
How to Avoid Traps in Contracts for Software Factory

Based on Function Point Metric

 Claudia Hazan1 Eduardo A. Oliveira2 José Roberto Blaschek3

claudinhah@yahoo.com eduaopec@yahoo.com.br blaschek@attglobal.net

1 Serviço Federal de Processamento de Dados (SERPRO) – CETEC
 Rua Teixeira de Freitas,31 – 4º andar – Lapa
 Rio de Janeiro –RJ – Brasil

2 Serviço Federal de Processamento de Dados (SERPRO) – SUPDE
 Rua Teixeira de Freitas,31 – 9º andar – Lapa
 Rio de Janeiro –RJ – Brasil

3 Fundação COPPETEC
 Centro de Tecnologia – UFRJ – Bloco H sala 203
 Rio de Janeiro – RJ - Brasil

Abstract

There is a growing demand for development and maintenance projects of software. The

organizations have contracted software factories in order to support this demand. However,

the contract management is not a trivial task. Several organizations have used the Function

Point (FP) metric as a basis of the contracted payment. In fact, the use of FP assists on the

contracts management. The contractor can manage the software product required and

received instead of managing the contracted teams. But, the establishment of a contract

based on FP is not a silver bullet that solves all conflicts between contractors and contracted.

This paper presents the main errors observed during the validation of FP counting in

contracted projects; discusses some problems related to contracts based on FP metrics and

gives suggestions to solve it. The main objective of this work is to promote the correct use of

FP counting rules and to present the Function Point Analysis (FPA) limitations, such as:

maintenance projects counting, defects treating, schedule estimation, changing requirements

issues related to software contracts.

Key Words:

Function Point, Function Point Counting, Function Point Analysis, Software Contracts

1. Introduction

Currently, the organizations depend on useful information in a structured way to meet

specific objectives, to improve their performance in their business. Information technology

(IT) plays a strategic role in business process reengineering and in creating information

systems. It is important to highlight that an information system increases the performance of

an organization’s human resources and improves the quality of its products.

In this context, there is a growing demand for development of new systems and

maintenance of existing applications. This scenario has contributed to an increase in the IT

backlog of organizations. Thus, contracting external services at software factories is the

solution for the organizations to supply the demands of software project.

In many Brazilian’s organizations, especially in the government area, the Function Point

(FP) metric is used as a basis for software contracts pricing decisions. As a matter of fact, it

is very difficult to manage contracts per hour with a model of software factory. Some

companies have begun to use others functional metrics sizes, such as: the number of use

cases and use case points (UCP). These metrics are easier to calculate than FP, but they

are very subjective, depending on the system requirement modeling, i.e., the way that the

software engineer documents the requirements. The use of FP metric offers a number of

benefits, such as: the availability of the Counting Practice Manual (CPM) [IFPUG, 2005]

which has well-defined rules for the FP counting, requirement modeling independence and

user view1 oriented.

The problem of contracting out the software factory seems to be solved in a very simple

way: include a contract clause specifying that software project price will be based on the FP

metric, and beside this, another clause that defines the CPM as basis for FP counting. In

order to make the contract clearer, the current version of CPM must be included. Many

companies have done it, but are facing problems and conflicts with software factories

contracted. Why does it happen?

The answer is that there are many issues to be covered in a software factory contracts

that are not included in the CPM, such as: How to measure the frequent requirements

changes that plague software projects? How to measure the different kinds of maintenance

projects besides enhancement projects? How to address issues of different productivity rates

according to programming languages and other non-functional requirements specific to each

project in software contracts based on fixed price by FP?

The purpose of this work is to reduce the conflict between contractors and contracted.

This conflict is one of the main risks of software projects. This paper answers questions

about the use of the FP metric in software contracts, shows some common mistakes about

FP counting, and discusses some concepts inherent in FP counting, such as: logical data vs.

physical data, elementary process, external output vs. external inquiry and data conversion

functions. This paper discusses also some common problems of software contracts based on

the FP metric and suggests solutions.

This paper is organized in the following way: Section 1 presents the motivation and the

purpose of this paper; Section 2 shows an overview about Function Point Analysis; Section 3

presents common FP counting mistakes observed during FP counting validation; Section 4

shows the main problems found in the software contracts and give some suggestions for

solving them. These problems were identified in analyses of several software contracts of

Brazilian organizations, especially government organizations; Finally, Section 5 concludes

this paper and presents recommendations to future works.

