
5.1 PROGRESS .. 28

5.1.1 The Suspension Criteria for Testing ... 29
5.1.2 The Exit Criteria ... 29
5.1.3 Scope of Testing ... 29
5.1.4 Monitoring of Testing Status .. 29
5.1.5 Staff Productivity.. 29
5.1.6 Tracking of Planned and Unplanned Submittals... 29

5.2 COST.. 29
5.2.1 Testing Cost Estimation.. 30
5.2.2 Duration of Testing... 30
5.2.3 Resource Requirements .. 30
5.2.4 Training Needs of Testing Group and Tool Requirement... 30

5.3 QUALITY.. 30
5.3.1 Test Coverage ... 30
5.3.2 Effectiveness of Smoke Tests ... 30
5.3.3 The Quality of Test Plan... 31
5.3.4 Fulfillment of Process Goals... 31

5.4 IMPROVEMENT TRENDS ... 31
5.4.1 Count of Faults Prior to Testing.. 31

 iii

5.4.2 Expected Number of Faults .. 31
5.4.3 Bug Classification... 31

6 ATTRIBUTES FOR SOFTWARE TEST DESIGN PROCESS.. 33
6.1 PROGRESS .. 33

6.1.1 Tracking Testing Progress .. 33
6.1.2 Tracking Testing Defect Backlog ... 33
6.1.3 Staff Productivity.. 33

6.2 COST.. 34
6.2.1 Cost Effectiveness of Automated Tool ... 34

6.3 SIZE ... 34
6.3.1 Estimation of Test Cases... 34
6.3.2 Number of Regression Tests... 34
6.3.3 Tests to Automate ... 34

6.4 STRATEGY ... 34
6.4.1 Sequence of Test Cases... 35
6.4.2 Identification of Areas for Further Testing ... 35
6.4.3 Combination of Test Techniques .. 35
6.4.4 Adequacy of Test Data ... 35

6.5 QUALITY.. 35
6.5.1 Effectiveness of Test Cases .. 35
6.5.2 Fulfillment of Process Goals... 36
6.5.3 Test Completeness .. 36

7 METRICS FOR SOFTWARE TEST PLANNING ATTRIBUTES...................................... 37
7.1 METRICS SUPPORT FOR PROGRESS... 37

7.1.1 Measuring Suspension Criteria for Testing .. 37
7.1.2 Measuring the Exit Criteria... 38
7.1.3 Measuring Scope of Testing ... 40
7.1.4 Monitoring of Testing Status .. 41
7.1.5 Staff Productivity.. 41
7.1.6 Tracking of Planned and Unplanned Submittals... 41

7.2 METRIC SUPPORT FOR COST .. 42
7.2.1 Measuring Testing Cost Estimation, Duration of Testing and Testing Resource
Requirements ... 42
7.2.2 Measuring Training Needs of Testing Group and Tool Requirement............................. 48

7.3 METRIC SUPPORT FOR QUALITY .. 49
7.3.1 Measuring Test Coverage ... 49
7.3.2 Measuring Effectiveness of Smoke Tests ... 49
7.3.3 Measuring the Quality of Test Plan .. 51
7.3.4 Measuring Fulfillment of Process Goals... 52

7.4 METRIC SUPPORT FOR IMPROVEMENT TRENDS.. 52
7.4.1 Count of Faults Prior to Testing and Expected Number of Faults 53
7.4.2 Bug Classification... 53

8 METRICS FOR SOFTWARE TEST DESIGN ATTRIBUTES.. 56
8.1 METRIC SUPPORT FOR PROGRESS .. 56

8.1.1 Tracking Testing Progress .. 56
8.1.2 Tracking Testing Defect Backlog ... 58
8.1.3 Staff Productivity.. 59

8.2 METRIC SUPPORT FOR QUALITY .. 62
8.2.1 Measuring Effectiveness of Test Cases .. 62
8.2.2 Measuring Fulfillment of Process Goals... 65
8.2.3 Measuring Test Completeness .. 65

8.3 METRIC SUPPORT FOR COST .. 67
8.3.1 Measuring Cost Effectiveness of Automated Tool ... 67

8.4 METRIC SUPPORT FOR SIZE.. 69
8.4.1 Estimation of Test Cases... 69
8.4.2 Number of Regression Tests... 69
8.4.3 Tests to Automate ... 71

 iv

8.5 METRIC SUPPORT FOR STRATEGY.. 75
8.5.1 Sequence of Test Cases... 76
8.5.2 Measuring Identification of Areas for Further Testing ... 77
8.5.3 Measuring Combination of Testing Techniques ... 78
8.5.4 Measuring Adequacy of Test Data ... 80

9 EPILOGUE .. 82
9.1 RECOMMENDATIONS.. 82
9.2 CONCLUSIONS.. 82
9.3 FURTHER WORK .. 83

9.3.1 Metrics for Software Test Execution and Test Review Phases....................................... 83
9.3.2 Metrics Pertaining to Different Levels of Testing .. 83
9.3.3 Integration of Metrics in Effective Software Metrics Program....................................... 83
9.3.4 Data Collection for Identified Metrics .. 84
9.3.5 Validity and Reliability of Measurements .. 84
9.3.6 Tool Support for Metric Collection and Analysis... 84

TERMINOLOGY... 85

REFERENCES ... 86

APPENDIX 1. TEST PLAN RUBRIC.. 93

APPENDIX 2. A CHECKLIST FOR TEST PLANNING PROCESS .. 95

APPENDIX 3. A CHECKLIST FOR TEST DESIGN PROCESS... 96

APPENDIX 4. TYPES OF AUTOMATED TESTING TOOLS... 97

APPENDIX 5. TOOL EVALUATION CRITERIA AND ASSOCIATED QUESTIONS............ 98

APPENDIX 6. REGRESSION TEST SELECTION TECHNIQUES.. 99

APPENDIX 7. TEST CASE PRIORITIZATION TECHNIQUES .. 100

APPENDIX 8. ATTRIBUTES OF SOFTWARE TEST DESIGN PROCESS 102

APPENDIX 9. ATTRIBUTES OF SOFTWARE TEST PLANNING PROCESS 103

APPENDIX 10. HEURISTICS FOR EVALUATING TEST PLAN QUALITY ATTRIBUTES
.. 104

APPENDIX 11. CHECKING FULFILLMENT OF TEST PLANNING GOALS..................... 105

 1

1 INTRODUCTION

This chapter provides the background for this thesis, as well as the purpose, aims and
objectives of the thesis. The reader will find the research questions along with the research
methodology.

1.1 Background

There is a need to establish a software testing process that is cost effective and efficient to
meet the market pressures of delivering low cost and quality software. Measurement is a key
element of an effective and efficient software testing process as it evaluates the quality and
effectiveness of the process. Moreover, it assesses the productivity of the personnel involved
in testing activities and helps improving the software testing procedures, methods, tools and
activities [21]. Gathering of software testing related measurement data and proper analysis
provides an opportunity for the organizations to learn from their past history and grow in
software testing process maturity.

Measurement is a tool through which the management identifies important events and
trends, thus enabling them to make informed decisions. Moreover, measurements help in
predicting outcomes and evaluation of risks, which in turn decreases the probability of
unanticipated surprises in different processes. In order to face the challenges posed by the
rapidly changing and innovative software industry, the organizations that can control their
software testing processes are able to predict costs and schedules and increase the
effectiveness, efficiency and profitability of their business [22].Therefore, knowing and
measuring what is being done is important for an effective testing effort [9].

1.2 Purpose

The purpose of this thesis is to offer visibility in to the software testing process using
measurements. The focus of this thesis is at the possible measurements in the Test Planning
and Test Design process of the system testing level.

1.3 Aims and Objectives

The overall goal of the research is to investigate metrics support provided for the test
planning and test design activities for Concurrent Development/Validation Testing Model,
thereby, enabling the management to have better insight in to the software testing process.

The scope of the research is restricted to the investigation of the metrics used in Test
Planning and Test Design activities of the software testing process. Following objectives are
set to meet the goal:

• Analyzing the key phases in the Software Testing Life Cycle
• Understanding of the key artifacts generated during the software test planning and test

design activities, as well as the inputs required for kicking-off these processes
• Understanding of the role of measurements in improving Software Testing process
• Investigation into the attributes of Test Planning and Test Design processes those are

measurable
• Understanding of the current metric support available to measure the identified attributes of

the Test Planning and Test Design processes
• Analysis of when to collect those metrics and what decisions are supported by using those

metrics

 2

1.4 Research Questions

The main research question for the thesis work is:

• How do the measurable attributes of software test planning and test design processes

contribute towards informed decision making?

As a pre-requisite of meeting the requirements of above research question, there is a need to
establish some basic understanding of the related concepts. This will be achieved by a
literature study concerning the phases of a software testing life cycle, inputs required for
starting the software test planning and test design processes and metrics indicating the end of
software test planning and test design processes. After having done that, the main research
question will be answered by conducting a literature study about the attributes of software
test planning and test design processes that are measurable, currently available metrics to
support the measurement of identified attributes and when to collect these attributes so as to
contribute to informed decision making.

1.4.1 Relationship between Research Questions and Objectives

Figure 1 depicts the relationship between research questions and objectives.

Figure 1. Relationship between research questions and objectives.

1.5 Research Methodology

A detailed and comprehensive literature study will be carried out to gather material related to
software testing lifecycle in general and for software test planning, test design and metrics in
particular. The literature study will encompass the material as written down in articles, books
and web references.

The literature study is conducted with the purpose of finding key areas of interest related
to software testing and metrics support for test planning and test design processes. The
literature study is divided into two steps. The first step creates a relevant context by

 3

analyzing key phases in the software testing lifecycle, inputs required for starting the
software test planning and test design processes and metrics indicating the end of these two
processes. The second step identifies the attributes of software test planning and test design
processes along with metric support for each of the identified attributes.

While performing the literature study, it is important to define a search strategy. The
main search engines used in the study were IEEE Xplore and ACM digital library. The
search was performed with combination of various key terms that we were interested in. By
using of the above mentioned search engines and using combination of terms for searching,
we expect to have minimized the chances of overlooking papers and literature. In addition,
manual search was performed on the relevant conference proceedings. The most notable of
these is the International Software Metrics Symposium proceedings. In addition to IEEE
Xplore and ACM digital library, web search engines Google and Yahoo were used
occasionally with the purpose of having a diverse set of literature sources.

For each paper of interest, relevant material was extracted and compared against the
other relevant literature. Specifically; the abstract, introduction and the conclusion of each of
the articles were studied to assess the degree of relevance of each article. The references at
the end of each research paper were also quickly scanned to find more relevant articles. Then
a summary of the different views of authors was written to give reader different perspectives
and commonalities on the topic.

It is also worth mentioning the use of books written by well-known authors in the field
of software metrics and software testing. It is to complement the summarizations done from
the research articles found from above mentioned search strategy. A total of twenty five
books were referred. The reference lists given at the end of relevant chapters in these books
also proved a valuable source of information.

1.5.1 Threats to Validity

Internal validity examines whether correct inferences are derived from the gathered data
[101]. The threat to internal validity is reduced to an extent by referring to multiple
perspectives on a relevant topic. Moreover, these perspectives are presented in their original
form to the extent possible to further minimize the internal validity threats. Also an effort is
made to provide a thick [101] discussion on topics.

Another type of validity is called conclusion validity which questions whether the
relationships reached in the conclusions are reasonable or not. A search criterion was used to
mitigate the conclusion validity threats. This criterion used searching available in established
databases, books and web references.

Another validity type as mentioned in [101] is the construct validity which evaluates the
use of correct definitions and measures of variables. By searching the whole of databases
like IEEE Xplore and ACM digital library for a combination of key terms, complemented by
reference to books and use of prior experience and knowledge in the domain, an effort is
made to reduce the threats associated with construct validity.

External validity addresses generalizing the results to different settings [101]. An effort
is made here to come up with a complete set of attributes that can then be tailored in
different settings. External validity is not addressed in this thesis and will be taken up as a
future work.

1.6 Thesis Outline

The thesis is divided into following chapters. Chapter 2 introduces the reader to some
relevant definitions. Chapter 3 provides an insight into the software testing lifecycle used in
the thesis as a baseline and also outlines the starting/ending criteria and input requirements
for software test planning and test design processes. Chapter 4 introduces the reader to basic
concepts related to software measurements. Chapters 5 and 6 discuss the relevant attributes
for software test planning and test design processes respectively. Chapter 7 and 8 cover the

 4

metrics relevant for the respective attributes of the two processes. The recommendations,
conclusions and further work are presented in Chapter 9.

 5

2 SOFTWARE TESTING

This chapter explains the concept of software testing along with a discussion on different
level of testing.

2.1 The Notion of Software Testing

Software testing is an evaluation process to determine the presence of errors in computer
software. Software testing cannot completely test software because exhaustive testing is
rarely possible due to time and resource constraints. Testing is fundamentally a comparison
activity in which the results are monitored for specific inputs. The software is subjected to
different probing inputs and its behavior is evaluated against expected outcomes. Testing is
the dynamic analysis of the product [18]; meaning that the testing activity probes software
for faults and failures while it is actually executed. It is apart from static code analysis, in
which analysis is performed without actually executing the program. As [1] points out if you
don’t execute the code to uncover possible damage, you are not a tester. The following are
some of the established software testing definitions:

• Testing is the process of executing programs with the intention of finding errors [2].
• A successful test is one that uncovers an as-yet-undiscovered error [2].
• Testing can show the presence of bugs but never their absence [3].
• The underlying motivation of program testing is to affirm software quality with methods

that can be economically and effectively applied to both large scale and small scale
systems [4].

• Testing is the process of analyzing a software item to detect the differences between
existing and required conditions (that is, bugs) and to evaluate the features of the software
item [5].

• Testing is a concurrent lifecycle process of engineering, using and maintaining testware
(i.e. testing artifacts) in order to measure and improve the quality of the software being
tested [6].

Software testing is one element of the broader topic called verification and validation

(V&V). Software verification and validation uses reviews, analysis and testing techniques to
determine whether a software system and its intermediate products fulfill the expected
fundamental capabilities and quality attributes [7].

There are some pre-established principles about testing software. Firstly, testing is a
process that confirms the existence of quality, not establishing quality. Quality is the overall
responsibility of the project team members and is established through right combinations of
methods and tools, effective management, reviews and measurements. [8] quotes Brian
Marick, a software testing consultant, as saying the first mistake that people make is thinking
that the testing team is responsible for assuring quality. Secondly, the prime objective of
testing is to discover faults that are preventing the software in meeting customer
requirements. Moreover, testing requires planning and designing of test cases and the testing
effort should focus on areas that are most error prone. The testing process progresses from
component level to system level in an incremental way, and exhaustive testing is rarely
possible due to the combinatorial nature of software [8].

2.2 Test Levels

During the lifecycle of software development, testing is performed at several stages as the
software is evolved component by component. The accomplishment of reaching a stage in
the development of software calls for testing the developed capabilities. Test driven

 6

development takes a different approach in which tests are driven first and functionality is
developed around those tests. The testing at defined stages is termed as test levels and these
levels progresses from individual units to combining or integrating the units into larger
components. Simple projects may consist of only one or two levels of testing while complex
projects may have more levels [6]. Figure 2 depicts the traditional waterfall model with
added testing levels.

The identifiable levels of testing in the V-model are unit testing, integration testing,

system testing and acceptance testing. V-model of testing is criticized as being reliant on the
timely availability of complete and accurate development documentation, derivation of tests
from a single document and execution of all the tests together. In spite of its criticism, it is
the most familiar model [1]. It provides a basis for using a consistent testing terminology.

Unit testing finds bugs in internal processing logic and data structures in individual
modules by testing them in isolated environment [9]. Unit testing uses the component-level
design description as a guide [8]. Unit testing a module requires creation of stubs and drivers
as shown in Figure 3 below.

According to IEEE standard 1008-1987, unit testing activities consists of planning the

general approach, resources and schedule, determining features to be tested, refining the
general plan, designing the set of tests, implementing the refined plan and designing,

Requirements

Objective

Architectural design

Detailed design

Code

Unit testing

Integration testing

System testing

Acceptance testing

Figure 2. V- model of testing.

Regression
Testing

Regression
Testing

Regression
Testing

Regression
Testing

Driver

Module under test

Stub Stub Stub

Figure 3. Drivers and stubs in unit testing [9].

 7

executing the test procedure and checking for termination and evaluating the test effort and
unit [10].

As the individual modules are integrated together, there are chances of finding bugs
related to the interfaces between modules. It is because integrating modules might not
provide the desired function, data can be lost across interfaces, imprecision in calculations
may be magnified, and interfacing faults might not be detected by unit testing [9]. These
faults are identified by integration testing. The different approaches used for integration
testing includes incremental integration (top-down and bottom-up integration) and big-bang.
Figure 4 and Figure 5 below shows the bottom-up and top-down integration strategies
respectively [19].

The objective of system testing is to determine if the software meets all of its

requirements as mentioned in the Software Requirements Specifications (SRS) document.
The focus of system testing is at the requirements level.

As part of system and integration testing, regression testing is performed to determine if
the software still meets the requirements if changes are made to the software [9].

Acceptance testing is normally done by the end customers or while customers are
partially involved. Normally, it involves selecting tests from the system testing phase or the
ones defined by the users [9].

Level 1 Level 1Testing
sequence

Level 2 Level 2 Level 2

Level 2 stubs

Level 3 stubs

Figure 5. Top- down.

Level N

Level N-1 Level N-1

Test drivers

Level N Level N

Figure 4. Bottom-up.

Testing sequence

 8

3 SOFTWARE TESTING LIFECYCLE

The software testing process is composed of different activities. Various authors have used
different ways to group these activities. This chapter describes the different software testing
activities as part of software testing lifecycle by analyzing relevant literature. After
comparing the similarities between different testing activities as proposed by various
authors, a description of the key phases of software testing lifecycle has been described.

3.1 The Need for a Software Testing Lifecycle

There are different test case design methods in practice today. These test case design
methods need to be part of a well-defined series of steps to ensure successful and effective
software testing. This systematic way of conducting testing saves time, effort and increases
the probability of more faults being caught [8]. These steps highlights when different testing
activities are to be planned i.e. effort, time and resource requirements, criteria for ending
testing, means to report errors and evaluation of collected data.

There are some common characteristics inherent to the testing process which must be
kept in mind. These characteristics are generic and irrespective of the test case design
methodology chosen. These characteristics recommends that prior to commencement of
testing, formal technical reviews are to be carried out to eliminate many faults earlier in the
project lifecycle. Secondly, testing progresses from smaller scope at the component level to a
much broader scope at the system level. While moving from component level to the
complete system level, different testing techniques are applicable at specific points in time.
Also the testing personnel can be either software developers or part of an independent testing
group. The components or units of the system are tested by the software developer to ensure
it behaves the way it is expected to. Developers might also perform the integration testing [8]
that leads to the construction of complete software architecture. The independent testing
group is involved after this stage at the validation/system testing level. One last characteristic
that is important to bear in mind is that testing and debugging are two different activities.
Testing is the process which confirms the presence of faults, while debugging is the process
which locates and corrects those faults. In other words, debugging is the fixing of faults as
discovered by testing. The following Figure 6 shows the testing and debugging cycles side
by side [20].

 9

A successful software testing lifecycle should be able to fulfill the objectives expected at
each level of testing. The following section intends to describe the expectations of a software
testing lifecycle.

3.2 Expectations of a Software Testing Lifecycle

A successful software testing lifecycle accommodates both low level and high level tests.
The low level tests verify the software at the component level, while the high level tests
validate the software at the system level against the requirements specification. The software
testing lifecycle acts as a guide to its followers and management so that the progress is
measurable in the form of achieving specific milestones. Previously, the traditional approach
to testing was seen as only execution of tests [6]. But modern testing process is a lifecycle
approach including different phases. There have been lots of recommendations for involving
the software testing professionals early into the project life cycle. These recommendations
are also understandable because early involvement of testing professionals helps to prevent
faults earlier before they propagate to later development phases. The early involvement of
testers in the development lifecycle helps to recognize omissions, discrepancies, ambiguities,
and other problems that may affect the project requirement’s testability, correctness and
other qualities [11].

3.3 Software Testing Lifecycle Phases

There has been different proposed software testing lifecycle phases in literature. The
intention here is to present an overview of different opinions that exist regarding the

Begin

select
input x

execute program

failure?

execute program

No

verify results y

correct?

yes

Inputs
[x]

debug program

yes

no

Begin

instrument program

set breakpoint

execute program

inspect state

bug
detected?

correct error

yes

End

no

Figure 6. Testing and debugging cycle.

 10

software testing lifecycle phases and to consolidate them. A detailed description of each
phase in the lifecycle will follow after consolidating the different views.

According to [8], a software testing lifecycle involving any of the testing strategy must
incorporate the following phases:

• Test planning
• Test case design
• Test execution
• Resultant data collection and evaluation

According to [17], the elements of a core test process involve the following activities:

• Test planning
• Test designing
• Test execution
• Test review

According to the [7], the test activities in the life cycle phases include:

• Test plan generation
• Test design generation
• Test case generation
• Test procedure generation
• Test execution

According to [6], the activities performed in a testing lifecycle are as following:

• Plan strategy (planning)
• Acquire testware (analysis, design and implementation)
• Measure the behavior (execution and maintenance)

[12] recommends a testing strategy that is a plan-driven test effort. This strategy is

composed of the following eight steps:

• State your assumptions
• Build your test inventory
• Perform analysis
• Estimate the test effort
• Negotiate for the resources to conduct the test effort
• Build the test scripts
• Conduct testing and track test progress
• Measure the test performance

The first four steps are made part of planning; the fifth one is for settlement to an

agreement and last three are devoted to testing.
[13] takes a much simpler approach to software testing lifecycle and gives the following

three phases:

• Planning
• Execution
• Evaluation

[14] shows the test process as being composed of following phases:

 11

• Planning
• Specification
• Execution
• Recording
• Completion

These activities are shown to be functioning under the umbrella of test management, test

asset management and test environment management.
[15] divides the software testing lifecycle into following steps:

• Test Planning and preparation
• Test Execution
• Analysis and follow-up

3.4 Consolidated View of Software Testing Lifecycle

After analyzing the above mentioned software testing lifecycle stages, it can be argued that
authors categorize the activities of software testing in to following broad categories:

• Test planning
• Test designing
• Test execution
• Test review

These categories are shown in Figure 7 below.

Figure 7. Software testing lifecycle.

3.5 Test Planning

Test planning is one of the keys to successful software testing [6]. The goal of test planning is
to take into account the important issues of testing strategy, resource utilization,
responsibilities, risks and priorities. Test planning issues are reflected in the overall project
planning. The test planning activity marks the transition from one level of software
development to the other, estimates the number of test cases and their duration, defines the
test completion criteria, identifies areas of risks and allocates resources. Also identification
of methodologies, techniques and tools is part of test planning which is dependent on the
type of software to be tested, the test budget, the risk assessment, the skill level of available

Test
Planning

Test
Designing

Test cases
&

procedures

Test
Execution

Test Review

Measurements

Exit

Test review
results

Test review
results

Entry

Test strategy,
risk,

responsibilities
, priorities etc

 12

staff and the time available [7]. The output of the test planning is the test plan document.
Test plans are developed for each level of testing.

The test plan at each level of testing corresponds to the software product developed at
that phase. According to [7], the deliverable of requirements phase is the software
requirements specification. The corresponding test plans are the user acceptance and the
system/validation test plans. Similarly, the design phase produces the system design
document, which acts as an input for creating component and integration test plans, see
Table 1.

Table 1. Test plan generation activities [7].
Lifecycle
Activities

Requirements Design Implementation Test

Test Plan
Generation

- System
- Acceptance

- Component
- Integration

The creation of test plans at different levels depends on the scope of project. Smaller

projects may need only one test plan. Since a test plan is developed for each level of testing,
[6] recommends developing a Master Test Plan that directs testing at all levels. General
project information is used to develop the master test plan. Figure 8 presents the test plans
generated at each level [6]:

Figure 8. Master vs detailed test plans.

Test planning should be started as early as possible. The early commencement of test

planning is important as it highlights the unknown portions of the test plan so that planners
can focus their efforts. Figure 9 presents the approximate start times of various test plans [6].

Project Plan Master Test
Plan

- Test methodology
- Standards
- Guidelines

System Level
Test Plan

Integration/Build
Level Test Plan

 Acceptance
Level Test Plan

Acceptance Test
Requirements

System Test
Requirements

Integration/build
Test

Requirements

Unit Test
Requirements

Unit Level Test

Plan

 13

Figure 9. Timing of test planning.

In order to discuss the main elements of a test plan, the system testing plan is taken here

as an example. As discussed in the prior section, system testing involves conformance to
customer requirements and this is the phase when functional as well as non-functional tests
are performed. Moreover, regression tests are performed on bulk of system tests. System
testing is normally performed by an independent testing group therefore a manager of testing
group or senior test analyst prepares the system test plan. The system test plan is started as
soon as the first draft of requirements is complete. The system test plan also takes input from
the design documentation. The main elements of a system test plan that are discussed below
are planning for delivery of builds, exit/entrance criterion, smoke tests, test items, software
risk issues and criterion, features to be tested, approach, items pass/fail criteria, suspension
criteria and schedule.

• The system plan mentions the process of delivery of builds to test. For this, the role of

software configuration management takes importance because the test manager has to plan
delivery of builds to the testing group when changes and bug fixes are implemented. The
delivery of the builds should be in such a way that changes are gathered together and re-
implemented into the test environment in such a way as to reduce the required regression
testing without causing a halt or slowdown to the test due to a blocking bug [6].

