
 International Journal on Electrical Engineering and Informatics - Volume 10, Number 1, March 2018

A Proposal for New Software Testing Technique

for Component Based Software System

Bayu Hendradjaya

School of Electrical Engineering and Informatics, Institut Teknologi Bandung, INDONESIA

Abstract: A Component-Based Software (CBS) system consists of integrated components that

work together to perform specific tasks. Different components are selected and integrated to

form a new software system. The components may have been developed by other third party,

thus it is expected that the development time and effort can be reduced significantly. However

just like any traditional development, the testing activities requires a specific evaluation to

assess the software. Most of the components do not come with the source code, but only some

information of the components. Thus, a specific testing technique is required. In this paper, we

propose a new testing technique for Component-Based Software system. Older techniques had

been developed based on traditional metrics, while other CBS system had different strategy

from what we propose in this research. The technique help determining test adequacy criteria

based on a set of complexity and criticality metrics of a CBS system. Based on this test

adequacy criteria, our experimental studies have shown that it has assisted in reducing the

number of test suite and test cases. For software testers, this technique would significantly

reduce the testing time and effort in CBS development.

Keyword: Component Based Software (CBS), Component Based Metrics, Component

Integration Metrics, Software Testing, Component Based Software Engineering

1. Introduction

 Component-Based Software (CBS) system is proposed to allow the easy, fast and reduced cost

of development of a software project[1]–[8]. Component-based technology allows the creation of

components with certain functionalities. However there are also some negative impacts such as

complexity issues [9], [10], [19], [11]–[18], increased criticality [16], [20] and increased interaction

among components [19], [21]–[25]. Some of these issues have been evaluated since the

development of object-oriented methods/techniques[26], [27], but still existed in the component

based system. These impacts lead to other problems such as compatibility interaction behavior [28],

software anomalies [29], integration difficulties [20], [30], testing issues, [20], [30], or cost issues

[31]–[33]. The effect of the negative issues of complexity, criticality and increased interaction can

increase the effort to perform the testing activities.

 In this paper, we propose the new technique to test CBS system by employing the use a set of

CS metrics that have been defined in our previous research[34]. A testing technique for CBS

system could be effectively performed by using specific CBS characteristics. The right set of

metrics can help reveal these CBS system characteristics.

 Each integration of components requires significant extra testing[35], thus testing activities are

a must to ensure each expected behavior and performance is well taken care of. A component needs

to be tested sufficiently before it is ready to be used by the application clients. On the other hand,

some traditional testing techniques for a single component were still practical to be used [36].

Many traditional unit testing techniques were still applicable [37].

Once a component has been integrated, it is subject to integration testing. Integration of a

component means that the component operates in a new environment. The focus is not only to test

the interfaces that glue the components but also to analyze the interactions between components

[21], [23], [36], [38]–[40].

 Component users usually are not provided with the source code of the component. Therefore,

the test is conducted based on the information at hand. However, a component provider should

 Received: December 18th, 2017. Accepted: March 23rd, 2018
 DOI: 10.15676/ijeei.2018.10.1.5
 60

present a metadata and a clear description of the behavior of the component [36], [41]. We can

utilize this information to assist in testing activities.

 In this paper, we suggest a software testing technique for component based system. Previous

research on component testing had various proposals which attacks the faults between components

and their interoperability, but others still suggest traditional faults. Many has proposed techniques

to uncover erorrs, some of these are combination of older techniques [42] [43] [36], [40] [44],

however many more have proposed specific technique that use the CBS information [43] [42] [45]

[46] [47] [48] [49] [50]–[55]. In this research, a testing technique is proposed which utilize

component information from CBS metrics to reduce the number of test suite and test cases.

 The organization of the paper are as follows. In section 2, we provide the literature survey of

the current testing techniques. Then we described our proposal of the new testing technique. In

section 4, we describe our experimental study and followed by the evaluation of the proposal. The

conclusion is presented in the last chapter with the future work.

2. Literature Survey

 Faults in integrated component testing can be classified as Inter-component faults,

Interoperability faults and traditional faults[42]. Inter-component faults appears when a component

is combined with other components, while interoperability faults may be detected from components

that are built from different infrastructures (different operating system or libraries) or

misinterpretation of specifications or different programming languages. The traditional faults

occur within individual components. We can use conventional testing techniques to uncover this

kind of faults.

Testing for CBS has several specific characteristics as the following:

• The testing should focus on the interface that combine the components to the new system, thus

requiring investigation on interaction among components[56]

• Black box testing may need to be applied if the source code is not included by component

developers[42]. The CBS tester may need to determine the test coverage and criteria, based on

the information at hand. A test adequacy criteria for a component-based system is proposed to

assist in the determination of test coverage[43].

• A component may have passed a test in one environment, however another test still needs to be

performed in a new environment [39]. Some reports show that testers cannot rely on previous

testing [36], [40].

Several proposals have been presented to uncover the faults, however there are common issues

faced by component users as follows:

• Limited or no access to the component’s source code. Many proposals have imposed suitable

information (metadata) on the component [7], [33], [57], [58].

• Even if a component provider offers the source of the component, the component user may use

a different development language [59]. Hence, a testing tool at the user side may have a problem

recognizing the original language of the component.

• A component provider does not know in advance what the real requirements will be. Therefore,

the provider needs to test the component as a context-independent unit of software[35], [59].

• The component user should be aware that a component developer may have not enough time

to undertake adequate testing[40].

 To solve the issues above, several proposals on component-based testing suggested criteria to

adequately test component integration. Some suggested to reduce the number of test cases from a

test suite, subsequently risking the capability to detect faults [44]. However, some research claims

that their reducing strategy either did not compromise fault detection [60] or only compromised it

to a small degree [61]. Others proposed a framework or a test model to help the testing process and

also to enable automated testing. Automated testing should be a benefit in performing regression

testing.

Bayu Hendradjaya

61

Some of the proposals on software testing for components were as follows:

• Proposals on test adequacy criteria

- A paper by Rosenblum [43] proposed two formal definitions of criteria that were used to

analyze whether a test suite has an adequate amount of testing for a component-based

system.

- Ye and Dai [42] proposed the use of a component interaction graph to generate a family

of test adequacy criteria.

- Gao et al. [45] presented a dynamic approach to adequately test model and test coverage

criteria for component validation using a component function access graph.

- Jin and Offut [46] proposed a coverage criteria based on interconnections between two

components, as a fault in one component may affect the coupled component.

Experimental studies by Jalote et al. [62] showed that every component has test buddies,

which are coupled components that may affect the connected component.

• Proposals on testing frameworks and test models

- Cho and McGregor[47] proposed a testing framework that addresses component

interoperation in message protocols on a formal specification.

- Belli and Budnik [48] provided a framework to help automate the test case and test script

generation.

- Edwards [49] proposed a framework for black box testing of CBS. The framework offers

an automatic generation of a test driver, test data and test oracles.

- Wu et al. [63] introduced a component-based test model that used UML diagrams to

model the component’s behavior.

- Some frameworks for component testing used information from the component’s

metadata [64], [65] or are based on black box testing techniques[48].

- Liang and Xu proposed an test-driven component integration with the support of UML

2.0 testing and monitoring profile (U2TMP). Their proposal generated test cases in

integration-level automatically using this profile [66].

