

Child Welfare Digital Services Project

Release Management Plan

January 2019

CWS-CARES Release Management Plan January 2019

Version 1.0 Page i

Revision History

Revision /
Version #

Date of
Release

Author Summary of Changes

V 1.0 5/30/2017 John Simko Original Document

V 1.1 6/29/2017 John Simko More awesome updates

V 1.2 7/18/2017 John Simko Changes based on feedback

V 1.3 9/7/2017 John Simko Updates based on C&B feedback

V 1.4 10/6/2017 John Simko Updates based on C&B feedback
and other changes to make it up
to date

V 1.5 5/15/2018 John Simko Back and better than ever

V 1.6 1/31/2019 John Simko Updated the entire document

CWS-CARES Release Management Plan January 2019

Version 1.0 Page ii

Table of Contents

1 Introduction 4

1.1 Purpose ... 4

1.2 Scope ... 4

1.2.1 In-Scope .. 4

1.2.2 Out-of-Scope ... 4

1.3 Risks .. 4

1.4 Integration with other CWDS Plans.. 5

1.5 Document Maintenance ... 6

2 Plan Approach 6

3 Roles and Responsibilities 7

4 Program Increments 10

4.1 Roadmap ... 10

4.2 PI Planning .. 10

4.3 Innovation and Planning .. 12

4.4 Scrum of Scrums ... 13

4.5 Solution Demo ... 13

4.6 Risk Management .. 14

4.7 PI Retrospective .. 14

5 Continuous Delivery (CD) Pipeline 15

5.1 Continuous Integration (CI) .. 17

5.2 Testing ... 18

5.3 Continuous Delivery Stages ... 18

5.3.1 Development (Build) .. 0

5.3.2 Pre-Integration (PreInt) .. 1

5.3.3 Integration ... 2

5.3.4 Preview.. 5

5.3.5 Performance (Perf) .. 6

5.3.6 PreProd ... 7

5.3.7 Sandbox .. 8

5.3.8 Production ... 10

5.4 Pipeline Configuration Management (CM) ... 11

6 Releases 11

6.1 Release Types ... 11

6.2 Release Version Numbering .. 11

6.3 Release Principles ... 12

6.4 Release Management (Scope and Schedule) ... 12

6.5 Release Rollout ... 13

CWS-CARES Release Management Plan January 2019

Version 1.0 Page iii

6.6 Release-level Definition of Done (aka Release Readiness Checklist) 13

6.7 Release Notes ... 13

6.8 Release Governance ... 14

6.9 Rollback Plan ... 14

7 Appendix – Acronyms and Terms 14

8 Appendix A – Sample Release Readiness Checklist 17

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 4

1 Introduction

1.1 Purpose

This document describes the Release Management Plan (hereinafter referred to as the
“plan”) for the Child Welfare Services – California Automated Response and
Engagement System (CWS-CARES) Project (hereinafter referred to as the “Project”).
The purpose of this plan is to document how the Project will plan, build, test, deploy,
manage, and govern CWS-CARES releases.

1.2 Scope

The scope of this plan covers all roles, activities and artifacts necessary to support the
project’s release management processes.

1.2.1 In-Scope

• Release Management

• Roadmap

• Continuous Delivery Pipeline

• Release Types

• Release Principles

• Release Rollout

• Release-level Definition of Done (aka Release Readiness Checklist)

• Release Notes

• Release Governance

1.2.2 Out-of-Scope

• Agile Practices, including digital service team ceremonies (e.g., daily stand-up,

sprint reviews, sprint planning, scrum of scrums, Sprint and Definition of Done)

• Implementation Team Activities

o Rollout approach (covered in the Statewide Implementation Plan)

o Approach for determining State, county, and tribal Go-Live Readiness

(covered in the Statewide Implementation Plan)

o Training

o OCM

o Implementation

• DevOps activities

1.3 Risks

Title Description

http://v4.scaledagileframework.com/roadmap/

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 5

Risk 1727 - Lack of overall product roadmap Without knowledge of the shared vision for

the product roadmap, the Digital Services

teams may not be in concert on priorities

and instead concentrate work on features

locally important to their goals.

Stakeholders are unaware of future

release planning and are not able to

proactively take steps to prepare staff and

business processes for new functionality.

1.4 Integration with other CWDS Plans

This plan integrates with Change Management, Configuration Management and Test
Management processes.

Quality Management Plan

The Quality Management Plan defines how quality will be managed throughout the
project lifecycle of the Child Welfare Services-New System Project (hereafter call
“Project”).

Risk and Issue Management Plan

The Risk and Issue Management Plan includes the process, constraints and approach
to be used by the CWS-CARES project to identify, analyze, plan, implement, monitor
and close project risks and issues during the entire life of the project.

Change Management Plan

The Change Management Plan describes the process of managing changes to the
Child Welfare Services-New System (CWS-CARES) project, artifacts, application code,
deliverables at a strategic, tactical, and operational level. The purpose of this Change
Management Plan is to establish a standardized agile change management approach
for the approval and tracking of proposed changes for the CWS-CARES project.

Configuration Management Plan

The Configuration Management Plan describes how the Project will identify State
service assets and configuration items (hereinafter referred to as “SA’s”, and “CI’s”)
including internal deliverables and work products, and State owned software products.
The Project will record all SA’s and CI’s, list their attributes and relationships, as well as
protect them from unauthorized changes.

Test Management Approach

The CWDS Test Management Approach describes an overall framework and a set of
principles, best practices, and guidelines for how testing will occur across all CWDS
digital services. This document defines the overall testing strategy, but does not contain
a complete set of detailed processes and procedures.

CWDS Implementation Plan

https://osicagov.sharepoint.com/sites/projects/CWS-NS/PMO/_layouts/15/DocIdRedir.aspx?ID=PROJ-31-43
https://osicagov.sharepoint.com/sites/projects/CWS-NS/PMO/_layouts/15/DocIdRedir.aspx?ID=PROJ-31-44
https://github.com/ca-cwds/webdocs/blob/master/Web/Project_Management/CWDS%20Change%20Management%20Plan.pdf?raw=TRUE
https://github.com/ca-cwds/webdocs/blob/master/Web/Project_Management/CWDS%20Configuration%20Management%20Plan.pdf?raw=TRUE
https://osicagov.sharepoint.com/sites/projects/CWS-NS/PMO/_layouts/15/guestaccess.aspx?guestaccesstoken=m9V2K/w30nOMNiCV02tzUHHj3J51dB/QWgYwDgvaXtw=&docid=2_1244a604f7b5e4bd79ed0880da7243b57&rev=1

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 6

The CWDS Implementation Plan describes the State’s overarching vision for
implementing the various CWS-CARES Digital Services and primarily focuses on the
State and Implementation Contractor’s direct work with the staff in the Orgs who have
been identified to participate in this implementation effort. This plan highlights the three
main entities involved in implementation: the State implementation team, the
implementation contractors, and the Orgs.

Statewide Implementation Plan

The CWS-CARES Statewide Implementation Plan describes the methodology, tools,
and resources the Implementation Team uses to deliver CWDS implementation
services to the 60 transitioning Organizations (Orgs).

1.5 Document Maintenance

The CWDS Release Management Plan will be updated as processes and procedures
change. A minor version change does not change the intent of the document and
consists of spelling, grammatical and minor corrections. A major version is when a
document’s content is changed and represents a change in intent, change in process,
or procedures. Please refer to the CWDS Configuration Management for further detail
on version control.

During development of this plan, the guidelines and standards provided through the
Project’s Quality Management Plan will apply; specifically all peer review requirements
must be met.

2 Plan Approach

The CWDS release management approach is based on the Scaled Agile Framework®
(SAFe) v4.0 for Lean Software and Systems Engineering approach of managing the
development and delivery of software. This framework helps align the CWDS digital
service teams to a common business context, vision, and program objectives using a
cadence-based and fixed period of time.