• The exit/entrance criterion for system testing has to be setup. The entrance criteria will
contain some exit criteria from the previous level as well as establishment of test
environment, installation of tools, gathering of data and recruitment of testers if necessary.
The exit criteria also needs to be established e.g. all test cases have been executed and no
identified major bugs are open.

• The system test plan also includes a group of test cases that establish that the system is
stable and all major functionality is working. This group of test cases is referred to as
smoke tests or testability assessment criteria.

• The test items section describes what is to be tested within the scope of the system test plan
e.g. version 1.0 of some software. The IEEE standard recommends referencing supporting
documents like software requirements specification and installation guide [6].

• The software risk issues and assumptions section helps the testing group concentrate its
effort on areas that are likely to fail. One example of a testing risk is that delay in bug
fixing may cause overall delays. One example assumption is that out of box features of any
third party tool will not be tested.

Project
Initiation

Timing of test planning

Delivery

Master Test Plan

Requirements Design Code Test Execution Implementation

System Test Plan

Integration Test Plan

Unit Test Plan(s)

Acceptance Test Plan

 14

• The features to be tested section include the functionalities of the test items to be tested e.g.
testing of a website may include verification of content and flow of application.

• The approach section describes the strategy to be followed in the system testing. This
section describes the type of tests to be performed, standards for documentation,
mechanism for reporting and special considerations for the type of project e.g. a test
strategy might say that black box testing techniques will be used for functional testing.

• Items pass/fail criteria establishes the pass/fail criteria for test items identified earlier.
Some examples of pass/fail criteria include % of test cases passed and test case coverage
[6].

• Suspension criteria identify the conditions that suspend testing e.g. critical bugs preventing
further testing.

• The schedule for accomplishing testing milestones is also included, which matches the time
allocation in the project plan for testing. It’s important that the schedule section reflect how
the estimates for the milestones were determined [6].

Along with the above sections, the test plan also includes test deliverables, testing tasks,

environmental needs, responsibilities, staffing and training needs. The elements of test plan
are presented in Figure 10.

3.6 Test Design

The Test design process is very broad and includes critical activities like determining the test
objectives (i.e. broad categories of things to test), selection of test case design techniques,
preparing test data, developing test procedures, setting up the test environment and
supporting tools. Brian Marick points out the importance of test case design: Paying more
attention to running tests than to designing them is a classic mistake [8].

Determination of test objectives is a fundamental activity which leads to the creation of a
testing matrix reflecting the fundamental elements that needs to be tested to satisfy an
objective. This requires the gathering reference materials like software requirements
specification and design documentation. Then on the basis of reference materials, a team of
experts (e.g. test analyst and business analyst) meet in a brainstorming session to compile a
list of test objectives. For example, while doing system testing, the test objectives that can be

System Test Plan

Delivery of builds

Exit/Entrance criteria

Smoke tests

Software risk issues and assumptions

Test items

Approach

Features to be tested

Items pass/fail criteria

Suspension criteria

Smoke tests

Test deliverables

Schedule

Environmental needs

Testing tasks

Responsibilities Staffing and training needs

Figure 10. Elements of a system test plan.

 15

compiled may include functional, navigational flow, input data fields validation, GUI, data
exchange to and from database and rule validation. The design process can take advantage
from some generic test objectives applicable to different projects. After the list of test
objectives have been compiled, it should be prioritized depending upon scope and risk [6].
The objectives are now ready to be transformed into lists of items that are to be tested under
an objective e.g. while testing GUI, the list might contain testing GUI presentation,
framework, windows and dialogs. After compiling the list of items, a mapping can be created
between the list of items and any existing test cases. This helps in re-using the test cases for
satisfying the objectives. This mapping can be in the form of a matrix. The advantages
offered by using the matrix are that it helps in identifying the majority of test scenarios and
in reducing redundant test cases. This mapping also identifies the absence of a test case for a
particular objective in the list; therefore, the testing team needs to create those test cases.

After this, each item in the list is evaluated to assess for adequacy of coverage. It is done
by using tester’s experience and judgment. More test cases should be developed if an item is
not adequately covered. The mapping in the form of a matrix should be maintained
throughout the system development.

While designing test cases, there are two broad categories, namely black box testing and
white box testing. Black box test case design techniques generate test cases without knowing
the internal working of the system. White box test case design techniques examine the
structure of code to examine how the system works. Due to time and cost constraints, the
challenge designing test cases is that what subset of all possible test cases has the highest
probability of detecting the most errors [2]. Rather than focusing on one technique, test cases
that are designed using multiple techniques is recommended. [11] recommends a
combination of functional analysis, equivalence partitioning, path analysis, boundary value
analysis and orthogonal array testing. The tendency is that structural (white box) test case
design techniques are applied at lower level of abstraction and functional (black box) test
case design techniques are likely to be used at higher level of abstraction [15]. According to
Tsuneo Yamaura, there is only one rule in designing test cases: cover all features, but do not
make too many test cases [8].

The testing objectives identified earlier are used to create test cases. Normally one test
case is prepared per objective, this helps in maintaining test cases when a change occurs. The
test cases created becomes part of a document called test design specification [5]. The
purpose of the test design specification is to group similar test cases together. There might be
a single test design specification for each feature or a single test design specification for all
the features.

The test design specification documents the input specifications, output specifications,
environmental needs and other procedural requirements for the test case. The hierarchy of
documentation is shown in Figure 11 by taking an example from system testing [6].

 16

After the creation of test case specification, the next artifact is called Test Procedure

Specification [5]. It is a description of how the tests will be run. Test procedure describes
sequencing of individual test cases and the switch over from one test run to another [15].
Figure 12 shows the test design process applicable at the system level [6].

Preparation of test environment also comes under test design. Test environment includes

e.g. test data, hardware configurations, testers, interfaces, operating systems and manuals.
The test environment more closely matches the user environment as one moves higher up in
the testing levels.

Preparation of test data is an essential activity that will result in identification of faults.
Data can take the form of e.g. messages, transactions and records. According to [11], the test
data should be reviewed for several data concerns:

Depth: The test team must consider the quantity and size of database records needed to
support tests.
Breadth: The test data should have variation in data values.
Scope: The test data needs to be accurate, relevant and complete.

Test Objective 1

Objective

Test Objective 2

Test Objective 3

Test Objective 4

Test Objective 5

Test Objective 6

Design Spec 1

Design Spec 1

Design Spec 1

Test cases

Figure 12. System level test design.

Procedure Spec 1

Procedure Spec 1

Procedure Spec 1

Master Test Plan

System Test Plan

Test design specification Test design specification Test design specification

TC 01
TC 02
TC 03
.
.

.

.

.

.

.

.

.

.

Figure 11. Test design specification.

 17

Data integrity during testing: The test data for one person should not adversely affect data
required for others.
Conditions: Test data should match specific conditions in the domain of application.

It is important that an organization follows some test design standards, so that everyone

conforms to the design guidelines and required information is produced [16]. The test
procedure and test design specification documents should be treated as living documents and
they should be updated as changes are made to the requirements and design. These updated
test cases and procedures become useful for reusing them in later projects. If during the
course of test execution, a new scenario evolves then it must be made part of the test design
documents. After test design, the next activity is test execution as described next.

3.7 Test Execution

As the name suggests, test execution is the process of running all or selected test cases and
observing the results. Regarding system testing, it occurs later in software development
lifecycle when code development activities are almost completed. The outputs of test
execution are test incident reports, test logs, testing status and test summary reports [6]. See
Figure 13.

Different roles are involved in executing tests at different levels. At unit test level,

normally developers execute tests; at integration test levels, both testers and developers may
be involved; at system test level, normally testers are involved but developers and end users
may also participate and at acceptance testing level, the majority of tests are performed by
end-users, although the testers might be involved as well.

When starting the execution of test cases, the recommended approach is to first test for
the presence of major functionality in the software. The testability assessment criteria or
smoke tests defined in the system test plan provides a set of test cases that ensures the
software is in a stable condition for the testing to continue forward. The smoke tests should
be modified to include test cases for modules that have been modified because they are likely
to be risky.

While executing test cases, there are always new scenarios discovered that were not
initially designed. It is important that these scenarios are documented to build a
comprehensive test case repository which can be referred to in future.

As the test cases are executed, a test log records chronologically the details about the
execution. A test log is used by the test team to record what occurred during test execution
[5]. A test log helps in replicating the actions to reproduce a situation occurred during
testing.

Software test execution

Test logs Test incident
reports

Testing status Test summary
report

Figure 13. Artifacts for software test execution.

 18

Once a test case is successful i.e. it is able to find a failure, a test incident report is
generated for problem diagnosis and fixing the failure. In most of the cases, the test incident
report is automated using a defect tracking tool. Out of the different sections in a test
incident report as outlined by [5], the most important ones are:

• Incident summary
• Inputs
• Expected results
• Actual results
• Procedure step
• Environment
• Impact

The incident summary relates the incident to a test case. Inputs describe the test data
used to produce the defect, expected results describe the result as expected by correct
implementation of functionality, actual results are results produced after executing test case,
procedure step describes the sequence of steps leading to an incident, environment describes
environment used for testing e.g. system test environment and impact assigns severity levels
to a bug which forms the basis for prioritizing it for fixation. Different severity levels are
used e.g. minor, major and critical. The description of these severity levels is included in the
test plan document. [6] highlights the attributes of a good incident report as being based on
factual data, able to recreate the situation and write out judgment and emotional language.

In order to track the progress of testing, testing status is documented. Testing status
reports normally include a description of module/functionality tested, total test cases, number
of executed test cases, weights of test cases based on either time it takes to execute or
functionality it covers, percentage of executed test cases with respect to module and
percentage of executed test cases with respect to application.

The testing application produces a test summary report at end of testing to summarize
the results of designated testing activities.

In short, the test execution process involves allocating test time and resources, running
tests, collecting execution information and measurements and observing results to identify
system failures [6]. After test execution, the next activity is test review as described next.

3.8 Test Review

The purpose of the test review process is to analyze the data collected during testing to
provide feedback to the test planning, test design and test execution activities. When a fault
is detected as a result of a successful test case, the follow up activities are performed by the
developers. These activities involve developing an understanding of the problem by going
through the test incident report. The next step is the recreation of the problem so that the
steps for producing the failure are re-visited to confirm the existence of a problem.

Problem diagnosis follows next which examines the nature of problem and its cause(s).
Problem diagnosis helps in locating the exact fault, after which the activity of fixing the fault
begins [6]. The fixing of defects by developers triggers an adjustment to test execution
activity. For example a common practice is that the testing team does not execute the test
cases related to one that produced the defect. They rather continue with others and as soon as
the fix arrives from the development end, the failing test case is re-run along with other
related test cases so as to be sure that the bug fix has not adversely affected the related
functionality. This practice helps in saving time and effort when executing test cases with
higher probability of finding more failures.

The review process uses the testing results of the prior release of software. The direct
results of the previous testing activity may help deciding in which areas to focus the test
activities. Moreover, it helps in schedule adjustment, resource allocation(s) and
adjustment(s), planning for post-release product support and planning for future products [6].

 19

Regarding review of overall testing process, different assessments can be performed e.g.
reliability analysis, coverage analysis and overall defect analysis. Reliability analysis can be
performed to establish whether the software meets the pre-defined reliability goals or not. If
they are met, then the product can be released and a decision on a release date can be
reached. If not, then time and resources required to reach the reliability goal are hopefully
predictable. Coverage analysis can be used as an alternative criterion for stopping testing.
Overall defect analysis can lead to identify areas that are highly risky and helps focusing
efforts on these areas for focused quality improvement.

3.9 Starting/Ending Criteria and Input Requirements for
Software Test Planning and Test Design Processes

After describing the software testing lifecycle activities, this section continues to describe the
starting and ending criteria and input requirements for software test planning and test design
activities. The motivation for discussing them is to be able to better define the scope of study
that is to follow in subsequent chapters.

It is a recommended approach that test planning should be started as soon as possible
and proceeded in parallel to software development. If the test team decides to form a master
test plan, it is done using general project information while detailed level test plans require
specific software information. It is depicted in Figure 14 [6].

The test plan document generated as part of test planning is considered as a live

document, i.e. it can be updated to reflect the latest changes in software documentation.
When complete pre-requisites for starting the test planning are not available, the test plans
are prepared with the help of as much information as available and then changes are
incorporated later on as the documents and input deliverables are made available. The test
plan at each level of testing must account for information that is specific to that level e.g.
risks and assumptions, resource requirements, schedule, testing strategy and required skills.
The test plans according to each level are written in an order such that the plan prepared first
is executed in the last i.e. acceptance test plan is the fist plan to be formalized but is executed
last. The reason for its early preparation is that the artifacts required for its completion are
available first.

An example of a system test plan is taken here. The activity start time for the system test
plan is normally when the requirements phase is complete and the team is working on the
design documents [6]. According to [7], the input requirements for the system test plan
generation are concept documentation, SRS, interface requirements documentation and user

Project
Information

Software
Information

Develop
Master Test

Plan

Develop
Detailed Test

Plans

- Master Plan - Detailed Plans

Figure 14. Broad information needs for test planning.

 20

documentation. If a master test plan exists, then the system test plan seeks to add content to
the sections in the master test plan that is specific to the system test plan. While describing
the test items section in [5], IEEE recommends the following documentation to be
referenced:

• Requirements specification
• Design specification
• User’s guide
• Operations guide

All important test planning issues are also important project planning issues, [6]
therefore a tentative (if not complete) project plan is to be made available for test planning.
A project plan provides useful perspective in planning the achievement of software testing
milestones, features to be tested and not to be tested, environmental needs, responsibilities,
risks and contingencies. Figure 14 can be modified to fit the input requirements for system
testing as shown in Figure 15:

Since test planning is an activity that is live (agile), therefore, there is no stringent

criterion for its ending. However, the system test schedule mentions appropriate timelines
regarding when a particular milestone will be achieved in system testing (in accordance with
the overall time allocated for system testing in project schedule), therefore, the test team
needs to shift efforts to test design according to the set schedule. Figure 16 depicts a system
test schedule for an example project.

Project
Information

Software
Information

Develop
Master Test

Plan

Develop
Detailed Test

Plans

- Master
Plan

- Detailed
Plans

Figure 15. Information needs for system test plan.

Develop
System Test

Plan

- Concept
documentation
- SRS
- Interface
requirements
documentation
- User
documentation
- Design
specification

- System
Plan

 21

Figure 16. An example system test schedule.

In some organizations, a checklist called software quality assurance and testing checklist

is used to check whether important activities and deliverables are produced as part of
software planning activity. A completion of these activities and deliverables marks the
transition from test planning to test design (Table 2).

Table 2. Software quality assurance and testing checklist. This checklist is not exhaustive

and is presented here as an example.
Sr.
no
.

Task Executed
(Y/N/N.A.)

Reason if
task not
executed

Execution
date

1. Have the QA resources, team
responsibilities, and management activities
been planed, developed and implemented?

2. Have the testing activities that will occur
throughout the lifecycle been identified?

3. Has QA team lead (QA TL) prepared QA
schedule and shared it with project manager
(PM)?

4. Has QA TL prepared the Measurement
Plan?

5. Has QA team received all reference
documents well before end of test planning
phase?

6. Has QA Team identified and sent testing
risks and assumptions for the application
under test (AUT) to PM, development team
and QA section lead (QA SL)?

7. Has QA TL discussed the Testability
Assessment Criteria (TAC) with PM,
Development team lead (Dev TL) and QA
SL?

8. Has QA Team sent a copy of test plan for
review to QA TL, QA SL and PM before
actual testing?

9. Has QA team received any feed back on test
plan from PM?

10. Have the QA deliverables at each phase
been specified and communicated to the
PM?

 22

After software testing teams gain some confidence over the completion of the test
planning activities, the test design activities start. Test design activity begins with the
gathering of some reference material. These reference materials include [6]:

• Requirements documentation
• Design documentation
• User’s manual
• Product specifications
• Functional requirements
• Government regulations
• Training manuals
• Customer feedback

Figure 17 depicts these needs for test design.

The following activities usually mark the end of the test design activity:

• Test cases and test procedures have been developed
• Test data has been acquired
• Test environment is ready
• Supporting tools for test execution are implemented

Requirements documentation

Test Designing

Design
documentation

User’s manual Product specifications

Functional
requirements

Government
regulations

Training
manuals

Customer
feedback

Figure 17. Test designing needs.

 23

4 SOFTWARE MEASUREMENT

After defining the key activities in the software testing process and defining when the
software test planning and test design activities starts and ends, we want to measure the
attributes of the software test planning and test design activities. The identification of the
attributes forms the basis for deriving useful metrics that contribute towards informed
decision making.

4.1 Measurement in Software Engineering

Measurement analyzes and provides useful information about the attributes of entities.
Software measurement is integral to improving software development [23]. [24] describes an
entity as an object or an event in the real world. A software engineering example of entity
being an object is the programming code written by a software engineer and the example of
an event is the test planning phase of a software project. An attribute is the feature or
property or characteristic of an entity which helps us to differentiate among different entities.
Numbers or symbols are assigned to the attributes of entities so that one can reach some
judgements about the entities by examining their attributes [24]. According to [26], if the
metrics are not tightly linked to the attributes they are intended to measure, measurement
distortions and dysfunctional should be common place. Moreover, there should be an
agreement on the meaning of the software attributes so that only those metrics are proposed
that are adequate for the software attributes they ought to measure [25].

Measurements are a key element for controlling the software engineering processes. By
controlling, it is meant that one can assess the status of the process, observe trends to predict
what is likely to happen and take corrective actions for modifying our practices.
Measurements also play its part in increasing our understanding of the process by making
visible relationships among process activities and entities involved. Lastly, measurements
leads to improvement in our processes by modifying the activities based on different
measures (Figure 18).

[27] claims that the reasons for carrying out measurements is to gain understanding, to

evaluate, to predict and to improve the processes, products, resources and environments.
[24] describes the key stages of formal measurement. The formal process of measurement
begins with the identification of attributes of entities. It follows with the identification of
empirical relations for identified attribute. The next step is the identification of numerical

Measurements

Im
provem

ent

U
nderstand

C
ontrol

Software Engineering Processes

Figure 18. Contribution of measurements towards software
engineering processes.

 24

relations corresponding to each empirical relation. The final two steps involve defining
mapping from real world entities to numbers and checking that numerical relations preserve,
and are preserved by empirical relations. Figure 19 shows the key stages of formal
measurement [24].

At a much higher level, the software measurement approach, in an organization that is

geared towards process improvement, constitutes a closed-loop feedback mechanism
consisting of steps as setting up business objectives, establishing quality improvement goals
in support of business objectives, establishing metrics that measure progress of achieving
these goals and identification and implementation of development process improvement
goals [28] (Figure 20).

Identify attribute
for some real
world entities

Identify empirical
relations for

attribute

Identify numerical
relations

corresponding to
each empirical

relation

Define mapping
from real world

entities to numbers

Check that
numerical relations

preserve and are
preserved by

empirical relations

Representation
condition

Figure 19. Key stages of formal measurement.

Business objectives

Quality improvement goals

Metrics measure progress

Identify and implement
development process
improvement actions

Figure 20. Software measurement approach [28].

 25

[24] differentiates between three categories of measures depending upon the entity being
measured. These measures are process, product and resource measures. [29] defines a
process metric as a metric used to measure characteristics of the methods, techniques and
tools employed in developing, implementing and maintaining the software system. In
addition, [29] defines a product metric as a metric used to measure the characteristics of any
intermediate or final product of software development process.

The measurement of an attribute can either be direct or indirect. The direct measurement
of an attribute involves no other attribute or entity [24]. [29] describes a direct measure as
the one that does not depend upon a measure of any other attribute. Example of a direct
attribute is duration of testing process measured in elapsed time in hours [24]. [26] believes
that attributes in the field of software engineering are too complex that measures of them
cannot be direct, while [26] claims that the measures of supposedly direct attributes depend
on many other system-affecting attributes. The indirect measurement of an attribute is
dependent on other attributes. An example of an indirect attribute is test effectiveness ratio
computed as a ratio of the number of items covered and the total number of items [24]. There
needs to be a distinction made between internal attributes and external attributes of a
product, process or resource. According to [24], an internal attribute is the one that can be
measured by examining the product, process or resource on its own, separate from its
behaviour. On the other hand, external attributes are measured only with respect to how the
product, process or resource relates to its environment [24].

4.2 Benefits of Measurement in Software Testing

Measurements also have to offer benefits to software testing, some of which are listed below
[30]:

• Identification of testing strengths and weaknesses.
• Providing insights into the current state of the testing process.
• Evaluating testing risks.
• Benchmarking.
• Improving planning.
• Improving testing effectiveness.
• Evaluating and improving product quality.
• Measuring productivity.
• Determining level of customer involvement and satisfaction.
• Supporting controlling and monitoring of the testing process.
• Comparing processes and products with those both inside and outside the organization.

4.3 Process Measures

There are many factors which affect organizational performance and software quality and
according to [23], process is only one of them. Process connects three elements that have an
impact on organizational performance and these are skills and motivation of people,
complexity of product, and finally technology. Also the process exists in an environment
where it interacts with customer characteristics, business conditions and development
environment (Figure 21).

 26

The process of measuring process attributes involves examining the process of interest

and deciding what kind of information would help us to understand, control or improve the
process [24]. In order to assess the quality of a process, there are several questions that need
to be answered, [24] e.g.:

1. How long it takes for the process to complete?
2. How much it will cost?
3. Is it effective?
4. Is it efficient?

The above questions mark the tactical application of software metrics. The tactical use

of metrics is useful in project management where they are used for project planning, project
estimation, project monitoring and evaluation of work products. The use of software metrics
in process improvement marks a strategic application for the organization as it is used as a
strategic advantage for the organization [31]. A common strategy to understand, control and
improve a software process is to measure specific attributes of the process, derive a set of
meaningful metrics for those attributes, and using the indicators provided by those metrics to
enhance the efficacy of a process. According to [24], there are three internal process
attributes that can be measured directly, namely:

1. The duration of the process or one of its activities.
2. The effort associated with the process or one of its activities.
3. The number of incidents of a specified type arising during the process or one of its

activities.

These measures, when combined with others, offer visibility into the activities of a

project. According to [31], the most common metrics measure size, effort, complexity and
time. Focussing on calendar time, engineering effort and faults is used commonly by
organizations to maximize customer satisfaction, minimize engineering effort and schedule
and minimize faults [31]. There are external process attributes as well which are important

Process

Customer
characteristics

Business conditions

Development
environment

People Technology

Figure 21. Factors in software quality and
organizational performance [8].

Product

 27

for managing a project. The most notable of these attributes are controllability, observability
and stability [24]. These attributes are often described with subjective ratings but these
ratings may form the basis for the derivation of empirical relations for objective
measurement.

According to [32], the basic attributes required for planning, tracking and process
improvement are size, progress, reuse, effort, cost, resource allocations, schedule, quality,
readiness for delivery and improvement trends.

Moreover, according to [33], the minimal set of attributes to be measured by any
organization consists of system size, project duration, effort, defects, and productivity.

The basic advantage of measuring process attributes is that it assists management in
making process predictions. The information gathered during past processes or during early
stages of a current process helps to predict what is likely to happen later on [24]. These
predictions becomes the basis for important decision makings e.g. during the testing process,
end of testing predictions and reliability/quality predictions can guide sound judgement.
Process metrics are collected across all projects and over long periods of time [8]. It is
important to bear in mind that predictions are estimates or a range rather than a single
number. Formally, an estimate is a median of unknown distribution [24], e.g. if median is
used as a prediction for project completion, there is a 50% chance that the project will take
longer. Therefore, a good estimate is one which is given as a confidence interval with upper
and lower bounds. Also estimates become more objective as more data is available, so
estimates are not static.

4.4 A Generic Prediction Process

One way of describing the prediction process is in terms of models and theories [24]. The
prediction process comprises the following steps:

1. Identification of key variables affecting attribute.
2. Formulation of theory showing relationships among variables and with attribute.
3. Building of a model reflecting the relationships.

In Figure 22 one can see the prediction process.

Empirical observations

 Theory

 ory

Models

 Projects

Actual
results

Data

Relationships

Predictions

Key
variables

Figure 22. General prediction process [24].

 28

5 ATTRIBUTES FOR SOFTWARE TEST PLANNING
PROCESS

A process-oriented approach for software testing ensures that the work products are tested as
they are complete at key process points. Attributes identification of software test planning
process leads to generation of useful metrics which satisfies the four key aspects of
managing a test planning effort i.e. establishing goals for test planning process, execution of
the test planning process, measurement of the results of test planning process and changing
the test planning process [31] (See Figure 23).

The system test planning process takes vital input from the development process in the

form of knowledge of where to optimally utilize the testing resources. This knowledge
comes from the results of inspection process during development which exposes potentially
problematic areas. For example, the design and code inspections highlight error prone
modules and functions which are overly complex. The test planning can obviously take
advantage of focusing its effort on those error prone and overly complex modules [31].

The attributes to be measured is dependent on three factors [33]. Firstly, the attributes to
measure is dependent on the time and phase in the software development lifecycle. Secondly,
new attributes to measure emerges from new business needs. Thirdly, attributes to be
measured are aligned to ultimate goal of the project.

The following text identifies the attributes that are useful for measurement during
software test planning.

5.1 Progress

Following attributes are defined under the progress category of metrics:

• Suspension criteria for testing.
• The exit criteria.