- Elsafi et. Al. suggested an improved learning algorithm to infer a model of integrated

components[67] .

• Proposals on automated component-based testing

- Some frameworks provided by Belly and Budnik [48]. and Edwards [49], [68] helped

automate test case and test script generation by using their frameworks.

- Gallagher and Offutt [69] proposed the use of a finite state machine model to describe

component interaction and provide a test method to automate test sequence generation.

- Some approaches [50]–[55] embedded a component with a suitable executable test case,

also known as built-in testing or BIT [70].

- Kang and Park [71] have proposed an automatic generation algorithm of expected results

for a component based software system.

- Braione et al. [72] have proposed a code-based test generations on industrial software

compenents.

- Saglietti and Pinte have proposed an automated generation of test cases for unit and

integration [73] using evolutionary algorithm such as Genetic Algorithm.

• Regression Testing

- Orso et al. [41], [74] provided techniques to address the problem of regression test

selection for component-based applications using the component’s metadata

- Jiang et al. [75] proposed a process to do black-box regression testing. Their study showed

that their process can reduce the number of regression tests.

• Other proposals

- Silva et al. [76] provided an experimental study to examine the use of a case tool to support

component testing. Two workflows were presented as a guideline for the component

developer/user.

- Grundy et al. [77] proposed ‘Dynamic validation agents’ for testing software component

deployment.

A Proposal for New Software Testing Technique for Component Based Software System

62

- Imran et al. [78] have proposed strategies to develop software testing.

- Alegroth et al. [79] have proposed component-based testing by using Visual GUI testing.

- Aktouf [80] have proposed a testing-location based for component based mobile

application

- Weber [81] have developed a tool for supporting fuzz testing of component based system.

 While most of the proposal suggested the use of conventional technique, in this paper, we

propose a new technique based on the metrics that is specifically design for the CBS system.

 The proposed testing technique uses a set of CBS metrics. Many other research for software

metrics had been proposed [82]–[89] however for this technique we use CBS metrics that is define

in [34]. Their set of metrics requires the CBS system be presented in a graph connectivity. The

nodes represent the components and the link represent the connectivity between components.

Interactions occur through interfaces and events that are arriving in. For the purpose of this testing

technique, we only use several type of the metrics. The original definition of the metrics provide a

set of static and dynamic metrics.

Table 1. The Static Metrics [34]
Name Formulae Description

Component Interaction

Density Metric

CID = #I/#IMAX #I is the number of actual interactions and #IMAX is

the number of maximum available interactions.

Component Incoming

Interaction Density

CIID=#Iin/#ImaxIN #IIN is the number of incoming interactions used and

#ImaxIN is the number of incoming interactions

available.

Component Outgoing

Interaction Density

COID =

#IOUT/#ImaxOUT

#IOUT is the number of outgoing interactions used

and #ImaxOUT is the number of outgoing

interactions available.

Component Average

Interaction Density

CAID=

ΣnCIDn/#components
nCIDn is the sum of interactions density of n

component and #components is the number of the

existing component

Size Criticality Metric CRITSIZE= |{c|size(c) >

SizeThreshold}

#size_component is the number of

component,which exceeds a given critical value.

Link Criticality Metric CRITLINK = |{c|link(c)

> LinkThreshold}|

Link(c) is the number of connected components

from an individual component

Inheritance Criticality

Metric

CRITINH =

|{c|inheritance(c) >

InhThreshold}|

#root_component is the number of root components

which has inheritance.

Bridge Criticality Metric CRITBRIDGE = |{c|

bridge(c)}|

#bridgecomponent is the number of bridge

components.

#Criticality Metrics CRITALL=

CRITLINK+CRITBRIDGE

+CRITINHERITANCE

+CRITSIZE

The sum of all critical components

3. Proposal of a New testing Technique for CBS System

 The technique starts by analysing software functional specifications that can be obtained from

a UML diagram or a specification/design document. Then, test specifications are produced from

the definition in software functional specifications.

 Software functional specifications can be obtained from software requirement documents,

software design documents, source code, or executable programs. A definition of interfaces of

included components is usually introduced in the design document or in the source code. A

component’s interface can be categorized into import interfaces and supply interfaces [36]. Import

interfaces are ports where the component discovers services from other components, and supply

interfaces are ports where other components discover services provided by the component. UML

diagrams may also be an important source for generating test cases. The UML diagrams usually

are found in software specifications or design documents.

Bayu Hendradjaya

63

 Test specifications use specific test adequacy criteria that are based on complexity/criticality

metrics. A test adequacy criterion is a predicate that is used to establish sufficient testing on a

software application[90]. Tests are sufficient if all elements defined in the criteria are covered. The

test adequacy criteria can also be used to measure the progress of testing activities.

 Information from the metrics is used to generate test cases and scenarios. Furthermore, the

generated test cases/scenarios are executed, and the test results are analyzed by exercising

information from the metrics. The overall approach is illustrated in Figure 1.

Software

Functional

Specification
Test

Specification

Test Adequate

Criteria

Complexity

and Criticality

Metrics

Test Case/

Scenario

Generation

Test Execution Test Analysis

Figure 1. Component Test using Component Integration metrics

 To help create test cases, we can use a Category Partition Method[91]. The method has been

discussed in a number of research studies [44], [60], [92]–[96] and the idea has also been used for

supporting component-based testing [65], [97]. A test case contains a set of inputs and/or expected

conditions to be tested on the program under test.

 The Category Partition Method (CPM) is used as a strategy to reduce the number of test cases.

CPM helps refine the functional specification into the categories and its environment conditions

that may have an effect on the execution behavior of a function. Environment condition is a

required property for a certain functional unit. Furthermore, several significant values called

choices are selected from each category. A suite of test cases is obtained by putting together all

possible combinations of choices for all categories. Some constraints are produced to prevent

redundant, not meaningful or contradictory choices.

 We use five test adequacy criteria, which may help the software tester to create test cases from

a component-based system. The criteria are as follows:

Criterion A: Test all functional units, category choices, parameters and environmental

conditions of a component.

Criterion B: Test all functional units, all category choices and all parameters of a component.

Criterion C: Test all functional units and all category choices of a component.

Criterion D: Test one category choice, one parameter and one environmental condition of a

component.

Criterion E: Test all functional units and one category choice of a component.

 The idea for these criteria was adopted from the four test adequacy criteria of Mahmood’s

research[25] .However the sequences and items to be tested are different because of the nature of

the proposed metrics. Criterion A is the strongest criterion, whilst criterion E is the weakest.

 To select the appropriate criterion, we use the component integration metrics. Previous research

on complexity metrics has shown that complexity has an association with fault proneness[98]. Our

proposed criticality metrics are expected to give an indication of the critical components in a CBS.

Critical components are subjected to complete testing[56], [99], since they are most likely to be

fault prone.

 Each critical component deserves special attention in test case generation due to their specific

characteristics. Size critical components have a tendency to have more faults because the bigger

the size is, the more mistakes that may be introduced by the programmer [100]. Inheritance critical

components also have a tendency to introduce error[31], [101]. Link critical components have more

A Proposal for New Software Testing Technique for Component Based Software System

64

interactions with other components, therefore more testing is needed[38], [69]. Bridge critical

components may cause the failure of the entire system if the faults are not found [102].