One of the key components of SAFe® v4.0 that the project is following is the Agile
Release Train (ART). Directly from the SAFe® website1, “the ART aligns teams and
helps manage risk and variability by providing cadence and synchronization.” The
project will follow SAFe®’s guidelines in organizing, planning, and executing its ART.
Specifically, the project is electing to a single ART that can support a single system and
organized by feature teams (i.e., Digital Services).

The ART aligns teams to a common mission via a comprehensive and integrated vision,
roadmap, and product backlog. Development of the solution occurs on a standard
cadence, but the teams can release at any time. In SAFe® terms, this is referred to as
“Develop on a Cadence and Release Any Time”. Regarding the development cadence,

1 http://v4.scaledagileframework.com/agile-release-train/ (visited on 7/1/17)

https://osicagov.sharepoint.com/sites/projects/CWS-NS/Implementation/_layouts/15/WopiFrame.aspx?sourcedoc=%7bb30125f2-0346-4042-8eb5-7246f14dbb7d%7d&action=default
https://osicagov.sharepoint.com/sites/projects/CWS-NS/Implementation/_layouts/15/WopiFrame.aspx?sourcedoc=%7b81346c15-1b46-4cea-91bd-fcfd36047b95%7d&action=default
http://v4.scaledagileframework.com/
http://v4.scaledagileframework.com/
http://v4.scaledagileframework.com/agile-release-train/

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 7

SAFe® prescribes using a Program Increment (PI), which is a cadence-based interval
for building and validating a full system increment, demonstrating value and getting fast
feedback. For this project, a PI is comprised of six two-week iterations (i.e., sprints) of
planned work to deliver solution value. Details on how the project will plan and manage
the execution of the ART PIs can be found in Section 4 Program Increments. Details on
how the project will manage releasing any time can be found in Section 5 Continuous
Delivery (CD) Pipeline.

3 Roles and Responsibilities

The following table describe the roles and responsibilities of the CWS-CARES Project
stakeholders in support of the ART activities.

Roles Responsibilities

Release Manager • Act as a servant leader and operate as a full-time “Chief Scrum Master”
for the ART

• Facilitates the Program Increment (PI) planning sessions

• Schedules and facilitates the Scrum of Scrums meeting

• Facilitates PI retrospectives

• Manages the Continuous Delivery Pipeline

• Maintain the Release Readiness Checklist

• Consolidate Release Notes

• Manages Releases

Agile Coach • Guides the teams in the initial PI Planning process.

• Trains the Release Manager in the latest Scaled Agile framework

Scrum Master(s) • Leads their team in the process of preparing for release planning,
attending and participating in the release planning activity, and facilitates
the follow up work

• Participates in the Scrum of Scrum meetings

• Facilitates the PI retro

Development
Teams

• Identifies backlog items they will likely need to realize the features.

• Creates draft plans, visible to all, iteration by iteration.

• Identifies risks and dependencies and drafts their initial team PI
objectives.

• Adds features to the program board at the point in time they will/can
deliver the feature

• Breaks the desired features into user stories needed to deliver (high
level with an estimate, AC can be added later)

• Completes any rework that arises out of the Management Review and
Problem-Solving session of day 1.

• Reviews the final desired features

• Confirms feature dependencies

• Finalizes draft plan, iteration by iteration.

• Finalizes risks

• Inputs remaining stories into Pivotal Tracker

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 8

Roles Responsibilities

Implementation
Teams

• Prepare Statewide Implementation Plan

• Develop Rollout Schedule

• Identify Core Counties for each Digital Service

• Prepare Baseline Implementation Project and Org Schedules

• Prepare Implementation

• Kickoff Implementation in Org

• Conduct OCM and Training

• Facilitate Communication

• Provide Implementation Oversight and Monitoring

Executive
Leadership +

Line of Business
Owners

• As part of PI Planning:
o Describes the future vision of the business and presents a

perspective on how well current solutions are addressing current
customer needs (this focuses on the comparison between the
problem area and the plans for this release).

o Describes the current state of the business and presents a
perspective on how well current solutions are addressing the
customer’s needs.

o Coordinate and approve the CWDS portfolio roadmap

• The Executive Leadership Team (ELT) participates in the Release
Governance Process

• Participate in the project-level Risk and Issues resolution process

Service
Manager(s)

• As part of PI Planning:
o Highlights any changes from the previous PI planning meeting

as well as any upcoming milestones that have been identified.
o Participates in the management review and problem-solving

sessions
o Describes any changes to scope and/or resources that came

out of the management review and problem-solving session.
o Communicates planned features to their stakeholders

• Works with their digital service team and core county users to identify
the specific set of features and capabilities that would comprise of a
Minimal Viable Product (MVP).

• Coordinates with the Release Manager in moving release candidates
through the Continuous Delivery Pipeline.

Product Owner(s) • As part of PI Planning:
o Presents the current program vision – typically represented by

the next top 10 upcoming features (or whatever is being
released for the release).

o Presents their draft objectives and by what sprint they will
deliver key items

• Coordinates with the Release Manager in moving release candidates
through the Continuous Delivery Pipeline.

• Develop Release Notes

Solution Architect • Defines the architecture runway that supports feature development

• Presents the architecture vision and practices during PI Planning.

• Participates in the Release Governance Process

Development
Lead/Manager(s)

• Presents agile-supportive changes to development practices such as
test automation and continuous integration during PI Planning.

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 9

Roles Responsibilities

DevOps
Engineering

• Presents the DevOps Engineering vision and practices during PI
Planning.

• Coordinates with the Release Manager in setting up and maintaining
environments and pipeline infrastructure

• Maintains the CD configuration management

Information
Security Officer

• Presents security vision and practices during PI Planning

• Verifies that a release candidate passes all CWDS Security Tests as
part of the Continuous Delivery Pipeline

Checks and
Balances

• Provide independent oversight of testing issues and areas of non-
conformance in accordance to CA-PMF and IEEE (where appropriate).

• Observe sprint reviews, release planning and execution and testing
activities.

CWDS Quality
Assurance

• Provide enterprise quality assurance support services to the state during
the agile life cycle.

• Ensure compliance with the Project Management Body of Knowledge
(PMBOK) guidelines, California Project Management Methodology (CA-
PMM), OSI Best Practices (http://www.bestpractices.osi.ca.gov/),
industry standards, Information Technology Infrastructure Library (ITIL)
standards.

• Develop and maintain compliance to the CWDS Quality Management
Plan.

• Develop and maintain compliance to the CWDS Quality Metrics Plan.

• Define the standards to which quality will be measured.

• Measure and improve process and product quality.

QA Engineer(s) • Build and maintain sets of more advanced (e.g., negative, edge case)
feature tests, integration tests, regression tests and load/performance
tests.

• Work closely with Digital Service, Tech Platform, and DevOps teams
through the entire project lifecycle to ensure overall software system
quality is maintained.

• Work across digital service teams to ensure integration across all
services.

• Work closely with Legacy Testing team to develop test scripts.

• Gather/analyze requirements and develop test plans on new/existing
features.

• Do manual testing in the early phases of product development if
automated tests are not ready.

• Create, modify, execute and maintain feature, integration, and
load/performance test scripts along with full regression tests.

• Build and maintain a library of reusable scripts and processes.

• Provide feedback to digital service, Tech Platform, and DevOps teams
on software usability and functionality

• Develop strong working knowledge of child welfare services business
practices.

• Log and track software defects.

• Become a key source of institutional knowledge of how the system as a
whole works.

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 10

4 Program Increments

4.1 Roadmap

The project’s roadmap is used to communicate a high-level timeline of when core
business processes as well as new or enhanced functionality is planned on being
delivered. It is used to While currently under development, the project’s roadmap will
represent the business processes and new or enhance functionality that has been
implemented, in progress (current PI), near term (next 3 PIs), and long term. The near
term business processes and functionality is used to help plan and prioritize features for
the PI Planning session.

