

Development Lifecycle and Deployment Architecture Resource Guide 1

DEVELOPMENT

LIFECYCLE

AND DEPLOYMENT

ARCHITECTURE

RESOURCE GUIDE

Development Lifecycle and Deployment Architecture Resource Guide 2

Table of Contents
Copyright .. 3

Introduction.. 4

Who is the Salesforce Certified Development Lifecycle and Deployment Designer?4

Learn Materials ... 5
General Resources ...5
General Overview ..6
Suggested Activities ... 15

Build Materials ... 17

1. Configuration and Change Management ... 17
2. Environment Management ... 31
3. Roles and Responsibilities .. 36

Request a Practice Org .. 48

Join the Salesforce Architect Success Group .. 49

Development Lifecycle and Deployment Architecture Resource Guide 3

Copyright
© Copyright 2000-2017 salesforce.com, inc. All rights reserved. Various trademarks held by

their respective owners.

This document contains proprietary information of salesforce.com, inc., it is provided under

a license agreement containing restrictions on use, duplication and disclosure and is also

protected by copyright law. Permission is granted to customers of salesforce.com, inc. to

use and modify this document for their internal business purposes only. Resale of this

document or its contents is prohibited.

The information in this document is subject to change without notice. Should you find any

problems or errors, please log a case from the Support link on the Salesforce home page.

Salesforce.com, inc. does not warrant that this document is error-free.

Development Lifecycle and Deployment Architecture Resource Guide 4

Introduction

Who is the Salesforce Certified Development

Lifecycle and Deployment Designer?

The candidate looking to obtain the Development Lifecycle and Deployment Designer

Certification assesses the architecture environment and requirements, and designs an

environment management solutions on the Force.com platform that meet the

requirements. The candidate has experience communicating solutions and design trade-

offs to business and IT stakeholders.

The experience and skills that the candidate should possess are outlined below:

 Has 5+ years of experience delivering software solutions, including 2 years on the

Salesforce platform.

 Provides experienced guidance on the appropriate choice of platform technology.

 Understands architecture options and design trade-offs, and has the ability to

communicate design choices.

 Is aware of program and project governance best practices.

 Has experience with project and development lifecycle methodologies.

 Has experience providing requirements traceability through the project’s lifecycle.

 Is aware of Salesforce and third-party application development lifecycle tools.

 Understands test plan design and evaluating effectiveness.

 Is able to architect an environment management plan on the Force.com platform.

 Is aware of tools that can be used to automate environment management and

deployment tasks.

 Understands the Salesforce Metadata API and its features and limitations.

Development Lifecycle and Deployment Architecture Resource Guide 5

Learn Materials

General Resources

Here are some comprehensive general resources that are a good starting place for your self-

paced study.

Development Lifecycle Guide

Whether you are an architect, administrator, developer, or manager, this guide prepares

you to undertake the development and release of applications on the Force.com platform.

It starts with the most basic scenario, using a developer sandbox and change sets. Later

chapters address other development environments, tools, and processes for more complex

enterprise scenarios.

Please register in the Salesforce Success Community and join our Architect

Success group here.

https://developer.salesforce.com/docs/atlas.en-us.dev_lifecycle.meta/dev_lifecycle/
https://developer.salesforce.com/docs/atlas.en-us.dev_lifecycle.meta/dev_lifecycle/
https://success.salesforce.com/loginswitcher?startURL=%2F_ui%2Fcore%2Fchatter%2Fgroups%2FGroupProfilePage%3Fg%3D0F930000000blKv

Development Lifecycle and Deployment Architecture Resource Guide 6

General Overview

The following pages will introduce you to various focuses within the Development Lifecycle

and Deployment expertise. You will be introduced to relevant objectives that require a very

specific set of skills and the curated learn materials that will help you to achieve them.

1. Development Lifecycle

2. Deployment Techniques and Considerations

Each learning resource has a related skill level: Beginner, Intermediate, or Advanced.

Resources marked Core cover essential concepts, while those marked Recommended

provide additional materials for further edification.

Development Lifecycle and Deployment Architecture Resource Guide 7

1. Development Lifecycle

This section will focus on the processes and tools involved in planning and building large-

scale enterprise applications on the Force.com platform.

1.1 Undertake the development and release of applications on the

Force.com platform.

Development Lifecycle Guide

Whether you are an architect, administrator, developer, or manager, this guide prepares

you to undertake the development and release of applications on the Force.com platform.