 We suggest the following steps to determine a suitable test criterion by using the component

integration metrics:

• Calculate CID for each component (CIDX) and CAID for the integration of components. A CID

value indicates how a specific component interacts with other components, and a CAID value

gives the overall picture of how components interact with each other;

• For each component, generate the value of nSize(x), nLink(x), nInheritance(x), and

isBridge(x));

- nSize(x) is the size of the component (by definition, the size can be the number functions,

statements, methods or LOC1)

- nLink(x) is the number of links connected to the component

- nInheritance(x) is the inheritance depth of a component

- isBridge(x) is a true or false status of whether a component is a bridge or not.

- The default values of nSize, nLink, and nInheritance are zero and isBridge is false.

• By comparing the value of nSize, nLink, nInheritance to a predefined threshold value, we can

determine the criticality status of the component. IsBridge value could be determined

subjectively by the software designer.

• For each component, the following rules are used:

- Select Test adequacy criterion A if a component has more than one criticality or a

component has one criticality and CID value > CAID value or a component is a bridge

criticality.

- Select Test adequacy criterion B, if a component is only size critical

- Select Test adequacy criterion C, if a component is only inheritance critical or CID value

> CAID value.

- Select Test adequacy criterion D, if a component is only link critical

- Select Test adequacy criterion E, if a component has no criticality and its CID value <

CAID value.

The steps are illustrated in figure 2.
Calculate CID(x)

and CAID

Calculate nSize,

nLink, nInheritance,

isBridge

More than one

type of Criticality?

Select

Test Adequacy

Criteria A

Is

SizeCritical?

Is Inheritance

Critical?

Is

Link

Critical?

Is

Bridge

Critical?

Is only one type of

criticality?

Is

CID > CAID?

Is CID > CAID?

Select

Test Adequacy

Criteria B

Select

Test Adequacy

Criteria C

Select

Test Adequacy

Criteria D

Select

Test Adequacy

Criteria E

Yes

No

Yes Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

No

Figure 2. Determination of Test Adequacy Criteria

1 LOC can be used if source code is available or if the developer supplies this information.

Bayu Hendradjaya

65

 If a component has only one specific criticality, the testing is focused on this particular

criticality’s characteristic. Bridge criticality requires the strongest criteria as a bridge connects other

components, and its role is important for the system. Size criticality involves the size and thus the

testing effort focuses on testing all the functionalities and all categories and all of their parameters.

Testing for inheritance criticality needs to focus on all functionalities and all their category choices.

Testing for link criticality needs to concentrate on the calling of interfaces from/to other

components and thus in their implementation requires examination of each category choice, its

parameters and also the specific environment. A higher component interaction value, compared to

the average interaction value, requires the testing of all functional units and its category choices.

4. Experimental Study

 To validate the proposed technique we have designed the an experimental study. The

experimental study consisted of the following steps:

1. Find a component-based application that allows us to see the source code, and has UML

diagram and a set of testing suite.

2. Generate the metrics from UML design and component implementation of the application

3. Generate the list of test suites and test cases with and without proposed testing technique.

4. Analyze the result by comparing the original number of test suite/test cases to the new number

of test suite/test cases using proposed technique.

5. Evaluate the result by examining the reduction of the number of test suite/test cases. This is the

criteria that should demonstrate the efficiency of new technique.

 By following the design above, we have used an application called Nomad PIM2 (Personal

Information Manager) to validate the use of component integration metrics on the testing process.

Nomad PIM was a personal information management system that allows the recording of personal

data such as schedule, contact, notes, personal finance, time tracking, and fitness measurement.

 Nomad PIM was selected because it consisted of several components with a quite rich set of

functionalities. Moreover, Nomad PIM was released as an open source software application, and

thus we could perform a detailed examination of the system. In addition, it had a UML diagram

and a set of testing suites. However, there was only one UML diagram (component diagram) and

the test suites are available only for Schedule, Contact, TimeTracking, Note, Money and Core

components. The component diagram is presented in Figure 3. A component in Nomad PIM

consists of several classes and interfaces.

CORE

CORE.UI

SCHEDULE

CONTACT

TIMETRACKINGNOTE

MONEY

FITNESS_

MEASUREMENT

Figure 3. The component diagram of Nomad PIM

2 http://nomadpim.sourceforge.net/

A Proposal for New Software Testing Technique for Component Based Software System

66

For this experimental study, we have performed the following activities:

1. Generate the metrics from UML design;

2. Generate the metrics from component implementation of Nomad PIM;

3. Generate the list of test suites and test cases of Nomad PIM;

4. Analyze the results by comparing the metrics’ values to the number of test suites and test cases.

A. The Metrics Generation

 The number of metrics that can be generated from their UML design is quite limited, as there

is not much information provided in their design document. Table 1 shows the generation of the

number of links from the UML design (Figure 3). The table clearly shows that the CORE.UI

component is the closest candidate to become a link critical component. By our metric’s definition,

Link Criticality counts the number of components in which their links exceed a threshold number.

The threshold number can be found by finding extreme values or the outliers using a boxplot

calculation. Statistical calculation of the number of links found that CORE.UI is the only outlier,

and thus it is concluded that the CRITLINK=1.

Table 2. The Metrics produced for the componentes

Component Name #Link CID LOC #Statements

#Classes

and

Interfaces

#Nmethod

Inheritance

Level

Maximum

CONTACT 2 1.00 322 125 8 23 3

CORE 1 0.94
1046

0
3791 210 785 2

CORE.UI 7 0.94 5574 2395 123 403 3

MONEY 1 1.00 2829 1166 56 219 2

NOTE 1 0.98 563 219 19 34 3

SCHEDULE 3 1.00 2577 1125 52 192 3

TIMETRACKING 2 0.98 2837 1260 56 193 4

FITNESS_

MEASUREMENT
1 0.99 427 192 8 21 4

 CAID=0.98

Figure 4. The Boxplot of Size Criticality Calculations of Nomad PIM

 From this UML design, it is also obvious that the CORE.UI component is a candidate for a

bridge component and thus we conclude that this design has CRITBRIDGE=1. However we could not

generate other metrics (CID, CAID, Size Criticality, Inheritance Criticality or Bridge Criticality)

because there was not enough information on this design. Nomad PIM is released as opensource,

thus we can examine the source code, we can then calculate the components’ interaction within

Bayu Hendradjaya

67

Nomad PIM using our Perl script. Source Monitor software tool is used to calculate the size in

LOC, the number of statements, the number of classes/interfaces and the number of methods. The

result is summarized in Table 2.

 Boxplot diagrams of LOC, the number of statements, the number of classes and interfaces and

the number of methods are shown in figure 4. The figure clearly reveals that the CORE component

is the only outlier component compared to other components. Thus, we can conclude that CRITSIZE

= 1.

 To calculate link criticality, we have executed our Perl program to count the linkages between

components in actual program code. We have found many links from and to a component. The top

10 large numbers of links are shown in Table 3.