4.2 PI Planning

The ART is initiated with a PI Planning session that occurs prior to the start of each PI
and is facilitated by the Release Train Engineer (hereinafter referred to as the “Release
Manager”). It typically takes place over one and a half days and includes all digital
service team members that are participating in the development and delivery of CWS-
CARES solution during the upcoming PI time period. It starts off with presentations of
the business context and vision of the overall project and individual digital service teams
that are participating in PI. This is followed by presentations of architecture vision and
any agile-supportive changes to development practices such as test
automation. DevOps engineering may present continuous integration and continuous
delivery activities that are being advanced in the upcoming PI. Lastly, Information
Security may present specific information security items that apply to the upcoming PI.

These presentations are then followed by breakouts wherein the teams are expected to
accomplish the following:

• Estimate their capacity for the next six sprints

• Calculate their velocity in accordance with their capacity

• Identify their PI objectives / features. The objectives should follow the S.M.A.R.T
(Specific, Measurable, Achievable, Realistic, Time-Bound) objective guidelines

• Decompose their desired features into high-level user stories

• Create a draft plan and add the features to the program board at the point in time
they will/can deliver the feature. Features are only placed within the first five
iterations (Iteration 6 is dedicated to Innovation and Planning activities)

• Identify risks using red sticky notes on the program board in the iterations when
the risk will most likely be triggered

• Identify cross-team dependencies

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 11

The draft plan is represented on a program board, which highlights the new features,
anticipated delivery dates and other relevant milestones that will be achieved in the
upcoming Program Increment. Figure 1 – Example Program Board shows sample
output for multiple teams participating in a PI Planning session.

Figure 1 – Example Program Board

At the conclusion of the breakout sessions for the day, the teams will present to the PI
Planning participants their PI draft plan, which includes:

• Draft objectives and features by which sprint they intend on delivering the
planned features

• Potential risks and dependencies

Project team members are excused and Management (Service Managers, Product
Owners, and Scrum Masters) conduct a Review and Problem-Solving session. It is
likely that the draft plans present challenges such as scope, resource constraints, and
dependencies. During this review and problem-solving meeting, management
negotiates scope and resolves these challenges by agreeing to various planning
adjustments.

Following the review, the teams will breakout again and perform the following:

• Review the final desired features

• Confirm cross-team dependencies

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 12

• Finalize their draft plan, iteration by iteration

• Finalize risks

At the conclusion the additional breakout(s), the teams will conduct a final report out of
risks, team objectives and planned features.

Following the report out, the project then conducts a vote of confidence in meeting the
program PI objectives. The Release Manager calls for a Fist to Five (3 or higher is
equates to acceptance). Any person voting two fingers or fewer is given the opportunity
to voice their concern. Assuming that the concerns are resolved, the Program
Increment plan, which is represented via the program board, is “locked”. While the
teams are expected to execute the plan that they just agreed to, it is expected that
changes will occur during the PI execution as teams drill down into the identified
features or learn of new feature requests. The plan and any changes are reviewed and
discussed during the regularly scheduled scrum of scrum meeting, which is described in
Section 4.3 Scrum of Scrums.

Prior to starting the PI, each development team should have 5 sprints worth of feature
development stories defined, prioritized, and estimated at a high-level in their backlog
that aligns with the features listed on the Program Board. Each development team must
adhere to the epic naming conventions for PIs as defined here.

Each epic name must be a business name that is recognizable by our stakeholders
rather than a technical name and prefixed with the current PI using the format PI-[fill in
the number of the program increment with a dash between the PI and the number]. For
example: pi-3 screening data. A separate label must be created for each program
increment titled “Planned PI- [fill in the number of the PI with a dash between the PI and
the number]. For example: planned pi-3. Each feature story identified as part the PI
must be associated with an epic and use the “planned pi-x” label. Near-term (iterations
1 & 2) features should be more granularly defined then longer-term (e.g., sprints 4 & 5)

4.3 Innovation and Planning

The last iteration (sprint 6) during the PI is dedicated to Innovation and Planning. Digital
Service teams are not expected to plan for development of new features. Instead, they
are expected to set aside time for the following types of activities:

• Planning, retrospective, exploration and innovation

• Solution Demonstration

• Inspect and Adapt workshops

• Technical infrastructure and tooling (e.g., new test automation frameworks, new
project management tools)

https://osicagov.sharepoint.com/sites/projects/CWS-NS/Agile/_layouts/15/guestaccess.aspx?guestaccesstoken=IK9mV1e%2b3N3OofQtywqY6yVpiC179W1yDok7bYmJ5vQ%3d&docid=2_1fb5ca177d6154d39930227fe3280ca82&rev=1

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 13

• Continuing education

• Buffer for completing any planned features that didn’t get done during the first
five iterations

• PI Retrospective

• Work on spikes identified for the next PI

4.4 Scrum of Scrums

The Release Manager meets with the digital service team scrum masters on a recurring
basis (twice a week) to review the PI program board (i.e., the plan) and discuss PI
milestone, feature and objective progress. Cross-team dependencies, risks, and
impediments are also discussed. During this meeting, each service team will discuss
the following:

• What did your team accomplish (high-level) since the last meeting?

• What will your team accomplish between now and the next meeting?

• Are there any emerging requirements (i.e., new or further decomposed
features)?

o If so, new post-it notes are added to the program board.

• Will any features not be completed in the planned iteration and need to be moved
to future iterations?

o If so, the post-it note is moved to the appropriate iteration. If de-scoped,
they are marked as being de-scoped.

• Any dependencies with other teams?

• Are there any blocking issues/impediments?

• Are there any new risks or updates to existing risks? Do any team risks need to
be promoted to project level risks?

• Are we on track for the next Solutions Demo?

4.5 Solution Demo

Solution demonstrations are conducted monthly and provide an opportunity for the
digital service teams to showcase their work to date and get feedback from the project
and stakeholders. It also helps ensure that integration is occurring across teams on a
regular basis. On a quarterly basis, the solution demo will be conducted as part of the
CWDS Quarterly Stakeholder Forum, which convenes onsite at the CWDS campus and

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 14

provides a general update on project’s progress as well as specific topics focused on
the individual digital services being developed, program policy, tools, testing,
implementation, and other related project information.

4.6 Risk Management

Each of the digital service teams are expected to identify risks during the PI Planning
session and post them on the PI program board in the iteration when the risk is most
likely to be triggered. All risks posted on the PI program board are initially treated as
team risks and will be discussed during team meetings and at the Scrum of Scrum
meeting. At any time, if either the Scrum Masters or Release Manager believe that the
risk either needs higher visibility or needs assistance in mitigating the risk, they can
work with the PMO Risk Manager and escalate the risk to a project-level risk by
submitting it to the Project’s Risk and Issue forum by submitting a CWDS Candidate
Risk Form. It will be then be discussed during the next regularly scheduled Risk and
Issue meeting.

4.7 PI Retrospective

The Release Manager will facilitate a PI retrospective meeting with key ART
stakeholders (Service Managers, Product Owners, and Scrum Masters) to reflect on
what happened during the PI and identify actions for improvement going forward. This
meeting is conducted prior to PI Planning. Prior to the meeting, the digital service team
leaders are expected to have separate meeting(s) with all of their team members and
gather the following:

• What 5 things worked well

• What 5 things didn’t work well

• What they will do to improve during the next PI

These items are brought to the PI Retrospective meeting, shared with the group, and
organized into common themes. Collectively, the group discusses them and agrees on
appropriate action items. Figure 2 – Sample PI Retrospective represents the results
from an actual project PI retrospective.

https://osicagov.sharepoint.com/sites/projects/CWS-NS/_layouts/15/DocIdRedir.aspx?ID=PROJ-2144795999-119
https://osicagov.sharepoint.com/sites/projects/CWS-NS/_layouts/15/DocIdRedir.aspx?ID=PROJ-2144795999-119

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 15

Figure 2 – Sample PI Retrospective

5 Continuous Delivery (CD) Pipeline

The Continuous Delivery (CD) Pipeline (hereinafter referred to as the “pipeline”)
describes the project’s approach to providing the continuous releases of software to the
end user. The pipeline breaks down the software delivery process into stages that are
physically represented by the different environments (e.g., PreInt, Integration,
Performance, and Sandbox). Each stage is aimed at verifying the quality of the product
from a different perspective and identifying bugs. The pipeline provides feedback to the
teams and visibility into all aspects of the continuous delivery process, which includes
the building, deploying, testing, and releasing the features. The overall objective of the
pipeline is to deliver useful, high-quality, working software to users in an efficient, fast,
reliable, and repeatable manner.