It starts with the most basic scenario, using a developer sandbox and change sets. Later

chapters address other development environments, tools, and processes for more complex

enterprise scenarios.

Tags: Intermediate, Core

An Introduction to Environments

This article provides an outline of environments available to you while developing and

testing on Force.com. It discusses the various editions, best practices, and design

considerations, and recommends particular environments during the application lifecycle.

Tags: Intermediate, Core

Trailhead : Application Lifecycle Management Basics

After completing this unit, you’ll be able to explain what you can develop in production and

when to use a sandbox, establish a change process in production, recognize and avoid

common mistakes, and assign roles and responsibilities for people on the development

team.

Tags: Intermediate, Core

https://developer.salesforce.com/docs/atlas.en-us.dev_lifecycle.meta/dev_lifecycle/intro.htm
https://developer.salesforce.com/page/An_Introduction_to_Environments
https://developer.salesforce.com/page/An_Introduction_to_Environments
https://trailhead.salesforce.com/en/modules/alm_deployment/units/alm_intro

Development Lifecycle and Deployment Architecture Resource Guide 8

Salesforce1 Platform Enterprise Environment Management

This installment describes a typical environment management strategy that can be

emulated on many Enterprise projects.

Tags: Advanced, Core

1.2 Describe testing strategies and considerations when designing a

comprehensive test plan. Fifteen Things to Consider Before Your

Next Data Migration

Fifteen Things to Consider Before Your Next Data Migration

This article includes a few things to keep in mind when doing data migration.

Tags: Intermediate, Core

Performance Testing Your Force.com Application

This blog post helps you plan for growth by outlining your application testing options,

explaining which ones you should use and when you should use them, and suggesting how

you should work with salesforce.com Customer Support to maximize your tests’

effectiveness and value.

Tags: Intermediate, Core

forcefactory: Generate Representative Mock Test Data for Force.com

This post previews a sample app and related techniques that you can use to quickly create

all the test data you need for a Force.com application or Salesforce implementation, and

helps you avoid disasters that stem from a lack of adequate testing.

Tags: Intermediate, Recommended

https://developer.salesforce.com/blogs/developer-relations/2014/12/salesforce1-enterprise-environment-management.html
https://developer.salesforce.com/page/Fifteen_Things_to_Consider_Before_Your_Next_Data_Migration
https://developer.salesforce.com/blogs/engineering/2013/09/performance-testing-force-com-application.html
https://developer.salesforce.com/blogs/engineering/2013/03/forcefactory-generate-representative-mock-test-data-for-force-com.html

Development Lifecycle and Deployment Architecture Resource Guide 9

1.3 Describe the considerations, stakeholders, and impact of

decisions around a technical solution relative to customer

project governance and the core components of a governance

model.

9 Steps to Effective Change Management

Here are 9 steps to successful change and management of Salesforce releases.

Tags: Beginner, Core

Trailhead : Managing Change with a Governance Framework

After completing this unit, you’ll be able to explain the three components of a governance

framework, describe the main benefits of a center of excellence, and list three areas where

design standards should be applied.

RESOURCE: See “Suggested Activities,” later in this document.

https://help.salesforce.com/servlet/servlet.FileDownload?file=015300000034dZeAAI
https://trailhead.salesforce.com/en/modules/app_deployment/units/app_deployment_governance

Development Lifecycle and Deployment Architecture Resource Guide 10

2. Deployment Techniques and Considerations

This section will focus on the processes and tools needed to prepare and plan for a

successful implementation. Familiarity with best practices and a well-designed deployment

strategy are essential.

2.1 Describe the components of a successful deployment strategy

and describe the platform tools, use cases, limitations, and best

practices for environment management and data migration

strategy.

Change Sets Overview

Use change sets to send customizations from one organization to another.

Tags: Beginner, Core

Trailhead : Deploying from Sandbox with Change Sets

After completing this unit, you’ll be able to explain how change sets make deployment

safer and easier, set up an organization to receive change sets, validate and deploy an

inbound change set, and describe what to do when something you develop isn't available

in change sets.

Tags: Beginner, Core

Trailhead : Learn More About Sandboxes

After completing this unit, you’ll be able to choose the appropriate sandbox for different

scenarios, manage users and licenses in a sandbox, and load data into a sandbox.