2. A Function Point Analysis Overview

The FP metric was created by Allan Albrecht [Albrecht, 1979] in order to reduce the

difficulties associated with the use of Line of Code (LOC) as a software functional size metric

and to support the effort prediction of the software development process [Albrecht, 1983]. In

1986, a research of Quality Assurance Institute showed that the FP is the best metric to the

quality and productivity measurements of information systems [Perry, 1986]. In 1993, FP has

become the most used and studied metric in the history of Software Engineering [Jones,

1995]. While other metrics have emerged in nineties, such as: Full Function Points [Abran,

1997] and Use Case Points [Karner, 1993], the FP metric continued being the most used in

the software industry. In 2003, the ISO / IEC 20926 recognized the Unadjusted Function

Point metric as an international standard [Dekkers, 2003]. Nowadays, the endeavor for the

adherence to the software quality models has also collaborated for the extensive use of FP in

the software industry. In fact, the metric supports the deployment of several of CMMI

practices, as described by Lipton [Lipton, 2000], Dekkers [Dekkers, 2002] and Hazan

[Hazan, 2003]. This section has the purpose of presenting an overview of FP counting,

based on CPM [IFPUG, 2005].

1

 A user view represents a formal description of the user’s business needs in the user’s language [IFPUG,
2005].

Function Point is a functional size metric of software projects. The functional size is

defined as “a size of the software derived by quantifying the Functional User Requirements”

[Dekkers, 2003]. The user function requirements are a subset of software project

requirements. These requirements are descriptions of the several functions that clients and

users need the software to provide, typically focus on “what the system must do” i.e. in the

user business process tasks required [Sommerville, 2007] [IFPUG, 2006]. The main

purposes of the Function Point Analysis (FPA) are the following [IFPUG, 2005]:

• Measure functionality that the user requests and receives;

• Measure software development and enhancement independently of technology

used for implementation.

The unadjusted function point count (UFPC) reflects the specific functionality provided

to the user by the software project. The UFPC consist on mapping the user functional

requirements to FPA function types: Internal Logical File (ILF), External Interface File (EIF),

External Input (EI), External Output (EO), and External Inquiry (EQ), as described below

(Figure 1).

Figure 1: The Five Function Types of the Function Point Analysis

Software

Requirements

Fucntion
Types Identification

Fucntion
Types Identification

APPLICATION

Application Boundary

Internal

Logical Files

(ILF)

Other Application

External

Interface Files

(EIF)

External Input (EI)

External Inquiry (EQ) External Output (EO)

Princess

Ariel

Aurora

Belle

Cinderella

Jasmine

Unadjusted

Function Points

FP
 C
ou
nti

ng

Data Functions (Internal)

Data Functions (External)

Transactional Functions

Month Sales

June US$100

July US$50

Total US$150

• The Internal Logical File is a data logical group, maintained within the boundary of

the application, through one or more elementary processes.

• The External Interface File is a data logical group, referenced by one or more

elementary processes of the application. However, they are kept within the

boundary of another application.

• An External Input is an elementary process that processes data or control

information that comes from outside the application boundary. The primary intent

of an EI is to maintain one or more ILFs and/or alter the behavior of the

application.

• An External Output (EO) is an elementary process that sends data or control

information outside the application boundary. The primary intent of an EO is to

present information to a user2 through a processing logic which must: contain at

least one mathematical formula or calculation, or create derived data, or maintain

ILFs, or alter the behavior of the application.

• An External Inquiry (EQ) is an elementary process that sends data or control

information outside the application boundary. The primary intent of an EQ is to

present information to a user through only a retrieval of data or control information

from an ILF or EIF.

Each identified function has an associated complexity: Low, Average or High and a

contribution to unadjusted function point counting, based on its function complexity [IFPUG,

2005].

The adjusted function point counting considers the value of adjustment factor (VAF).

This factor is based on the degree of influence of the 14 general systems characteristics that

rate the general functionality of the application being counted. Each characteristic has

associated descriptions that help determine the degree of influence of that characteristic

[IFPUG, 2005]. The VAF can vary from 0.65 to 1.35.

It is important to highlight that the use of the procedure for FP counting, described on

CPM [IFPUG, 2005], imply in the existence of the application logical design. Therefore, in the

earlier phases of the software life cycle, the Function Points can’t be measured but

estimated. The following section presents the main mistakes found in the reviews of FP

estimating and counting performed by the author.

2

 A user can include a hardware device, another software application or the user himself.