Establish goals for test
planning process

Execution of the test
planning process

Measurement of results
of test planning process

Changing the test
planning process

Software Test Planning
Process

Figure 23. Managing software test planning process through metrics.

 29

• Scope of testing.
• Monitoring of testing status.
• Staff productivity.
• Tracking of planned and unplanned submittals.

5.1.1 The Suspension Criteria for Testing

The suspension criteria of testing are based on the measurement of certain attributes.
Therefore, metrics that establish conditions for suspending testing are to be identified at the
test planning phase.

5.1.2 The Exit Criteria

The exit criteria for testing needs to be established during test planning. The decision is to be
based on metrics, so that an exit criterion is flagged after meeting a condition.

5.1.3 Scope of Testing

The test planning activity also determines the scope of testing. So metrics to answer how
much of it is to be tested, is required [12].

5.1.4 Monitoring of Testing Status

On time and in budget completion of testing tasks is essential to meet schedule and cost
goals. Therefore, the testing status needs to be monitored for adherence to schedule and cost
[30].

5.1.5 Staff Productivity

Management is interested in knowing the staff productivity. Measures for tester’s
productivity should be established at the test planning phase to help a test manager learn how
a software tester distributes his time over various testing activities [30]. In this metric, using
measures for the size of the test plan (e.g. in terms of length) and time taken by the staff to
complete it, the productivity of the staff can be gauged [24]. Productivity is related to the
efficiency of the tester in making the test plan.

5.1.6 Tracking of Planned and Unplanned Submittals

The test planning progress is affected by the incomplete or incorrect source documentation
as submittals [31]. The tracking of planned and unplanned submittals therefore becomes
important so that a pattern of excessive or erratic submittals can be achieved.

5.2 Cost

Following attributes are defined under the cost category of metrics:

• Testing cost estimation.
• Duration of testing.
• Resource requirements.

 30

• Training needs of testing group and tool requirement.

5.2.1 Testing Cost Estimation

The test planning phase also has to establish the estimates for budgets. Therefore, metrics
supporting testing budget estimation need to be established early. This measurement helps
answering the question of how much will it cost to test? Moreover the cost of test planning
itself has to be included and measured.

5.2.2 Duration of Testing

Estimating a testing schedule is one of the core activities of test planning. Therefore, metrics
that assist in the creation of a testing schedule is required. As part of the testing schedule, the
time required to develop a test plan is also to be estimated, i.e. duration of test planning
activities, so that test design activity can begin.

5.2.3 Resource Requirements

The test planning activity has to estimate the number of testers required for carrying out the
system testing activity.

5.2.4 Training Needs of Testing Group and Tool Requirement

The test planning must identify the training needs for the testing group and tool requirement.
Metrics indicating the need of training and tool requirement needs to be established.

5.3 Quality

Following attributes are defined under the quality category of metrics:

• Test coverage.
• Effectiveness of smoke tests.
• The quality of test plan.
• Fulfillment of process goals.

5.3.1 Test Coverage

During test planning, test coverage decisions are to be made. Test coverage helps to answer
how much of the requirements, design, code and interfaces is tested? There are different
forms of coverage namely, e.g. code coverage, requirements coverage, design coverage and
interface coverage [6]. Therefore, test coverage is an attribute that a testing group wants to
measure to assess the percentage of code, requirements, design or interface covered by a test
set.

5.3.2 Effectiveness of Smoke Tests

Smoke tests establish that stability of application for carrying out testing. Metrics
establishing the effectiveness of smoke tests is required to be certain that application is stable
enough for testing.

 31

5.3.3 The Quality of Test Plan

The quality of the test plan produced should also be assessed for attributes that are essential
for an effective test plan. The outcome of estimating the quality of test plan produced can be
used to compare different plans for different products, to predict the effects of change, to
assess the effects of new practices and to set the targets for process improvement. Also the
test plan is to be inspected for probable number of faults. It is important because using
models of expected detection rates, this information can help us to decide whether testing has
been effective or not.

5.3.4 Fulfillment of Process Goals

The test planning activity should be able to meet the process goals expected of it. For
example, test planning activity may require sign-off from quality assurance section lead
before sending it to upper management. Therefore, metrics for meeting process goals is also
important.

5.4 Improvement Trends

Following attributes are defined under the improvements trends category of metrics:

• Count of faults prior to testing.
• Expected number of faults.
• Bug classification.

5.4.1 Count of Faults Prior to Testing

The count of faults captured prior to testing during the requirements analysis and design
phases of software development identifies training needs for the resources and process
improvement opportunities. For example, if a large number of faults are found in
requirements phase, it can be concluded that organization needs to implement a requirements
review process.

5.4.2 Expected Number of Faults

An estimate of an expected number of faults in the software under test helps gauging the
quality of the software.

5.4.3 Bug Classification

The test planning activity also needs to classify bugs into types and severity levels.

The identified attributes and their description appear in Appendix 9. One can see the
classification of attributes in to categories in Figure 24.

 32

Attributes for
Software Test

Planning
Process

Progress

Improvement trends

Quality

Cost

Suspension criteria for testing
The exit criteria
Scope of testing
Monitoring of testing status
Staff productivity
Tracking of planned and unplanned submittals

Testing cost estimation
Duration of testing
Resource requirements
Training needs of testing group and tool
requirement

Test coverage
Effectiveness of smoke tests
The quality of test plan
Fulfillment of process goals

Count of faults prior to testing
Expected number of faults
Bug classification

Figure 24. Classification of attributes into categories.

 33

6 ATTRIBUTES FOR SOFTWARE TEST DESIGN
PROCESS

After having defined the attributes of the software test planning process, we are interested in
identifying the attributes of the software test design process. Identification of attributes
defines the basic characteristics that are necessary for developing cost models, planning aids,
and general management principles [35]. Identification of attributes leads to selecting the
measures, which is an important step in establishing a measurement program [35].

The following text identifies the attributes that are useful for measurement during
software test design process.

6.1 Progress

Following attributes are defined under the progress category of metrics:

• Tracking testing progress.
• Tracking testing defect backlog.
• Staff productivity.

6.1.1 Tracking Testing Progress

In order to manage the software test design process, it is important to track the progress of
testing. Tracking (monitoring) the progress of testing gives early indication if the testing
activity is behind schedule and to flag appropriate measures to deal with the situation.
Tracking the progress of testing requires metrics that measure number of planned test cases,
number of completed/available test cases and number of unplanned test cases [30]. Tracking
the progress of testing on multiple releases of a product provides insight into reasons for
schedule slippage for a particular release to indicate mitigation actions well in advance.
Tracking the progress of testing can also take vital input from growth of the product size
over time [34]. By analyzing the pattern of product size on weekly basis, the weekly test
progress on those parts of product size can be better explained. The metrics such as number
of test cases developed from requirements specification and the number of test cases
developed from design helps track progress of test design. Counting the number of test cases
is one of the simple counts that a testing analyst tracks [36].

6.1.2 Tracking Testing Defect Backlog

Software faults that are not resolved prior to starting test design activities are likely to affect
the testing progress. Specifically, as the accumulated number of faults found during
development increases, and are not resolved prior to test design, the test progress will be
negatively impacted [34]. Therefore, it is useful to track the testing defect backlog over time.
One way of tracking it is to use defect removal percentage [9] for prior release so that
decisions regarding additional testing can be wisely taken in the current release.

6.1.3 Staff Productivity

Development of test cases marks a significant activity during the software test design phase.
As the test cases are developed, it is interesting to measure the productivity of the staff in

 34

developing these test cases. This estimation is useful for the managers to estimate the cost
and duration of incorporating change [24].

6.2 Cost

Following attributes are defined under the cost category of metrics:

• Cost effectiveness of automated tool.

6.2.1 Cost Effectiveness of Automated Tool

When a tool is selected to be used for testing, it is beneficial to evaluate the cost
effectiveness of tool. The evaluation of the cost effectiveness of the tool measures cost of
tool evaluation, cost of tool training, cost of tool acquisition and cost of tool update and
maintenance [30].

6.3 Size

Following attributes are defined under the size category of metrics:

• Estimation of test cases.
• Number of regression tests.
• Tests to automate.

6.3.1 Estimation of Test Cases

The activity of developing test cases can progress well if an initial estimate of number of test
cases required to fully exercise the application is made. Therefore, metrics estimating the
required number of test cases are useful for managing test case development.

6.3.2 Number of Regression Tests

For a new release of software, regression testing is to be performed as part of system testing
to ensure that any changes and bug fixes have been correctly implemented and does not
negatively affect other parts of the software. Therefore, the number of test cases to be made
part of a regression testing suite is an important factor. The measure of the defects reported
in each baseline and defect removal percentage [9] can help make this important decision.

6.3.3 Tests to Automate

As part of test design activity, it is also important to take the decision about which test cases
to automate and which are to be executed manually. This decision is important to balance the
cost of testing as some tests are more expensive to automate than if executed manually [11].

6.4 Strategy

Following attributes are defined under the strategy category of metrics:

• Sequence of test cases.
• Identification of areas for further testing.

 35

• Combination of test techniques.
• Adequacy of test data.

6.4.1 Sequence of Test Cases

As the test cases are developed as part of the test design process, there must be a rationale for
the sequence of test cases [34]. In other words, since not all the test cases are of equal
importance, therefore, the test cases need to be prioritized or weighted.

6.4.2 Identification of Areas for Further Testing

Since exhaustive testing is rarely possible, the test design process needs to identify high-risk
areas that require more testing [6]. Therefore, metrics identifying the risky areas are
candidates of more thorough evaluation. One way to identify areas of additional testing is to
use complexity measures [9]. Another probable way is to use Inspection Summary Reports
[9] which identifies faults in logic, interface, data definition and documentation to identify
modules requiring additional testing.

6.4.3 Combination of Test Techniques

Pertaining to the focus of current study on system testing, it is also important to know about
what combination of test techniques to use to be effective in finding more faults. Since it is
recommended to use a combination of test techniques to ensure high-quality software
[11,31], it would be interesting to come up with evidence of a test technique that performs
better than other. Development of test cases based on a technique is dependent on the
suitability of test cases for specific parts of the system [11]. The selection of testing
techniques should ideally help to narrow down a large set of possible input conditions.

6.4.4 Adequacy of Test Data

Test data is defined to provide input to the tests. Incorrect or simple test data increases the
chances of missing faults and reducing test coverage [11]. Therefore, it is important to define
adequate test data that has the potential of exposing as much faults as possible.

6.5 Quality

Following attributes are defined under the quality category of metrics:

• Effectiveness of test cases.
• Fulfillment of process goals.
• Test completeness.

6.5.1 Effectiveness of Test Cases

It is obvious that an effective test case is able to discover more faults. A test case consists of
a set of conditions which tests whether a requirement is fulfilled by the application under test
or not and is marked with known inputs and expected outputs. Test effectiveness is the fault-
finding ability of the set of test cases [12]. Therefore, it needs to be determined how good a
test case is being developed. Measures that establish the quality of test cases produced are
therefore required. Related to the effectiveness of test cases, it is also useful to measure the

 36

number of faults in the test cases so as to decide whether the test cases are effective or not
[24]. For software in which stability is an important quality attribute, the release-release
comparisons of system crashes and hangs can point out the effectiveness of the stress tests
and provides indications of product delivery readiness.

6.5.2 Fulfillment of Process Goals

As part of test design process, there are process goals expected to be met. These goals are
either prescribed by company standards or are required for certifications. The test design
process needs to satisfy these goals so as to establish completion criteria of standards.

6.5.3 Test Completeness

As the test cases are developed, it is imperative that the requirements and code are covered
properly i.e. as mentioned in the exit criteria of the test plan [9]. This is to ensure the
completeness of tests [31]. Tracking the test coverage as test cases are developed therefore
provides a useful measure of the extent to which test cases are covering specified
requirements and code. It also helps in estimating the effectiveness of test cases.

The identified attributes and their description appear in Appendix 8. One can see the
classification of attributes of software test design process in Figure 25.

Attributes for
Software Test

Design Process

Progress

Size

Strategy

Quality

Cost

Tracking testing progress
Tracking testing defect backlog
Staff productivity

Cost effectiveness of automated tool

Estimation of test cases
Number of regression tests
Tests to automate

Sequence of test cases
Identification of areas for further testing
Combination of test techniques
Adequacy of test data

Effectiveness of test cases
Fulfillment of process goals
Test completeness

Figure 25. Classification of attributes into categories.

 37

7 METRICS FOR SOFTWARE TEST PLANNING
ATTRIBUTES

Earlier we categorized the attributes for software test planning process into four categories of
progress, cost, quality and improvement trends. Now we proceed to address available metrics
for each attribute within the individual categories.

7.1 Metrics Support for Progress

The attributes falling in the category of progress included (Figure 26):

• Suspension criteria for testing.
• The exit criteria.
• Scope of testing.
• Monitoring of testing status.
• Staff productivity.
• Tracking of planned and unplanned submittals.

The following text describes the available metric support for each identified attribute

within the progress category.

7.1.1 Measuring Suspension Criteria for Testing

The suspension criteria for testing mentions circumstances under which the testing would
stop temporarily. The suspension criteria of testing describes in advance that the occurrence
of certain events/conditions will cause the testing to suspend. According to [5], suspension
criteria are used to suspend all or a portion of the testing activity on the test items associated
with test plan.

One way to suspend testing is when there are a specific number of severe faults or total
faults detected by testing that makes it impossible for the testing to move forward. In such a
case, suspending testing acts as a safeguard for precious testing timescales.

There are often dependencies among the testing activities. For example, if there is an
activity on a critical path, the subsequent activities needs to be halted until this task is
completed [6].

There are certain environmental needs that are required for testing to move forward.
These environmental needs include [6]:

• Hardware (platforms, printers, scanners, modems simulators).
• Communications (gateways, connections, authorizations, protocols).
• Interfaces (internal, external).
• Documentation (requirements, design, user operations).
• Software (software under test, operating system, test data, test procedures).

Attributes for
Software Test

Planning
Process

Progress

Suspension criteria for testing
The exit criteria
Scope of testing
Monitoring of testing status
Staff productivity
Tracking of planned and unplanned submittals

Figure 26. Attributes falling into progress category.

 38

• Supplies (forms, papers).
• Personal (users, developers, operators, testers).
• Facilities (location, space, security).

Any incompleteness in the above mentioned aspects of test environment may prevent
testing of the application. For example, testing progress will be affected if there are resource
shortages.

A summary of the discussion on the suspension criteria for testing appears in Table 3.

Table 3. Summary of results for the suspension criteria of testing attribute.
Attribute studied The suspension criteria for testing

Purpose To determine the circumstances under which the testing
would stop temporarily.

Use • Saves precious testing time by raising the
conditions that suspends testing.

• Indicates short comings in the application and
environmental setup earlier on.

• Acts as a gauge to measure initial stability of the
application.

• Avoids additional testing work later on and
reduces much frustration.

Types of conditions indicating a
suspension of testing

• Incomplete tasks on the critical path.
• Large volume of bugs.
• Critical bugs.
• Incomplete test environments (including resource

shortages).

7.1.2 Measuring the Exit Criteria

The exit criteria section is an important part of the test plan which indicates the conditions
when testing activities moves forward from one level to the next. This practice encourages
careful management of the software development process [37]. The exit criteria are
established for every level of a test plan. It is important in the sense that if the exit criterion
for integration testing is not stringent, such that system testing is started prior to the
completion of integration testing, then many of the bugs that should have been found during
the integration testing would be found in the system testing where the cost of finding and
fixing them is much greater [6]. There is a need to apply limits to the scope of testing
because testing resources are finite, the test budget and number of test engineers are limited
and deadlines approach quickly [11]. The exit criteria determine the termination of the
testing effort and ambiguous specification of exit criteria creates confusion among the testing
team as when to stop testing. It is recommended that the exit criteria are communicated to
the development team prior to the approval of test plan and the exit criteria should be
standardized as much as possible [11] that reflects proven criteria in prior projects.

If there are any open faults, then software development manager along with the project
manager decides with the members of the change control board whether to fix the faults or
defer them to the next release or take the risk of shipping it to the customer with the faults.

There are some metrics that can help clarify the exit criteria [11]:

1. Rate of fault discovery in regression tests: If the rate of fault discovery in regression tests

is high, it indicates that fixes made by development team is breaking the previously
working functions and introducing new faults. If the frequency of faults detected by

 39

regression tests falls below an acceptable limit, the testing team can decide to halt the
testing effort.

2. Frequency of failing fault fixes: If there is a substantial frequency of faults marked fixed
by developers that are not actually fixed, then the testing team can re-evaluate the exit
criteria.

3. Fault detection rate: If the fault detection rate decreases dramatically as testing proceeds
then this declining trend establishes confidence that majority of faults have been
discovered.

For system testing, the exit criterion establishes the promotion of testing effort to the

acceptance testing level. As an example, the exit criteria for system testing might specify [38
– 40]:

1. All high severity faults identified in system testing are fixed and tested.
2. If there are any open faults that are of medium or low risks, appropriate sign-offs must

be taken from project manager or a business analyst or any other authority.
3. The user acceptance tests are ready to be executed.
4. All the test documentation including the test plans and test procedures have been

approved.
5. All test scripts and procedures have been executed and open faults have been deferred to

next release with appropriate sign-offs.
6. 90% of all test cases must pass.
7. Code coverage must equal at least 80%.
8. All changes made as part of the fixes to faults have been tested.
9. The test documentation has been updated to reflect the changes.

Each and every statement above has its disadvantages. For instance, the exit criterion of
90% of all test cases must pass is dependent very much on the quality of the developed test
cases. Similarly, taking appropriate sign-offs places a dependency on the personnel signing
off to assess the completeness of testing. Therefore, the above mentioned exit criteria must
be used in combination to mitigate the disadvantages.

The summary of discussion on exit criteria for testing appears in Table 4.

Table 4. Summary of results for exit criteria attribute.

Attribute studied Exit criteria
Purpose To determine the conditions that indicates completion of

testing activity at a particular level.
Use • Flags the conditions when testing has to stop.

• Helps the testing team in prioritizing different
testing activities.

• Helps transferring control from one level to
testing to the next level.

Metrics studied for exit criteria of
testing

• Rate of fault discovery in regression tests.
• Frequency of failing fault fixes.
• Fault detection rate.

Limitations • The exit criteria for testing are driven by
situational circumstances.

 40

7.1.3 Measuring Scope of Testing

The scope of testing is to be decided at the test planning phase and is an important part of the
master test plan. The testing scope is an important part of the test plan template
recommended by IEEE [5]. Basically, scope of testing helps to answer the question of what
to test and what not to test [11]. Informally, the scope of testing helps estimating an overall
amount of work involved by documenting which parts of the software are to be tested [12].
Scope of the tests include what items, features, procedures, functions, objects, clusters and
sub-systems will be tested [21].

The scope of testing is directly related to the nature of the software products. As [21]
points out, in case of mission/safety critical software, the breadth of testing requires
extensive system tests for functionality, reliability, performance, configuration and stress.
This approach will then ultimately affect:

• Number of tests and test procedures required.
• Quantity and complexity of testing tasks.
• Hardware and software needs for testing.

While documenting the scope of testing the following simple questions must be kept in
mind:

1. What are main testing types that will be performed for this current release?
2. What are the objectives of each of the test type specified?
3. What basic documents are required for successful completion of testing activities?
4. What is the ultimate goal of the testing effort i.e. what is the expectation out of the

testing effort?
5. What are the areas/functionalities/features that will be tested? [41]
6. What are the areas/functionalities/features that will not be tested?
7. When to start a particular type of testing? [42]
8. When to end a particular type of testing? [42]

The factors influencing the decision to include or exclude features in a testing scope is
driven by situational circumstances including number of available testing resources, amount
of available testing time, areas that are more prone to faults, areas that are changed in the
current release and areas that are most frequently used by the customer. A summary of above
discussion appears in Table 5.

Table 5. Summary of results for scope of testing attribute.

Attribute studied Scope of testing
Purpose To determine what parts of software are to be tested.
Use • Helps answering what to test and what not to test?

• Helps in estimating the overall testing effort
required.

• Helps in identifying the testing types that are to be
used for covering the features under test.

Metrics for scope of testing Following questions helps outlining testing scope:
• What are the main testing types and objectives of

each testing type?
• What features are to be tested and what features

are to be excluded?
• When to start and end a particular type of testing?

Limitations • The scope of testing is driven by situational
circumstances.

 41

• The scope of testing is driven by the nature of
software under test.

7.1.4 Monitoring of Testing Status

Monitoring of testing status will be discussed in combination with an attribute of software
test design process, namely tracking testing progress.

7.1.5 Staff Productivity

Staff productivity will be discussed in combination with the same attribute as being
identified in the software test design process.

7.1.6 Tracking of Planned and Unplanned Submittals

Data collected during and prior to testing of an application play a vital role in identifying the
areas that can be improved in the overall process. Since processes are used to test
applications, therefore, indicating process improvements will help companies to remain
competitive.

Tracking of planned and unplanned submittals is a simple metric that can identify
potential problem areas with in the process. Submittals that are required for testing, falls into
two broad categories of source code and relevant documentation. Planned submittals are
those that are required to be submitted according to a schedule and unplanned submittals are
those that are resubmitted due to the problems in the submitted submittals. If any of these
submittals are incomplete or incorrect, it can lead to situations where these submittals are to
be resubmitted again so that testing activities can progress.

An example of tracking number of planned and unplanned submittals for a project is
given in [31]. In this example the number of planned and unplanned submittals is tracked on
monthly basis. It is very easy to monitor the differences between the planned and unplanned
submittals, which indicate a potential problem in the process leading towards testing.
Tracking for planned and unplanned submittals enables the project managers in motivating
reasons for lapses in the testing activity. Moreover, on the basis of excessive or erratic
submittals, more time for testing can be sought from management to counter the negative
impacts on the testing progress.

A summary of discussion on tracking of planned and unplanned submittals appear in
Table 6.

Table 6. Summary of results for tracking of planned and unplanned submittals attribute.
Attribute studied Tracking of planned and unplanned submittals

Purpose To assess the impact of incomplete submittals on test
planning process.

Use • To identify potential problem areas within the process
leading into testing.

• To enable motivating reasons for lapses in the testing
activity.

• To motivate management for buying more testing
time.

Study related to tracking of
planned and unplanned
submittals

• It is useful to track planned and unplanned submittals
using a graph of planned and unplanned submittals
over monthly basis [31].

 42

7.2 Metric Support for Cost

 The attributes falling into the category of cost included (Figure 27):

• Testing cost estimation.
• Duration of testing.
• Resource requirements i.e. number of testers required.
• Training needs of testing group and tool requirement.

The following text describes the available metric support for each identified attribute

within the cost category.

7.2.1 Measuring Testing Cost Estimation, Duration of Testing and
Testing Resource Requirements

We will use the term cost estimation here as a common term that includes predictions about
the likely amount of effort, time, budget and staffing levels required. Moreover, we make no
distinctions between cost estimation and effort estimation as these terms are used
interchangeably in the software engineering community [24].

The cost estimates has its use throughout the software development life cycle. They are
used when bidding for a contract and determining the feasibility of the project in terms of
cost benefit analysis. Cost predictions supports planning and resource allocations, feasibility
of whether the project can be done at reasonable cost and whether the key resources will be
available at the required time [24].

A testing schedule contains the timelines of all testing milestones. The testing milestones
are major testing activities carried out according to the particular level of testing. A work
break-down structure is used to break testing efforts into tasks and activities. The timelines
of activities in a testing schedule matches the time allocated for testing in the overall project
plan. Moreover, the testing schedule plays an important part in scoping the overall software
development schedule [16]. The estimates of time and resources in the testing schedule
should be accurate enough in order to establish confidence about the delivery date of the
software. According to the 1995 Standish Group’s Chaos report [47], 89% of projects suffer
from over-runs. Moreover, [48] reports that 30-40% of the projects suffers from overruns.

In this regards, it is important to mention how the estimates about the testing milestones
are established. These formal estimations are important especially when the testing schedule
is bounded by strict time lines. It allows planning for risks and contingencies in time [6, 49].
Ideally, the testing schedule is to be supported by objective estimates. An objective estimate
is one which is obtained via a formal process [50]. But the important question is, if it is
possible to objectively estimate the testing time? According to [50], overly optimistic
estimates are harming the credibility of the software industry. According to Ferens and
Christensen [51], in general, model validation showed that the accuracy of the models was

Attributes for
Software Test

Planning
Process

Cost

Testing cost estimation
Duration of testing
Resource requirements
Training needs of testing group and tool
requirement

Figure 27. Attributes falling into cost category.

 43

no better than within 25 percent of actual development cost or schedule, about one half of
the time, even after calibration.

Traditionally, more focus had been placed on estimating the schedule for software
development rather than for software testing, but since a testing effort is influenced by so
many factors it is not sufficient to loosely define software testing time estimates. Some of the
factors influencing the testing time estimates are [11]:

• The testing maturity of the organization.
• The complexity of the software application under test.
• The scope of testing.
• The skill level and experience of testers.
• The organization of the testing team.

Estimation formulas that make use of complex equations are not only difficult to use but
are also rarely precise [11]. The complexity of these formulas is due to the fact that the time
estimation is dependent on variety of factors. Therefore, we concentrate our efforts here to
identify simpler estimation models for estimating testing time and resources.