Tags: Intermediate, Core

https://help.salesforce.com/articleView?id=changesets.htm&type=0
https://trailhead.salesforce.com/en/modules/app_deployment/units/app_deployment_changesets
https://trailhead.salesforce.com/modules/alm_deployment/units/alm_sandbox

Development Lifecycle and Deployment Architecture Resource Guide 11

Sandbox Setup Tips and Considerations

Sandboxes behave almost the same as your production organization does, but there are

some important differences that affect how you configure and test a sandbox organization.

Tags: Intermediate, Core

Trailhead : Plan Your Production Deployment

After completing this unit, you’ll be able to schedule a release using a formalized process

and use profiles to limit user access.

Tags: Intermediate, Core

Change Sets Best Practices

This Help article sets out a list of Change Sets best practices.

Tags: Intermediate, Core

Trailhead : Deployment Tool Options

After completing this unit, you’ll be able to choose the appropriate deployment tool,

depending on the scenario, and know when to use managed and unmanaged packages in

your organization.

Tags: Intermediate, Core

Force.com IDE

The Force.com IDE provides a comfortable environment for programmers familiar with

integrated development environments, letting you code, compile, test, package, and

deploy, all from within the IDE.

Tags: Intermediate, Core

https://help.salesforce.com/articleView?id=data_sandbox_implementation_tips.htm&type=0
https://trailhead.salesforce.com/modules/alm_deployment/units/alm_deploy
https://trailhead.salesforce.com/modules/alm_deployment/units/alm_deploy
https://help.salesforce.com/articleView?id=changesets_best_practices.htm&type=0
https://trailhead.salesforce.com/modules/alm_deployment/units/alm_tools
https://developer.salesforce.com/page/Force.com_IDE

Development Lifecycle and Deployment Architecture Resource Guide 12

Trailhead : Develop and Test with Sandbox

After completing this unit, you’ll be able to describe when to use each different type of

sandbox and how often each type is refreshed, check your organization to see if sandboxes

exist or are available, create a sandbox, describe what sandbox data templates are, and

explain how to create one.

Tags: Intermediate, Recommended

2.2 Describe the capabilities, characteristics, and limitations of

Metadata API.

Metadata API Developer’s Guide

Use Metadata API to retrieve, deploy, create, update, or delete customization information,

such as custom object definitions and page layouts, for your organization.

Tags: Advanced, Core

Trailhead : Moving Changes Between Environments

After completing this unit, you’ll be able to understand the structure and use of the

package.xml file, split a deployment into more than one deployment profile, based on the

number of components, deployment time, and dependencies, and monitor the status of

deployments in progress.

Tags: Advanced, Core

Salesforce API Series: Release Management with the Metadata API

This webinar focuses on building automation into your release management process using

commonly available enterprise tools.

Tags: Advanced, Recommended

https://trailhead.salesforce.com/modules/app_deployment/units/app_deployment_sandbox
https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_intro.htm
https://trailhead.salesforce.com/modules/alm_deployment/units/alm_migrate
https://developer.salesforce.com/events/webinars/metadata-api

Development Lifecycle and Deployment Architecture Resource Guide 13

2.3 Describe the common tools, benefits, and rationale for using

source control and continuous integration for release

management.

Best Practices: Continuous Integration Techniques

This webpage provides a very quick cheat sheet on continuous integration techniques.

Tags: Intermediate, Recommended

Automating Deployment Between Orgs Using Git Continuous Integration

Automating the deployment between environments (dev, test, prod, etc.) gives

consistency, visibility, and validation to the process. Join us as we cover the theory and best

practices of this approach.

Tags: Intermediate, Recommended

How to Set Up Continuous Integration with Git, Jenkins, and Force.com

Join us as we walk through setting up a continuous integration system for Salesforce

development from scratch, using Git, Jenkins, the Force.com Migration Tool, and the Apex

Data Loader, following a proven, step-by-step approach that you can use with your own

project.

Tags: Intermediate, Recommended

Setting Up Jenkins for Force.com Continuous Integration

The concept behind a continuous integration, or CI, tool is that a constant flow of

development changes and unit testing will be done to detect conflicts and errors within the

development cycle itself. It allows you to perform a baseline of quality assurance without

much reliance on any manual processes.

Tags: Advanced, Recommended

https://developer.salesforce.com/page/Bestpractices:Continuous_Integration_Techniques
https://www.youtube.com/watch?v=_eJn2qNDLHQ&index=20&list=PLFSi-6JPTf9ghCYhGY8Q6pwK-iQcUcMhZ
https://www.youtube.com/watch?v=a0u1CBUsj_I
https://developer.salesforce.com/blogs/developer-relations/2013/03/setting-up-jenkins-for-force-com-continuous-integration.html

Development Lifecycle and Deployment Architecture Resource Guide 14

2.4 Describe the benefits and risks of the different implementation

development methodologies and recommend the appropriate

methodology based on the customer environment.