Table 3. The Numbers of Links in Components

id Component 1 Component 2 #link

53 CORE-UI CORE 3864

155 TIMETRACKING CORE 1663

79 CORE CORE-UI 1658

115 MONEY CORE 1307

141 SCHEDULE CORE 1288

86 CORE SCHEDULE 954

84 CORE MONEY 870

59 CORE-UI SCHEDULE 813

60 CORE-UI TIMETRACKING 807

87 CORE TIMETRACKING 737

Table 4. The List of Links from Critical Classes
Component Java Class #link Component Java Class #link

CORE EntityContainer 427 CORE.UI OneDayForwardActionDele. 375

 NewThreadExecutor 376 ShowViewActionDelegate 378

 NullRunnable 375 TableContentProvider 384

 SaveJob 376 TableViewerFilterAction 375

 SimpleLazyMapWithDefault 315 TodayActionDelegate 375

 Space 325 FITNESS_ME AbstractFitnessMeasurement 386

CORE.UI AbstractConvertingAction 379 MONEY AccountListView 381

AbstractEntityActionDelegat

e 379

 CalculationContentProvider 385

AbstractEntityContainerVie

w 380

 NullAccount 340

 AbstractTextComponentAda 328 TransactionsOutlineTableC 385

CheckboxComponentAdapte

r 328

NOTE DayView 384

 ComboBoxComponentAdap 328 LiteratureNoteListView 376

 ComponentAdapter 328 OpenDayInViewOperation 376

 DeleteAction 375

SCHEDULE

CalendarDateServiceListene

r 376

 DisplayAsyncExecutor 376 PastEventsView 391

 EditorService 377 ScheduleView 406

 InternalListContentProvider 416

WeekOverviewTreeContent

P 389

 NomadPIMApplication 375 WeekOverviewView 379

 OneDayBackActionDelegate 375 TIMETRACK CurrentActivitiesView 386

 The statistical calculation could not find the outlier for this component, thus we can conclude

that CRITLINK= 0. However, after further investigation into these components, we can extract the

information from each component, and found that several classes have a higher link degree than

A Proposal for New Software Testing Technique for Component Based Software System

68

other classes. By using the same calculation, we can find 38 classes where their links are the outliers

from the rest of the links’ dataset. By examination of the classes, we can conclude that CRITLINK=38

or there are 38 classes that have link criticality.

 We can find that two components (Schedule and TimeTracking) have the level of inheritance

4. Our empirical investigation suggests that the component that has a level of inheritance 4 is

critical. Thus, it is concluded that CRITINH = 2. By further inspection of each component, we found

classes that have high inheritance levels. Error! Reference source not found.shows the

components and their classes that have inheritance levels 2, 3 and 4.

Table 5. Maximum Inheritance Level of Each Component

Component
Inheritance Level

Maximum

CONTACT 3

CORE 2

CORE.UI 3

FITNESS_MEASUREMENT 2

MONEY 3

NOTE 3

SCHEDULE 4

TIMETRACKING 4

 To find bridge criticality, we undertook manual analysis of the components and their classes,

and concluded that CORE is the bridge component that is responsible to link other components. A

fail in the CORE component most likely will interrupt the whole application. Thus, we determine

that CRITBRIDGE=1. And finally, we can summarize that the criticalities of Nomad PIM are as

follows:

- CRITSIZE=1

- CRITLINK=0

- CRITINH=2

- CRITBRIDGE=1

- CRITALL = 1 + 0 + 2 + 1 = 4

B. Test suite and test cases generation

Table 6. Test suites and Test Cases of a NOTE Component
Java Class Name Test Suite Test Cases

DiaryViewTest Class 1.
DateShouldBeNormalized

Test 1/2/2000

 2. TestBug1115269 TestCurrentDate

 3.

TestGetSameDaysAreEqual

Test First Day

 Test Second Day First Time

 Test Second Day Second Time

Test Equal Second Day First time to Second

day second time

Test Inequality second day first time to

FirstDay

Test inequality of second day second time

to FirstDay

TypeExtensionPluginTest

Class in Note Folder

4. Test

RegisteredSpacetypes1

TestDiary.TypeName

TypeExtensionPluginTest

Class in Diary Folder

5. Test

 RegisteredSpacetypes2

TestDiary.TypeName

TypeExtensionPluginTest
Class in WorkArea Folder

6.
TestRegisteredSpacetypes3

TestDiary.TypeName

Bayu Hendradjaya

69

 Nomad PIM comes with its own test suites. Each test suite has its own test cases. A component

can have one or many test suites, and a test suite can have many test cases. Table 6 shows a sample

of test suites and test cases from a NOTE component. The summary of the number of test suites

and their test cases is listed in Error! Not a valid bookmark self-reference..

Table 7. Test Suites and Test Cases of Nomad PIM

Component TestSuite TestCases

CONTACT 10 28

CORE 227 521

CORE.UI 45 84

FITNESS_MEASUREMENT 6 21

MONEY 81 184

NOTE 6 11

SCHEDULE 10 27

TIMETRACKING 14 31

C. Analysis

 By examining the value of CID, we found that most of the components interact intensively to

other components. It is a common phenomenon that in-house components are developed conjointly

when the application is developed. Nomad PIM does not use external components, and thus all

components are developed in-house. Therefore, their classes and functions are developed

specifically from the requirements of Nomad PIM, and thus the CID values are high (above 90%).

The size criticality metric shows one component is critical in size (LOC, classes, methods and

statements). The table and boxplot diagram clearly demonstrate that the CORE component is a

critical component. Correlation analysis between the size of LOC, Statements, Classes and

Methods shows a significant relationship (significant at 0.01) to test suite and test cases (Table 8).

Table 8. Pearson Correlation of LOC, the Number of Statements, Classes, Methods, Test Suites

and Test Cases

 NLOC NSTAT NCLASSES NMETH TSUITE TCASES

NLOC PC 1 .994(**) .998(**) .999(**) .906(**) .893(**)

 Sig. .000 .000 .000 .002 .003

NSTAT PC .994(**) 1 .995(**) .992(**) .864(**) .847(**)

 Sig. .000 .000 .000 .006 .008

NCLASSES PC .998(**) .995(**) 1 .996(**) .891(**) .875(**)

 Sig. .000 .000 .000 .003 .004

NMETHODS PC .999(**) .992(**) .996(**) 1 .916(**) .903(**)

 Sig. .000 .000 .000 .001 .002

TSUITE PC .906(**) .864(**) .891(**) .916(**) 1 .999(**)

 Sig. .002 .006 .003 .001 .000

TCASES PC .893(**) .847(**) .875(**) .903(**) .999(**) 1

 Sig. .003 .008 .004 .002 .000

PC: Pearson Correlation

** Correlation is significant at the 0.01 level (2-tailed), a Listwise N=8

 An outlier analysis of test suites and test cases shows that the CORE component is the outlier

component. Thus, we can conclude that the CRITSIZE metric can help find the critical component

for helping the testing process.

 We also generate the correlation of the number of Links to test Suites and test cases. Table 9

shows that the Links have a significant relationship to test Suites at less than 0.05 level, however

the Links have only 0.051 significance level to test Cases. Based on our proposed examination of

link criticality, there was no component at criticality. The number of Links on the CORE and

A Proposal for New Software Testing Technique for Component Based Software System

70

CORE.UI component is quite high, but not enough to be an outlier if compared with other numbers

of component links. However, a tester still should pay extra attention to the existence of this high

number of links, as it suggests a high connection with other components, and therefore requires

more test suites and test cases.