3. Ten Mistakes Found in Function Points Counting

Several mistakes have been found during reviews of FP estimating and counting,

performed by the authors. The main cause of these mistakes is the lack of knowledge about

FPA concepts and rules described in CPM. In Brazil, there are a lot of FP counters that don't

have a full understanding about CPM counting rules. These people read some papers, get

the overview of FPA technique, and start to count FP without having enough skills.

Sometimes, these people publish papers, especially in academic congresses, spreading

wrong concepts about FPA. The author of this work is worried about disseminating FPA in

the correct way. It is important to count FP correctly, following CPM rules. Wrong FP

counting generates useless information and costs. These mistakes are often found in

academic papers and usually in the industry are described in the next section.

 � Error in the definition of Functional Size X Development effort

Let’s start with the most observed error in the industry and academy. Observe a

dialogue between a software metrics consultant and a project manager: The consultant

says: “I am researching about functional size estimations methods based on FP.” The

manager replies: “Why FP? Why don’t you research about COCOMO?” The COCOMO

doesn't estimate project size. Many people think that FPA is a method for estimating

schedule, costs and effort. It is wrong. The FP is a functional size metric which is used to

estimate only the size of the software projects. It is important to emphasize that the size

estimation is an important input for derivation of the cost, effort and schedule estimations

[SEI, 2006]. Thus, FP constitutes an input to cost and effort estimate models, for example

COCOMO II.

� Error in the usage of Function Point Counting formulas described in CPM

This error may occur as a consequence of the previous error, described above. In order

to maximize returns in contracts of Fixed Price by FP, some contracted organizations want to

“increase” artificially the FP counted, due to a great development effort of some complex

software projects. So they create components for the CPM formulas, as other adjustment

factors to reach these objectives. For instance, if the database of the project is complex,

there is an adjustment factor of 1.2 to multiply by adjusted function points. This is a wrong

practice. The FP counting must be based on CPM counting rules and formulas. This kind of

error can also occur due to the lack of knowledge of the CPM, as in the example published in

the paper of WER (Workshop of Requirement Engineering) [Carvalho, 2005]. The paper

shows the FP counting of a Web System, where initially the calculation of unadjusted

function points presented was 130 UFP. Afterwards, in the calculation of the adjusted

function points of the development project, is mentioned that: "a function of data model

conversion was developed, with an effort estimated around 10% of the total. Therefore, the

Conversion Function Point (CFP) was calculated as: CFP = 10% x UFP = 0.1 x 130 = 13.

And the Adjusted Function Point of the Development Project (DFP) is calculated by the

formula: DFP = (UFP + CFP) x VAF = (130 + 13) x 1.14.”

There is a mistake in the calculation of the CFP component of the DFP formula,

presented above. Although the published paper by Carvalho [Carvalho, 2005] references the

use of CPM to count the adjusted function points, there isn’t a rule in CPM that considers

effort within the FP calculation. Of course, FP is a functional size metric, independent of the

effort to develop the application. The functions of data conversion must be identified and

counted according to CPM counting rules. The functions of data conversion which are

associated with the initial data loading are run only once, during the application installation

task. Generally, they are classified as EIs. Sometimes, these functions are also identified as

EOs, associated with the load control reports containing summarized and totalized data.

These reports must be required by the users to be counted.

� Error: External Inquiries X External Outputs

This mistake is caused by the lack of knowledge of the identification rules of External

Outputs and External Inquiries. It is very common too. Some people count FP based on the

following “rule”: “all reports must be classified as External Outputs and all inquiries are

External Inquiries”. Unfortunately, this simple “rule”, easy to apply, is wrong. Notice that this

“rule” is not compliant to the CPM counting rules. For instance, consider a functionality of

“Students Inquiry”, which presents a student list containing the name of the student and the

age of the student. This function retrieves the student birth date in the ILF of Students to

compute the student age. The inquiry function: “Students Inquiry” must be classified as EO,

due to the student age calculation. Another example, consider a functionality “Report of

Students”, which retrieves the student name and identification code in ILF of Students and

presents the information in alphabetical order. This report must be classified as an External

Inquiry. It is not an External Output because it doesn’t contain calculation, derived data, ILF

updating or system behavior changing. The processing logic “data is resorted” may be

performed by EQ.

� Error in the identification of Logical Files

This error is frequently observed in the reviewing of FP counting. This mistake was

found in the majority of the FP counting, during a recent auditing of FP counting performed

by the author. It is common that many physical entities are counted incorrectly as Internal

Logical Files or External Interface Files. This is another wrong “rule”:”all physical table or file

must be counted as ILF or EIF”. This wrong “rule” is not compliant to CPM counting rules. It

is important to emphasize that files in FPA are group of logically related data or control

information and not physical tables or files. Thus, some physical tables or files are not

counted as ILF or EIF, some may be a part of ILF or EIF, and others are not counted. This

error frequently results in a FP counting bigger than the real size of the projects.