Development ratio method:

As discussed before, traditionally, the emphasis is on the estimation of software development
effort for a project. The software development effort estimation can be used as a basis for
estimating the resource requirements for the testing effort, thereby helping to outline an
estimated testing schedule. The estimation of the number of testing personnel required, based
upon the number of developers, gives an easy way to estimate the testing staff requirements.
The results of applying this method is dependent on numerous factors including type of
software being developed, complexity of software being developed, testing level, scope of
testing, test effectiveness during testing, error tolerance level for testing and available
budget. Table 7 shows the test team size calculations for functional and performance testing
at the integration and the system test levels [11].

Table 7. Test team size calculations based on development ratio method.
TProduct TypeT TNumber of

DevelopersT

TRatio of
Developers to

TestersT

TNumber of
TestersT

Commercial Product (Large Market) 30 3:2 20
Commercial Product (Small Market) 30 3:1 10
Development & Heavy COTS
Integration for Individual Client

30 4:1 7

Government (Internal) Application
Development

30 5:1 6

Corporate (Internal) Application
Development

30 4:1 7

Another method of estimating tester to developer ratios is proposed by [52]. The process

uses heuristics. It begins with choosing a baseline project(s), collecting data on its ratios of
testers to developers and collecting data on the various effects like developer efficiency at
removing defects before test, developer efficiency at inserting defects, defects found per
person and value of defects found. After that, an initial estimate is made about the number of
testers based upon the ratio of the baseline project. The initial estimate is adjusted using
professional experience to show the differences of the above mentioned effects between the
current project and baseline project.

 44

Project staff ratio method:

Project staff ratio method makes use of historical metrics by calculating the percentage of
testing personnel from overall allocated resources planned for the project. Table 8 shows the
test team size calculations using the project staff ratio method at integration and system test
levels [11].

Table 8. Test team size calculations based on project staff ratio method.
TDevelopment TypeT TProject Staffing

Level T

TTest Team Size
FactorT

TNumber of
TestersT

Commercial Product (Large
Market)

50 27% 13

Commercial Product (Small
Market)

50 16% 8

Application Development for
Individual Client

50 10% 5

Development & Heavy COTS
Integration for Individual
Client

50 14% 7

Government (Internal)
Application Development

50 11% 5

Corporate (Internal)
Application Development

50 14% 7

Test procedure method:

The test procedure method uses the size measures of testing artifacts like the planned number
of test procedures for estimating the number of person hours of testing and number of testers
required. This method is comparatively less effective because it is solely dependent on the
number of test procedures planned and executed. The application of the test procedure
method requires much before-hand preparation. It includes development of a historical
record of projects including data related to size (e.g. number of function points, number of
test procedures used) and test effort measured in terms of personnel hours. Based on the
historical development size estimates, the number of test procedures required for the new
project is estimated. Again, the test team looks at the relationship between the number of
test procedures and testing hours expended for the historically similar projects to come up
with estimated number of testing hours for the current project. This method is dependent on
various factors including that the projects to be compared should be similar in terms of
nature, technology, required expertise and problems solved (Table 9 shows an example of
using the test procedure method [11]). The test team reviews historical records of test efforts
on two or more similar projects with 860 test procedures and 5,300 personal hours on
average. The historical number of hours spent on planning, designing, executing and
reporting the results per test procedure was approximately 6.16. For the new project, the
estimates are shown in Table 9.

Table 9. Test team size calculations based on test procedure method.
 TNumber of

Test
Procedures T

TFactorT TNumber of
Person HoursT

TPerformance
Period T

TNumber of
TestersT

Historical Record
(Average of Two or
More Similar Projects)

860 6.16 5,300 9 months
(1,560 hrs)

3.4

New Project Estimate 1,120 6.16 6,900 12 months
(2,080 hrs)

3.3

 45

Task planning method:

In this method, the historical records of number of personnel hours expended to perform
testing tasks are used to estimate a software required level of effort. The historical records
include time recording data related to the work break-down structure so that the records
match the different testing tasks (Table 10 shows the use of the task planning method [11]).
The historical record indicates that an average project involving 860 test procedures required
5,300 personal hours with a factor of 6.16. This factor is used to estimate the number of
personnel hours required to perform the estimated 1,120 test procedures.

Table 10. Test team size calculations based on task planning method.
 TNumber of Test ProceduresT TFactorT TTest personnel

hoursT

Historical Record (Similar
Project)

860 6.16 5,300

New Project Estimate 1,120 6.16 6,900

Table 11 shows how the test team estimates the hours required on various test tasks
within the test phases of the new project. The adjusted estimate column shows how the
revisions are made to the preliminary estimate as conditions change.

Table 11. Time expended in each testing task using task-planning method.
Phase Historical

Value
T% of Project T TPreliminary

EstimateT

TAdjusted
EstimateT

Project Startup 140 2.6 179 179
Early Project Support
(requirements analysis, etc.)

120 2.2 152 152

Decision to Automate Testing 90 1.7 117 -
Test Tool Selection and
Evaluation

160 3 207 -

Test Tool Introduction 260 5 345 345
Test Planning 530 10 690 690
Test Design 540 10 690 690
Test Development 1,980 37 2,553 2,553
Test Execution 870 17 1,173 1,173
Test Management and Support 470 9 621 621
Test Process Improvement 140 2.5 173 -
TPROJECT TOTALT T5,300T T100%T T6,900T T6,403T

Using the adjusted personnel hour estimate of 6,403 hours, the test team size is

calculated to be 3.1 test engineers over the twelve-month project (Table 12) [11].

Table 12. Test team size estimate based on personnel-hour estimate.
 TNumber of

Test
Procedures T

TPersonnel-
Hour

EstimateT

TAdjusted
EstimateT

TPerformance
Period T

TNumber of
TestersT

New Project
Estimate

1,120 5.71 6,403 12 months
(2,080 hrs)

3.1

[53] categorizes the estimation methodologies into six types:

• Expert opinion.
• Using benchmark data.
• Analogy.

 46

• Proxy points.
• Custom models.
• Algorithmic models.

There are two common approaches to apply any of the estimation methodologies,
namely bottom-up and top-down. In bottom-up estimation, the low-level estimates of
products or tasks are combined into higher-level ones. On the other hand, top-down
estimation begins with a full estimate of overall process or product and follows up with the
calculation of component parts as relative portions of the larger whole [24].

Expert opinion:

Expert opinion involves true experts making the effort estimates if size estimates are
available to be used at benchmark data. There are two approaches to expert opinion, one is
work and activity decomposition and other is system decomposition [53]. In work and
activity decomposition, subjective personal opinion rather than quantitative data and history
is used. The estimator thinks about the work to be done, the skill of the people who will do it
to create an outline of the required activities, durations and number of people required to do
those activities per time period [53]. In system decomposition method, the system is
decomposed into lower level modules or components and total effort is calculated by
combining the effort associated with each module. In case there are conflicts among the
estimations from experts, [53] recommends using the Delphi Methods, more specifically the
Wideband Delphi Method, which relies upon frequent interaction to arrive at a consensus.

Using benchmark data:

This approach is based on the premise that productivity is a function of size and application
domain. If an estimate of the size of the test procedures is available and delivery rate can be
predicted, then effort estimate is simply the ratio of size and delivery rate. The size of test
procedures and the delivery rate can be estimated using historical records of data.

Analogy:

Estimation by analogy makes use of analogs (completed projects that are similar) and use of
experience and data from those to estimate the new project. This method can both be tool
based or manual.

Proxy points:

Proxy point estimation methods use the external characteristics of the system to determine its
size. The primary proxy point methods in use are function points, object points (used with
COCOMO II) and use case points. Proxy point estimation models use a three step process
for estimating effort. First the size is estimated using any proxy point metric, then the
estimates are adjusted for complexity factors and finally estimates are adjusted by a
productivity factor like function point per staff month.

Custom models:

The use of custom models involves changing or adjusting the standard estimation models to
better match the current project environment.

Algorithmic models:

The algorithmic models are empirical models that are derived using regression analysis [53].
Most of the algorithmic models first estimates size, then uses size estimates to derive the

 47

effort, which in turn is used to estimate cost and schedule. Algorithmic models form the
basis for both manual models and tool based models.

Using Halstead metrics for estimating testing effort:

The metrics derived from Halstead measures can be used to estimate testing effort. The
measures proposed by Halstead are [8]:

n1= the number of distinct operators that appear in the program.
n2= the number of distinct operands that appear in the program.
N1= the total number of operator occurrences.
N2= the total number of operand occurrences.

Halstead developed expressions for program volume V and program level PL which can
be used for testing effort estimation. The program volume V describes the number of volume
of information in bits required to specify a program. The program level PL is a measure of
software complexity. Using these definitions for program volume V and program level PL,
Halstead effort e can be computed as [8]

PL = 1/ [(n B1 B/2) * (NB2B/n B2B)]
e = V/PL

The percentage of overall testing effort to be allocated to a module k can be estimated using
the following relationship:

Percentage of testing effort (k) = e(k) / ∑e(i)

Where e(k) is the effort required for module k and ∑e(i) is the sum of Halstead effort across
all modules of the system [8].

Budget estimates to follow a documented procedure:

The most significant cost in most projects is human resources. Once the duration of testing is
established and it is known how much time each tester will spend on the project, then the
budget of the testing resources can be determined by calculating the rate of the resources
[43]. It is important to document the assumptions that are made while estimating the cost to
improve risk assessment and improvement in estimates for future projects.

Limitations of the approaches used for estimation:

1. The projections from the past testing effort cannot be relied upon entirely. The testing

professionals are required to use their experience to deal with unusual circumstances.
2. The testing maturity of the organization must be considered while estimating.
3. The scope of the testing requirements must be clear.
4. The introduction of an automated tool introduces complexity into the project and must

be considered appropriately.
5. The domain knowledge of tester is an important attribute that affects the time lines.
6. The test team organizational styles must be taken into consideration.
7. The time at which test planning activity begins matters because early start of the test

planning activity enables better understanding of requirements and early detection of
errors.

8. The presence or absence of documented processes for testing makes up another
important factor for scheduling testing time.

9. Highly risky software requires more detailed testing and must be taken into account
while estimating testing schedule.

 48

10. There is a likelihood of change in requirements and design during development [24].
11. The software should be delivered on time for testing [54].

A summary of measurements for the duration of testing and testing resource requirements
appear in Table 13.

Table 13. Summary of results for testing cost estimation, duration of testing and testing

resource requirements attribute.
Attribute studied Testing cost estimation, duration of testing and testing resource

requirements
Purpose To estimate the cost of testing required for carrying out the testing

activity.
Use • Helps in finalizing the overall software development schedule.

• Prediction of testing timelines helps in tracking the progress of
testing activities.

• Prediction of required testing resources and testing time helps
identifying the required effort associated with the overall testing
activity.

Techniques studied • Development ratio method.
• Project staff ratio method.
• Test procedure method.
• Task planning method.
• Expert opinion.
• Using benchmark data.
• Analogy.
• Proxy points.
• Custom models.
• Algorithmic models.
• Using Halstead metrics.

Limitations • The estimations are not to be relied upon entirely, must be
complemented with experience and personal judgment.

• The estimations are dependent on the maturity of the testing
processes.

• The scope of the test requirements must be clear for more realistic
estimations.

• Complexities are associated with the introduction of an automated
testing tool.

• The estimations are affected by the level of domain knowledge of
the testers.

7.2.2 Measuring Training Needs of Testing Group and Tool
Requirement

Training needs of testing group and tool requirement will be discussed in combination with
the tests to automate attribute identified in the software test design process.

 49

7.3 Metric Support for Quality

The attributes falling in the category of quality included (Figure 28):

• Test coverage.
• Effectiveness of smoke tests.
• The quality of test plan.
• Fulfillment of process goals.

The following text describes the available metric support for each identified attribute

within the quality category.

7.3.1 Measuring Test Coverage

Test coverage will be discussed in combination with the test completeness attribute as
identified in the software test design process.

7.3.2 Measuring Effectiveness of Smoke Tests

Smoke tests form a group of test cases that establishes the stability of system i.e. assurance
that the system has all the functionality and is working under normal conditions [6]. The
basic purpose of smoke tests is not to identify faults, but to let the system testing team
establish confidence over the stability of the system to start testing the system. The basic
purpose of smoke testing is the automated testing of the critical-high level functionality of
the application [11]. There are some established good practices for smoke tests:

• Smoke tests are created to be broad in scope as opposed to depth. Therefore, smoke tests

targets the high level functionality of the application.
• Smoke tests should exercise the system from end to end, capable of exposing major

problems [67].
• The tests that are included in smoke testing cover the basic operations that are most

frequently used e.g. logging in, addition and deletion of records.
• Smoke tests need to be a subset of the regression testing suite, (it is time consuming and

human-intensive to run the smoke tests manually each time a new build is received for
testing). Automated smoke tests are executed against the software each time the build is
received ensuring that the major functionality is working.

• The smoke tests increases in size and coverage as the system evolves [67].
• Smoke tests should be the very first tests that are to be automated because they will be

running most of the times. If the smoke tests are automated, it can lead to an optimization
of both the testing and the development environments [11]. Software is ready to be used
after each build in a known working state after performing automated smoke tests.

• Smoke tests are to be run in the system test environment.

Attributes for
Software Test

Planning
Process

Quality

Test coverage
Effectiveness of smoke tests
The quality of test plan
Fulfillment of process goals

Figure 28. Attributes falling into quality category.

 50

• Successful execution of smoke tests forms the entrance criteria for the system testing, after
the software passes unit and integration testing.

• Other examples of smoke tests include [11]:
 Verifying that the database points to the correct environment.
 The database is the correct version.
 Sessions can be launched.
 Data can be entered, selected and edited.

• Smoke tests can also benefit from a historical database of fault-finding subset of test suites
that have proved valuable over other projects.

Smoke tests are executed earlier on in the testing lifecycle and deciding which tests to

execute first, depend on the quality of the software, resources available, existing test
documentation and the results of risk analysis [6].

Smoke tests form an important part of a typical software build sequence. The typical
software build sequence is as following [11]:

1. Software build compilation.
2. Unit tests.
3. Smoke tests.
4. Regression tests.

According to [68], there are four types of release models, namely tinderbox, nightly,

weekly and milestone. In the tinderbox release model, developer builds, compiles and
releases continuously for immediate feedback. In nightly release model, a release engineer
compiles and builds the code which is good for validating blocking defects. Weekly release
models are ideal for more comprehensive testing and milestone releases are made after code
freeze. With the tinderbox release model, the smoke tests are run on developer machines on
every change. In nightly releases, automated smoke tests are run on testing machines which
reports status every morning. In weekly and milestone release models, smoke tests are
performed by testers to certify reasonable quality.

A summary of discussion on effectiveness of smoke tests appear in Table 14.

Table 14. Summary of effectiveness of smoke tests attribute.
Attribute studied Effectiveness of smoke tests

Purpose To establish the stability of the application for carrying
out testing.

Use • Establishes the stability of the system and builds.
• Establishes the entrance criteria for system testing.

Best practices • Smoke tests are broad in scope.
• Smoke tests exercise the system from end to end.
• Smoke tests cover the basic operations used frequently.
• Smoke tests are to be automated and made part of

regression testing.
• Smoke tests are to be developed in collaboration with

developers.
• Code reviews help identify critical areas for smoke

testing.
• A clean test environment should be used for smoke

tests.

 51

7.3.3 Measuring the Quality of Test Plan

There are number of formats and standards for documenting a test plan but they provide very
few differences in terms of which format is better than the other. A test plan can be evaluated
only in terms of fulfilling the expectations of it or with regards to those functions that it
intends to serve [69]. The quality of test plan is also dependent on situational factors and
judgments. According to the test plan evaluation model presented by [69], a test plan needs
to possess the quality attributes as described in Table 15.

Table 15. Description of test plan quality attributes.
Test plan quality attribute Description [69]

Usefulness Will the test plan serve its intended functions?
Accuracy Is it accurate with respect to any statements of fact?
Efficiency Does it make efficient use of available resources?
Adaptability Will it tolerate reasonable change and unpredictability in the

project?
Clarity Is the test plan self-consistent and sufficiently unambiguous?
Usability Is the test plan document concise, maintainable, and helpfully

organized?
Compliance Does it meet externally imposed requirements?
Foundation Is it the product of an effective test planning process?
Feasibility Is it within the capability of the organization that must

perform it?

In order to evaluate the quality attributes for test plan, [69] suggests heuristics i.e. accepted
rules of thumb reflecting experience and study. These heuristics are given in Appendix 10.

Berger describes a multi-dimensional qualitative method of evaluating test plans using
rubrics [70]. Rubrics take the form of a table, where each row represents a particular
dimension, and each column represents a ranking of the dimension. According to [70], there
are ten dimensions that contribute to the philosophy of test planning. These ten dimensions
are as following:

1. Theory of Objective.
2. Theory of Scope.
3. Theory of Coverage.
4. Theory of Risk.
5. Theory of Data.
6. Theory of Originality.
7. Theory of Communication.
8. Theory of Usefulness.
9. Theory of Completeness.
10. Theory of Insightfulness.

Against each of these theories, there is a rating of excellent, average and poor depending
upon certain criteria. Appendix 1 [70] contains the evaluation of the test plan against each of
the theories.

Table 16 summarizes the discussion on quality of a test plan attribute.

 52

Table 16. Summary of quality of test plan attribute.
Attribute studied Quality of test plan

Purpose To assess the extent to which a test plan meets its
expectations.

Use • Measurement of test plan’s quality highlights the
areas that need improvement to better plan the testing
effort.

Studies related to quality of test
plan

• Nine quality attributes that describe the quality of a
test plan including usefulness, accuracy, efficiency,
adaptability, clarity, usability, compliance, foundation
and feasibility are discussed [69].

• A method of rubric to evaluate a test plan using ten
dimensions of objective, scope, coverage, risk, data,
originality, communication, usefulness, completeness
and insightfulness is discussed [70].

Limitations • A quantitative measurement for evaluating a test plan

based on one dimension e.g. length is not useful.
• Multiple characteristics must be studied to evaluate a

test plan.
• Instead of numeric counts, observation and experience

are used to rate the attributes of a test plan [70].

7.3.4 Measuring Fulfillment of Process Goals

The software test planning activity is expected to fulfill goals that are expected of it at the
start. Test planning makes a fundamental maturity goal at the Testing Maturity Model
(TMM) level 2. The goals at TMM level 2 support testing as a managed process. A managed
process is planned, monitored, directed, staffed and organized [21]. The planning component
of the managed process is taken care of at TMM level 2. The setting of goals is important
because they become the basis for decision making. The goals may be business-related,
technical or political in nature. The goals that are expected of a process also differ in levels.
At the top level, there are general organizational goals; at the intermediate level, there are
functional unit level goals; and then there are project level and personal level goals. The test
plan includes both general testing goals and lower level goal statements. An organization can
use a checklist to evaluate the process of test planning. In order to check the fulfillment of
test planning goals, some points are given in Appendix 11 while a checklist for the test
planning process is given in Appendix 2 as a reference [71].

7.4 Metric Support for Improvement Trends

The attributes falling in the category of improvement trends included (Figure 29):

• Count of faults prior to testing.
• Expected number of faults.
• Bug classification.

 53

The following text describes the available metric support for each identified attribute

within the improvement trends category.

7.4.1 Count of Faults Prior to Testing and Expected Number of Faults

Count of faults prior to testing and expected number of faults will be discussed in
combination with identification of areas for further testing attribute as being identified in the
software test design process.

7.4.2 Bug Classification

There are different ways to classify the faults found in the application during the course of
system testing. One such classification is given by [21]. According to this classification, the
faults found in the application code can be classified as belonging to following categories as
shown in Table 17.

Table 17. Classification of faults.
Classification of faults Fault types [21]

Algorithmic and processing 1. Unchecked overflow and underflow conditions.
2. Comparing inappropriate data types.
3. Converting one data type to another.
4. Incorrect ordering of arithmetic operators.
5. Misuse or omission of parenthesis.
6. Precision loss.
7. Incorrect use of signs.

Control, logic and sequence 1. Incorrect expression of case statements.
2. Incorrect iterations of loops.
3. Missing paths.

Typographical 1. Syntax errors i.e. incorrect spelling of a variable name.
Initialization 1. Incorrect initialization statements.
Data flow 1. Faults in the operational sequences of data flows.
Data 1. Incorrect implementation of data structures.

2. Incorrect setting of flags, indices and constants.
Module interface 1. Incorrect or inconsistent parameter types.

2. Incorrect number of parameters.
3. Improper ordering of parameters.
4. Incorrect sequence of calls.
5. Calls to non-existent modules.

Code documentation 1. Incomplete, unclear, incorrect and out-of-date code
documentation.

External hardware, software
interfaces defects

1. Problems related to system calls, links to databases,
input/output sequences, memory usage, resource usage,
interrupts and exception handling, data exchanging
with hardware, protocols, formats, interfaces with build
files, and timing sequences.

Attributes for
Software Test

Planning
Process

Improvement trends

Count of faults prior to testing
Expected number of faults
Bug classification

Figure 29. Attributes falling into improvement trends category.

 54

According to [79], software faults can be classified as permanent design faults which are
deterministic in nature and are identified easily. The other type of software faults is classified
as being temporary internal faults that are transient and are difficult to be detected through
testing. [80] extends the classification of software faults as proposed by [79] by including
another classification of faults called aging related faults. According to this view [80], as the
software is in operational use, potential fault conditions gradually accumulate over time
leading to performance degradation and/or transient failures.

Apart from the classification of faults, there are severity levels associated with faults. A
five level error classification method, as given by [81], is outlined in Table 18.

Table 18. Severity levels.

Severity level Description
Catastrophic Critical loss of data, critical loss of system availability, critical loss of

security, critical loss of safety.
Severe Defects causing serious consequences for system.
Major A defect that needs to be fixed and there is a work around.
Minor Defects having negligible consequences.
No effect Trivial defects.

Some organizations follow the following severity levels:

Level 0

This level contains all bugs that come under:
• System Crash.
• Unrecoverable data loss.
• No work around.
• Loss of Main functionality.
• Loss of Data.

Level 1

This level contains all bugs that come under:
• Failure of Rule.
• Field validation.
• User friendliness.
• Interface appearance e.g., spelling mistakes and widget alignment.

Level 2

This level contains all bugs that come under:
• Interface appearance e.g. proper scrolling etc.
• Punctuation, grammatical mistakes.

Level 3

• Something, which is part of or not part of the functionality committed, but should or should

not be incorporated in the system to enhance user friendliness or look and feel.

A summary of classification of faults and the severity levels appear in Table 19.

 55

Table 19. Summary of results for bug classification attribute.
Attribute studied Bug classification

Purpose To categorize the faults found during system testing and
to assign severity levels.

Use • Categorizing the faults according to types and severity
levels helps prioritizing the fixing of faults.

• Indicates the urgency of fixing serious faults that are
causing a major system function to fail.

• Helps prioritizing the testing of scenarios for the
testing team.

• Helps estimating the quality of the application under
test.

Bug classification and severity
levels studies

• Classification of defects as proposed by [21], [79],
[80].

• Severity levels as proposed by [81] and used
commonly in industry.

Limitations • The bug classifications and the severity levels differs
from one organization to other, depending upon
different factors e.g. level of testing and type of
application under test.

• The bug classifications and severity levels must be
used consistently throughout the company within
different projects so as to provide a consistent baseline
for comparing projects.

 56

8 METRICS FOR SOFTWARE TEST DESIGN
ATTRIBUTES

Earlier we categorized the attributes for software test design process into five categories of
progress, quality, size, cost and strategy. Now we proceed to address available metrics for
each attribute within the individual categories.

8.1 Metric Support for Progress

The attributes falling in the category of progress included (Figure 30):

• Tracking testing progress.
• Tracking testing defect backlog.
• Staff productivity.

The following text describes the available metric support for each identified attribute within
the progress category.

8.1.1 Tracking Testing Progress

Tracking testing progress attribute is discussed here in combination with the monitoring of
testing status attribute of the test planning process.

The testing status needs to be monitored and controlled with respect to a plan for every
project. Controlling and monitoring of testing occurs at the Testing Maturity Model (TMM)
level 3. Controlling and monitoring are engineering management activities that are expected
to be performed by professional software engineers. Monitoring compares the actual work
done to the work that was planned and controlling develops and applies actions that get the
project on track incase of deviations [21]. Monitoring and controlling actions complement
each other in the sense that the deviations from planning are indicated by monitoring and
controlling implements the corrective actions to counteract the deviations. Controlling in a
sense works to achieve the project goals.

The testing milestones are planned in the schedule of the test plan. Each milestone is
scheduled for completion during a certain time period in the test plan. These testing
milestones can be used by the test manager to monitor the progress of the testing efforts. For
example, execution of all planned system tests is one example of a testing milestone. This
milestone is to be achieved within the time defined in the test schedule. Measurements need
to be available for comparing the planned and actual progress towards achieving testing
milestones. For the testing milestone of execution of all planned system tests, the data related
to number of planned system tests currently available and the number of executed system
tests at this date should be available. The testing activity being monitored can be projected
using graphs that show trends over a selected period of time.

Attributes for
Software Test

Design Process
Progress

Tracking testing progress
Tracking testing defect backlog
Staff productivity

Figure 30. Attributes falling into progress category.

 57

Monitoring the testing status helps a test manager to answer the following questions
[21]:

• Which tasks are on time?
• Which have been completed earlier then scheduled, and by how much?
• Which are behind schedule, and by how much?
• Have the scheduled milestones for this date been met?
• Which milestones are behind schedule, and by how much?

For monitoring the coverage at the system testing level, the following measures are
useful [21]:

• Number of requirements or features to be tested.
• Number of equivalence classes identified.
• Number of equivalence classes actually covered.
• Number of degree of requirements or features actually covered.
• Number of features actually covered/total number of features.