 Inheritance criticality analysis shows that the TimeEvaluationView class in the

TIMETRACKING component and the WeekOverView class in the SCHEDULE component have

the highest component inheritance levels in Nomad PIM. This means that high inheritance levels

are present in the corresponding classes. Thus, the testing effort should focus on this particular class

and their parents. Figure 3 shows the detail of their parents’ classes.

Table 9. Pearson Correlation of Links to Test Suites and Test Cases.

 Test Suites Test Cases

LINK PC .733(*) .705

 Sig. .039 .051

PC: Pearson Correlation

* Correlation is significant at the 0.05 level (2-tailed),

a Listwise N=8

DateServiceViewPart

DateServiceWithLinkActionViewPart

WeekDateLabelView

WeekOverviewView

CORE.UI

CORE.UI

CORE.UI

SCHEDULE

TimeEvaluationView

WeekDateLabelView

CORE.UI

TIMETRACKING

Figure 5. The Hierarchical View of Critical Inheritance Components

 The implementation of Nomad PIM has demonstrated that it has a bridge criticality value of

one and so does its design. However the actual bridge component is different. The UML class

diagram showed CORE.UI is a bridge component, but the implementation revealed that CORE is

the bridge component. We believe that this is a normal situation as the implementation sometimes

varies from the design. However, we also think that the actual implementation is not much different

from the design. In regards to the testing process, locating a bridge component also uncovers the

need to put extra effort into building test suites and test cases.

Table 10. Reduction of Test Suites and Test Cases

Component

Before After Reduced
percentage

of TS

Reduced
percentage

of TC TS TC TS TC

CONTACT 10 28 9 12 10% 57%

CORE 227 521 227 521 0% 0%

CORE.UI 45 84 44 62 2% 26%

FITNESS_MEASUREMENT 6 21 4 4 33% 81%

MONEY 81 184 61 68 25% 63%

NOTE 6 11 4 5 33% 55%

SCHEDULE 11 27 11 18 0% 33%

TIMETRACKING 14 31 10 11 29% 65%

Average 17% 47%

Note: TS: Test Suites, TC: Test Cases

Bayu Hendradjaya

71

 By employing this new process, we can reduce the number of test suites and test cases from the

original list. As shown in

table 10, the test suite has been reduced by an average of 17% and test cases by 47%. The CORE

component is not reduced because this component is the most critical component, and thus requires

all possible generations of test suites and test cases. The numbers of test cases are reduced

substantially compared to test suites. The most reduction comes from components that are not

critical.

5. Result and Analysis

 This experimental study has shown that the metrics have implications on the generation of the

test suites and test case:

• High interaction density implies high testing requirements. Therefore by choosing appropriate

test adequacy criteria for choosing test cases can help reduce the effort.

• The size criticality metric shows a close relationship to the size to the number of test suites and

test cases. These results confirm the research on the relationship between software size and

software test case generation[36], [59], [74].

• In our case study, the link criticality of components could not find any component that is critical

in their link to other components. However, information on their links helps in deducing the

test suites and test cases.

• Further inspection of components that have high inheritance levels shows that the

corresponding classes have shown the need to generate test suites and test cases that examine

the child functionality that is linked to their parents.

• A component that has a bridge criticality is shown to have the largest number of test suites and

test cases. Therefore, it is confirmed that finding a bridge component is important to a complete

generation of test suites and test cases.

While conducting this experimental study, we also noticed the following findings:

• Discovering a bridge component was not difficult3. It was assisted by first generating some

metrics such as CID and Link criticality metrics. Relatively small number of components

involved in component integration may also assist in this discovery.

• When confirming the finding of bridge component, we had a better knowledge of the design

and implementation of this application. In the testing process, this knowledge is important to

generate suitable test suites and test cases.

• Generation of the metrics values requires extracting raw information from the design and source

code. This information is kept in a repository and it helps us in examining the metrics result.

 Our approach uses the integration component metrics to help reduce the number of test suites

and test cases. The reduction is performed by evaluating the metrics’ value of the complexity or

the criticality of integrated components. A high complexity and/or high critical component should

go through a more thorough testing process.

 In regards to finding the faults, the metrics help finding the inter-component faults and also

traditional or other faults. The detail is summarized in table 11.

Table 11. Fault type and related metrics.

Fault Type The related metrics

Inter-component faults Interaction Complexity Metrics, Link Criticality metrics, Inheritance

criticality Metrics and Bridge criticality metrics.

Traditional/other faults Size Criticality Metrics

3 Finding a bridge component may not be easy if we have less information about the system or

if the system contains large numbers of components. However by understanding the nature of a

system and the generation of other metrics can help finding the bridge component.

A Proposal for New Software Testing Technique for Component Based Software System

72

 Most of the work on reducing test suite and test case generation was performed manually. To

generate the metrics, we have used some tools. In the future an integrated tool for CBS system

should help the process.

 The metrics are generated using a specific software application, which only examines the source

code. The availability of the source code has helped us in building the test suites and test cases. The

case tool can also keep the repository and therefore, a tester gets helped in defining the particular

information. For example, an inspection of inheritance criticality requires finding the parent of each

component/class.

 On the other hand, the reduction of test suites and test cases risks the capability of detecting

faults in the application, therefore a tester should always review the reduced test suites and test

cases.

6. Conclusions

 In this paper, we have proposed a new technique to test CBS system. We have conducted an

experimental study to validate this technique. The technique use component integration metrics as

part of the testing process. We have demonstrated that the new technique has helped in reducing

the number of test suites and test cases by using information from the metrics. We also have learned

that the generation of the metrics helps in understanding the software specification and furthermore

it can be of assistance in the generation of test suites and test cases. There are five criteria that

should be chosen based on the value of the metrics for each component. However, at this stage, the

validation of the new technique had been performed using manual inspection, but it had been

applied carefully. A CASE tool could be developed to help extract the metrics and produce the test

suites and test cases based on the new technique. This testing technique can be used not only for

the development of a component which may consists of several other components but also for the

application development which uses components as part of their development strategy.

For the future work, we can have more application with more components that can help validate

this metrics or could possible enhanced the technique. A domain specific or an industrial use case

application could be used to validate the work. It may also be interesting to see how the proposed

technique can be applied to different platforms such as web-based application or mobile-based

application. We also suggest that a specific test procedure or technique or method can be possibly

used to undertake testing activitities using the different CBS metrics with modified testing

adequacy criteria.

7. References

[1]. C. Szyperski, D. Gruntz, and S. Murer, Component software : beyond object-oriented

programming, 2nd ed. New YorkLondon ; Boston: ACM Press ;Addison-Wesley, 2002.

[2]. Object Management Group, “Corba Component Model Specification version 4.0 OMG

formal document 06-04-01.” Object Management Group, 2006.

[3]. K.-K. Lau and Z. Wang, “Software Component Models,” IEEE Trans. Softw. Eng., vol. 33,

no. 10, pp. 709–724, 2007.