Figure 3 – Logical Continuous Delivery Pipeline describes the logical migration path the
solution will take.

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 16

Figure 3 – Logical Continuous Delivery Pipeline

Every change that is made to the application’s configuration, source code, environment,
or data, triggers the creation of a new instance of the pipeline. The pipeline starts in the
Development stage/environment with each development team building, testing and
deploying code following a defined continuous integration process. At each subsequent
stage in the CD pipeline, the application is tested to ensure that it meets all desired
system qualities appropriate for the environment/stage that it is in. Only once the
application passes all “Work in Progress” stages can the feature be released to a Live
environment (Sandbox or Production).

Figure 4 – Physical Continuous Delivery Pipeline describes the physical migration path
that a release candidate will take from one environment to the next on its journey to a
Live environment (Sandbox or Production).

Development

Development

Development

Integration Testing Sandbox Production

Ready to View Ready to Use

Work in Progress Live

Public
(Open using

demonstration data)

Confidential
(Restricted to
caseworkers)

Development
Preview

Pre-Integration

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 17

Figure 4 – Physical Continuous Delivery Pipeline

As 10/09/2017, not all environments needed for the pipeline have been configured.
Throughout the life of the project additional environments may be created to support
multiple candidate releases that are going through pipeline at the same time (e.g., bug
release and MVP release). It is also important to know that not all releases must go
through Sandbox prior to being released to Production. While code will typically be
released to Sandbox prior to releasing it to Production, there are some instances (e.g.,
bug fixes) when code may be released to both environments simultaneously.

5.1 Continuous Integration (CI)

A key component of the pipeline is the CI process, which is a software development
process of integrating developers’ work frequently (at least daily) using an automated
suite of tools.

There are three important and foundational elements that underpin any Continuous
Integration system.

1. Automated Tests. The commitment of the development team to produce a

comprehensive automated test suite at the unit level and functional level together

with their code. It is essential that the automated tests are run with each build to

identify potential bugs in a timely manner.

2. Never break the build. The goal is that the application must be ready to be built,

packaged and deployed on every committed change. This means that broken or

untested code should never be committed.

LiveDevelopment, Testing and Training

CWS-NS Continuous Delivery Pipeline

As of 10/09/17

Exists

Planned

Path to Prod

Legend

QA TestersQA Testers
Developers,
QA Testers

Developers,
QA Testers

Developers

All County
and State Users

Project Staff,
All County

and State Users,
General Public

Project Staff,
Core County

and State Users

Project Staff,
All County

and State Users,
General Public

Project Staff,
Core County

and State Users

All County
and State Users

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 18

3. Version Control. All assets (e.g., source code, automated tests, user stories,

configuration files, knowledge transfer material, etc.) must be managed using a

using GitHub as the version control system.

There are three key outputs from the CI build process:

1. Automated test results and static code analysis findings will be posted on their

Jenkins dashboard page for each component/sub-project

2. If the build is successful (i.e., green), a new Docker image in Dockher Hub is

created that can be used to deploy in downstream pipeline environments (e.g.,

PreInt)

3. The CI results are posted to the teams’ Jenkins dashboard page and each of the

developers are notified the status of the build (via email or Slack)

5.2 Testing

The types of tests executed in each environment will generally be additive from one to
the next, with generally longer running automated tests and manual exploratory tests
occurring in downstream environments. For a description of the project’s overall testing
approach, the different types of testing, and the testing roles, see CWDS Test
Management Approach. The specific types of testing that will be conducted during each
CD stage is described in Section 5.3 Continuous Delivery Stages for each stage.

5.3 Continuous Delivery Stages

https://osicagov.sharepoint.com/sites/projects/CWS-NS/PMO/_layouts/15/guestaccess.aspx?guestaccesstoken=m9V2K/w30nOMNiCV02tzUHHj3J51dB/QWgYwDgvaXtw=&docid=2_1244a604f7b5e4bd79ed0880da7243b57&rev=1
https://osicagov.sharepoint.com/sites/projects/CWS-NS/PMO/_layouts/15/guestaccess.aspx?guestaccesstoken=m9V2K/w30nOMNiCV02tzUHHj3J51dB/QWgYwDgvaXtw=&docid=2_1244a604f7b5e4bd79ed0880da7243b57&rev=1

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 0

Environment Development PreInt Preview Integration Demo-Integration Performance PreProd

Purpose Provide developers an
environment to support
their Continuous
Integration (CI) build
process

Provide an opportunity
for developers to test
their code changes with
other digital service
teams. It allows the
developers to fail fast
and identify any potential
integration issues

Provide project staff and
core county and state
users early access to
code and the opportunity
to provide feedback

Provide digital service
teams a full stack
environment to conduct
automated functional,
acceptance, and
regression tests. This is
also used to conduct
Legacy testing

Provide project staff the
ability to showcase digital
services to core county
and state users as well
as other stakeholders

Provide project staff and
core county and state
users early access to
code and the opportunity
to provide feedback

Provide core county and
state users the
opportunity to validate
release features in an
environment that uses
production data prior to
deploying the candidate
release into production

Participants • Digital service teams • Digital service teams

• Project staff

• Core county and
state users

• Digital service teams

• QA engineers

• Project staff • Project staff

• Core county and
state users

• Project staff

• Core county and
state users with
legacy (e.g.,
CWS/CMS)
production access

Types of
testing

• Unit

• Functional

• Accessibility

• Syntax or style
checking

• Static code analysis

• Test coverage
analysis

• Security testing

• Smoke testing

• Acceptance testing

• Integration testing

• Usability Testing

• Non-scripted feature
validation

• General feedback

• Smoke testing

• Acceptance testing

• Integration testing

• Regression testing

• Legacy testing

• Scripted scenarios • Smoke testing

• Performance Testing

• Smoke testing

• Non-scripted feature
validation

• General feedback

Configuration • No CWS/CMS
access

• Limited interface
(e.g., Address
validation) capability

• No CWS/CMS
access

• Connects to non-
legacy infrastructure
(i.e., containers)

• Limited interface
(e.g., Address
validation) capability

• Users are added to a
LDAP user name and
password directory

• Uses non-RACF
credentials or
guest/guest

• User can access
using any internet
capable device

• No CWS/CMS
access

• Limited interface
(e.g., Address
validation) capability

• Users are added to a
LDAP user name and
password directory

• User can access
using any internet
capable device

• CWS/CMS access

• Limited interface
(e.g., Address
validation) capability

• Uses non-prod RACF
credentials

• User can access
using any internet
capable device

• CWS/CMS access

• Limited interface
(e.g., Address
validation) capability

• Uses non-prod RACF
credentials

• Shares the same
database with
Integration

• User can access
using any internet
capable device

• No CWS/CMS
access

• Limited interface
(e.g., Address
validation) capability

• Uses prod RACF
credentials

• User can access
using any internet
capable device

• CWS/CMS access

• Limited interface
(e.g., Address
validation) capability

• Uses prod RACF
credentials

Location Any location Any location Any location Any location Any location Any location Any location

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 1

Environment Development PreInt Preview Integration Demo-Integration Performance PreProd

Data Mock data that is
personally identifiable
information (PII) and
protected health
information (PHI)
compliant

Mock data that is
personally identifiable
information (PII) and
protected health
information (PHI)
compliant

Mock data that is
personally identifiable
information (PII) and
protected health
information (PHI)
compliant

Mock data that is
personally identifiable
information (PII) and
protected health
information (PHI)
compliant

Mock data that is
personally identifiable
information (PII) and
protected health
information (PHI)
compliant

A copy of legacy
production database

A copy of legacy
production database

Availability 24x7, except for
scheduled maintenance

24x7, except for
scheduled maintenance

24x7, except for
scheduled maintenance

24x7, except for
scheduled maintenance

24x7, except for
scheduled maintenance

24x7, except for
scheduled maintenance

24x7, except for
scheduled maintenance

Frequency Ongoing Ongoing Updates are made at the
end of every iteration

New features are added
to Integration at the end
of every iteration

As required Updates are made at the
end of every iteration

Prior to each release to
production.