For monitoring the test case development at the system testing level, the following
measures are useful [21]:

• Number of planned test cases.
• Number of available test cases.
• Number of unplanned test cases.

The test progress S curve compares the test progress with the plan to indicate corrective
actions incase the testing activity is falling behind schedule. The advantage of this curve is
that schedule slippage is difficult to be ignored. The test progress S curve shows the
following set of information on one graph [34]:

• Planned number of test cases to be completed successfully by week.
• Number of test cases attempted by week.
• Number of test cases completed successfully by week.

The S-curve can also be used for release-release or project-project comparisons and one
such graph is shown in [34].

A testing status report is a primary formal communication channel for informing the
organization about the progress made by the testing team. A testing status report takes the
form as shown in Table 20 [6].

Table 20. An example test status report.

Project Name
Feature
tested

Total tests Number of
tests
complete

Percentage of
tests
completed

Number of
successful
test cases

Percentage of
successful
test cases

According to [43], the cost of achieving a milestone is tracked at the end or in the middle
of the milestone to predict whether a cost overrun is predicted or not. If the project
expenditures exceed what was initially planned, appropriate measures can be taken e.g.
demanding more funds from management or notifying the customer in time of the budget
overrun. The budget is to be tracked with the help of periodic status meetings in which each
member describes the progress of assigned work therefore it is easier for the test manager to
predict whether the activity will miss the deadline thus resulting in extra incurred cost.

 58

Incase where the activities are completed ahead to time, the funding can be directed to areas
where there are delays. The following Table 21 can be used for tracking testing budget [43].

Table 21. Tracking testing budget

Testing activity Planned Actual Deviation Deviation %

Table 22 summarizes the measurement of monitoring of testing status and tracking
testing progress.

Table 22. Measurement of monitoring of testing status and tracking testing status attribute.

Attribute studied Monitoring of testing status and tracking testing status
Purpose To monitor and control the testing status.
Use • To track the cost and schedule of testing.

• To take corrective actions incase of schedule and cost
slippage is expected.

Studies related to monitoring and
controlling of testing status

• [21] mentions metrics for test case development and
coverage.

• [34] mentions the use of test progress S- curve for
tracking test progress and for release-release
comparisons.

• [43] mentions the importance of periodic status
meetings for tracking testing schedule and cost.

Limitations • The tracking of progress is dependent on the
milestones described in the test plan.

• The development of test progress S curve is
dependent on timely availability of data related to
planned, attempted and successful test cases.

• The generation of test status report is dependent on
the metrics provided by individual testing personnel
so there can be an element of distortion of data.

8.1.2 Tracking Testing Defect Backlog

Defect backlog is the number of defects that are outstanding and unresolved at one point in
time with respect to the number of defects arriving. A large number of unresolved defects
before testing is started will negatively affect the testing progress. Moreover, if the
development team is fixing the defect backlog at the same time the testing is being carried
out, then there is a chance that some defects will be reported more than once. Also the new
defects reported by testing team will not be fixed in time as the development team is busy
fixing the defect backlog. Therefore, defect backlog reduction should not be the focus when
testing is the critical activity. The testing should be allowed to focus on detecting as many
faults as possible and the development team should try to solve the critical defects that
hinder the testing team in extensively testing the application. Once the testing is near to
completion, the focus can shift to manage and reduce the testing defect backlog.

The defect backlog contains reported defects that are being deferred to subsequent
releases as enhancements. Then there are defects that are not fixed due to resource
constraints. The existing design of the system might not allow for the fixes to be made
without much modification. These old defects are accumulated over time and must be a
concern for the testing team.

The defect backlog metric is to be measured for each release of a software product for
release to release comparisons [34]. Just reducing the number of defects in the backlog is as
important as prioritizing which defects are to be fixed first. In this regards, the expertise of
the testing and development departments play a part by resolving those defects that help in

 59

achieving early system stability. A graph providing a snapshot of defect status graph is
given in [82].

While tracking the defect backlog over time, [34] recommends an approach for
controlling the defect backlog. The testing progress shall be monitored and tracked to
compare the actual completion of planned test cases and procedures from the beginning. The
defect arrivals are to be monitored and analyzed for error-prone areas in the software for
improvement actions. The defect backlog shall be reduced with achievement of pre-
determined targets in mind and requires strong management. The defects that affect and halt
the testing progress should be given priority in fixing. Another way to prioritize the
reduction in defect backlog is on the basis of impact on customer which can help the
developers to focus efforts on critical problems [83].

A summary of discussion on tracking testing defect backlog overtime appear in Table
23.

Table 23. Tracking testing defect backlog overtime attribute.

Attribute studied Tracking testing defect backlog overtime
Purpose To assess the number of defects that remains unresolved

in comparison to the number of incoming defects.
Use • To assess the affect of defect backlog on testing

progress.
• To plan for reducing the defect backlog.

Measuring tracking testing defect
backlog overtime

• Defect backlog reduction should not be the focus when
testing is the critical activity.

• The defect backlog metric is to be measured for each
release of a software product for release to release
comparisons

• Prioritization is required while reducing the defect
backlog.

8.1.3 Staff Productivity

The staff productivity attribute here is discussed in combination with the staff productivity
attribute of test planning process.

Measurement of testing staff productivity helps to improve the contributions made by the
testing professionals towards a quality testing process. It is difficult to know how to improve
personal productivity levels; therefore there is a strong temptation to treat productivity as the
production of a set of components over a certain period of time [24]. This might be true for
other manufacturing and production industries that productivity increases with addition of
more people; but as Brooks observed that adding more people on a software project will
make it even more late. According to [44], this law does not hold as strongly in testing as it
does in most areas of software engineering. If system testing is well-designed, which focuses
on behavioral complexities rather than internal ones, then a new test engineer is able to
contribute within a couple of weeks of joining the team.

Productivity is the comparison of level of outputs gained with a specific level of inputs.
In terms of software engineering, productivity is the ratio of size of the output to the amount
of input effort i.e. [24]

Productivity= Size/Effort

The above equation hides the difficulties inherent in measuring size and effort. The
effort made by a software engineer differs as the software engineer is more productive on
one day than other. Similarly, the effort has to count on the contributions from the support
staff. The size measure is also hiding the true value of productivity; as productivity should be
measured in the light of benefit that is delivered rather than size. As [24] writes, it does no

 60

good to be very effective at building useless products. One other problem with the above
productivity equation is that it treats software development productivity like manufacturing
industry productivity. The mistake here is that software development is a creative activity
involving lots of variation. It’s not like producing cars through an assembly line.

Therefore, we need a measure of productivity that has more direct relationship to quality
or utility [24]. So the equation of productivity should not be used as the only measure of
personal productivity.

Despite the short comings, the productivity equation, being on a ratio scale, provides
simplicity and ease of calculation for performing different statistical analysis. According to
[21], the productivity measures for testers are not extensively reported. Nevertheless, a test
manger is interested in learning about the productivity of its staff and how it changes as
project progresses. Proper planning, design, execution and results gathering are important
factors contributing to the success of a testing effort. Even if there is a perfect testing process
in place and testing strategy is ideal, but if the test team productivity levels are declining then
it impacts the finding of defect; most probably the faults will be discovered too late in
testing.

The basic and useful measures of tester’s productivity are [21]:

• Time spent in test planning.
• Time spent in test case design.
• Number of test cases developed.
• Number of test cases developed/unit time.

It is important to classify the activities that constitute a test planning and test design
phase. Then the other consideration is the types of artifacts that are produced as part of the
test planning and test design phase. The time taken for each artifact must be related with
quality of artifact to arrive at true productivity measures.

Evaluation of tester’s productivity is a difficult and often a subjective task [11]. The
productivity of a tester should be evaluated in the light of specified roles and responsibilities,
tasks, schedules and standards. The testers are expected to observe standards and procedures,
keep schedules, meet goals and perform assigned tasks, and meet budgets [11]. Once these
expectations are set, the work of the testing team should be compared against the established
goals, tasks and schedules. There are some points that must be kept in mind while assessing
the productivity:

• The tester might be a domain expert or a technical expert specializing in the use of

automated tools.
• Testers might be new or experienced to the testing profession.
• The testing level determines the different activities to be performed at that particular level,

so the testing level consideration is important for evaluating productivity at that level.
• The type of testing under measurement should be considered. For example, Table 24

outlines the set of questions that must be asked while evaluating functional test procedures
[11].

Table 24. Evaluation of functional test procedures [11].
Questions for evaluating the functional test procedures

How completely are the test-procedure steps mapped to the requirements steps? Is
traceability complete?

Are the test input, steps, and output (expected result) correct?

Are major testing steps omitted in the functional flow of the test procedure?

Has an analytical thought process been applied to produce effective test scenarios?

 61

Have the test-procedure creation standards been followed?

How many revisions have been required as a result of misunderstanding or
miscommunication before the test procedures could be considered effective and complete?

Have effective testing techniques been used to derive the appropriate set of test cases?

[45] outlines some ideas to assess the quality of testers:

• There are areas within which some persons are better than others. There is a need to
identify the talents within the testing team and use them to the advantage of the project. For
example, if one member creates a better test plan and other one is better in designing test
cases, then it is often unproductive to force either of them to move from their respective
areas of interest.

• It is very difficult to compare the expected results to measure the productivity of testers
because of various variables involved. Therefore, observing the activities of testers is more
vital than comparing the expected results.

• While testers are trying to self-improve, there are some activities that are compromised
and the tester manager must be aware of them.

• The productivity of tester varies with technology.
• Capabilities are not necessarily obvious and visible.

According to [46], evaluation of individual testers is multidimensional, qualitative,
multi-source, based on multiple samples and individually tailored. The primary sources of
information in that case is not numeric, rather specific artifacts are reviewed, specific
performances are assessed and the work of testers is discussed with others to come up with
an evaluation.

A summary of discussion on staff productivity appears in Table 25.

Table 25. Summary of studies for staff productivity attribute.
Attribute studied Staff productivity

Purpose To estimate the effectiveness and performance levels of
testing personnel.

Use • Helps to improve the contributions made by the
testing professionals towards a quality testing process.

Staff productivity measures
studied

• Measures for the productivity of testing staff
personnel are not widely reported and are often
subjective in nature. Few of the simple measures in
place in industry are time spent in test planning, time
spent in test case design, number of test cases
developed, number of test cases developed/unit time.

Limitations • The productivity of a tester should be evaluated in the
light of specified roles and responsibilities, tasks,
schedules and standards.

• The work of the testing team should be compared
against the established goals, tasks and schedules.

• The expertise, experience level, testing level, type of
testing performed and technology used in the
application under test are important factors that must
be kept in mind when assessing productivity.

 62

8.2 Metric Support for Quality

The attributes falling in the category of quality included (Figure 31):

• Effectiveness of test cases.
• Fulfillment of process goals.
• Test completeness.

The following text describes the available metric support for each identified attribute

within the quality category.

8.2.1 Measuring Effectiveness of Test Cases

The mere execution of test cases is not the proof that systems are adequately tested. It is of
little advantage to evaluate the effectiveness of test cases when the system is in production;
there needs to be an in-process evaluation of test-case effectiveness [84] so that problems are
identified and corrected in the testing process before system goes in to production.

The test case specifications must be verified at the end of test design phase for
conformance with requirements. While verifying the test case specifications, there are factors
that affect effectiveness of test cases including designing test cases with incomplete
functional specifications, poor test design and wrong interpretation of test specifications by
testers [84].

Common methods available for verifying test case specifications include inspections and
traceability of test case specifications to functional specifications. These methods seldom
help improving the fault-detecting ability of test case specifications. Therefore, test case
specifications are validated by determining how effective have been the tests in execution.

A simple in-process test case effectiveness metric is proposed by [84], which defines the
test case effectiveness metric as the ratio of faults found by test cases to the total number of
faults reported during a function testing cycle.

Test case effectiveness = (Faults found by test cases / Total number of faults reported)*100%

For each project, there is a baseline value which can be used to compare the value given
by test case effectiveness. If the test case effectiveness is below the baseline value, it is an
indication that the testing process needs improvement. The test case effectiveness can be
improved by improving the overall testing process. The improvement approach given by [84]
is based on the causal analysis of failures that are caught by the customers in production and
that were not identified by the testing group. This approach consists of five steps, beginning
with the need to understand and document the test process. The test process typically
consists of test planning, test design, test preparation and execution and test evaluation and
improvement [84], therefore the tasks in each of these phases shall be planned and defined.
The second step involves developing an understanding of the factors that affect test case
effectiveness. The common affecting factors includes incorrect and incomplete functional

Attributes for
Software Test

Design Process
Quality

Effectiveness of test cases
Fulfillment of process goals
Test completeness

Figure 31. Attributes falling into quality category.

 63

specifications, incomplete test design, incorrect test specifications, incomplete test suite,
incomplete and incorrect test case execution (Figure 32).

The third step of the improvement approach involves gathering of faults that were

missed by testing (using a defect tracking system) and performing a causal analysis on these
faults to identify the reasons causing the testing team to miss these faults. The causes can be
attributed to one or more of the factors as identified in Figure 32. The fourth step identifies
the main factors that are responsible for majority of faults missed by the test cases. One can
use a bar chart to isolate the most important factors. The last step involves taking corrective
actions to repeat the testing cycle to assess improvement in test case effectiveness. The
corrective actions can take the form of inspecting functional specifications and then re-
working and updating test case specifications, use of traceability matrix to ensure coverage
of business rules, training sessions for testers on test case design techniques, inspection and
re-work of test case specifications [84].

The test case effectiveness is related to the effectiveness of the overall testing process.
There are certain metrics for assessing the effectiveness of tests. These metrics can be
categorized as customer satisfaction measures, measures based on faults and coverage [6].

Customer satisfaction measures are used to determine the satisfaction level of customers
after using the software. Conducting surveys is one of the common methods of measuring
the customer satisfaction. There are drawbacks associated with conducting surveys for
assessing test effectiveness because the customer would not differentiate between
effectiveness of test from the overall quality of the software so it is difficult for the test
managers to interpret the results of the survey.

There are several measures based on faults. One of them is number of faults found in
testing. A problem with fault count is that it is important to analyze the severity of found
defects. Also the number of found defects is dependent on number of faults that already
existed, i.e. the quality of the software. Also number of found bugs might be lower because
there were actually fewer faults in the software. Anther measure is the number of failures
observed by the customer which can be used as a reflection of the effectiveness of the test
cases. Defect removal efficiency is another powerful metric for test effectiveness, which is
defined as the ratio of number of faults actually found in testing and the number of faults that
could have been found in testing. There are potential issues that must be taken in to account
while measuring the defect removal efficiency. For example, the severity of bugs and an
estimate of time by which the customers would have discovered most of the failures are to be
established. This metric is more helpful to establish test effectiveness in the longer run as
compared to the current project. Defect age is another metric that can be used to measure the
test effectiveness, which assigns a numerical value to the fault depending on the phase in
which it is discovered. Defect age is used in another metric called defect spoilage to measure
the effectiveness of defect removal activities. Defect spoilage is calculated as following [6]:

Spoilage = Sum of (Number of Defects x defect age) / Total number of defects

Incorrect test specifications Incomplete test design Incomplete test suite

Test case effectiveness

Test execution problems Incorrect functional
specifications

Incomplete
functional
specifications

Figure 32. Factors affecting test-case effectiveness [84]

 64

Spoilage is more suitable for measuring the long term trend of test effectiveness.
Generally, low values of defect spoilage mean more effective defect discovery processes [6].

The effectiveness of the test cases can also be judged on the basis of the coverage
provided. It is a powerful metric in the sense that it is not dependent on the quality of the
software and also it is an in-process metric that is applicable when the testing is actually
done. Requirements and design based coverage can be measured using a matrix which maps
test cases to requirements and design. Code coverage can be measured using a tool, but
execution of all the code by the test cases is not the guarantee that the code works according
to the requirements and design.

Some important guidelines for deriving effective test cases from requirements are given
by [11].

• The details and complexities of the application must be understood and analyzed.
• The behavior of the system, flow, dependencies among the requirements must be

understood.
• It must be analyzed that how a change in one part of the application affects rest of the

application.
• Test procedures should not be designed from requirements specifications alone.
• The test procedures should rarely overlap as it is not effective for two testers to test the

same functionality. To achieve this, the test procedures can be developed in modular
fashion to reuse and combine them.

• The expected result of one test case should not invalidate the results of the other test case.
• The preconditions necessary for executing a test procedure must be determined by

analyzing the sequence in which specific transactions must be tested.
• Testing of high priority requirements must be done early in the development schedule.
• The test procedures created should be prioritized based on highest-risk and highest-usage

functionality.

A summary of discussion on effectiveness of test cases appear in Table 26.

Table 26. Summary of discussion on effectiveness of test cases attribute.
Attribute studied Effectiveness of test cases

Purpose To determine the fault finding ability (quality) of the test
case.

Use • To reduce the number of failures in production by
maximizing the number of faults detected in testing.

• To indicate improvement trends in the software testing
process to improve effectiveness of test cases.

Metrics for test case
effectiveness

• Test Case Effectiveness Metric [84].
• Customer satisfaction measure

 Surveys
• Fault-based measures

 Number of failures observed.
 Number of faults found in testing.
 Defect removal efficiency.
 Defect age.
 Defect spoilage.

• Coverage-based measures
 Requirements, design and code coverage.

Limitations or metrics for
effectiveness of test cases

• The Test Case Effectiveness Metric proposed by [84]
is dependent on the availability of sufficient number of
failures detected by the user as it relies entirely on the
defects missed by test cases.

• In customer satisfaction measures like surveys,

 65

customers will not differentiate between quality of
application and quality of testing performed.

• Fault-based measures are not in-process measures so
the existing project is not able to take significant
benefit from it.

• Coverage based measures do not ensure that the code
covered is meeting the customer requirements.

8.2.2 Measuring Fulfillment of Process Goals

The software test design process should be able to perform the activities that are expected of
it. The activities comprising a test design process were outlined previously. The common
way of assessing the conformance to a process is using a check list. One such checklist is
given in Appendix 3 as a reference [71].

8.2.3 Measuring Test Completeness

The test completeness attribute is discussed in combination with the test coverage attribute
for software test planning process.

While measuring the test coverage of an application, we are basically interested in
measuring how much of the code and requirements are covered by the test set. We study the
code coverage measures and the specification coverage measures to analyze what measures
exist to establish confidence that the tests are covering both the code and requirements. We
do not emphasize on other coverage measures as we believe that code coverage and
specification coverage measures are more prevalent in literature and provides enough
evidence of the coverage potential of a test set. Moreover, we emphasize more on
specification coverage measures as these measures are more applicable at the system testing
level which forms the focal point of this study.

Test coverage incase of white box testing is called code coverage which is the measure
of the extent to which program source code is tested. Formally, a test coverage criterion
defines a set of entities of the program and requires that every entity in this set is covered
under some test case [56]. The basic code coverage measures are statement coverage,
decision coverage, condition coverage and path coverage [57]. [58] lists down 101 coverage
measures which is still not an exhaustive list of measures.

The test coverage forms differ with respect to the level of testing. For example at the
function testing level, a test coverage decision of 100% statement coverage and 95% branch
coverage may be mentioned in the function test plan; although this coverage is found to be
not generally achievable [59]. An analysis conducted on the survey of testing in IBM
revealed that 70% statement coverage is sufficient while increasing beyond a range of 70%-
80% is not cost effective [59].

The advantages of measuring test coverage are that it provides the ability to design new
test cases and improve existing ones to increase test coverage. Also it helps in avoiding over
estimation of test coverage by testers.

There are two important questions that need to be answered when determining the
sufficiency of test coverage [59]. One is that whether the test cases cover all possible output
states and second is that about the adequate number of test cases to achieve test coverage.

The relationship between code coverage and number of test cases is described by the
following expression [59]:

C(x) = 1-e P

–(p/N) * x

Where C(x) is the coverage after executing x number of test cases, N is the number of
blocks in the program and p is the average number of blocks covered by a test case during

 66

function test. The function indicates that test cases cover some blocks of code more than
others while increasing test coverage beyond a threshold is not cost effective.

Test coverage for control flow and data flow can be measured using spanning sets of
entities in a program flow graph. A spanning set is a minimum subset of the set of entities of
the program flow graph such that a test suite covering the entities in this subset is guaranteed
to cover every entity in the set [56].

At system testing level, we are more interested in knowing whether all product’s features
are being tested or not. A common requirements coverage metric is the percentage of
requirements covered by at least one test [9]. A requirements traceability matrix maintains a
mapping between tests, requirements, design and code. A requirements traceability matrix
helps estimating and identifying tests that needs to change as requirements change. Tracing
requirements from development to testing establishes the confidence that test cases are
covering the developed functional requirements [60]. Table 27 exemplifies a requirements
traceability matrix [61].

Table 27. An example requirements traceability matrix.

Requirement Function
specification

Design
specification

Source code
files

Test cases

In black box testing, as we do not know the internals of the actual implementation, the
test coverage metrics tries to cover the specification [62]. Three specification coverage
metrics namely state, transition and decision are proposed by [63]. The specification
coverage measures are recommended for safety critical domains [64]. Specification coverage
measures the extent to which the test cases conform to the specification requirements. These
metrics provide objective and implementation-independent measures of how the black box
test suite covers requirements [64]. The test cases incase of specification coverage are
traceable to high-level requirements. Currently, the coverage of test cases for requirements is
assessed indirectly on an executable artifact like source code or software models [64]. This
poses some short comings because it is an indirect measure and secondly lack of coverage
can be attributed to multiple factors. According to [64], it is possible to derive specification
based coverage metrics if there exists a formal specification expressed as LTL (Linear
Temporal Logic) properties. Also three potential metrics that could be used to assess
requirements coverage are proposed namely requirements coverage, requirements antecedent
coverage and requirements UFC (Unique First Cause Coverage). The rigorous exploration of
metrics for requirements-based testing is in its initial phases [64]. Another approach to
measure testing coverage independent of source code is given by [65, 66]. This approach
applied model checking and mutation analysis for measuring test coverage using mutation
metric. This metric involves taking a set of externally developed test cases, turning each test
case into a constrained finite state machine and then scoring the set against the metric [65].

A summary of the discussion on test coverage and test completeness appear in Table 28.

Table 28. Summary of results for test coverage and test completeness attribute.
Attribute studied Test coverage and test completeness

Purpose To determine the percentage of code and specification
covered by a test set.

Use • Establishes the sufficiency of set of test cases.
• Design of new test cases to increase test coverage.
• Improvement of existing test cases to improve test

coverage.
Types of test coverage metrics
studied

• Code coverage measures (White-box testing).
 Control flow measures.
 Data flow measures.

• Specification coverage measures (Black-box testing)
• Requirements traceability matrix.

 67

• Metrics based on Linear Temporal Logic (LTL) based
specification i.e. requirements coverage, requirements
antecedent coverage and requirements UFC.

• Mutation metric using model checking and mutation
analysis.

Limitations • Test coverage tools are difficult to use because code is
to be run under the control of debugger instead of a
separate testing environment, increase in the execution
time of the tested program due to code measurement,
lack of specific language support by coverage tools
and extra effort required for measurement [59].

• Scalability of specification coverage measures is a
concern that requires more theoretical and
experimental investigation.

8.3 Metric Support for Cost

The attributes falling in the category of cost included (Figure 33):

• Cost effectiveness of automated tool.

The following text describes the available metric support for identified attribute within

the cost category.

8.3.1 Measuring Cost Effectiveness of Automated Tool

In order to avoid costly changes to test automation later on, it is important to assess the
organizational needs before investing large amounts into automated testing tools. The
organizational needs include the verification that selected tool works properly with selected
technologies, fits in the organizational budget and time frame for introducing the tool [11].
There is a need to execute the evaluation criteria before a decision to acquire the tool is
made. The evaluation criteria evaluate the benefits and drawbacks of the tool. Before
evaluating a tool, it is important to know about the different types of automated testing tools.
The different types of the automated testing tools are listed in Appendix 4 [11].

The evaluation criteria for a testing tool must consider its compatibility with operating
systems, databases and programming languages used organization wide. The performance
requirements for significant applications under test in the organization must be reviewed. In
a given environment, it is difficult to find out a single tool compatible with all operating
systems and programming languages. Therefore, the need of more than one tool must be
established. The way application transforms the data and displays it to the user must be
understood as the automated tool is to support data verification. The types of tests to be
automated must be established. The schedule must be assessed so that there is enough time
in the project for the testing team to get used to the new tool. A rush to introduce automation

Attributes for
Software Test

Design Process
Cost

Cost effectiveness of automated tool

Figure 33. Attributes falling into cost category.

 68

in a project will cause opposition for automation. The cost of the testing tool is to be
assessed along with the cost of training the testing team in using the automated tool, cost of
automated script development and maintenance costs.

According to [21], the evaluation criteria for evaluating a testing tool includes ease of
use, power, robustness, functionality, ease of insertion, quality of support, cost of the tool
and fit with organizational policies and goals. The first six of these criterions are given by
Firth and colleagues in their technical paper, A Guide to the Classification and Assessment of
Software Engineering Tools. Each of these criterions is satisfied with answering several
questions associated with it. The important questions to ask from each criterion are listed in
Appendix 5.

It should be noted that introduction of automated testing will not result in an immediate
decrease in test effort and test schedule.

Sometimes customized automated tools and in-house developed test scripts need to be
developed because of lack of compatible tools in the market and high complexity of the task.
There are several issues that must be considered before making a decision to build a tool.
The resources, budgets and schedules for tool building must be determined. Approval is to
be taken from management for this effort. The development of the automated tool is to be
considered as part of software development so that serious efforts are put in to development.