[4]. J. Sametinger, Software engineering with reusable components. Berlin ; New York:

Springer, 1997.

[5]. B. Boehm and C. Abts, “COTS integration: Plug and pray?,” IEEE Comput., vol. 32, no. 1,

1999.

[6]. A. W. Brown, Large-Scale Component-Based Development. Upper Saddle River, New

Jersey: Prentice Hall PTR, 2000.

[7]. P. C. Clements, “From Subroutines to Subsystems: Component-Based Software

Development,” in Component Based Software Engineering, A. W. Brown, Ed. Los

Alamitos, California: Carnegie Mellon University - Software Engineering Institute - IEEE

Computer Society Press, 1996.

[8]. C. Szyperski, D. Gruntz, and S. Murer, Component software : beyond object-oriented

programming, 2nd ed. London ; Boston, MA: Addison-Wesley, 2003.

Bayu Hendradjaya

73

[9]. L. Brownsword, D. Carney, and P. Oberndorf, “The Opportunities and Complexities of

Applying Commercial-off-the-Shelf Components,” CrossTalk J. Def. Softw. Eng., vol. 11,

no. 4, pp. 4–6, 1998.

[10]. D. J. Carney, E. J. Morris, and P. R. H. Place, “Identifying commercial off-the-shelf (COTS)

product risks: the COTS usage risk evaluation,” Carnegie Mellon Software Engineering

Institute (SEI), 2003.

[11]. V. B. Misic and D. N. Tesic, “Estimation of effort and complexity: An object-oriented case

study,” J. Syst. Softw., vol. 41, pp. 133–143, 1998.

[12]. D. Tran-Cao, A. Abran, and G. Levesque, “Functional Complexity Measurement,”

International Workshop on Software Measurement (IWSM’01). Montreal, Quebec, Canada,

2001.

[13]. D. P. Darcy and C. F. Kemerer, “Software complexity: Toward A Unified Theory of

Coupling and Cohesion,” ICSc Workshop Spring 2002. 2002.

[14]. J. Shao and Y. Wang, “A New Measure of Software Complexity Based on Cognitive

Weights,” Canadian Conference on Electrical and Computer Engineering, 2003. IEEE

CCECE 2003. . 2003.

[15]. E. Lee, W. Shin, B. Lee, and C. Wu, “Extracting Components from Object-Oriented

System: A Transformational Approach ,” IEICE-Transactions Info Syst., vol. E88–D, no.

6, pp. 1178–1190, 2004.

[16]. V.Lakshmi Narasimhan and Bayu Hendradjaya, “Component Integration Metrics,” in Proc.

of the 2004 International Conference on Software Engineering Research and Practice

(SERP’04), 2004

[17]. D. P. Darcy, C. F. Kemerer, S. A. Slaughter, and J. E. Tomayko, “The structural complexity

of software an experimental test,” IEEE Trans. Softw. Eng., vol. 31, no. 11, pp. 982–995,

2005

[18]. S. Mahmood and R. Lai, “Measuring the Complexity of a UML Component Specification

,” Fifth International Conference on Quality Software (QSIC’05). IEEE Computer Society,

2005

[19]. S. Mahmood and R. Lai, “A Complexity Measure for UML Component-based System

Specification,” Softw. Pract. Exp., 2006.

[20]. S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, “Metrics Guided Quality Management for

Component-Based Software System,” in Proceedings of 25th Annual International

Computer Software and Application Conference (COMPSAC), 2001, pp. 303–308.

[21]. N. Pryce and S. Crane, “Component interaction in distributed systems,” in Configurable

Distributed Systems, 1998. Proceedings. Fourth International Conference on, 1998, pp. 71–

78.

[22]. N. R. Mehta, N. Medvidovic, and S. Phadke, “Towards a Taxonomy of Software

Connectors,” 22nd International Conference on Software Engineering (ICSE ’00). 2000.

[23]. A. W. Williams and R. L. Probert, “A Measure for Component Interaction Test Coverage,”

ACS/IEEE International Conference on Computer Systems and Applications (AICCSA’01).

2001.

[24]. S. Becker, S. Overhage, and R. H. Reussner, Classifying Software Component

Interoperability Errors to Support Component Adaption. Springer, 2004

[25]. S. Mahmood, R. Lai, and Y. S. Kim, “Survey of component-based software development,”

IET Softw., vol. 1, no. 2, pp. 57–66, 2007

[26]. S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object-oriented Design,” IEEE

Trans. Softw. Eng., vol. 20, no. 6, p. 476–493., 1994.

[27]. S. R. Chidamber and D. P. Darcy, “Managerial Use of Metrics for Object-Oriented

Software: An Exploratory Analysis,” IEEE Trans. Softw. Eng., vol. 24, no. 8, pp. 629–639,

1998

[28]. D. Garlan, R. Allen, and J. Ockerbloom, “ Architectural mismatch: Why reuse is so hard,”

IEEE Softw., vol. 12, no. 6, 1995

A Proposal for New Software Testing Technique for Component Based Software System

74

[29]. C. Szyperski, Component Software : Beyond Object-Oriented Programming. New York:

Addison-Wesley, 1998.

[30]. A. W. Brown and K. C. Wallnau, “Engineering of Component-Based System,” Second

IEEE International Conference on Engineering of Complex Computer Systems

(ICECCS’96). p. 414, 1996.

[31]. C. Abts, B. W. Boehm, and E. B. Clark, “COCOTS: a COTS software integration cost

model - model overview and preliminary data findings,” USC Center for Software

Engineering, 2000.

[32]. B. Boehm, Software cost estimation with Cocomo II. Prentice Hall, 2000.

[33]. L. Brownsword, T. Obendorf, and C. A. Sledge, “Developing New Processes for COTS-

Based Systems,” IEEE Softw., pp. 48–55, 2000.

[34]. V. Lakshmi Narasimhan and Bayu Hendradjaya, “Some Theoretical Considerations for a

Suite of Metrics for the Integration of Software Components,” Inf. Sci., vol. 177, no. 3, pp.

844–864, 2007.

[35]. E. Weyuker, “Testing component-based software: A cautionary tale,” IEEE Softw., vol. 15,

no. 5, pp. 54–59, 1998.

[36]. J. Z. Gao, H.-S. . Tsao, and Y. Wu, Testing and Quality Assurance for Component-Based

Software. Boston, London: Artech House, 2003.

[37]. J. D. McGregor and D. A. Sykes, A Practical Guide To Testing Object-Oriented Software.

Addison-Wesley, 2001.

[38]. T. Parsons, A. Mos, M. Trofin, T. Gschwind, and J. Murphy, “Extracting Interactions in

Component-Based Systems,” Softw. Eng. IEEE Trans., vol. 34, no. 6, pp. 783–799, 2008.

[39]. R. Abernethy, R. Morin, and J. Chahín, COM/DCOM Unleashed. Indianapolis, Ind.: Sams

Publishing, 1999.

[40]. E. J. Weyuker, “The trouble with testing components,” in Component-based software

engineering: putting the pieces together, G. T. Heineman and W. T. Councill, Eds. Addison-

Wesley Longman Publishing Co., Inc., 2001, pp. 499–512.