� Error in the Elementary Processes Identification

The difficulty in elementary process identification has been frequently observed in the

industry. The most common error is the identification of sequential activities as independent

elementary processes. The wrong “rule” is: “each application screen is an elementary

process”. Notice that “an elementary process must be self-contained and leave the business

of the application being counted in a consistent state” [IFPUG, 2005]. It means that an

elementary process must be an independent activity. For example, suppose a functionality of

inquiry which contains one input parameter screen and another output screen to present the

retrieval results. Some people count this functionality as two elementary processes: one for

the parameter screen and another for the screen of results. This practice is wrong. The two

screens take part of a unique inquiry activity, i.e. a unique elementary process of inquiry.

Only one of these screens doesn’t leave the application business in a consistent state. An

automatic e-mail sending, that makes part of the application functionalities, is frequently

counted incorrectly such as an independent elementary process. The right way to count it is

as part of the elementary process associated with the functionality. Let’s present a hint to

help on the identification of elementary processes: Sequential functionalities make part of the

same elementary process and independent functionalities make part of different elementary

processes. Another wrong “rule” related to this error is the following: “all requirements

identified in the software requirement document, for instance, as relation of use case, is an

elementary process”. This wrong “rule” has been observed in some FP counting. For

example, suppose the use case “Update Students Information”. There are functions such as:

“Cancel”, “Exit” and “Clear”, which are not elementary processes, because they are related to

non-functional requirements such as usability. These functions provide support to: the

application navigation and the user efficiency improvement. In this example, the functional

requirement “Update Students” Information is the unique elementary process.

� Error in the Identification of Implicit Inquiries

This error is also related to the elementary processes identification. Some FP counters

don’t identify the functions of implicit inquiry associated to data updating. This mistake

happens when the FP counter perform the counting, based on application screens instead of

application functional requirements. Consequently the implicit inquiry (data edition associated

with data updating) is not counted. Notice that the data inquiry which precedes the updating

is an elementary process, independently of the data updating process. The user may only

inquiries the data without updating anything. Therefore, the implicit inquiries must be

counted, since they haven’t been counted already, according to the rules of uniqueness of

EQ or EO, described on CPM.

� Error in the Determination of the Value of Adjustment Factor

Some Brazilian organizations don't use the adjustment factor in the FP counting. The

unadjusted function point counting is considered in few software contracts and some other

use a fixed adjustment factor. It's a mistake to use a fixed adjustment factor for all software

projects, because the value of adjustment factor must be calculated for each development or

enhancement project according to CPM counting rules. In addition, many mistakes have

been observed in the determination of the degree of influence of the fourteen general

systems characteristics (GCS) in the value of adjustment factor calculation. In spite of

improving definition of GCS observed in the CPM release 4.2.1, there is still much difficulty in

identifying the degree of influence (DI) of the characteristics. For instance, the characteristic

of reusability is one that has presented evaluation mistakes. It is very common the FP

counters considers the DI = 4 or 5 due to reuse of components from other applications and

having internal reuse only. In this example, the correct DI = 1.

� Error in the Calculation Formula Implemented in Spreadsheet of FP Counting

Many organizations develop spreadsheets to automate the FP calculations. It is

important to observe that FPA function types don’t have the same functional contributions for

FP counting. The functional contributions of the data functions: ILF and EIF are different; the

functional contributions of the transactional functions: EIs and EQs are the same, but the

functional contribution of the EO is different. In an actual case, the FP counting spreadsheet

of an organization has only three functional contributions for all function types: Low - 3 FP,

Average - 4 FP and High - 6 FP. In another actual case, the functional contribution of the ILF

and EIF was the same: low - 7 FP, Average - 10 FP and High - 15 FP. It is wrong. The

correct functional contribution of the function types are the following [IFPUG, 2005]:

Function Type Complexity

Low

Complexity

Average

Complexity

High

Internal Logical File (ILF) 7 FPs 10 FPs 15 FPs

External Interface File (EIF) 5 FPs 7 FPs 10 FPs

External Input (EI) 3 FPs 4 FPs 6 FPs

External Output (EO) 4 FPs 5 FPs 7 FPs

External Inquiry (EQ) 3 FPs 4 FPs 6 FPs

	 Error in the Determination of Complexity of Changed Functions in

Enhancement Projects

Another very common error in the FP counting of enhancement projects is the difficulty

in the identification of complexity of changed functions. For example, consider the change in

an EI of high complexity. The change is: add one more DET (data element type) to the

function. Notice that this function continues identified as high complexity. In practice, this

function is counted incorrectly as simple several times, because the change was the addition

of only one DET in an implemented function. The CPM 4.2.1 mentions that the CHGA (FP of

functions that were modified by the enhancement project) considers the new functionality

available to the user by the application. Even tough, the modification in a high complexity

function is small; it must be classified as high complexity since it remains with a complexity

that is considered high.

 Error in the CPM Use: Function Point Counting of Maintenance Projects

The majority of software factory contracts based on FP mention that the size of the

development and maintenance software projects are measured using the method of FP

counting, described in the CPM. However, the CPM considers the FP counting for

development and enhancement projects only. The other kinds of maintenance project, such

as corrective maintenance, cosmetic maintenance, adaptive maintenance without changing

business requirements, are measured incorrectly following the CPM enhancement formula.

According to CPM 4.2.1, these modifications requests can’t be measure in FP. In fact, the FP

metric is a functional size metric. These maintenance projects don’t have functional size,

because there aren’t changes in the functionalities (add, change or delete functionalities)

based on the user viewpoint, considering business requirements. The next section presents

the recommendations to deal with maintenance project in software contracts based on FP.

4. Software Contracts Problems and Solutions

The FP metric has been used by most of Brazilian government organizations and by

several other enterprises too, as a monetary unit ($ / FP) in their contracts of software

developing and maintenance. In this kind of software contract, named contract of fixed price

by FP, the FP metric represents an asset to the client. This contract type permits a best risk

balance between contractor and contracted [Aguiar, 2000]. This section has the purpose of

presenting some hints to avoid traps in software factory contracts base on fixed price by FP.

� Getting a Software Requirement Document with Quality

As mentioned, the FPA measures functionality that the user requests and receives

[IFPUG, 2005]. The software requirements document constitutes the common agreement

between contractors and contracted. It is essential that Term of Agreement associated with

the requirements document is signed by the contractor. In addition, the contractor should

ensure the quality of the software requirement document sent to the software factory. Notice

that if the contractor organization provides a software requirement document with defects, for

instance missing information, then the organization will receive a software product without

the expected functionality and will have to pay for it. The Requirement Engineering presents

several techniques to support the requirements verification and validation. However, most of

these techniques are very expensive. This work suggests the use of a Function Point

estimation method, called CEPF, described by Hazan [Hazan, 2005a]. This method supports

to the estimator finding defects in requirement document, while estimating the project size in

FP, without additional cost or effort, as demonstrated in [Hazan, 2005b]. Considering the

auditing on FP counting, it is important that the requirement document, the FP counting

document and the term of agreement remain together in the same place.

� Establishing Rules to the Treatment of the Scope Creep

The Requirement Engineering and the industry recognize that the software projects

requirements don’t remain “frozen” until the project conclusion. The software requirements

evolve since their conception until after the system is in operation, due to several factors

described by Kotonya [Kotonya, 1998]. Thus, it is important that a contract based on FP

establishes how to deal with changing requirements. This work suggests the following: to

establish in the contract a percentage to each software process task, for example:

requirements: 20%, design: 10%, implementation: 50%, test: 15%, installation: 5%3; and

tracking the progress of each functional requirement identified in the software project

requirement document. Thus, when a requirement is changed, it should be identified in which

software process task the requirement was modified. The next step is to retrieve the FP

counting of the original requirement in order to apply the percentage of the process tasks

finished. For example, suppose a changing in a business rule of a “report of clients”,

identified as EO – average – 5 FP, at the end of the requirements phase. Following to the

suggestion above, it should consider the new changed requirement, EO –average – 5 FP,

plus 20% of the original one (1 FP) to the contracted payment (total: 6 unadjusted FPs).

3

These percents were achieved based on a hypothetical software process. It is important to emphasize that
each organization should define these values, based on its own software process tasks and the effort
consumed in each one.