Duration Ongoing Ongoing Ongoing Ongoing Varies by demonstration Ongoing Varies by release, but will
be time-boxed (e.g., 2-3
days)

Release
Notes

None Published in the Preview
GitHub repository here

Published in the Preview
GitHub repository here

None None None Published in the PreProd
GitHub repository

Outcomes • Completed code

• Identification of new
bugs

• Identification of
functionality that
could use more
automated tests

• Identification of new
bugs

• Identification of new
features

• Identification of
functionality that
could use more
automated tests

• Identification of new
bugs

• Identification of new
features

• Identification of
functionality that
could use more
automated tests

• Identification of new
bugs

• Identification of
functionality that
could use more
automated tests

• Identification of new
bugs

• Identification of new
features

• Identification of new
bugs

• Identification
infrastructure
enhancements

• Identification of new
bugs

• Identification of new
features

• Identification of
functionality that
could use more
automated tests

Feedback • Bugs are logged in
the appropriate digital
service team’s icebox

• Bugs are logged in
the appropriate digital
service team’s icebox

Core county and state
users: Feedback is
submitted by to email
addresses set up by
each digital service

Feedback is triaged by
the development teams

• Incidents are logged
as bugs in the
appropriate digital
service team’s icebox

• Bugs are logged in
the appropriate digital
service team’s icebox

Feedback is captured
during the demonstration
session

• Incidents are logged
as bugs in the
appropriate digital
service team’s icebox

• Enhancement
requests are
captured as new
feature stories in the
appropriate digital
service team’s icebox

• Bugs are logged in
the appropriate digital
service team’s icebox

Core county and state
users: Feedback is
submitted by to email
addresses set up by each
digital service

Feedback is triaged by
the development teams

• Incidents are logged
as bugs in the
appropriate digital
service team’s icebox

https://github.com/ca-cwds/Sandbox/blob/master/Release%20Notes/release_notes.md
https://github.com/ca-cwds/Sandbox/blob/master/Release%20Notes/release_notes.md

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 2

Environment Development PreInt Preview Integration Demo-Integration Performance PreProd

• Enhancement
requests are
captured as new
feature stories in the
appropriate digital
service team’s icebox
and looked at as part
of each digital service
team’s story
grooming process

and looked at as part
of each digital service
team’s story
grooming process

Training None None Job aids are published in
the Digital Services
Implementation Portal
under the Training
/Sandbox folder here

Note: Publishing of
new/updated job aids
may lag deployment of
new code to the Preview
environment

None Demo material is
provided to participants
on an as needed basis

None Draft training material is
provided to participants

https://cwscms.osi.ca.gov/Portal/Digital-Services-Implementation-Portal/Training?folderId=1957

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 0

5.3.1 Development (Build)

Description

This is the development (build) environment for that is unique for each of the digital
service teams.

Purpose

The purpose of the Development environment is to support each digital service team’s

CI build process.

Assumptions

• Automated tests are run as part of the CI build process

• Developers have local containerized instances of Legacy and Postgres

databases to work with.

Entry Criteria

• Developers pull down the latest version of all the code from the GitHub repo that

they are working on and execute it on their local development environment with

their changes.

Deployment Activities

• Once the developer finishes their development and testing on their local

development environment, they check their code into their team’s GitHub

repository and merge their changes into the master branch, which triggers

automated CI (build) instructions that are managed using Jenkins. The CI

process starts with running through a set of automated unit tests and code

analysis. PreIntThe CI results are posted to the teams’ Jenkins dashboard page

and each of the developers are notified the status of the build (via email or

Slack). If the build is successful (i.e., represented as a green circle in Jenkins), a

new Docker image is created that can be used to deploy in downstream pipeline

environments (e.g., PreInt).

Testing Activities

• The following types of tests are executed as part of each team’s automated CI

process:

o Unit

o Functional

o Automated security testing

o Accessibility

• The following types of code analysis checks are executed as part of each team’s

automated CI process (Back-end teams typically use SonarQube and Front-end

teams typically use CodeClimate to execute these tests):

o Syntax or style checking

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 1

o Static code analysis

o Test coverage analysis

o Security testing

Acceptance Criteria

• The build passes (represented as a green circle in Jenkins.

Future Changes

• The Development Teams need to include security testing as part of their CI build

process.

5.3.2 Pre-Integration (PreInt)

Description

This is an integrated environment that is using containerized instances of legacy
databases with mock data. By design, this environment will be volatile (i.e., updated
frequently) as developers push new/updated containers throughout the day.

Purpose

Provide an opportunity for developers to test their code changes with other digital

service teams. It allows the developers to fail fast and identify any potential integration

issues.

Assumptions

• Automated tests are run manually in PreInt (not part of the deployment process)

• Core County Users will not access PreInt

• PreInt will always contain the mainline version of code (i.e., feature flags are not

turned on)

Configuration

• Uses separate containerized instances of Legacy databases (CMS, LIS, FAS) for

each digital service team. Does not include the Legacy full stack infrastructure

(e.g., CICS and COBOL logic).

• Each digital service team uses its own separate Postgres database instance

(e.g., one for CALS and one for Intake).

• All databases are configured with mock (i.e., obfuscated) data.

• Each digital service team creates and uses their own test data for automated

tests.

• All Postgres databases are reset each night with a baseline set of seed data.

Elasticsearch is updated as part of that process to remove added content.

• Legacy databases are not typically reset each night.

• Authentication uses non-RACF credentials or guest/guest.

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 2

Entry Criteria

• Development Acceptance Criteria has been met (i.e., a successful CI build).

Deployment Activities

• Developers manually deploy the latest “green” container(s) to PreInt on an as

needed basis

Testing Activities

• Developers manually execute their automated acceptance test scripts.

• Other team resources (e.g., QA, Product Owner) perform manual and exploratory

tests.

Acceptance Criteria

• New features pass either automated or manual acceptance tests.

• Code meets or exceeds 70% Test Coverage

Future Changes

• Agree on a process for labeling Docker images as “Ready” for promotion to Int.

• Smoke tests will be automated with each deployment to PreInt to verify that the

application and all key services (e.g., Security API, Search API) are working.

• Each team’s CI build process will be configured to use a static code analyzer

(e.g., SonarQube or CodeClimate) to achieve a minimum code quality goal.

Examples include the following:

o No Security Vulnerabilities

o No Blocker or Critical Issues

5.3.3 Integration

Description

This is an integrated environment that is utilizing the full legacy infrastructure and mock
data.

Purpose

The purpose of the Integration environment is to validate the work of the entire project

team in a full stack environment using automated functional, acceptance, and

regression tests as part of each deployment, when possible. Legacy regression testing

will likely be manual for the foreseeable future.

Assumptions

• The environment is fully built out and supports the necessary network

connections (e.g., VPN access)

• All Legacy system (CMS, LIS, and FAS) testing is done manually

• Each digital service team creates the suite of automated and manual tests that

will be run. This includes all scenarios required to validate the features.

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 3

• Each digital service team creates their own test data for automated tests

• Integration deployment is done manually on an as-needed basis

• As needed, there are more than one Integration environments to support testing

of specific code branches (e.g., Snapshot)

• Legacy database CWSNS1 is shared with multiple Integration environments.

• Core County Users will not be using Integration

• Jenkins deployment scripts are stored in GitHub.

Configuration

• Uses a single instance of each of the Legacy databases (CMS, LIS, FAS), which

includes the full stack infrastructure (e.g., CICS and COBOL logic).