[41]. A. Orso, H. Do, G. Rothermel, M. J. Harrold, and D. S. Rosenblum, “Using component

metadata to regression test component-based software,” Softw. Testing, Verif. Reliab., vol.

17, no. 2, pp. 61–94, 2007.

[42]. W. Ye, P. Dai, and C. Mei-Hwa, “Techniques for testing component-based software,” in

Engineering of Complex Computer Systems, 2001. Proceedings. Seventh IEEE

International Conference on, 2001, pp. 222–232.

[43]. D. S. Rosenblum, “Adequate testing of component-based software,” University of

California at Irvine, Technical Report TR97-34, , 1997.

[44]. G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong, “Empirical studies of test-suite

reduction,” Softw. Testing, Verif. Reliab., vol. 12, no. 4, pp. 219–249, 2002.

[45]. J. Gao, R. Espinoza, and H. Jingsha, “Testing coverage analysis for software component

validation,” in Computer Software and Applications Conference, 2005. COMPSAC 2005.

29th Annual International, 2005, vol. 1, p. 463–470 Vol. 2.

[46]. Z. Jin and A. J. Offutt, “Coupling-based criteria for integration testing,” Softw. Testing,

Verif. Reliab., vol. 8, no. 3, pp. 133–154, 1998.

[47]. I.-H. Cho and J. D. McGregor, “A formal approach to specifying and testing the

interoperation between components,” Proceedings of the 38th annual on Southeast regional

conference. ACM, Clemson, South Carolina, pp. 161–170, 2000.

[48]. F. Belli and C. J. Budnik, “Towards self-testing of component-based software,” in

Computer Software and Applications Conference, 2005. COMPSAC 2005. 29th Annual

International, 2005, vol. 2, p. 205–210 Vol. 1.

[49]. S. H. Edwards, “A framework for practical, automated black-box testing of component-

based software,” Softw. Testing, Verif. Reliab., vol. 11, no. 2, pp. 97–111, 2001.

[50]. F. Barbier and N. Belloir, “Component behavior prediction and monitoring through built-

in test. ,” in The 10th IEEE International Conference on Engineering of Computer-Based

Systems (ECBS 2003), 2003, pp. 17–22.

Bayu Hendradjaya

75

[51]. S. Beydeda and V. Gruhn, “Merging components and testing tools: The self-testing COTS

components (STECC) strategy,” in The 29th EUROMICRO conference (EUROMICRO

2003), 2003, pp. 107–115.

[52]. H.-G. Gross and N. Mayer, “Built-In Contract Testing in Component Integration Testing,”

Electron. Notes Theor. Comput. Sci., vol. 82, no. 6, pp. 22–32, 2003.

[53]. E. Martins, C. M. Toyata, and R. L. Yanagawa, “Constructing self-testable software

components,” in IEEE International Conference on Dependable Systems and Networks

(DSN 2001), 2001, pp. 151–160.

[54]. M. Momotko and L. Zalewska, “Component+ built-in testing: a technology for testing

software components,” Found. Comput. Decis. Sci., pp. 133–148, 2004.

[55]. Y. Wang, G. King, and H. Wickburg, “A method for built-in tests in component-based

software maintenance,” in The 3rd European Conference on Software Maintenance and

Reengineering (CSMR 1999), 1999, pp. 186–189.

[56]. V. Lakshmi Narasimhan and B. Hendradjaya, “Some theoretical considerations for a suite

of metrics for the integration of software components,” Inf. Sci. (Ny)., vol. 177, no. 3, 2007.

[57]. C. S. Gall et al., “Semantic software metrics computed from natural language design

specifications,” Software, IET, vol. 2, no. 1, pp. 17–26, 2008.

[58]. D. Grove, G. DeFouw, J. Dean, and C. Chambers, “Call Graph Construction in Object

Oriented Languages.,” in Object Oriented Programming Systems, Languages and

Applications, 1997, pp. 108–124.

[59]. M. J. Harrold, D. Liang, and S. Sinha, “An Approach To Analyzing and Testing

Component-Based Systems,” Workshop on Testing Distributed Component-Based Systems

(ICSE’99). 1999.

[60]. D. Jeffrey and N. Gupta, “Test suite reduction with selective redundancy,” in Proceedings

of the 21st IEEE International Conference on Software Maintenance, 2005. ICSM’05.,

2005, pp. 549–558.

[61]. W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur, “Effect of test set minimization

on fault detection effectiveness,” Softw. Pract. Exp., vol. 28, no. 4, pp. 347–369, 1998.

[62]. P. Jalote, CMM in practice : processes for executing software projects at Infosys. Reading,

Mass ; Wokingham: Addison-Wesley, 2000.

[63]. Y. Wu, M.-H. Chen, and J. Offutt, “UML-Based Integration Testing for Component-Based

Software,” 2003, pp. 251–260.

[64]. F. Jabeen and M. Jaffar-ur-Rehman, “A framework for object oriented component testing,”

in Emerging Technologies, 2005. Proceedings of the IEEE Symposium on, 2005, pp. 451–

460.

[65]. Y.-S. Ma, S.-U. Oh, D.-H. Bae, and Y.-R. Kwon, “Framework for third party testing of

component software.,” in Eighth Asia-Pacific Software Engineering Conference, 2001, pp.

431–434.

[66]. D. Liang and K. Xu, “Test-driven component integration with UML 2.0 testing and

monitoring profile,” in Proceedings - International Conference on Quality Software, 2007,

pp. 32–39.

[67]. A. Elsafi, D. N. A. Jawawi, and A. Abdelmaboud, “Inferring approximated models for

integration testing of component-based software,” in 2014 8th Malaysian Software

Engineering Conference, MySEC 2014, 2014, pp. 67–71.

[68]. F. Berzal, I. Blanco, J.-C. Cubero, and N. Marin, “Component-based Data Mining

Frameworks,” Commun. ACM, vol. 45, no. 12, 2002.

[69]. L. Gallagher and J. Offutt, “Automatically Testing Interacting Software Components,”

Workshop on Automation of Software Test (AST 2006). Shanghai, China., pp. 57–63, 2006.

[70]. R. V Binder, Testing Object-oriented systems: Models, Patterns, and Tools. Boston:

Addison-Wesley, 2000.

[71]. J. S. Kang and H. S. Park, “Automatic generation algorithm of expected results for testing

of component-based software system,” in Information and Software Technology, 2015, vol.

57, no. 1, pp. 1–20.

A Proposal for New Software Testing Technique for Component Based Software System

76

[72]. P. Braione, G. Denaro, A. Mattavelli, M. Vivanti, and A. Muhammad, “Software testing

with code-based test generators: Data and lessons learned from a case study with an

industrial software component,” Softw. Qual. J., vol. 22, no. 2, pp. 311–333, 2014.

[73]. F. Saglietti and F. Pinte, “Automated unit and integration testing for component-based

software systems,” in Proceedings of the International Workshop on Security and

Dependability for Resource Constrained Embedded Systems - S&D4RCES ’10, 2010, p. 1.

[74]. A. Orso, M. J. Harold, D. Rosenblum, G. Rothermel, M. Lou Soffa, and H. Do, “Using

Component Metacontent to Support the Regression Testing of Component-Based

Software,” Proceedings of the IEEE International Conference on Software Maintenance

(ICSM’01). IEEE Computer Society, p. 716, 2001.