In order to verify that the automated tool meets the organization’s needs and to verify the
vendor’s claims about the compatibility of the tool with various technologies, it is best to test
the tool on an application prototype [11]. The prototype should consist of features that are
representative of the technologies to be used in the organization. A common problem for the
automated testing tools is its inability to recognize third party controls. These types of
incompatibility issues are identified earlier if the project team evaluates the tool against the
project needs right from the beginning.

[21] argues that the real benefits of investing in the testing tools can be realized if the
testers are properly trained and educated, organizational culture is supportive in tool
evaluation and its usage, the tools are introduced incrementally and in accordance with the
process maturity level of the testers. In one of his papers, R. M. Poston and M. P. Sexton
emphasize the need of developing tool evaluation forms [85]. These forms are based on
standard set of evaluation criteria and each criterion is weighted. These forms not only select
the tools but also analyze user needs.

A summary of discussion on cost effectiveness of automated tool appears in Table 29.

Table 29. A summary of discussion on cost effectiveness of automated tool.
Attribute studied Cost effectiveness of automated tool

Purpose To evaluate the benefits of automated tool as compared
to the costs associated with it.

Use • To avoid later changes to test automation.
• To select the tool that best fits the organizational

needs.
Evaluation of the automated
testing tools

The evaluation criteria for the automated tools must take
care of the following:
• Compatibility with operating systems, databases and

programming languages used organization wide.
• Assessment of performance requirements for

significant applications under test.
• Need for multiple tools.
• Support for data verification.
• Cost of training.
• Types of tests to automate.
• Ease of use.
• Power.
• Robustness.
• Functionality.

 69

• Ease of insertion.
• Quality of support.
• Cost of the tool.
• Fit with organizational policies and goals.

8.4 Metric Support for Size

The attributes falling in the category of size included (Figure 34):

• Estimation of test cases.
• Number of regression tests.
• Tests to automate.

The following text describes the available metric support for each identified attribute

within the size category.

8.4.1 Estimation of Test Cases

The estimation of test cases attribute will be discussed along with the combination of testing
techniques attribute of test design process.

8.4.2 Number of Regression Tests

Regression testing is performed on a modified program that establishes the confidence that
changes and fixes against reported faults are correct and have not affected unchanged
portions of the program [86]. Running all the test cases in a test suite is one of the regression
testing techniques (re-test all) but it can require a large amount of effort [87]. Regression
testing that is not planned and done manually makes inefficient use of resources [11].
Therefore, regression test selection techniques select some subset of the existing test suite to
retest a modified program. The two major concerns for regression test selection techniques
are the time required to select and run tests and the fault detection ability of the tests [88].
[86] presents several of regression test selection techniques, which are given in Appendix 6.
There are different empirical studies that establish the relevance of selecting a regression
testing technique ([88, 89, 90])

According to [9], there are some guidelines to follow when selecting test cases for
regression testing. These guidelines uses the program complexity measures (e.g. cyclomatic
complexity and Halstead’s metrics) to indicate the modules whose complexity falls outside
the complexity baseline set in the company. These modules are difficult to test [90],
therefore are candidates for regression testing. The other guidelines recommend making use
of judgment and knowledge of software design and past history to select tests for regression
testing.

Moreover, the measure of the percentage of the faults that have been removed as
compared to the known number of faults (defect removal percentage) helps making decision

Attributes for
Software Test

Design Process
Size Estimation of test cases

Number of regression tests
Tests to automate

Figure 34. Attributes falling into size category.

 70

about regression testing by selecting test cases that exercises the fixed part of the code and
any code dependent on the fixed part.

The measure of the defects reported in each baseline [9] also offers clues for additional
regression testing as modules that are identified as more faulty in each baseline stand
candidates for more regression testing.

According to [11], regression test cases should include test cases that exercise high-risk
functionality (e.g. the functionality that is affected by fault fixing) and most-often executed
paths. After these areas are tested then more detailed functionality should be the target of
regression testing. Moreover some practices are recommended by [11] for making the
regression test suite optimized and improved. These practices are listed below:

• Include the test cases in to the regression testing suite that identified faults in prior releases

of the software.
• Using number and type of faults identified by the test cases to continuously improve the

regression testing suite.
• A regression impact matrix can be developed that indicates adequate coverage of the

affected areas and is assisted by the information provided by the developers about areas
affected by the addition of new features and fixing of faults.

• Regression tests should get updated for each iteration as parts of the application change to
provide depth and coverage.

• Any changes to the requirements must be followed with modification to the regression
testing suite to account for application’s new functionality.

• Regression test cases should be traceable to the original requirement [11].
• There is a strong motivation to automate regression tests executed in a stable test

environment.
• An analysis of the test results identifies fault prone software components to focus

regression testing.

Regression testing is the practice that comes under the Testing Maturity Model (TMM)
Level 3. [21] provides the following measurements to monitor regression testing:

• Number of test cases reused.
• Number of test case added to the tool repository or test database.
• Number of test cases rerun when changes are made to the software.
• Number of planned regression tests executed.
• Number of planned regression tests executed and passed.

A summary of discussion on number of regression tests appear in Table 30.

Table 30. Summary of results for number of regression tests attribute.
Attribute studied Number of regression tests

Purpose To find out number of regression tests to be made part of the
regression testing suite.

Use • To create a regression testing suite that reveals faults resulting from
changes to the code due to fault fixing.

• To create a regression testing suite that executes in limited amount of
time with the ability to identify maximum faults.

Regression test selection
techniques

• [86] presents several techniques for regression test selection
including:

 Linear equation techniques.
 The symbolic execution technique.
 The path analysis technique.
 Dataflow techniques.
 Program dependence graph techniques.
 System dependence graph techniques.

 71

 The modification based technique.
 The firewall technique.
 The cluster identification technique.
 Slicing techniques.
 Graph walk techniques.
 The modified entity technique.

Important guidelines and
metrics on number of
regression tests

• Use of program complexity measures.
• Use of judgment and knowledge of software design and past history

of selected regression tests.
• Use of defect removal percentage.
• Measure the number of faults reported in each baseline.
• Number of test cases reused.
• Number of test case added to the tool repository or test database.
• Number of test cases rerun when changes are made to the software.
• Number of planned regression tests executed.
• Number of planned regression tests executed and passed.
• Include tests that exercise high-risk functionality.
• Include tests that exercises most often executed paths.
• Continuously improve the regression testing suite.

8.4.3 Tests to Automate

The tests to automate attribute is discussed in combination with training needs of testing
group and tool requirements attribute for test planning process.

Training needs:

The type and distribution of faults in prior projects within the company or within prior
releases of a project or within the process can identify training needs. For example, during
the inspection of testing artifacts, if it is found that there is a greater proportion of incorrectly
formed test cases, then this gives an indication for a need of training in test case design. The
training needs are documented under the section ‘staffing and training needs’ of the IEEE
template for software test plan [5].

Estimation by Dorothy Graham, a noted author in the field of test inspection and test
certification, revealed that by the end of 1990’s only 10% of testers and developers ever had
any training in test techniques [12].

Establishing a technical training program is a goal at level 3 of the Testing Maturity
Model (TMM) [21]. According to TMM, the training program includes in-house courses
and training sessions, college/university degree program and courses and courses taken at an
external commercial training center. These training programs are essential for staying in
touch with new testing techniques, methods and tools.

 It is the responsibility of the test managers to provide adequate levels of trainings to the
sub-ordinates who lack in experience and exposure of testing applications. The test managers
must assume leadership in teaching and ensure that the sub-ordinates are given appropriate
levels of training according to a suitable technique. [6] mentions an example that it is
written in the Fleet Marine Force Manual 1 (FMFM1) that the commanders should see the
development of their sub-ordinates as a direct reflection on themselves.

According to [6], there is a strong relationship between increased training and improved
worker productivity, profitability and shareholder value. The training needs for a project
varies according to the scope of the project. The areas in which the testing group requires
training involves [6]:

1. Software testing.
2. Tools.

 72

3. Technical skills.
4. Business knowledge.
5. Communication skills.

Training in software testing can take different forms. Formal training seminars,
conferences on testing and certification programs are few examples. Then there are websites
and books that are dedicated to the field of software testing. The test mangers should allow
enough time and resources for sub ordinates to avail these opportunities. According to Roger
Pressman [6], a software engineering staff should take at least one to three weeks of methods
training each year.

Use of tools requires special training for the testing staff members. The form of training
can both be formal and informal training. The formal training to be conducted by the vendor
of the tool and the informal ones can be conducted in-house by more experienced
professionals. The training on tools is to be carefully planned because the amount of time
and training required to implement and use tools successfully is frequently underestimated
[6].

The testing group needs to be technically proficient as well to be able to better
communicate with the developers, to do better functional testing and to be able to develop
automated testing scripts. Therefore, the testing group needs to be part of company wide
training programs.

It is very important for the testing staff to understand the business needs that are
supported by the application under test. The test managers should arrange for their staff to be
trained in business functions [6]. This can happen through early involvement of the testing
resources during domain gathering and requirements elicitation processes. The testing staff
should be given time and motivation for reading and collecting material about the business
domain of the application under test.

It is also imperative for the testers to have sound communication and writing skills as
they have to interact with multiple departments and have to write testing artifacts that need to
be unambiguous. The testing group can enhance their communication and writing abilities
by participating as speakers at a conference and by writing papers [6].

There are different methods of training that can be applied by the test managers in
effectively training the sub-ordinates. It includes [6]:

1. Mentoring.
2. On-site commercial training.
3. Training in a public forum.
4. In-house training.
5. Specialty training.

Mentoring is an effective training method in which an experienced resource (mentor)
takes the responsibility of training a new or less experienced resource about the methods,
tools and processes in place within the organization. The resources undergoing training have
chance to learn from the experience of the mentors while the mentors feel comfortable as
being recognized as experts within their field.

On-site commercial training makes use of the training expertise of another company to
train the resources. The advantages of this training is that, in most of the cases, this type of
training is formal; the whole testing group receives the same level of training and the training
can be customized to the unique needs to the testing group.

Training in a public forum is a good idea when the testing team is too small for a
professional instructor to be hired. In that case, one or few of the testing resources can
participate in a public training class. An advantage of this approach is that the testing
resources get to interact with different people from different backgrounds and shares each
other’s ideas and experiences. A disadvantage of public trainings is that the training cannot
be customized to the specific needs to few individual trainees.

 73

In-house trainings take place when the testing group is too small or there is no time to
hire a professional instructor. In this case, the company spends time and cost in preparing the
training materials. The test resources have to take time out of their work to attend those
training classes. A positive impact of in-house trainings is that it is great learning experience
for the person within the testing group who is giving the training.

Specialty training programs involve web-enabled training, virtual training conferences
and distance learning [6]. These training modes are often less effective as compared to face-
to-face trainings.

As part of process improvement, a training checklist can be maintained in the company,
as shown in Table 31[6].

Table 31. Checklist for training.

Pass Fail Checklist for Training
T□ T T□ T Are training needs identified according to a procedure?

T□ T T□ T Is training conducted for all personnel performing work related to quality?

T□ T T□ T Are personnel who are performing specific tasks qualified on the basis of
appropriate education, training, and/or experience?

T□ T T□ T Are records kept of personnel training and experience?

Tool requirement:

Testing tools are certainly not a remedy of all problems related to software testing. But
there are many occasion when appropriate tools makes the testing team more effective and
productive. The testing strategy should consider making use of automated tool wherever the
needs warrants its use. As Rick Craig says testing tools are not the answer to your problems,
they are just one more tool in your bag of testing tricks [6]. Automated testing refers to the
integration of testing tools in the test environment in such a way that test execution,
recording and comparison of results are done with minimal human effort [6].

The automated testing comes with its set of specific requirements. Expertise is required
to gain confidence over the tool’s scripting language. If the automated scripts are taking
longer time to create than creating manual tests, then it must be examined that how much
time is saved in the execution of the automated scripts. Then if the automated script is to be
repeated multiple times, it can be estimated whether it is favorable to automate the script or
not [6].

Tasks that are repetitive in nature and tedious to be performed manually are prime
candidates for an automated tool. The category of tests that come under repetitive tasks are
as following:

• Regression tests.
• Smoke tests.
• Load tests.
• Performance tests.

Smoke tests are to be performed every time a build is delivered to the testing group,

therefore it is logical to automate them to gain time advantages. Smoke tests are
recommended to be made part of the subset of the regression test set. Performance and load
tests are executed most of the times with the help of an automated tool.

The categories of tests that come under the category of tedious tasks are as following [6]:

• Code coverage.
• Mathematical calculations.

 74

• Simulations.
• Human-intensive tasks.

The above mentioned tasks are not possible to be carried out manually on a large scale.
The candidate conditions for automated testing are shown in Figure 35[6].

There are situations when it is not beneficial to automated tests. The tests that are to be

executed only once are not good candidates for automation. If the requirements are changing
then regression tests are unstable and hence automating them will not pay off the effort that
is put in to automate them.

Once a tool is configured to be used for testing, it must be made sure that the testers are
adequately trained to use the tool. The testers should actually know how to use new tools i.e.
how to select and setup test cases and determine the results [6].

There is no single best automated testing tool available. The selection of an automated
tool depends on whether the tool is to be selected for a particular type of project or for
organizational wide testing purpose. If the tool is to be used organization wide, different
aspects become important like application development methodologies in use, types of
operating systems and types of applications. The data transformation by the application
should be well-understood so that the automated tool supports data verification [11].
Moreover, the impact of automation on project schedule should be determined.

There are benefits attached with automation including speed, efficiency, accuracy and
precision, resource reduction and repetitiveness [55], but there are important issues to
consider before automating tests:

• The software requirements change frequently in today’s environment. It must be

evaluated to automate only stable tests; otherwise the requirement changes will cause
costly rework to change scripts.

• Automation is not a substitute for human intuition [55].
• If the automation runs without finding a fault, it does not mean that there is no fault

remaining.

A summary of the discussion on training needs and the tool requirements & tests to
automate appears in Table 32.

Smoke Tests

Test Automation

Code coverage

Mathematical
Calculations Simulations

Human –
Intensive Tasks

Regression
Tests

Load Tests

Performance
Tests

Figure 35. Candidate conditions for automated testing.

Repetitive and tedious tasks

 75

Table 32. Summary of training needs and tool requirements & tests to automate attribute.
Attribute studied Training needs and tool requirements & tests to

automate
Purpose To identify the training needs for the testing group, tool

requirement and tests to automate.
Use • Training needs in the areas of software testing, tools,

technical skills, business knowledge and
communication skills helps software testing
professionals in fulfilling their duties efficiently.

• The careful evaluation of requirements for the use of
automated tools helps using the advantages of
automation for the project.

Training needs and tool
requirements

• The training needs for software testers lies in the areas
of software testing, tools, technical skills, business
knowledge and communication skills.

• The training methods involve mentoring, on-site
commercial training, training in a public forum, in-
house training and specialty training.

• Maintenance of an in-house training checklist is also
important as part of process improvement.

• Automation is suited for repetitive (regression tests,
smoke tests, load tests, performance tests) and tedious
tasks (code coverage, mathematical calculations,
simulations, human-intensive tasks).

Limitations • Test automation to be applied after careful evaluation
of tasks that are repetitive and tedious in nature.

• There is no single best automation tool available.
• There are situations when automating tests does not

pay off.

8.5 Metric Support for Strategy

The attributes falling in the category of strategy included (Figure 36):

• Sequence of test cases.
• Identification of areas for further testing.
• Combination of test techniques.
• Adequacy of test data.

The following text describes the available metric support for each identified attribute

within the strategy category.

Attributes for
Software Test

Design Process
Strategy

Sequence of test cases
Identification of areas for further testing
Combination of test techniques
Adequacy of test data

Figure 36. Attributes falling into strategy category.

 76

8.5.1 Sequence of Test Cases

Test case prioritization techniques enable the testers to prioritize the test cases according
to some criteria so that the test cases having high priority are executed earlier. The criteria
can include the following:

• To increase the rate of fault detection.
• To increase the detection of high-risk faults.
• To increase the coverage of code under test.
• To increase the reliability of the system under test at a higher rate.

The real benefit of test case prioritization is achieved when the time required to execute
an entire test suite is sufficiently long, as the testing goals are met earlier [87]. Test case
prioritization ensures that the testing time is spent more beneficially.

There are two broad types of test case prioritization techniques, general and version
specific [87]. In general test case prioritization techniques, the ordering of the test cases is
useful over a sequence of subsequent modified versions of a given program. Version specific
test case prioritization techniques are applied after a set of changes have been made to a
given program and is less effective on average over a succession of subsequent releases.

 Test case prioritization is formally defined as a function which is applied to all the
possible prioritizations of a testing suite such that it yields a higher award value such that
higher award values are preferred over lower award values. There are several considerations
in selecting a test case prioritization technique mentioned by [92]. One consideration is the
levels of granularity i.e. test cases that are executed at either function level or statement
level. The granularity of test cases affects the costs in terms of computation and storage. A
second consideration is that whether or not the test case prioritization technique incorporates
feedback to adjust for the test cases already executed. A third consideration is that whether
the techniques make use of modified program version or are based entirely on the coverage
information which do not consider the specific modifications in the modified version of a
program. Finally, an important consideration is the assessment of practicality of test
prioritization techniques. It is claimed that [92] techniques based on coverage at statement
and function level are applicable provided code coverage tools are available. But the
techniques based on fault exposing potential need further demonstration of practicality.

[92] classifies eighteen test case prioritization techniques in to three categories. The
categorization of these prioritization techniques is shown in Appendix 7.

Controlled experiments and case study was conducted by [92] to evaluate the test case
prioritization techniques. All the test case prioritization techniques contributed to improve
the rate of fault detection. In terms of granularity of techniques, fine-granularity techniques
performed better than the coarse-granularity techniques but not significantly. Moreover, the
inclusion of measures for fault-proneness techniques did not showed large improvements in
terms of rate of fault detection.

A study carried out by [92] measured the effectiveness of several of test case
prioritization techniques in terms of the ability to improve the rate of fault-detection. The
techniques chosen were random, optimal, total branch coverage, additional branch coverage,
total statement coverage, additional statement coverage, total fault exposing potential and
additional fault exposing potential prioritization. The results of the study showed that the use
of test case prioritization techniques improved the rate of fault detection.

A summary of discussion on sequence of test cases appear in Table 33.

 77

Table 33. Summary of discussion on sequence of test cases attribute.
Attribute studied Sequence of test cases

Purpose To prioritize the execution of test cases.
Use • To enable the execution of those test cases that meet

criteria for prioritization.
Studies related to test case
prioritization

• There can be eighteen test case prioritization
techniques divided into three categories namely
comparator, statement level and function level
techniques [92].

• Experiments and case studies shows that use of test
case prioritization techniques improves the rate of fault
detection [92, 93].

8.5.2 Measuring Identification of Areas for Further Testing

The identification of areas for further testing attribute will be discussed in combination with
the count of faults prior to testing and number of expected faults attribute of software test
planning process.

Counting of faults prior to testing helps indicate the areas or files likely to be beneficial
to test. There has been evidence that a small number of modules contain most of the faults
discovered prior to releasing the product [72]. This notion is captured by what is commonly
known as the Pareto Principle or 20-80 rule [72].

During the code development phase of software development, if it can be predicted that
which files or modules are likely to have largest concentrations of faults in the next release
of a system [73], the effectiveness and efficiency of testing activities can be improved. The
improvement in the effectiveness and efficiency is due to the fact that testers can target their
efforts on those files/modules by testing them first and with greater emphasis; resulting in
quick identification of faults and providing extra time for the testers to test rest of the system
[74]. One way to predict the number of faults in files is using a fault-prediction model like a
negative regression model. This model predicts the faults for each file of a release based on
characteristics like file size, whether the file was new to the release or changed or unchanged
from the previous release, the age of the file, the number of faults in the previous release and
the programming language [73]. The results of application of the model on two large
industrial systems were found to be quite accurate.

Khoshgoftaar et al. [74] used software design metrics and reuse information (i.e. whether
a module is changed from previous release) to predict the actual number of faults in the
module. They applied the model to a single release of a large telecommunication system with
1.3 million lines of code and 25000 files. The use of software design metrics and reuse
information contributed significant fault predictive power.

Graves et al. [75] reported a study in which the fault predictions in a module were based
on module’s age, the changes made to the module and the ages of the module. The report
does not discuss the effectiveness of the predictions but found that module size and design
metrics are poor predictors of fault likelihood. This is in contrast with the study carried out
by [76] in which it was stated that a high correlation exists between complexity measures
and program quality discriminating between programs that are likely to contain faults and
those that will contain few faults.

[77] predicts the fault proneness of software modules based entirely on the pre-coding
characteristics of the system design. The result of the study showed that top twenty percent
of modules identified by the predictors contained forty three percent to forty seven
percentage of the faults in the implemented code.

Another approach to predict fault prone modules is using random forests [78]. Random
forests are an extension of decision tree learning [78]. The general characteristics of this
approach are that it is general, efficient for large data sets and more robust to noise. The

 78

prediction accuracy of the proposed approach was found to be statistically significant over
other methods.

A summary of the discussion on the count of faults prior to testing/expected number of
faults and identification of areas for further testing appear in Table 34.

Table 34. Measuring the count of faults prior to testing/ expected number of faults/

identification of areas for further testing attribute.
Attribute studied The count of faults prior to testing / expected number of

faults / identification of areas for further testing
Purpose To determine the areas beneficial to test on the basis of

count of faults prior to testing.
Use • Indication of areas beneficial to test.

• Testers target efforts on error prone modules first and
test them rigorously.

• Quick identification of faults.
• Extra time to test rest of the system.
• Improvement in overall testing effectiveness and

efficiency.
Types of studies covered related
to count of faults prior to testing

• Using a negative regression model [73].
• Using software design metrics and reuse information

[74].
• Using module’s age, the changes made to the module

and the ages of the module [75].
• Using pre-coding characteristics of the system design

[77].
• Using random forests [78].

Limitations • Extraction of information for fault prediction is not
normally organized in the form of software change
databases.

• If a change database is maintained, it is still difficult
to categorize which changes are faults.

• The database might be prone to erroneous data.
• The unit of analysis is not consistent e.g. some

researchers use files while others use modules as
being error prone, thus making is difficult for system
testers who base their testing on functionality
described in specification [74].

• Some of the predictions are based on the timely
availability of process and design metrics.

8.5.3 Measuring Combination of Testing Techniques

The combination of testing techniques is discussed here in combination with estimation of
test cases attribute.

System testing validates whether the program meets the specification from behavioral or
functional perspective. The black box testing techniques is the dominant type of testing at the
system level. In terms of black box testing, the number of test for system testing can grow
very large. Therefore, an important concern is to select wisely among the black box
techniques so that the black box tests are reduced to a number that can be executed within
resource limitations and exposes majority of software defects [93]. As [2] writes, since
exhaustive testing is out of question, the objective should be to maximize the yield on the
testing investment by maximizing the number of error found by a finite number of test cases.

Equivalence class partitioning and boundary value analysis is commonly used to select
input data for testing. The input data combinations must be selected in such a way that

 79

detects maximum number of faults. In this situation, the tester either uses manual
combinations that are important or use heuristics like orthogonal arrays [93]. These
approaches do reduce the number of input combinations but their effect on fault detection
capabilities is hard to determine.

There are several types of black box techniques. One study carried out by R. Torkar and
S. Mankefors-Christiernin [94] divides black box testing techniques into partition testing,
boundary value analysis, cause-effect graphing, error-guessing, random testing, exhaustive
testing and nominal and abnormal testing. Three black box techniques namely equivalence
partitioning, random testing and boundary value analysis were compared to find the
efficiency with respect to finding severe faults. Equivalence partitioning was found to be the
single most effective test methodology to detect faults that leads to severe failures.

Another study carried out by L. Lauterbach and W. Randall [95] compared six testing
techniques namely branch testing, random testing, functional testing, code review, error
analysis and structured analysis at both unit and configured source code level. The results of
the study indicated that a combination of different techniques discovered as many as 20
faults in the software that were not previously found [31].

Further, a study carried out by Basili and Selby [96] compared three testing strategies
namely code reading using step wise abstraction, functional testing using equivalence
partitioning and boundary value analysis and structural testing with 100 percent statement
coverage. One of their results showed that incase of professional programmers, code reading
resulted in higher fault detection rates than functional and structural testing.

[93] introduces an approach that claims to significantly reduce the number of black box
tests based on automated input-output analysis to identify relationships between program
inputs and outputs. [2] is of the view to supplement black box oriented test case design
methodologies with testing the logic using white box methods. The rigorous testing strategy
should aim to take advantage of the distinct strengths of each test case design technique. A
strategy recommended by [2] for combining test case design techniques is as following:

1. Start with cause-effect graphing if specification contains combinations of input

conditions.
2. Supplement cause-effect graphing with boundary value analysis.
3. Identify valid and invalid equivalence classes for input and output.
4. Use error-guessing to include additional test cases.
5. If the test coverage criterion is not met in the first four steps, examine the program’s

logic to add test cases that complete the coverage criteria.

According to [97], the tests against requirements forms the initial tests followed with
structural tests for branch coverage and data flow coverage. [6] identifies the four factors that
contribute to the decision of selection of a testing technique, namely nature of the system, the
overall risk of implementation, the level of test and skill set of testers. A combination of
proven testing techniques when designing test case scenarios (functional analysis,
equivalence partitioning, path analysis, boundary value analysis, and orthogonal arrays) is
also recommended by [11]. Moreover, [6] identifies the techniques of black box testing as
equivalence partitioning, boundary value analysis, decision tables, domain analysis, state
transition diagrams and orthogonal arrays. These techniques are recommended to be applied
at the system testing level (Table 35).