• Uses a single Postgres relational database service (RDS) for all front-end digital

service teams

• All databases are using mock data

• Postrgres databases are reset with each deployment and reset each night

• Legacy databases (e.g., CWSNS1) are not reset every night

• ElasticSearch is rebuilt with each deployment

• Authentication has the option to either use RACF credentials or guest/guest.

Entry Criteria

• PreInt Acceptance Criteria has been met.

Deployment Activities

• DevOps manually deploys the specified versions of containers to specific

environments (e.g., INT, INT02) on an as needed basis. This will be coordinated

by the Release Manager.

o Correct versions/dependencies of containers are deployed together.

• After deploying to Integration a set of smoke tests are run to determine if the

deployment was successful and the installed application is operating as

expected. This will involve just a few tests exercising functionality that depends

on the configuration settings being correct. Ideally, these tests should stop the

application and fail the installation or deployment process if the results are not as

expected.

Testing Activities

• Once the code has been deployed and passes the smoke tests, the developers

will run their team’s suite of automated tests. If this cannot be automated to run

with the deployment, it will likely be done in the morning after a deployment.

• Legacy testers execute manual legacy tests

• Other team resources (e.g., QA Engineers, Product Owner) perform manual and

exploratory tests

Acceptance Criteria

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 4

• Passed smoke testing (Yes, No, N/A)

o At a minimum, must address all applicable architecture components

o Example (Add a client and search for the client)

• All feature changes must meet the following:

o Utilizes all required technology platform architecture components – In

other words, no stubbed-out code (Yes, No, N/A)

o Business rules and validation checks implemented (Yes, No, N/A)

o Passed functional and integration tests – including tests based on user

defined use cases (Yes, No, N/A)

o Passed accessibility testing using an automated accessibility testing tool

(pa11y) and passes 18F’s Accessibility Checklist Critical Items (Yes, No,

N/A)

o Passed smoke testing (Yes, No, N/A)

o Passed regression testing (Yes, No, N/A)

o Passed exploratory testing (Yes, No, N/A)

o Passed legacy testing (Yes, No, N/A)

o Test Coverage > 70% (Yes, No, N/A)

o No open critical bugs (Yes, No, N/A) If yes, identify bug references and

provide reason for promoting

o Meets all “Ready” CWDS pattern library component standards (Yes, No,

N/A) If no, explain

o Infrastructure consistent across all environments (Yes, No, N/A) – this is a

DevOps acceptance criteria

o Passed browser compatibility testing (Yes, No, N/A)

▪ Browser Priority 1 (Standards compliant)

• WebKit

o Chrome

o Safari

o Edge

• Gecko

o Firefox

▪ Browser Priority 2 (Non-Standards compliant)

• Microsoft (Legacy)

o IE v11

o Product Owner Approved (Yes, No) – N/A is not an option ☺

o QA Approved (Yes, No, N/A)

o Demonstrated to Core County Users and feedback incorporated. The

demonstration can be done in any environment. (Yes, No, N/A) – If no,

explain.

Future Changes

• DevOps will provide non-Devops resources the ability to deploy to Integration.

https://github.com/pa11y
https://accessibility.18f.gov/checklist/
https://ca-cwds.github.io/research-design/components.html

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 5

• DevOps will configure the ability to automatically run the suite of automated tests

as part of the deployment to Integration.

• CWS-CMS legacy databases (e.g., CWSNS1) will be configured to reset to the

baseline version (CWSNS0).

5.3.4 Preview

Description

This is an integrated environment that is based on PreInt “ready” Docker images. Like
PreInt, this environment will be updated frequently. It is configured using containerized
instances of databases. The project is treating the core-county users as an extension of
our project team and our Preview environment as an extension of our
Development/PreInt environment. Therefore, the project is not applying the same
scrutiny that it will in any of the Live environments (Sandbox, Prod).

Purpose

The purpose of the Preview environment is provide project staff and core county users

an opportunity to preview changes to the application and provide feedback to the

development teams.

Assumptions

• The Preview environment is fully built out and supports the necessary network

connectivity (e.g., core county access)

• The current promotion timeframe is at the conclusion of each sprint

• There are no Release Notes or Job Aids for Preview

Configuration

• Uses a single instance of each of the Legacy databases (CMS, LIS, FAS), which

includes the full stack infrastructure (e.g., CICS and COBOL logic)

• Uses separate Postgres database for each digital service team (e.g., one for

CALS and one for Intake)

• All databases are using mock data.

• Postrgres databases are reset with each deployment, but not reset each night

• Legacy databases (e.g., CWSNS1) are not reset

• ElasticSearch is rebuilt with each deployment

• Authentication uses non-RACF unique user names and passwords

Entry Criteria

• PreInt Acceptance Criteria has been met.

Deployment Activities

• DevOps manually deploys the specified containers as coordinated by the

Release Manager.

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 6

Testing Activities

• Core County Users and project staff use the system and provide feedback to the

digital service teams.

Acceptance Criteria

• None – The Preview environment is not on the Continuous Delivery Pipeline

towards production.

Future Changes

• Agree to frequency of promoting to Preview sooner than at the end of each sprint

(e.g., nightly, as-needed)

• Agree to promotion process (e.g., allow developers the ability to promote,

schedule it nightly)

5.3.5 Performance (Perf)

Description

This is an environment that is primarily used to conduct load and performance testing.

Purpose

The purpose of the Perf environment is to conduct and pass tests that meets or
exceeds the project defined load and performance benchmarks.

Assumptions

• The environment is fully built out and supports the necessary network

connections (e.g., VPN access)

• Contains a copy of CWS-CMS production data

• Until Pre-Prod is built, Performance will be used to support Performance and

Pre-Prod testing activities

• There currently are no defined CWS-CARES load and performance benchmarks

• Core County Users will not use Perf

• PreProd and Perf are currently one and the same.

Configuration

• Uses a single instance of each of the Legacy databases (CMS, LIS, FAS), which

includes the full stack infrastructure (e.g., CICS and COBOL logic)

• Uses a single integrated Postgres RDS instance for all front-end digital service

teams.

• Legacy databases are using a copy of CWS-CMS production data

• Postrgres database is reset with each execution of the performance tests

• Legacy databases (put correct db names here) are reset to CWSNS0 with each

execution of the performance tests

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 7

• ElasticSearch is rebuilt with each deployment and with each execution of the

performance tests

• Only specified users with production access will have access

• Authentication will use SAF with named user id/ password based on production

level RACF credentials.

Entry Criteria

• A set of load and performance tests have been created.

• Integration Acceptance Criteria has been met.

Deployment Activities

• DevOps manually deploys the specified containers as coordinated by the

Release Manager.

Testing Activities

• Smoke tests are executed

• Development teams execute the load and performance tests

• Security Lead executes the Security Tests

• Tests that require “production” data are executed. This is primarily for tests

related search functionality that requires the volume and uniqueness of data that

can only be found in production.

Acceptance Criteria

• Passed smoke testing (Yes, No, N/A)

• Passed Information Security Lead’s security tests (Yes, No, N/A)

• Passed functional tests (e.g., search) (Yes, No, N/A)

• Passed load testing (Yes, No, N/A)

• Passed performance testing (Yes, No, N/A)

• Provided summary report of all load and performance test results

Future Changes

• The project will define and develop a baseline set of load and performance

benchmarks.

• The project develops a set of obfuscated production test data.

5.3.6 PreProd

Description

This is an environment that exactly resembles the production environment. It is a
complete but independent copy of the Production environment, including the databases.

Purpose

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 8

The purpose of the PreProd environment is to execute the final set of smoke and
security tests before releasing it to one of the Live environments (Sandbox and
Production). Another purpose of the Pre-Prod environment is to provide core county and
state users the opportunity to validate release features in an environment that uses
production data prior to deploying the candidate release into production.

Assumptions

• This environment has not yet been stood up.

• PreProd activities will be conducted in the Performance environment until this

environment is available.

Configuration

• Uses a single integrated Postgres RDS instance for all front-end digital service

teams.