� Establishing Clauses of Quality Assurance

As mentioned, the FP counting considers the functionality requested and received by

the user, and then the FP of the delivered functionality must be considered to the contracted

payment, only if the functionality received doesn’t present defects. However, the following

problem may happen: the contracted delivers functionality containing bugs, then the

contractor complains, making the contracted correct these bugs, but the contracted gives

back the functionality to the contractor with bugs diverse from the former, thus setting a long

enduring cycle. Notice that this situation may generate an enormous delay in receiving of the

end software product, in addition to the contractor client’s loss of trust in the contractor. Thus,

it should be established contractual clauses to ensure the deliver of a software project with

quality. For example, to include in the contract a clause of penalty, if the software project

contracted has more than 0.3 defects per FP. It is important to define in the contract what are

considered defects, such as: documentation defects, non-structured source code,

inconsistencies among documents, etc. It also may be established severity degrees to the

defects.

� Establishing Clauses of Schedule and Assurance of a Delivery Rate

Many contractor organizations include contractual clauses about productivity control.

For example, the software factory contracted must have a productivity rate of 12 HH/FP.

Sometimes, the contractor asks for the contracted to report its productivity rate. However, it

is not correct. The productivity of a software factory is a strategic data of the contracted

organization. Maybe, the contracted doesn’t want to disseminate its productivity rate. The

problem which the contractor wants to solve is related to the demands not received within the

schedule. This problem can be solved in another way, without the control of the contracted

productivity. In fact, the contract is based on FP; the management of the contracted

productivity rate doesn’t make sense. It should establish in the contract the estimation model

used to get the schedule based on estimated FP. To ensure that the established schedule

will be met by the software factory contracted then it should contain a penalty clause,

considering the project schedule delays. For the organizations which don’t have a schedule

estimation model, it suggests the use of the Capers Jones formula described on [Jones,

2007]. This formula is simple to apply and consists on the exponential of the project size

measured in FP to an exponent (t). Hazan [Hazan, 2005a] presents hints to identify the

exponent t to several kinds of software project. It is important to underline that the formula is

appropriated only to projects greater than 100 FP. To smaller projects, the contract schedule

may be fixed in the contract. Another important point to consider is: the contracted

organization doesn’t develop any project to the contractor in order to force the increase of the

FP contracted price. Thus, it is important to define as a contractual clause the establishment

of a minimal delivery rate of FP/month, for instance 500 FP/month. It should consider a

penalty clause also related to this issue. The establishment of a minimal and maximal

delivery rate is important to the contracted software factory too. Probably, the software

factory uses this information to dimension their teams in order to support the contractor’s

demands.

���� Establishing the CPM as a basis to count FP instead conversions

In Brazil, considering software contracts based on FP, it is common that some

contracted organizations use FP as monetary unit to the payment of several activities related

to software, but without FP counting. For example, course of FPA, mentoring of programming

languages, etc. Another actual situation which has happened is the following: although the

contract is based on FP, there isn’t FP counting for any contracted project. The payment to

the contracted software factory occurs in the following way: the software factory, through its

hours appropriation process (time sheet), sums the total of allocated hours to support the

contractor’s demands; the contractor pays the software factory, observing the total of hours

presented in the time sheet, the total of hours is divided into the FP price according to the

contract. For example, consider the following situation: a project which consumed 10,000

hours of effort based on the project timesheet, the value of US$50 per hour. The total price

that the contractor wants do receive is US$500,000 (50 x 10,000). In addition, suppose that

the FP price according to the contract is US$ 500. Thus, the contractor reports that the

project size measurement is calculated by the following way: US$500,000 / U$500 = 1000

FP. It is a wrong practice; the FP must be counted based on CPM counting rules. There isn’t

a formula to convert other metrics to FP. Sometimes, the contracted software factory

converts hour to FP. For example, 12 work hours equal 1 FP. It is incorrect too, because the

effort hour/FP isn’t fixed. The effort depends on others non-functional requirement in addition

of the FP size. The consequences of wrong FP counting are the following: not adequate

payment, due to the payment based on FP counting; and the generating of wrong indicators,

such as quality indicators – defects /FP and productivity indicators hours /FP. This scenario

is very serious. Although the contract is based on FP, it is put in operation as a contract

based on hour allocation, without contractor control of the allocated hours. Thus, it results on

several management risks only to the contractor. It is important to emphasize a real case

analyzed, a contractor organization used FP as a monetary unit to pay the outsource work

team allocated on its client. The contract should have been established based on work force

allocation, however incorrectly the organization used FP to do the contracted payment. At the

end, the contracted presented an FP counting document with incorrect information to reach

to the number of FP to justify the team with persons allocated full time in the client. Several

serious mistakes were found in the counting document, such as: getting the total FP

contribution of EIF, without specifying any EIF in the counting spreadsheet and the software

requirement document too. Every month the software factory contracted received, for

instance 500 FPs to pay the allocated work force, independently of the number of FP

delivered by them. This is a real case about conversion hour to FP. Another situation, less

common, is the conversion Use Case Points (UCP) to FP, i.e. the people count UCP and