 80

Table 35. Techniques at system level.
Method System Level

Equivalence class partitioning
Boundary value analysis
Decision tables
Domain analysis
State transition diagrams
Orthogonal arrays

Cem Kaner and James Bach lists down a list of paradigms of black box software testing

[98]. A paradigm provides a framework of thinking about an area and a testing paradigm
defines types of tests that are relevant and interesting. The list of paradigms for black box
testing involves the testing techniques types of domain driven, stress driven, specification
driven, risk driven, random/statistical, functional, regression, scenario/use case/transaction
flow, user testing and exploratory.

A summary of discussion on combination of testing techniques/estimation of test cases
appear in Table 36.

Table 36. A summary of discussion on combination of testing techniques/estimation of test

cases.
Attribute studied Combination of testing techniques/estimation of test

cases
Purpose To know what combination of testing techniques are

effective in finding more faults.
Use • To reduce the number of executed tests.

• To be able to execute tests within resource constraints.
• To be able to select tests with fault-finding

effectiveness.
Studies relevant to combination
of testing techniques

• [94] showed that equivalence class partitioning
performs better than random testing.

• A result of the comparison of six testing techniques by
[95] showed considerable variance in results and
showed that a combination of testing techniques
detected more faults.

• Study carried out by Basili and Selby [96] showed that
incase of professional programmers, code reading
resulted in higher fault detection rates than functional
and structural testing.

• [93] introduces an approach to reduce the number of
black box tests based on automated input-output
analysis.

• [98, 6, 11, 99] agree on using a combination of testing
techniques to take advantage of the strengths of each.

8.5.4 Measuring Adequacy of Test Data

Test data needs careful execution and preparation. The pre-requisites for an effective test
data are a good data dictionary and detailed design documentation [11]. Data dictionary is
important because it describes the data structures, data types, length of data items and rules.

 81

Design documentation, especially the data model helps to identify the relationship among
data elements and how the functionality uses data. It is not practically possible to test every
combination of input and output to a program, so the selection of the test-design techniques
helps to narrow down the number of input and output combinations. For example, boundary
value analysis executes tests at and around the boundary of data items.

While acquiring the test data, there are several concerns that need to be addressed:

1. Depth of test data: The size of test data needs to be determined. For example in case of a

table in a database, it is required to be determined how much records are sufficient. For
functional testing, a small subset of test data may be sufficient but for performance
testing, production-size data needs to be acquired.

2. Breadth of test data: There needs to be variation among the test data so as to make the
test case more effective in finding faults. Also if a data filed supports multiple data
types, the test data must test with data representing each of the data type supported.

3. Scope of test data: The scope of test data means that it should be accurate, relevant and
complete.

4. Data integrity during test execution: When a testing team is performing tests, it is
important that no two members are modifying and querying the same data at the same
time, so as to avoid generation of unexpected results. The test data should be able to be
modified, segregated and aggregated as per requirements.

5. Conditions specific data: The test data should be ready to match specific conditions in
applications. For example, for generating a student transcript in a student management
system, the person needs to be an active student in the database.

There is normally a criterion to evaluate whether a test set is adequate for a given

program or not. A test adequacy criterion is a rule or a set of rules that imposes
requirements on a set of test cases [99]. An adequate test set is a finite set of test cases which
meets the test adequacy criterion. The program is said to be adequately tested if it is tested
with an adequate test set [99]. A test adequacy criterion is also used as stopping criteria for
testing. The test adequacy criterion is related to a program or specification or both. Program-
based adequacy criteria are based on the coverage of structural elements of the code by the
test data e.g. control-flow and data-flow coverage. Specification-based adequacy criteria are
based on the coverage of the specification and the test data ensures coverage of all the
functions.

According to [100], there are two classic papers on test adequacy. One is Toward a
Theory of Test Data Selection by J. B. Goodenough and S. L. Gerhart (1975) and the other is
The Evaluation of Program-Based Software Test Data Adequacy Criteria by E. J. Weyuker
(1988). Gerhart and Goodenough laid the foundations of test adequacy criterion by defining
it as a predicate that defines what properties of a program must be exercised to constitute a
thorough test [100]. Weyuker defined 11 axioms for program-based test adequacy criteria, a
critique of this effort is that the paper is theoretical with few hints for practitioners [100].

 82

9 EPILOGUE

This chapter consists of recommendations reflecting the thesis study, conclusions and
identification of areas where further work might be needed.

9.1 Recommendations

The thesis attempted to consolidate the metric support for the attributes in software test
planning and test design processes. The purpose for the thesis of different metrics is to
provide a wide variety of metric options for project managers and testing team. The metrics
studied against each attribute needs to be assessed for their practicality in terms of project’s
context and benefits to the testing team. The organization needs to evaluate these metrics in
terms of the benefits that it expects to achieve from them. A metric would be successful if it
is clearly needed.

Moreover, there should be a strong motivation for the use of metrics in improving the
software test planning and design processes. The metrics are not to measure individuals and
this is a common mistake resulting from misinterpretation of the metric results. In this
regards, it is important to set clear goals to achieve from the metrics. It is very important that
the metrics are interpreted and analyzed not only by the data it represents but also
considering associated factors affecting the results. The metrics should also be inline with
the organizational strategy because the strategy would help the selection of attributes that
needs measurement.

An important aspect for implementing metrics is that the data collection process should
be timely; therefore, the managers need to keep the members informed by giving feedback
about the data that they have collected. The team members need encouragement in reporting
the data that is useful for the organization. Therefore, the data collection shall support the
team members, without affecting their primary tasks. Another important point that must be
addressed is that the level of effort required for measurement needs to be well-understood
and ideally be minimal. It is useful to express the objectives that are expected to be achieved
out of testing in measurable form. These objectives need to be explicitly mentioned in the
test plan.

Moreover, it is important to analyze the assumptions in the calculation of the metrics.
The metrics need to be continuously assessed for its role in the design of effective test cases
and efficacy of testing. In other words, the metrics need to be strongly linked with the
improvement goals so that the team does not lack motivation in collecting metrics data. The
development goals shall be communicated to the employees. Metrics data collection and
analysis are to be automated to an extent possible so as to provide the project managers with
timely feedback on progress and quality. The metrics need to be introduced incrementally,
perhaps initially for one development team.

The team shall be involved and closely associated to the metric program so that accurate
metric data can be collected. The metrics to be collected shall be transparent to the team
members so that they can acknowledge the benefits obtained. Moreover, the metrics need to
be simpler that establishes the relationship between the measurements and problems to be
addressed.

9.2 Conclusions

Today, the majority of the metrics in software testing are based on test execution phase and
on the basis of number of faults found in test execution. There is an apparent gap when we
are interested in metrics for test planning and test design processes. Therefore, by focusing
on the metric support in the test planning and test design processes, this thesis has
contributed in filling part of this gap.

 83

The measurable attributes of software test planning and test design are not mentioned in
literature in a consolidated form. By identifying seventeen attributes for software test
planning and thirty one attributes for software test design processes, the thesis serves to
consolidate the attributes that are useful for measurement. The thesis partitioned the
attributes in different categories, for software test planning there are four categories while
there are five for software test design process. Such a categorization is a contribution
towards assigning classes to the identified attributes, which may entice further research
within each category.

The thesis discussed metric support for the identified attributes for the test planning and
test design processes. Again, there were different studies contributing to the measurement of
each attribute. The thesis presented the different ways to measure each of the attributes with
the intention to provide a variety of methods for the reader to think of and choose according
to the context of the situation at hand.

An interesting aspect resulting from this thesis is that although measurements help
informed decision making, but a degree of subjectivity, expert judgment and analogy still
plays an important role in the final decision relating to software test planning and test design.
Therefore, reaching a decision must interplay between knowledgeable judgment and metric
results.

An organization can build a metrics program for its software test planning and test
design processes on the foundations of attributes identified in the thesis. It is expected that
such an effort will lead to informed decision making about different software testing
activities, in addition to the formulation of a baseline for measuring improvement.

9.3 Further Work

During the course of thesis, several interesting related areas were found to be useful for
further investigation. These issues were not covered in the thesis due to time constraints. A
list of these areas is given below:

9.3.1 Metrics for Software Test Execution and Test Review Phases

Initial study in this master thesis categorized software testing in to four phases. An
investigation in to the metric support available for software test execution and test review
phases would be interesting. Some interesting questions to ask could be that what are the
measurable attributes of the software test execution and test review phases and what is the
metric support for the identified attributes?

9.3.2 Metrics Pertaining to Different Levels of Testing

The study in this thesis focused on metric support at the system testing level. This leaves an
interesting area to investigate the metric support at other levels of testing i.e. unit level,
integration level and user acceptance level.

9.3.3 Integration of Metrics in Effective Software Metrics Program

Another interesting area to explore further is to investigate how the identified metrics can be
integrated into an organization wide metrics program.

 84

9.3.4 Data Collection for Identified Metrics

The identified metrics for software testing needs to be supported by an investigation in to
how to collect the metrics data in an optimal way and what are the different issues related to
collecting data on different attributes.

9.3.5 Validity and Reliability of Measurements

Furthermore, a study into the validity of metrics and the degree to which they contribute to
the understanding of the measured attributes could be interesting. Also an area of further
research could be an investigation in to the reliability of measurements and degree of
variation in the metric results.

9.3.6 Tool Support for Metric Collection and Analysis

A study of the tools to support metrics collection and analysis promises to be useful for
project managers in deciding which tools to use for the project needs.

 85

TERMINOLOGY

Metric Number or symbol assigned to attributes to define them

according to rules [24].
Attribute Feature or property or characteristic of an entity;
Software testing An evaluation process to determine the presence of software

errors.
Unit testing Testing of internal processing logic and data structures in

individual modules.
Integration testing Testing related to interfaces between modules.
System testing Determines software meets requirements as mentioned in the

SRS.
Acceptance testing Software testing done by customers or users.
Regression testing Determines that software meets the requirements after changes.
Fault Resulting due to human error.
Failure Resulting due to a fault in run time.
Test planning Planning for testing strategy, resource utilization,

responsibilities, risks and priorities
Test design Designing test objectives, selecting of test case design

techniques, preparing test data, developing test procedures,
setting up the test environment and supporting tools.

The suspension criteria Conditions temporarily suspending software testing.
The exit criteria Conditions indicating transition of testing activities from one

level to the next.
Scope of testing Determining the items, features, procedures, functions, objects,

clusters and sub-systems to be tested [21].
Test coverage Percentage of code, requirements, design, or interface covered

by a test set.
Smoke tests A set of test cases ensuring that the software is in a stable

condition for testing to continue forward.
Defect backlog Accumulated number of faults unresolved prior to test design.
Test data Data input to tests.

 86

REFERENCES

[1] B. Marick. New Models for Test Development. Testing Foundations.
www.testing.com/writings/new-models.pdf, September 2006.

[2] G. J. Myers. The Art of Software Testing. John Willey & Sons, Inc., New York, USA,
1976.

[3] E. W. Dijkstra. Structured Programming. In J.N.Buxton and B.Randell (eds.), Software
Engineering Techniques, Brussels, Belgium, NATO Science Committee, 1970.

[4] E. Miller. The Philosophy of Testing. In Program Testing Techniques, IEEE Computer
Society Press, 1977.

[5] IEEE Standard 829-1998. IEEE Standard for Software Test Documentation. IEEE, 1998.

[6] R. D. Craig, S. P. Jaskiel. Systematic Software Testing. Artech House Publishers, Boston-
London, 2002.

[7] IEEE Standard 1059-1993. IEEE Guide for Software Verification and Validation Plans.
IEEE, 1993.

[8] R. S. Pressman. Software Engineering – A Practitioner’s Approach. McGraw Hill
Education Asia, 2005.

[9] S. R. Rakitin. Software Verification and Validation for Practitioners and Managers.
Artech House Inc. Boston-London, 2001.

[10] ANSI/IEEE Standard 1008-1987. IEEE Standard for Software Unit Testing. IEEE,
1997.

[11] E. Dustin. Effective Software Testing-50 Specific Ways to Improve Your Testing.
Addison Wesley, 2002.

[12] M. L. Hutcheson. Software Testing Fundamentals: Methods and Metrics. John Willey
& Sons, 2003.

[13] M. Rätzmann, C. D. Young, Software Testing and Internationalization. Galileo Press
GmbH, Bonn, 2002.

[14] ISEB Foundation Certificate in Software Testing. SIM Group Ltd., SQS Group AG,
2002.

[15] J. Tian. Software Quality Engineering- Testing, Quality Assurance, and Quantifiable
Improvement, IEEE Computer Society, 2005.

[16] E. Dustin, J. Rashka, J. Paul. Automated Software Testing. Addison-Wesley, 1999.

[17] J. Seo, B. Choi. Tailoring Test Process by Using the Component-Based Development
Paradigm and the XML Technology. In IEEE Software Engineering Conference, 2000.

[18] The Wikipedia, the free encyclopedia. Article on Software Testing
http://en.wikipedia.org/wiki/Software_testing, September 2006.

 87

[19] I. Somerville. Software Engineering. Sixth Edition. Addison-Wesley, 2001.

[20] D. Kranzlmuller. Event Graph Analysis for Debugging Massively Parallel Programs.
Institute of Graphics and Parallel Processing, Johannes Kepler Universitat Linz, Austria.
http://www.gup.uni-linz.ac.at/~dk/thesis/html/relateda2.html,
September 2006.

[21] I. Burnstein, T. Suwanassart, R. Carlson. Developing a Testing Maturity Model for
Software Test Process Evaluation and Improvement. In IEEE, Test Conference, 1996.

[22] QAI Consulting Organization. Emphasizing Software Test Process Improvement,
http://www.qaiindia.com/Resources_Art/journal_emphasizing.htm ,
September 2006.

[23] D. J. Paulish, A. D. Carleton. Case Studies of Software Process Improvement
Measurement. IEEE, 1994.

[24] N. E. Fenton, S. L. Pfleeger. Software Metrics - A Rigorous & Practical Approach.
Second Edition. PWS Publishing Company, 1997.

[25] S. Morasca, L. C. Briand. Towards a Theoretical Framework for Measuring Software
Attributes. IEEE, 1997.

[26] C. Kaner. Software Engineering Metrics: What Do They Measure and How Do We
Know? 10P

th
P International Software Metrics Symposium, 2004.

[27] R. E. Park, W. B. Goethert, W. A. Florac. Goal Driven Software Measurement-A
Guidebook. CMU/SEI-96-BH-002, Software Engineering Institute, Carnegie Mellon
University, August 1996.

[28] K. H. Moller, D. J. Paulish. Software Metrics: A Practitioner’s Guide to Improved
Product Development. IEEE CS Press, Los Alamitos, 1993.

[29] IEEE Standard 1061-1998. IEEE Standard for Software Quality Metrics Methodology.
IEEE, 1998.

[30] I. Burnstein. Practical Software Testing. Springer-Verlag New York, Inc., 2003.

[31] R. B. Grady. Practical Software Metrics for Project Management and Process
Improvement. Prentice-Hall Inc., New Jersey, 1992.

[32] A. D. Carleton et al. Software Measurement for DoD Systems: Recommendations for
Initial Core Measures. Tech. Report CMUISEI-92-019, ESC-TR-92-019, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, 1992.

[33] L. M. Laird, M. C. Brennan. Software Measurement and Estimation: A Practical
Approach. John Wiley & Sons, Inc., New Jersey, 2006.

[34] S. H. Kan. Metrics and Models in Software Quality Engineering. Second Edition.
Addison Wesley, 2002.

[35] Software Engineering Program-Software Measurement Guidebook. National
Aeronautics and Space Administration (NASA) Washington, DC., August 1995.

 88

[36] S. Bradshaw. Test Metrics: A Practical Approach to Tracking & Interpretation, Qestcon
Technologies, A division of Howard Systems International, Inc.

[37] R. Chillarege. Software Testing Best Practices. Center for Software Engineering,
Copyright IBM Research- Technical Report RC 21457 Log 96856, 1999.

[38] Bazman’s Testing Pages, a website containing articles and white papers on software
testing
http://members.tripod.com/bazman/, November 2006.

[39] National Archives and Records Administration. Testing Management Plan. Integrated
Computer Engineering, Inc. a subsidiary of American Systems Corporation (ASC), 2003.

[40] R. Craig. Test Strategies and Plans. Copyright Software Quality Engineering, Inc., 1999

[41] K. Iberle. Divide and Conquer: Making Sense of Test Planning. In the International
Conference on Software Testing, Analysis and Review, STARWEST, 1999.

[42] R. Shewale. Unit Testing Presentation. A StickyMinds Article.
http://www.stickyminds.com/getfile.asp?ot=XML&id=6124&fn=XDD61
24filelistfilename1%2Eppt, November 2006.

[43] R. Fantina. Practical Software Process Improvement. Artech House Inc., 2005.

[44] R. Black. Managing the Testing Process. Second Edition. Wiley Publishing, Inc., 2002.

[45] J. Bach. Testing Testers — Things to Consider When Measuring Performance. A
StickyMinds Article. http://www.stickyminds.com, November 2006.

[46] C. Kaner. Measuring the Effectiveness of Software Testers. Progressive Insurance, July
2006.

[47] The Standish Group. Chaos Report.
Twww.projectsmart.co.uk/docs/chaos_report.pdf, 1995T.

[48] K. Molokken and M. Jorgensen. A Review of Surveys on Software Effort Estimation.
Simula Research Laboratory, 2003.

[49] N. Bajaj, A. Tyagi, R. Agarwal. Software Estimation – A Fuzzy Approach. ACM
SIGSOFT Software Engineering Notes Volume 31 Number 3, May 2006.

[50] J. P. Lewis. Limits to Software Estimation. ACM SIGSOFT Software Engineering Notes
Volume 26 Number 4, July 2001.

[51] D. V. Ferens, D. S. Christensen. Does Calibration Improve the Predictive Accuracy of
Software Cost Models? CrossTalk, April 2000.

[52] K. Iberle, S. Bartlett. Estimating Tester to Developer Ratios (or Not). Hewlett-Packard
and STEP Technology.T www.kiberle.com/pnsqc1/estimate.doc, November
2006.

[53] L. M. Laird, M. C. Brennan. Practical Software Measurement and Estimation: A
Practical Approach. Copyright IEEE Computer Society, 2006.

 89

[54] W. E. Lewis. Software Testing and Continuous Quality Improvement. Second Edition.
Auerbach Publications, 2005.

[55] R. Patton. Software Testing. Sams Publishing, July 2006.

[56] M. Marre´, A. Bertolino. Using Spanning Sets for Coverage Testing. In IEEE
Transactions on Software Engineering, Volume 29, Number 11, November 2003.

[57] S. Cornett. Code Coverage Analysis. Bull Seye Testing Technology.
http://www.bullseye.com/coverage.html, Dec 2005.

[58] C. Kaner. Software Negligence and Testing Coverage.
http://www.kaner.com/coverage.htm, 1996.

[59] P. Piwowarski, M. Ohba, J. Caruso. Coverage Measurement Experience During
Function Test. International Business Machines Corporation. In IEEE Software Engineering
Proceedings, 1993.

[60] Requirements Traceability for Quality Management. Compuware Corporation
Whitepaper.
www.softwarebusinessonline.com/images/WhitePaper_Compuware.pdf
, 2006.

[61] V. Karthikeyan. Traceability Matrix. A StickyMinds Article.
http://www.stickyminds.com/r.asp?F=DART_6051, 2006.

[62] T. Pyhälä, K. Heljanko. Specification Coverage Aided Test Selection. In Proceedings of
the Third International Conference on Application of Concurrency to System Design
(ACSD’03), IEEE, 2003.

[63] M. P. E. Heimdahl, D. George, R. Weber. Specification Test Coverage Adequacy
Criteria = Specification Test Generation Inadequacy Criteria? In Proceedings of the Eighth
IEEE International Symposium on High Assurance Systems Engineering (HASE’04), IEEE,
2004.

[64] M. W. Wahlen, A. Rajan, M. P. E. Heimdahl, S. P. Miller. Coverage Metrics for
Requirements Based Testing. In Proceedings of the 2006 International Symposium on
Software Testing and Analysis, 2006.

[65] P.E. Ammann, P. E. Black. A Specification Based Coverage Metric to Evaluate Test
Sets. In Proceedings of 4P

th
P International Symposium on High-Assurance Systems

Engineering, IEEE, 1999.

[66] P.E. Ammann, P. E. Black, W. Majurski. Using Model Checking to Generate Tests
from Specifications. In Proceedings of 2P

nd
P International Conference on Formal Engineering

Methods, IEEE, 1998.

[67] S. McConnell. Daily Build and Smoke Test. IEEE Software, Volume 13, Number 4, July
1996.

[68] A. Dada. Smoke Tests to Signal Test Readiness. Sun Microsystems.
HThttps://glassfish.dev.java.net/quality/BetterSoftware-
Presentation-Smoketests.pdf TH, November 2006.

[69] J. Bach. Test Plan Evaluation Model. Satisfice, Inc., 1999.

 90

[70] B. Berger. Evaluating Test Plans with Rubrics. International Conference on Software
Testing Analysis and Review, 2004.

[71] R. Black. Critical Testing Processes: Plan, Prepare, Perform, Perfect. Addison Wesley,
2003.

[72] N. E. Fenton, N. Ohlsson. Quantitative Analysis of Faults and Failures in a Complex
Software System. IEEE Transactions on Software Engineering, Volume 26, Number 8, 2000.

[73] T. J. Ostrand, E. J. Weuker, R. M. Bell. Predicting the Location and Number of Faults
in Large Software Systems. IEEE Transactions on Software Engineering, Volume 31,
Number 4, 2005.

[74] T. M. Khoshgoftaar, E. B. Allen, K. S. Kalaichelvan, N. Goeal. Early Quality
Prediction: A Case Study in Telecommunications. IEEE Software, Volume 13, Issue 1, 1996.

[75] T. L. Graves, A. F. Karr, J. S. Marron, H. Siy. Predicting the Fault Incidence Using
Software Change History. IEEE Transactions on Software Engineering, Volume 26, Number
27, 2000.

[76] J. C. Munson, T. J. Khoshgoftaar. The Detection of Fault-Prone Programs. IEEE
Transactions on Software Engineering, Volume 18, Number 5, 1992.

[77] N. Ohlsson, H. Alberg. Predicting Fault-Prone Software Modules in Telephone
Switches. IEEE Transactions on Software Engineering, Volume 22, Number 12, 1996.

[78] L. Guo, Y. Ma, B. Cukic, H. Singh. Robust Prediction of Fault-Proneness by Random
Forests. In Proceedings of the 15 P

th
P International Symposium on Software Reliability

Engineering, 2004.

[79] J. Gray. Why do Computers Stop and What Can be Done About it?
In TProceedings of 5th Symposium on Reliability in Distributed Software and Database
SystemsT, 1986.

[80] K. Vaidyanathan, K. S. Trivedi. Extended Classification of Software Faults Based on
Aging. Duke University Durham USA, 2001.

[81] Bazman’s Testing Pages, a website containing articles and white papers on software
testing.
http://members.tripod.com/~bazman/classification.html?button7=
Classification+of+Errors+by+Severity, November 2006.

[82] S. Sanyal, K. Aida, K. Gaitanos, G. Wowk, S. Lahiri. Defect Tracking and Reliability
Modeling For a New Product Release. IBM Canada Limited Laboratory, 1150 Eglinton
Avenue East, North York, Ontario, Canada.

[83] T. Pearse, T. Freeman, P.Oman. Using Metrics to Manage the End-Game of a Software
Project. In Proceedings of Sixth International Symposium on Software Metrics, IEEE, l999.

[84] Y. Chernak. Validating and Improving Test-Case Effectiveness. IEEE Software, 2001.

[85] R. M. Poston, M. P. Sexton. Evaluating and Selecting Testing Tools. IEEE Software,
1992.

 91

[86] G. Rothermel, M. J. Harrold. Analyzing Regression Test Selection Techniques. In the
Proceedings of IEEE Transactions on Software Engineering, Volume 22, Number 8, 1996.

[87] G. Rothermel, R. H. Untch, C. Chu, M. J. Harrold. Prioritizing Test Cases for
Regression Testing. In the Proceedings of IEEE Transactions on Software Engineering,
Volume 27, Number 10, 2001.

[88] T. L. Graves, M. J. Harrold, J. M. Kim, A. Porter, G. Rothermel. An Empirical Study of
Regression Test Selection Techniques. IEEE, 1998.

[89] A. G. Malishevsky, G. Rothermel, S. Elbaum. Modeling the Cost-Benefits Tradeoffs for
Regression Testing Techniques. In the Proceedings of International Conference on Software
Maintenance (ICSM), IEEE, 2002.

[90] D. S. Rosenblum, E. J. Weyuker. Predicting the Cost Effectiveness of Regression
Testing Strategies. In the Proceedings of 4P

th
P ACM SIGSOFT Symposium on Foundations of

Software Engineering, 1996.

[91] T. J. McCabe, C. W. Butler. Design Complexity Measurement and Testing. In the
Communications of the ACM, Volume 32, Issue 12, 1989.

[92] S. Elbaum, A. G. Malishevsky, G. Rothermel. Test Case Prioritization: A Family of
Empirical Studies. In the Proceedings of IEEE Transactions on Software Engineering,
Volume 28, Number 2, 2002.