• Uses a single instance of each of the Legacy databases (CMS, LIS, FAS), which

includes the full stack infrastructure (e.g., CICS and COBOL logic)

• Legacy databases are using a copy of production data

• Databases are reset with the execution of the any tests

• ElasticSearch is rebuilt with each deployment and with each execution of the

performance tests

• It is certified for secure production access (i.e., only specified users with legacy

production access will have access)

• Authentication will use SAF with named user id/ password based on production

level RACF credentials.

Entry Criteria

• Performance Acceptance Criteria has been met.

Deployment Activities

DevOps manually deploys the specified containers as coordinated by the

Release Manager.

Testing Activities

• Smoke Testing

• Security Testing

• User Feedback

Future Changes

• DevOps will stand this environment up.

5.3.7 Sandbox

Description

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 9

This is a Live environment that resembles the Production environment with a few key

exceptions:

• No integration with legacy (CWS/CMS or LIS/FAS)

• No system interfaces (e.g., address validation, SDM), which will require

significant amount of custom code.

Purpose

The purpose of the Sandbox environment is to allow the public, which includes project
staff, county users, internal and external stakeholders, as well as the general public, the
ability to access the solution and provide feedback. One of its primary goals is to allow
county users the ability to try out the software to help assess when they are ready to
adopt the software in their county. In order to support the objectives of the Sandbox,
the following design constraints must be applied to the building and configuring of this
environment:

• Available to the general public

• Support user data isolation (in other words, users cannot see other users’ data)

• Support allowing user to select a role (e.g., supervisor)

• Minimize the amount of unique one-off Sandbox-only code

• Use containerized legacy database instances

• Limited interface capability (i.e., Uses stubbed interfaces)

• Use watermarks or some type of indicator that notifies the user that they are

using Sandbox

Assumptions

• Authentication approach has not been determined

• Architecture has not been determined

Configuration

• Uses separate containerized instances of Legacy databases (CMS, LIS, FAS) for

each digital service team. Does not include the Legacy full stack infrastructure

(e.g., CICS and COBOL logic).

• Uses separate Postgres database instances (e.g., one for CALS and one for

Intake).

• All databases are using mock data.

• Each digital service team creates and uses their own test data for automated

tests.

• All Postgres databases are reset each night with the baseline set of seed data.

Elasticsearch is updated as part of that process to remove added content.

• Legacy databases are not typically reset each night.

• Authentication uses user name/password of guest/guest.

•

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 10

Entry Criteria

• Perf/PreProd Acceptance Criteria has been met.

Deployment Activities

• DevOps manually deploys the specified containers as coordinated by the

Release Manager.

Testing Activities

• Exploratory Testing. Users will be provided the ability to enter feedback.

Future Changes

• This environment needs to be built.

• Need to agree on how to best limit user’s access to other user’s data.

5.3.8 Production

Description

This is the final stage/environment in the CD pipeline. This is the place where all code
is released to for users directly interact with.

Purpose

The purpose of the Production environment is to support child welfare workers conduct
their job.

Assumptions

• The counties will work closely with the Implementation team to determine a

timeframe for rolling the solution out to their county.

Key Configuration Components and Settings

• Uses a single integrated Postgres RDS instance for all front-end digital service

teams.

 Entry Criteria

• Perf/PreProd Acceptance Criteria has been met.

Deployment Activities

• DevOps manually deploys the specified containers per the Release Management

Governance process

Testing Activities

• Users provide feedback of any identified bugs, issues, or system enhancement

requests

Future Changes

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 11

• TBD

5.4 Pipeline Configuration Management (CM)

As builds are promoted through the CD pipeline, it is critical that the project be able to
track what versions of code have been deployed to what environment. While the project
is looking into enterprise CM tool, DevOps is tracking versions of all containers for each
environment here.

6 Releases

In following SAFe®’s ART goal of “Release Any Time” the project would like to achieve
frequent delivery of working and fully tested increments of software. This is
accomplished via a stream of releases that may happen at any time and are not tied to
PIs.

6.1 Release Types

Releases are broken into three different types of releases:

• Major Release – The delivery of a set of features associated with a Digital
Service’s MVP into production. Each Major Release typically requires
Implementation Teams’ One-Time Services (e.g., OCM, Training, On-Site
Support)

• Minor Release – The delivery of system enhancements into production. Each
Minor Release typically does not require Implementation Teams’ One-Time
Services (e.g., OCM, Training and On-Site Support)

• Bug Release – The delivery of backwards-compatible bug fixes into production.
Bug Releases do not require Implementation Teams’ One-Time Services (e.g.,
OCM, Training and On-Site Support)

6.2 Release Version Numbering

Release version numbering will align with the release types using the following version
numbering convention MAJOR.MINOR.PATCH.

1) MAJOR - Increment the first digit for all releases that include a new initiative

(e.g., CANS 1.0) that are ready for statewide rollout. The next planned release

will be named CARES 2.0.0, which will include CANS 1.0.

2) MINOR - Increment the second digit for all releases that include new

features/feature enhancements for already implemented initiatives (e.g., IDM 1.3)

or new initiatives that are not ready for statewide rollout (e.g., Hotline 1.0). The

next planned release after CARES 2.0.0 will be named CARES 2.1.0, which will

include IDM 1.3 and Hotline 1.0

https://github.com/ca-cwds/devops-pvt/wiki/Deployment-Versions

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 12

3) PATCH - Increment the third digit for patches/hotfixes (i.e., non-planned updates

to address system issues that must be deployed prior to a planned release).

The following table describes some possible combinations.

Release Components Example Release
Numbering
Convention

If a Release contains a new initiative
ready for statewide roll-out, and new
features for a previously deployed
initiative, and hotfixes the Release will
use the new Major Release logic.

• CANS 1.0.0

• Snapshot 1.4.0

• IDM 1.2.1

• CARES 2.0.0

If a Release does not include a new
initiative that is ready for statewide roll-
out, but does include new features for a
previously deployed initiative and
hotfixes, the Release will use the Minor
Release logic.

• CANS 1.1.0

• Snapshot fixes

for CWS/CMS

8.4

• CARES 2.1.1

6.3 Release Principles

The following are the core principles regarding releases that the project will try to
adhere to:

• Will focus on developing user-ready solutions (i.e., MVPs) over trying to meet
fixed or arbitrary deadlines

• Will establish a development cadence (12 week Program Increment) that is not
tied to releases

• Will develop potentially shippable increments (PSIs) with each iteration

• Will ensure end-user buy-in during design and development of the solution (e.g.,
deploy code to the Preview environment)

• Will be accountable for delivery of each digital service solution within the project’s
allocated time and budget

6.4 Release Management (Scope and Schedule)

The scope of a release is largely driven by each digital service teams’ Service Manager,
who works with their digital service team, which includes a set of core county users, to
identify the specific set of features and capabilities that would comprise of a Minimal

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 13

Viable Product (MVP). The timeline to develop and test the MVP and its target release
date is determined as part of PI planning sessions. The adoption and rollout of the
release to county users is managed and coordinated by the Implementation team.

6.5 Release Rollout

As described in the CWS-CARES Statewide Implementation Plan the rollout of a
release includes the actual transition of Orgs to the new Digital Services.
Implementation activities are triggered when the Digital Services management confirms
delivery of an MVP. The duration of an implementation period may vary due to several
factors, such as the complexity of the functionality being released and the number of
Orgs participating in the Release. While the number of Orgs transitioning within a
Release may vary, the Implementation Methodology being utilized remains consistent
throughout. Given Los Angeles’ large number of users and locations separate
consideration will be given to the phasing and timing of its implementation. Additional
details on the implementation approach can be found in the CWDS Implementation
Plan.

6.6 Release-level Definition of Done (aka Release Readiness
Checklist)

For all types of releases (Major and Minor) to any Live environment (Production and
Sandbox), the Release Manager will maintain a release readiness checklist, which
serves as the Release Definition of Done, that will identify all the criteria required to be
completed prior to releasing any software into a Live environment. See Appendix A –
Sample Release Readiness Checklist for a sample checklist that describes the release
criteria.