“define” formulas to convert UCP to FP. It is important to emphasize that FP counting must

be performed based on CPM instead of other conversion formulas. There isn’t formula to

convert hour to FP or UCP to FP. Contractor and contracted should implement a Software

Metrics Office with FP counters who have the CFPS (Certified Function Point Specialist) to

perform auditing in the FP counting. If the organizations don’t have employees CFPS, then

they can outsource this service to a software metrics consulting organization.

���� Establishing rules to addressing maintenance projects

Several Brazilian organizations have established their software projects contracts

based on FP, reporting that: “the FP counting is performed according to the current release

of CPM”. However, a problem emerges; the FP counting is applied only to development and

enhancement projects according to CPM. Then, one question emerges: how to address the

other maintenance projects in contracts based on FP counting? The contractor could send to

contracted software factory only enhancement projects. It is simple, but impracticable. For

example, suppose a project to change the caption of application screens. This maintenance

project has zero FP. This project isn’t an enhancement, it is a cosmetic maintenance.

However, there is an effort to implement this project by the contracted software factory. It

should establish an hybrid contract based on FP to development and enhancement projects

and based on hours allocated to others projects not considered by CPM. But, in practice it is

a little bit complicated; the contractor organizations prefer the contracts based on FP,

because they don’t want to have effort to manage the work hours of contracted organization

team. Thus, the recommended solution is to count the FP of these projects, setting some

rules and formulas in the contract. The first step is to identify all types of maintenance project

which the organization intends to contract, for instance:

• Corrective: when the contractor requests to the contracted to correct faults in

legacy systems, which aren’t developed by it. The IEEE Standard for Software

Maintenance [IEEE, 1998] defines this type of maintenance as “reactive

modification of a software product performed after delivery to correct discovered

faults”.

• Cosmetic: when the contractor requests to the contracted to change static text in

screens, such as screen captions or organization logotype.

• Adaptive: when the contractor requests to the contracted to change technical

requirements, for instance a release update or the web system needs to run in

another browser. The IEEE Standard for Software Maintenance [IEEE, 1998]

defines this type of maintenance as “modification of a software product performed

after delivery to keep a computer program usable in a changed or changing

environment”. CPM considers that adaptive maintenance is initiated by business

requests to add, change and/or delete business functionality. Thus, CPM

considers this kind of maintenance as enhancement. In this work, the concept of

adaptive maintenance is different of CPM definition. This work considers that an

adaptive maintenance project includes modifications required to meet changing

technical requirements only.

• Special Data Service: when the contractor requests to the contracted to develop a

functionality to create a report or to do a data loading. This functionality won’t be

incorporated to the application.

 It is important to define the concept of these maintenance projects in the contract too.

The next step is to establish a percentage of FP to changed functionality. For

example, consider the percentage of 10% for changed functionality in a cosmetic

maintenance project. Thus, if the contractor requests a change in the caption of a

screen, which is contained within inquiry functionality, identified as: EQ – Low – 3 FP.

Then, the size of this project, supposing the VAF = 1, is: (3 x 1) x 0.10 = 0.3 Adjusted

FPs. This percentage must be established, based on experiments performed in the

contractor organization environment and included in the contract with the agreement

between contractors and contracted.

5. Conclusion

It is very concerning certain organizations are using incorrectly the FPA concepts,

maybe due to a lack of knowledge on CPM counting rules. It is important to count FP

correctly following the CPM, especially when the organization is using FP as monetary unit in

software contracts. This work has presented some results of researches performed on

common errors in FP counting observed during validations of FP counting of contracted

projects and problems in software contracts based on FP.

This paper recommends the use of FP as a basis to the software factory contracted

payment. However, contracts based on fixed price by FP are not a good solution, because

the development effort depends on FP and a number of non-functional requirements. FP is a

functional size metric, thus it doesn’t consider non-functional requirements. Therefore, it is

difficult for a software factory to work with a fixed price by FP.

The best solution is to do contracts based on price by work hour. However, the work

hour must be defined based on FP in order to avoid the contractor management of the

contracted work hours. The proposal is the following: counting application FP; converting FP

to hours, based on defined model, considering all types, programming languages and others

non-functional requirements significant to the organization; paying by hours. Notice that FP

continues being the basis to the contract software, however there is a variable price to FP. It

is correct because the cost estimation depends on the effort estimation.