[93] P. J. Schroeder, B. Korel. Black-box Test Reduction Using Input-Output Analysis. In
the Proceedings of the 2000 ACM SIGSOFT International Symposium on Software Testing
and Analysis ISSTA, 2000.

[94] R. Torkar, S. Mankefors-Christiernin. Fault Finding Effectiveness in Common Black
Box Testing Techniques: A Comparative Study. In Proceedings of 3 P

rd
P Conference on

Software Engineering Research and Practice in Sweden (SERPS’03), 2003.

[95] L. Lauterbach, W. Randall. Experimental Evaluation of Six Test Techniques. In the
Proceedings of the Fourth Annual Conference on Systems Integrity, Software Safety and
Process Security, IEEE, 1989.

[96] V. R. Basili, R. W. Selby. Comparing the Effectiveness of Software Testing Strategies.
In the Proceedings of IEEE Transactions on Software Engineering Volume 13 Number 12,
1987.

[97] B. Beizer. Software Testing Techniques. Second Edition, The Coriolis Group, 1990.

[98] C. Kaner, J. Bach. Paradigms of Black Box Software Testing. 1999.
www.kaner.com/pdfs/swparadigm.pdf

[99] S. Kim, J. A. Clark, J. A. McDermid. Investigating the Applicability of Traditional Test
Adequacy Criteria for Object-Oriented Programs. Department of Computer Science,
University of York, United Kingdom. November 2006.
www.cs.york.ac.uk/~jac/papers/TRAD.pdf

[100] T. Xie. Software Testing and Analysis. Special Topics on Software Testing and
Analysis, NC State University, 2006.
HThttp://ase.csc.ncsu.edu/courses/csc591t/2006spring/wrap/GUItes
ting.pdf TH

 92

[101] J. W. Creswell. Research Design. Qualitative, Quantitative and Mixed Method
Approaches. Second Edition, Sage Publications, 2002.

 93

APPENDIX 1. TEST PLAN RUBRIC

 Good

Average

Bad

Theory of Objective

Clearly identifies
realistic test
objectives.
Describes the most
efficient tests.

Describes credible
test objectives

There are no
objectives, or they
are
irrelevant.
Objectives
documented in the
test plan are
incongruent with the
culture of the
organization.

Theory of Scope

Scope may be
implicit or
documented,
but in either case the
test scope is
specific and
unambiguous.

Identifies some
scope of testing and
is
understood by only
some people.

Mix-ups in the test
execution because of
wrong scope
assumptions.
Scope of testing is
not defined within
the
project.

Theory of Coverage

For this test plan, the
test coverage is
complete relative to
the test scope.
Planned tests are laid
out in a way that
clearly connects with
test objective.

The breadth of test
coverage is
sufficient.
Planned tests are
somewhat connected
to
test objectives.

Test coverage is
correlated to neither
the
test objectives nor
the test scope.
Exit criteria are not
defined or
inappropriately
defined.

Theory of Risk

Test plan identifies
plausible testing
risks, assumptions
and constraints.

Risks have
inappropriate
priorities. Risks are
either exaggerated or
underplayed.
Most risks to the
successful
completion of
the project have
been addressed, in
one way
or another.

There is no
understanding of
project or
product risk
throughout the
organization.
Obvious risks have
not been addressed.

Theory of Data

Efficient method to
generate enough
valid and invalid test
data is known and
planned for.

Some method to
generate test data is
specified.

There is no method
of capturing data.
No formal plan of
generating test data
exists.

Theory of
Originality

There is high
information in every
word.
There are things to

A test plan template
is used as a starting
point, and some
original content has

Template
placeholders are not
filled in.
Instructions to the

 94

pay attention to on
every page.

been
added.

tester on how to use
the
template is included
as content of the
project’s test plan.

Theory of
Communication

Tester used multiple
modes to
communicate test
plan to, and receive
feedback from
appropriate
stakeholders.

All feedback is
incorporated, not
necessarily
the best feedback.
There is signoff that
appears binding.

No Distribution, no
opportunity for
feedback.
Test plan contradicts
itself after
incorporating
feedback from
multiple
stakeholders.

Theory of
Usefulness

Test plan helped
testers early discover
and react to the right
problems.

Things went wrong
not mentioned in the
plan.

Test plan was
successfully used
against the
company in a
lawsuit.

Theory of
Completeness

There is “Just
Enough” testing in
the
plan without over or
under testing.

Most test items have
been identified.

Huge holes are
discovered in the
plan (not
necessarily
documented) and
have not been
filled after review.

Theory of
Insightfulness

The test plan shows
understanding of
what is interesting
and challenging in
testing this specific
project.

The test plan is
effective, but bland.

The tester infuses
only one-
dimensional,
linear, hierarchical,
or sequential thought
into the test plan.

 95

APPENDIX 2. A CHECKLIST FOR TEST PLANNING
PROCESS

Step # Step Done
1. Research, devise, collect, and document the strategy, tactics, and internal

workings of the test subproject.

□

2. Negotiate and document the collaborative workings between the test
subproject and the overall project.

□

3. Finalize and document the remaining logistical and planning details, such
as the risks to the test subproject itself and definitions of testing and
project terms. Annotate any referenced documents. Write a one-page
executive summary of the test subproject.

□

4. Circulate the plan for private (offline) review, often to the test team first
and then to the wider collection of stakeholders and participants. Gather
input and revise the plan, iterating steps 1 through 3 as needed. Assess any
changes to the estimated schedule and budget (that exceed retained slack
or contingency) resulting from the planning process, and obtain
management support for such changes.

□

5. Circulate the plan for public review. Hold a review meeting with all the
stakeholders. Gather any final adjustments needed, and obtain
commitment that, with any modifications agreed upon in the review
meeting, the plan shall be the plan of record for the test subproject.

□

6. Revise the estimated schedule and budget based on new knowledge
gleaned from the planning process, including resource use. If this results
in a slip in the schedule or an increase in the budget beyond any retained
slack or contingency, escalate it to management for resolution.
Negotiations about the new budget and schedule may cause iteration of the
previous steps or reworking of the estimate.

□

7. Check the test plan(s) into the project library or configuration
management system. Place the document under change control.

□

 96

APPENDIX 3. A CHECKLIST FOR TEST DESIGN
PROCESS

Step

Step Done

8. Create or update an outline of test suites that can cover the risks to system quality for
which testing has been identified as a recommended action.

□

9. Select an appropriate test suite and discover a new set of interesting test conditions
within the most critical still-uncovered risk area; e.g., conditions that might provoke a
particular set of failures or model actual usage. Define at a high level how to assess
the correctness of results under those test conditions.

□

10. Select the appropriate test techniques, given the test conditions to be explored, the
verification of expected results desired, the time and budget available, the testability
features of the system under test, the test environment, and the skills present in the test
team.

□

11. Design, develop, acquire, enhance, configure, and document the testware, the test
environment, and the test execution process to produce those conditions and verify
those behaviors using the selected test techniques. Augment theoretical test techniques
with empirical techniques, especially customer/user data, field failure reports
(previous and competitors' releases, similar products, and similar sets of risks to
system quality), sales and marketing predictions on future usage, and other customer-
centered inputs.

□

12. Should any testware, test environment, or test execution process elements prove
unattainable during step 4 because of resource, schedule, or other limitations, repeat
step 4 iteratively to accommodate any such limitations.

□

13. Test the test system, using static techniques (e.g., reviews) and dynamic techniques
(e.g., running the test).

□

14. Check the testware, test execution process description, test environment configuration
information, test system test documentation (from step 6), and any other
documentation or files produced into the project library or configuration management
system. Link the version of the test system to the version of the system under test. Place
the item(s) under change control.

□

15. Update the quality risks list based on what was learned in developing this latest set of
tests. Evaluate coverage of the quality risks with the new test system. Identify
remaining uncovered quality risks for which testing action is recommended.

□

16. Repeat steps 2 through 8 until all quality risks are covered to the extent testing action
was recommended. Ensure that the quality risk documentation in the project repository
is updated. If schedule or budget restrictions curtail development without all critical
quality risks covered, produce a report of uncovered quality risks and escalate that
report to management.

□

17. If time and resources allow, iterate steps 2 through 8 using structural analysis (e.g.,
McCabe complexity or code coverage) to identify areas needing further testing.

□

 97

APPENDIX 4. TYPES OF AUTOMATED TESTING TOOLS

Type of tool Description Key points
Test-Procedure
Generators

Generate test procedures from
requirements/design/object models

Best used with requirements
management tool, creates test
procedures by statistical,
algorithmic and heuristics means.

Code (Test)
Coverage Analyzers
and Code
Instrumentors

Identify untested code and support
dynamic testing

Measures the effectiveness of test
suites and tests.

Memory-Leak
Detection

Verify that an application is properly
managing its memory resources

Provides run time error detection.

Metrics-Reporting
Tools

Read source code and display metrics
information, such as complexity of data
flow, data structure, and control flow.

Can provide metrics about code
size in terms of numbers of
modules, operands, operators, and
lines of code.

Usability-
Measurement Tools

User profiling, task analysis,
prototyping, and user walk-throughs

It is not a replacement of human
verification of interface.

Test-Data
Generators

Generate test data Provides quick population of
database.

Test-Management
Tools

Provide such test-management
functions as test-procedure
documentation and storage and
traceability

Provides support for all phases of
testing life cycle.

Network-Testing
Tools

Monitoring, measuring, testing, and
diagnosing performance across entire
network

Provides performance coverage
for server, client and network.

GUI-Testing Tools
(Capture/Playback)

Automate GUI tests by recording user
interactions with online systems, so
they may be replayed automatically

The recorded scripts are modified
to form reusable and maintainable
scripts.

Load, Performance,
and Stress Testing
Tools

Load/performance and stress testing Provides for running of multiple
client machines simultaneously
for response times and stress
scenarios.

Specialized Tools Architecture-specific tools that provide
specialized testing of specific
architectures or technologies, such as
embedded systems

Examples include automated link
testers for web application
testing.

 98

APPENDIX 5. TOOL EVALUATION CRITERIA AND
ASSOCIATED QUESTIONS

Tool evaluation criterion Questions

Ease of use • Is the tool easy to use?
• Is its behavior predictable?
• Is there meaningful feedback for the user?
• Does it have adequate error handling capabilities?
• Is the interface compatible with other tools already

existing in the organization?
Power • Does it have many useful features?

• Do the commands allow the user to achieve their goals?
• Does the tool operate at different levels of abstraction?
• Does it perform validation checks on objects or structures?

Robustness • Is the tool reliable?
• Does it recover from failures without major loss of

information?
• Can the tool evolve and retain compatibility between old

and new versions?
Functionality • What functional category does the tool fit?

• Does it perform the task it is designed to perform?
• Does it support the methodologies used by the

organization?
• Does it produce the correct outputs?

Ease of Insertion • How easy will it be to incorporate the tool into the
organizational environment?

• Will the user have proper background to use it?
• Is the time required to learn the tool acceptable?
• Are results available to the user without a long set-up

process?
• Does the tool run on the operating system used by the

organization?
• Can data be exchanged between this tool and others

already in use?
• Can the tool be supported in a cost-effective manner?

Quality of support • What is the tool’s track record?
• What is the vendor history?
• What type of contract, licensing, or rental agreement is

involved?
• Who does maintenance, installation and training?
• What is the nature of the documentation?
• Will the vendor supply list of previous purchases?
• Will they provide a demonstration model?

Cost of the tool • Does organization have enough budget to purchase the
tool?

• Is a cost/benefit analysis conducted?
Fit with organizational
policies and goals

• Is the tool purchase aligned with organizational policies
and goal?

 99

APPENDIX 6. REGRESSION TEST SELECTION
TECHNIQUES

Linear equation techniques: In these techniques, linear equations are used to express
relationships between tests and program segments. Program segments are portions of code
covered by test execution. The linear equations are obtained from matrices that track
program segments reached by test cases, segments reachable from other segments and
definite-use information about the segments [86].
The symbolic execution technique: In this technique, input partitions and data-driven
symbolic execution are used to select and execute regression tests [86]. This technique
selects all test cases that exercise the new or modified code.
The path analysis technique: This technique makes use of exemplar paths i.e. acyclic
paths from program entry to program exit [86]. This technique compares the exemplar paths
in original program to the modified program and selects all tests that traverse modified
exemplar paths [86].
Dataflow techniques: Dataflow techniques identifies the definition-use pairs that are new
and modified in changed program and selects tests that exercises these pairs.
Program dependence graph techniques: These techniques compare the program
dependence graph nodes and flow edges of original and modified programs to select
regression tests.
System dependence graph techniques: These techniques select tests that exercise
components in the original program that have common execution patterns with respect to
new or affected components in modified program [86].
The modification based technique: This technique determines the program components
that are data or control dependent on modified code and may be affected by a modification.
Testing is complete for the modification when each influenced component has been reached
by some test that exercised the modification [86].
The firewall technique:
This technique places a firewall around the modified code modules in such a way that unit
and integration tests are selected for the modified modules that lie within the firewall.
The cluster identification technique:
This technique selects tests that execute new, deleted, and modified clusters (sub-graphs of a
control flow graph).
Slicing techniques: There are four types of slicing techniques that are used for regression
test selection. These techniques are execution slice, dynamic slice, relevant slice, and
approximate relevant slice [86].
Graph walk techniques: These techniques make use of comparison of control flow graphs
of the original and modified programs. The techniques selects those test cases from the
original suite that that reaches the new or modified code or the tests that formerly reached
code that has been deleted from the original program [86].
The modified entity technique: This technique selects all test cases associated with
changed entities [86]. Entities are defined as the executable (e.g. functions) and non-
executable (e.g. storage locations) portions of code.

 100

APPENDIX 7. TEST CASE PRIORITIZATION
TECHNIQUES

Category Prioritization

technique
Description

Random ordering Random ordering of test cases in test suite. Comparator
Techniques Optimal ordering Ordering to optimize rate of fault detection

by knowing programs with known faults and
determining which fault each test case
exposes.

Total Statement
Coverage
Prioritization

Prioritization in descending order of the
number of statements covered by each test
case.

Additional Statement
Coverage
Prioritization

Prioritization based on feedback about
coverage attained so far in testing to focus
on statements not yet covered.

Total Fault Exposing
Potential (FEP)
Prioritization

Prioritization based on the fault exposing
potential of the test case at statement level.

Statement Level
Techniques

Additional Fault
Exposing Potential
(FEP) prioritization

Prioritization based on feedback about the
FEP of previous test cases at statement
level.

Total Function
Coverage
Prioritization

Prioritization of test cases based on the total
number of functions they execute.

Additional Function
Coverage
Prioritization

Prioritization based on feedback about
coverage of functions attained so far in
testing to focus on functions not yet covered

Total Fault Exposing
Potential (Function
level) Prioritization

Prioritization based on the fault exposing
potential of the test case at function level.

Additional Fault
Exposing Potential
(Function Level)
Prioritization

Prioritization based on feedback about the
FEP of previous test cases at function level.

Total Fault Index
(FI) Prioritization

Prioritization based on the association of
changes with fault-proneness using fault
index, a metric for fault proneness.

Additional Fault
Index (FI)
Prioritization

Prioritization based on incorporating
feedback in to the Total Fault Index
prioritization.

Total FI with FEP
Coverage
Prioritization

Prioritization based on the combined total
fault index prioritization and total fault
exposing potential prioritization.

Additional FI with
FEP Prioritization

Prioritization based on incorporating
feedback on total FI with total FEP
prioritization.

Function Level
Techniques

Total DIFF
Prioritization

Prioritization based on the association of
changes with fault-proneness using DIFF, a
technique to compute syntactic differences
between two versions of a program.

 101

Additional DIFF
Prioritization

Prioritization based on incorporating
feedback in to the total DIFF prioritization.

Total DIFF with
FEP Prioritization

Prioritization based on the combined total
DIFF prioritization and total fault exposing
potential prioritization.

Additional DIFF
with FEP
Prioritization

Prioritization based on incorporating
feedback on total DIFF with total FEP
prioritization.

 102

APPENDIX 8. ATTRIBUTES OF SOFTWARE TEST
DESIGN PROCESS

No. Software Test Design

Attribute
Purpose

1. Tracking testing progress To track the progress of test design activity.

2. Sequence of test cases To prioritize the execution of test cases.

3. Tracking testing defect
backlog

To assess the impact of testing defect backlog on test
design process.

4. Staff productivity To assess staff productivity during test design activity.

5. Effectiveness of test cases To determine the fault finding ability (quality) of the test
case.

6. Fulfillment of process
goals

To assess accomplishment of software test design
process goals.

7. Test completeness To track the test coverage of test cases.

8. Estimation of test cases To estimate the total number of test cases.

9. Number of regression tests To measure the number of test cases in regression testing
suite.

10. Identification of areas for
further testing

To identify risky areas requiring more testing.

11. Combination of test
techniques

To identify the right combination of test techniques.

12. Adequacy of test data

To define adequate test data.

13. Tests to automate

To decide upon which tests to automate.

14. Cost effectiveness of
automated tool

To evaluate the benefits of automated tool as compared
to the cost associated with it.

 103

APPENDIX 9. ATTRIBUTES OF SOFTWARE TEST
PLANNING PROCESS

No. Software Test Planning Attribute Purpose
15. Test coverage To assess the percentage of code,

requirements, design or interface covered
by a test set.

16. The suspension criteria of testing

To establish conditions for suspending
testing.

17. Count of faults prior to testing

To identify training needs for the
resources and process improvement
opportunities.

18. Duration of testing

To estimate a testing schedule.

19. Expected number of faults To gauge the quality of software.

20. Resource requirements i.e. number of
testers required

To estimate the number of testers required
for carrying out the system testing activity.

21. Testing cost estimation To establish the estimates for system
testing budgets

22. Training needs of testing group and tool
requirement

To identify the training needs for the
testing group and tool requirement.

23. Effectiveness of smoke tests

To establish that application is stable
enough for testing.

24. The exit criteria

To flag exit criteria for testing.

25. The quality of the test plan

To improve the quality of the test plan
produced.

26. Scope of testing

To determine how much of the software is
to be tested.

27. Bug classification

To determine the severity of bugs.

28. Monitoring of testing status

To keep track of testing schedule and cost.

29. Staff productivity

To assess tester’s productivity.

30. Fulfillment of process goals

To assess accomplishment of process
goals.

31. Tracking of planned and unplanned
submittals

To assess the impact of incomplete
submittals on test planning process.

 104

APPENDIX 10. HEURISTICS FOR EVALUATING TEST
PLAN QUALITY ATTRIBUTES

Following heuristics are suggested [69]:

1. Testing should be optimized to find critical problems first because early detection of

critical faults reduces the risk of a bad fix.
2. The testing strategy should also place focus on less critical problems because we are not

perfect in our technical risk analysis.
3. The test plan should mention the testing environment, how the product will be operated,

how will it be observed and how evaluations will be made. These factors are important
otherwise there is a probability of not being able to find important problems.

4. The test strategy should focus on diverse set of testing techniques to increase the chances
of detecting as many faults as possible. Similarly, methods for evaluating test coverage
should look in to different coverage dimensions including structural, functional and
requirements.

5. The test strategy should focus on how to generate and design the test data to avoid on-
the-fly test data generation.

6. The testing strategy should have flexibility to incorporate exploratory testing so as to
uncover unanticipated problems.

7. Since requirements can be incomplete and ambiguous, testing strategy should also focus
on implicit and implied requirements in addition to explicitly written requirements.

8. The test plan should also mention the communication channels with development and
technical support because they can provide useful information for effective risk analysis.

9. The test plan should highlight, if there are any aspects that can improve the testability of
the product and communicate those to the development team.

10. The test plan should be configurable and adjustable to the special needs and non-routine
aspects of the project.

11. A balance is required between automated and manual testing. Each one of them is
suitable in circumstances best suited for them.

12. A test schedule should not be rigid but should highlight the dependencies on the
progress of development, the testability of the product, time required to report problems,
and the project team’s assessment of risk [69].

13. In order to reduce the chances of reduction in testing time, the testing should be planned
to be carried out in parallel with development.

14. The test plan should highlight the number of testing cycles required so that developers
know when to expect the feedback on the fixes they make. It is important to speed up
quality improvement [69].

15. The testing strategy should benefit from other sources of establishing quality, e.g.
inspections to evaluate the testing process.

16. The test plan should include a review mechanism for the test documentation so as to
reveal improvement opportunities.

 105

APPENDIX 11. CHECKING FULFILLMENT OF TEST
PLANNING GOALS

Following points serve as an example to check fulfillment of test planning goals:

1. Is the description of all test related documents available to all interested parties?
2. Are prescribed templates available to stakeholders?
3. Are the testing methods and tools to be used for testing described?
4. Are the testing methods specific to a project described?
5. At what levels the test planning will be carried out i.e. unit, integration, system and

acceptance?
6. Are both white box and black box testing methods to be applied described in the plan?
7. Is the test plan reviewed?
8. Is the test plan placed under change control?
9. Is the author of the test plan experienced and trained in writing test plan?
10. Does the test plan mentions fault classification?
11. Are test related measurements collected during the test planning process?
12. Is the test plan signed-off for approval?
13. Are there appropriate planning tools available for test planning?
14. Are any test related risks identified in developing test plans?
15. Are estimates from prior projects available to be used for test planning [21]?
16. Is the test planning process reviewed?

	Introduction
	Background
	Purpose
	Aims and Objectives
	Research Questions
	Relationship between Research Questions and Objectives

	Research Methodology
	Threats to Validity

	Thesis Outline

	Software Testing
	The Notion of Software Testing
	Test Levels

	Software Testing Lifecycle
	The Need for a Software Testing Lifecycle
	Expectations of a Software Testing Lifecycle
	Software Testing Lifecycle Phases
	Consolidated View of Software Testing Lifecycle
	Test Planning
	Test Design
	Test Execution
	Test Review
	Starting/Ending Criteria and Input Requirements for Software

	Software Measurement
	Measurement in Software Engineering
	Benefits of Measurement in Software Testing
	Process Measures
	A Generic Prediction Process

	Attributes For Software Test Planning Process
	Progress
	The Suspension Criteria for Testing
	The Exit Criteria
	Scope of Testing
	Monitoring of Testing Status
	Staff Productivity
	Tracking of Planned and Unplanned Submittals

	Cost
	Testing Cost Estimation
	Duration of Testing
	Resource Requirements
	Training Needs of Testing Group and Tool Requirement

	Quality
	Test Coverage
	Effectiveness of Smoke Tests
	The Quality of Test Plan
	Fulfillment of Process Goals

	Improvement Trends
	Count of Faults Prior to Testing
	Expected Number of Faults
	Bug Classification

	Attributes For Software Test Design Process
	Progress
	Tracking Testing Progress
	Tracking Testing Defect Backlog
	Staff Productivity

	Cost
	Cost Effectiveness of Automated Tool

	Size
	Estimation of Test Cases
	Number of Regression Tests
	Tests to Automate

	Strategy
	Sequence of Test Cases
	Identification of Areas for Further Testing
	Combination of Test Techniques
	Adequacy of Test Data

	Quality
	Effectiveness of Test Cases
	Fulfillment of Process Goals
	Test Completeness

	Metrics For Software Test Planning Attributes
	Metrics Support for Progress
	Measuring Suspension Criteria for Testing
	Measuring the Exit Criteria
	Measuring Scope of Testing
	Monitoring of Testing Status
	Staff Productivity
	Tracking of Planned and Unplanned Submittals

	Metric Support for Cost
	Measuring Testing Cost Estimation, Duration of Testing and T
	Measuring Training Needs of Testing Group and Tool Requireme

	Metric Support for Quality
	Measuring Test Coverage
	Measuring Effectiveness of Smoke Tests
	Measuring the Quality of Test Plan
	Measuring Fulfillment of Process Goals

	Metric Support for Improvement Trends
	Count of Faults Prior to Testing and Expected Number of Faul
	Bug Classification

	Metrics For Software Test Design Attributes
	Metric Support for Progress
	Tracking Testing Progress
	Tracking Testing Defect Backlog
	Staff Productivity

	Metric Support for Quality
	Measuring Effectiveness of Test Cases
	Measuring Fulfillment of Process Goals
	Measuring Test Completeness

	Metric Support for Cost
	Measuring Cost Effectiveness of Automated Tool

	Metric Support for Size
	Estimation of Test Cases
	Number of Regression Tests
	Tests to Automate

	Metric Support for Strategy
	Sequence of Test Cases
	Measuring Identification of Areas for Further Testing
	Measuring Combination of Testing Techniques
	Measuring Adequacy of Test Data

	Epilogue
	Recommendations
	Conclusions
	Further Work
	Metrics for Software Test Execution and Test Review Phases
	Metrics Pertaining to Different Levels of Testing
	Integration of Metrics in Effective Software Metrics Program
	Data Collection for Identified Metrics
	Validity and Reliability of Measurements
	Tool Support for Metric Collection and Analysis

	Terminology
	References
	Appendix 1. Test Plan Rubric
	Appendix 2. A Checklist For Test Planning Process
	Appendix 3. A Checklist For Test Design Process
	Appendix 4. Types Of Automated Testing Tools
	Appendix 5. Tool Evaluation Criteria And Associated Question
	Appendix 6. Regression Test Selection Techniques
	Appendix 7. Test Case prioritization Techniques
	Appendix 8. Attributes Of Software Test Design Process
	Appendix 9. Attributes Of Software Test Planning Process
	Appendix 10. Heuristics For Evaluating Test Plan Quality At
	Appendix 11. Checking Fulfillment Of Test Planning Goals