6.7 Release Notes

Release Notes will be developed by each digital service team’s Product Owner and
submitted to the Release Manager to be included on the project Github page in the
following format

Release Version # and Date

Digital Service Team

Added

Changed

Fixed

The following is an example for an Intake release to Preview:

Release Version # and Date (v2.4.1 May 10, 2017)

Intake

Added

https://osicagov.sharepoint.com/sites/projects/CWS-NS/Implementation/_layouts/15/WopiFrame.aspx?sourcedoc=%7b81346c15-1b46-4cea-91bd-fcfd36047b95%7d&action=default
https://osicagov.sharepoint.com/sites/projects/CWS-NS/Implementation/_layouts/15/WopiFrame.aspx?sourcedoc=%7bb30125f2-0346-4042-8eb5-7246f14dbb7d%7d&action=default
https://osicagov.sharepoint.com/sites/projects/CWS-NS/Implementation/_layouts/15/WopiFrame.aspx?sourcedoc=%7bb30125f2-0346-4042-8eb5-7246f14dbb7d%7d&action=default

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 14

• Screener Information: Added ability to create a new participant.

• Screener Narrative: Added ability to capture concerns about children and
families.

• Person Search: Added ability to search for clients by First Name, Last Name,
Date of Birth, and Social Security Number.

• Person Demographics: Added ability to capture specific information about
people to ensure that the correct people are added to screenings.

Changed

• Configured the system to reset the data (i.e., remove any new data entered by
Preview users) every night.

• Modified the disclaimer on the login page.

• Changed the login process to accept unique named users and secured
passwords.

Fixed

• Fixed Person Search highlighting.

6.8 Release Governance

The project will adhere to the following release governance process in promoting code
to any Live environment (e.g., Production and Sandbox):

For major releases the primary Go/No-Go Decision Making Body will be comprised
of the Release Manager, Solution Architect, Implementation Manager, Service
Manager(s) that have release-ready digital service content, Executive Leadership
Team (ELT), and a county representative (if a county representative is not available,
an ELT representative may serve in that role). When CWS-CARES software is
ready for a major release, the Release Manager will facilitate a go/no-go meeting.
Note: For Minor releases, the Go/No-Go Decision Body will be comprised of the
Release Manager, Solution Architect, and Service Manager(s) only and will not
require county or ELT participation.

6.9 Rollback Plan

This is a place holder for details regarding the project’s rollback approach to specify the
processes required to restore the system to its original or earlier state, in the event of
failed or aborted implementation.

7 Appendix – Acronyms and Terms

Acronym/Term Description

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 15

Continuous Integration The practice of building and testing an application on every check-in.

Continuous Delivery A software engineering approach in which teams produce software in short
cycles, ensuring that the software can be reliably released at any time.

Continuous
Deployment

The process in which every change is automatically deployed to production.

Configuration
Management

The process by which all artifacts relevant to your project, and the
relationships between them, are stored, retrieved, uniquely identified, and
modified

Docker Container platform that is used by enterprises to build agile software delivery
pipelines to ship new software features.

Docker Container Docker containers are used to bundle application components and their
dependencies in a tested package that is easy to deploy. They are reserved
for use by stateless components, or stateful (data) components that need to
be reset often to a baseline state.

GitHub A web-based Git or version control repository and Internet hosting service
that is used by the project.

Jenkins An open source automation server written in Java that helps to automate the
building and deploying software projects as part of the continuous integration
build process.

Legacy Testing The process of validating CWS-CMS legacy functionality. Specifically, it
involves ensuring that CWS-CARES changes does not break any existing
CWS-CMS functionality.

Load Testing The process of putting demand on a software system or computing device
and measuring its response. Load testing is performed to determine a
system's behavior under both normal and anticipated peak load conditions.

Organization (Org) The logical group of clients that the project’s Implementation team is
responsible for helping get ready for the delivery of the new Digital Services
(DS) or functionality into a live environment. There are 60 Orgs in California
that require implementation services: the State as a whole, the 58 counties,
and the tribes (Karuk and Yurok) as a whole. Each Org may consist of one or
more office locations.

Performance Testing The process of determining the speed or effectiveness of a computer,
network, software program or device. This process can involve quantitative
tests done in a lab, such as measuring the response time or the number of
MIPS (millions of instructions per second) at which a system functions.

Release Notes Release notes are documents, which are released as part of the final build
that contains new enhancements that went in as part of that release and the
known issues of that build. Release notes also feed the process of end-user
documentation, user guide and training materials

Security Access
Framework (SAF)

CDSS developed and maintained Identity and Access Management (IdAM)
system.

Slack A cloud-based set of team collaboration tools and services.

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 16

SonarQube An open source platform used by development teams to manage source code
quality.

CWS-CARES Release Management Plan January 2019

Version 1.0 Page 17

8 Appendix A – Sample Release Readiness Checklist

ID Digital Service Area Readiness Item Environment Status Planned Date Comments

1 Intake Snapshot features completed Integration

2 Sealed and Sensitive Decision (Yes, No, N/A) Integration

3 Smoke Tests E2E Smoke Tests Passed (Yes, No, N/A) Integration

4

Required

Architecture

Utilizes all required technology platform architecture

components (Yes, No, N/A)

Integration

5

Business Rules Business rules and validation checks implemented (Yes, No,

N/A)

Integration

6

Functional and

Integration

Passed functional and integration tests (Yes, No, N/A) Integration

7

Passed accessibility testing using an automated

accessibility testing tool (Yes, No, N/A)

Integration

8

Passed 18F’s Accessibility Checklist for Critical Items (Yes,

No, N/A)

Integration

9 Regression Testing Passed regression testing (Yes, No, N/A) Integration

10

Exploratory Testing Passed exploratory testing (Yes, No, N/A) Integration &

Performance

11 Legacy Testing Passed legacy testing (Yes, No, N/A) Integration

12 Test Coverage Test Coverage > 70% (Yes, No, N/A) Integration

13

OWASP Zed Attack

Proxy (ZAP)

Passed ZAP testing (Yes, No, N/A) Integration N/A

14

Code Climate • No Bugs

• No Security Vulnerabilities

• No Blocker or Critical Issues

Integration

15

Performance Testing Performance Testing Completed and Passed Performance

16 Critical Bugs No open critical bugs (Yes, No, N/A) Integration

17 Bug Workarounds If any bugs, are the identified workarounds Integration

18

Pattern Library Meets all pattern library standards (Yes, No, N/A) Integration

19

Browser

Compatibility

Passed browser compatibility testing (Yes, No, N/A) Integration

20

Product Owner Product Owner Approved (Yes, No) Integration

21 QA Engineer QA Approved (Yes, No, N/A) Integration

22

Core County User

Feedback

Demonstrated to Core County Users and feedback

incorporated. (Yes, No, N/A)

Integration

23 Release Notes Release Notes completed Performance

24

Technology

Platform 1

Perf/Pre-Production Replication and ElasticSearch configured Performance Yes

25

Testing Performance Testing Completed and Passed Performance

26

SonarQube • No Bugs

• No Security Vulnerabilities

• No Blocker or Critical Issues

Integration

27

Test Coverage Test Coverage > 70% (Yes, No, N/A) Integration

28

Acceptance Testing No Must-Fix Bugs Integration

29

Production

Environment

Replication and ElasticSearch configured Production

30 DevOps Perf/Pre-Prod Environment Configured Performance

31

Perf/Pre-Prod Environment Certified Performance

32

RunDeck Monitoring RunDeck Monitoring has been deployed to all higher-order

environments

Integration and

Performance

33

Infrastructure All higher-order environments (PreInt, Integration, and

Perf) have consistent infrastructure tool versions.

Performance

34 Production Environment Configured Production

35

Production Environment Certified Production

36 Security Security Testing Conduct Security tests Performance

Features

Accessibility

Perf/Pre-Prod

Environment

Production

Environment