[75]. Z. Jiang, L. Williams, B. Robinson, and K. Smiley, “Regression Test Selection for Black-

box Dynamic Link Library Components,” in Incorporating COTS Software into Software

Systems: Tools and Techniques, 2007. IWICSS ’07. Second International Workshop on,

2007, p. 9.

[76]. F. R. C. Silva, E. S. Almeida, and S. R. L. Meira, “An approach for component testing and

its empirical validation,” Proceedings of the 2009 ACM symposium on Applied Computing.

ACM, Honolulu, Hawaii, pp. 574–581, 2009.

[77]. J. Grundy, G. Ding, and J. Hosking, “Deployed software component testing using dynamic

validation agents,” J. Syst. Softw., vol. 74, no. 1, pp. 5–14, 2005.

[78]. M. Imran, A. Raza, and K. Asghar, “Component Based Software Testing Strategies to

Develop Good Software Product,” in 1st International Conference on Emerging &

Engineering Technologies (ICEET-2014), 2015, vol. 1.

[79]. E. Alegroth, Z. Gao, R. Oliveira, and A. Memon, “Conceptualization and evaluation of

component-based testing unified with visual GUI testing: An empirical study,” in 2015

IEEE 8th International Conference on Software Testing, Verification and Validation, ICST

2015 - Proceedings, 2015.

[80]. O. E. K. Aktouf, T. Zhang, J. Gao, and T. Uehara, “Testing location-based function services

for mobile applications,” in Proceedings - 9th IEEE International Symposium on Service-

Oriented System Engineering, IEEE SOSE 2015, 2015, vol. 30, pp. 308–314.

[81]. J.-F. Weber, “Tool Support for Fuzz Testing of Component-Based System Adaptation

Policies,” in International Workshop on Formal Aspects of Component Software, 2016, pp.

231–237.

[82]. A. Sharma, P. S. Grover, and R. Kumar, “Dependency analysis for component-based

software systems,” SIGSOFT Softw. Eng. Notes, vol. 34, no. 4, pp. 1–6, 2009.

[83]. A. Sharma, R. Kumar, and P. S. Grover, “A Critical Survey of Reusability Aspects for

Component-Based Systems,” in PROCEEDINGS OF WORLD ACADEMY OF SCIENCE,

ENGINEERING AND TECHNOLOGY, 2007, vol. 21.

[84]. H. Washizaki, H. Yamamoto, and Y. Fukazawa, “Metrics Suite for Measuring Reusability

of Software Components,” in 9th International Software Metrics Symposium, 2003, pp.

211–223.

[85]. S. Sedigh-Ali, A. Ghafoor, and R. A. Paul, “Metrics-Based Framework for Decision

Making in COTS-Based Software Systems,” in 7th IEEE International Symposium on High

Assurance Systems Engineering (HASE’02), 2002.

[86]. S. Mahmood and R. Lai, “A complexity measure for UML component-based system

specification,” Softw. - Pract. Exp., vol. 38, no. 2, pp. 117–134, 2008.

[87]. E. S. Cho, M. S. Kim, and S. D. Kim, “Component Metrics to Measure Component

Quality,” in The 8th Asia-Pacific Software Engineering Conference (APSEC), 2001, pp.

419–426.

[88]. O. P. Rotaru and M. Dobre, “Reusability metrics for software components,” in The 3rd

ACS/IEEE International Conference onComputer Systems and Applications, 2005., 2005,

pp. 85–92.

[89]. L. Kharb and R. Singh, “Complexity Metrics for Component-oriented Software Systems,”

SIGSOFT Softw. Eng. Notes, vol. 33, no. 2, p. 4:1-4:3, 2008.

Bayu Hendradjaya

77

[90]. J. B. Goodenough and S. L. Gerhart, “Toward a theory of test data selection,” Proceedings

of the international conference on Reliable software. ACM, Los Angeles, California, pp.

493–510, 1975.

[91]. T. J. Ostrand and M. J. Balcer, “The category-partition method for specifying and

generating fuctional tests,” Commun. ACM, vol. 31, no. 6, pp. 676–686, 1988.

[92]. A. Andrews, R. France, S. Ghosh, and G. Craig, “Test adequacy criteria for UML design

models,” Softw. Testing, Verif. Reliab., vol. 13, no. 2, pp. 95–127, 2003.

[93]. A. Bertolino and S. Gnesi, “PLUTO: A Test Methodology for Product Families,” 5th

International Workshop of Software Product-Family Engineering - . Springer, Siena, Italy.,

pp. 181–197, 2004.

[94]. T. Y. Chen, P. Pak-Lok, and T. H. Tse, “A choice relation framework for supporting

category-partition test case generation,” Softw. Eng. IEEE Trans., vol. 29, no. 7, pp. 577–

593, 2003.

[95]. M. Grindal, B. Lindstr, J. Offutt, and S. F. Andler, “An evaluation of combination strategies

for test case selection,” Empir. Softw. Engg., vol. 11, no. 4, pp. 583–611, 2006.

[96]. M. Grindal, B. Lindström, J. Offutt, and S. F. Andler, “An evaluation of combination

strategies for test case selection,” Empir. Softw. Eng., vol. 11, no. 4, pp. 583–611, 2006.

[97]. J. Hartmann, C. Imoberdorf, and M. Meisinger, “UML-based integration testing,” in ACM

Sigsoft Software Engineering Notes, 2000, vol. 25, no. 5, pp. 60–70.

[98]. M. Alshayeb and W. Li, “An Empirical Validation of Object-Oriented Metrics in Two

Different Iterative Software Process,” IEEE Trans. Softw. Eng., vol. 29, no. 11, 2003.

[99]. P. V Bhansali, “A systematic approach to identifying a safe subset for safety-critical

software,” SIGSOFT Softw. Eng. Notes, vol. 28, no. 4, p. 1, 2003.

[100]. N. Ohlsson, A. Eriksson, and M. Helander, “Early Risk-Management by Identification of

Fault-prone Modules,” Empir. Softw. Eng., vol. 2, no. 2, pp. 166–173, 1997.

[101]. W. M. P. van der Aalsta, K. M. van Heeb, and R. A. van der Toornb, “Component-based

software architectures: a framework based on inheritance of behavior,” Sci. Comput.

Program., vol. 42, no. 2–3, pp. 129–171, 2002.

[102]. V. L. Narasimhan and B. Hendradjaya, “Some Theoretical Considerations for a Suite of

Metrics for the Integration of Software Components,” J. Inf. Sci., vol. 177, no. 3, pp. 844–

864, 2007.

Bayu Hendradjaya received B.Eng and M.Eng degrees in Informatics

Engineering from Institut Teknologi Bandung. He holds a PhD in software

engineering from La Trobe University. His research involved software

requirements, software process improvement, software V & V, software

development methodology and e-Government system. Dr. Bayu Hendradjaya

is at School of Electrical Engineering and Informatics, Institut Teknologi

Bandung, Jl. Ganesha 10 Bandung, Indonesia 40132 or at bayu@stei.itb.ac.id.

A Proposal for New Software Testing Technique for Component Based Software System

78