 As a future work, it suggests the definition of a model to convert FP to hours, based

on non-functional requirements such as: usability, security, programming language,

development process, type of project etc. This model is similar to an effort estimation model,

but it must be specific for each organization. It is important to use historical data of concluded

projects and experiments to define the organization model.

References

[Abran, 1997] ABRAN et al. Full Function Points: Counting Practices Manual
Procedure and Counting Rules. Technical Report, Universite du
Quebec, Montreal, November 1997.

[Aguiar, 2000] AGUIAR, M. Contratando o Desenvolvimento com Base em Métricas.
Newsletter - O Melhor do BFPUG, Setembro 2000. Available at:
http://www.bfpug.org/fpug_rio/Newsletter/0009/Contratando_Desenvol
vimento_Base_Metricas.html
Accessed: 01/06/2008

[Albrecht, 1979] ALBRECHT, A. Measuring Application Development Productivity.
Proceedings of the IBM Application Development Symposium
Monterey, California, October, 1979, pp 83-92.

[Albrecht, 1983] ALBRECHT, A.; GAFFNEY, J. Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science
Validation. IEEE Transactions on Software Engineering, Vol. SE-9, no.
6, Nov, 1983 pp. 639-648.

[Carvalho, 2006] Carvalho, A.; Chiossi, T.; Drach, M. Aplicabilidade de Métricas por
Pontos de Função a Sistemas Baseados em Web. 9th International
Workshop on Requirements Engineering (WER2006), Rio de Janeiro,
Brazil, July 2006, pp.109-115.

[Dekkers, 2002] DEKKERS, C. How Function Points Support the Capability Maturity
Model Integration. Crosstalk– The Journal of Defense Software
Engineering, February 2002 pp.21-24.

[Dekkers, 2003] DEKKERS, C. Measuring the “logical” or “functional” Size of Software
Projects and Software Application. Spotlight Software, ISO Bulletin
May 2003 pp10-13.

 [Hazan, 2005a] HAZAN C.; STAA, A. v. Análise e Melhoria de um Processo de
Estimativas de Tamanho de Projetos de Software. Monografias em
Ciências da Computação nº 04/05, Departamento de Informática PUC-
Rio, ISSN 0103-9741, Fevereiro 2005.

[Hazan, 2005b] HAZAN, C.; BERRY, D.M.; LEITE, J.S.P. É possível substituir
processos de Engenharia de Requisitos por Contagem de Pontos de
Função? 8th International Workshop on Requirements Engineering
(WER2005), Porto, Portugal, June 2005, pp. 197-208.

[IEEE, 1998] IEEE Computer Society. IEEE Standard for Software Maintenance.
IEEE Std 1219, 1998.

[IFPUG, 2005] IFPUG. Counting Practices Manual. Version 4.2.1, January, 2005.

[IFPUG, 2006] IFPUG Counting Practices Committee (CPC). Practical Guidelines for
Identifying Unique Elementary Processes. 2006.

[Jones, 1995] JONES, C. Software Challenges: Function Point: A New Way of
Looking at Tools. Computer, August, 1995. pp. 66-67. Available at:
http://dlib2.computer.org/co/book/co1995/pdf/rx102.pdf

Accessed: 01/10/2006

[Jones, 2007] JONES,C. Estimating Software Costs – Bringing Realism to
Estimating. 2nd Edition, Mc Graw Hill, New York, 2007. New York.

[Karner, 1993] KARNER, G. Use Case Points - Resource Estimation for Objectory
Projects, Objective Systems. University of Linköping, Sweden, 1993.

[Kotonya, 1998] KOTONYA, G.; SOMMERVILLE, I. Requirements Engineering:
Processes and Techniques. John Willey & Sons Ltd, 1998.

[Lipton, 2000] LIPTON, D. Function Points and the SEI Capability Maturity Model.
Q/P Management Group, 2000. Disponível em:
http://www.qpmg.com/seicmm2.htm Acesso em: 01/10/2006.

[Perry, 1986] PERRY, W.E. The Best Measures for Measuring Data Processing
Quality and Productivity. Quality Assurance Institute Technical Report,
1986.

[SEI, 2006] Software Engineering Institute. CMMI for Development. Version 1.2,
Pittsburgh, PA 15213-3890, August 2006.

[Sommerville, 2007] SOMMERVILLE, I. Software Engineering. Pearson Education Limited,
8th Edition, 2007.