Introducing Agile Accelerator: How You Can Manage Agile Development Through

Salesforce

With Salesforce Agile Accelerator, a new Salesforce Labs app, development teams can track

business requirements, measure progress, successfully deliver releases, use drag-and-drop

tools to manage backlogs, sprints, and user stories, and collaborate with cross-functional

teams through Chatter.

Tags: Beginner, Recommended

RESOURCE: See “Suggested Activities,” later in this document.

https://www.salesforce.com/blog/2015/04/introducing-agile-accelerator.html
https://www.salesforce.com/blog/2015/04/introducing-agile-accelerator.html

Development Lifecycle and Deployment Architecture Resource Guide 15

Suggested Activities

To practice these activities, you may do one of the following:

 Request a free Practice Org by creating a case here.
□ Question Type: Architect Support

□ Question Detail: Request Practice Org

You should receive login information in about two business days.

 Use your existing Developer org.

 Sign up for a free Developer Edition account here.

1. Keep Track of Online Job Applications [Requirements

Traceability]

1. Create a Word doc with the theoretical problem statement.

2. Reformat the problem statement into a user story using the following format:

3. As a__________I want to ___________ so that ___________.

4. Create user acceptance criteria for the user story.

5. Create an Excel document with the breakdown of the problem statement into

individual requirements.

6. Define functional and non-functional tests and tie them to the requirements.

7. In the development org, start working on one of the requirements and change

status in Excel to indicate it.

8. Once done, mark it in Excel as ready for QA.

9. Perform functional and non-functional tests.

10. Keep track of how those tests behaved and whether they succeeded or failed. If the

tests failed during this test run, re-do steps 10 and 11.

11. Fix the problems.

12. Rerun the tests.

13. Mark them as successful.

2. Ant Script

Using the Force.com migration tool, create an ant script to migrate changes from

Development to Production.

Experiment with the different flags available and the metadata APIs.

http://certification.salesforce.com/open-a-case
https://developer.salesforce.com/signup

Development Lifecycle and Deployment Architecture Resource Guide 16

3. CRUD-based Calls

Create an application to perform CRUD-based calls. Example code is provided here.

4. Planning Ahead

In the context of the Winter '16 release, after which date will CS3 versus CS1 be different

versions? Use this helpful webpage as a reference.

https://developer.salesforce.com/docs/atlas.en-us.api_meta.meta/api_meta/meta_calls_intro.htm
https://www.salesforce.com/blog/2015/07/salesforce-winter-16-sandbox-preview.html

Development Lifecycle and Deployment Architecture Resource Guide 17

Build Materials

1. Configuration and Change Management

2.1 Describe the components of a successful deployment strategy

and describe the platform tools, use cases, limitations, and best

practices for environment management and data migration

strategy.

Use Case

A company, Universal Containers, works with different partners and has few admin

resources to take care of the day-to-day administration tasks. As a result, UC would like to

find a way to automate a set of validations when migrating changes between environments

in order to enforce some of their internal rules, like the usage of particular naming

conventions and other things along those lines.

Detailed Requirements

1. When a package contains at least one trigger, the administrator wants to be

notified and the deployment must be stopped to dedicate some time to review

it/them.

2. When a package contains Apex classes or Visualforce pages, the package can be

deployed only if the proper naming convention is used, and is prevented if not.

Visualforce page names should have the following format:

VFPXXX_<PageName> where XXX represent 3 digits.

Apex class names should follow the following format:

VFCXXX<ClassName> or VFCXXX<ClassName> where XXX represents 3 digits.

3. When a package contains objects with custom fields, a verification should be

performed to validate if the fields contain descriptions, and the deployment

should be stopped if a field description is missing.

Development Lifecycle and Deployment Architecture Resource Guide 18

Prerequisite Setup Steps

In order to complete this build material, you must have an established

proficiency in XML (Extensible Markup Language) and XSLT (Extensible

Stylesheet Language Transformations).

1. ANT must be installed and properly configured on your machine.

□ You can find more information using the following link:

http://ant.apache.org/manual/install.html

□ To verify the installation, you can execute the “ant –version” command, and you

should see something like:

Apache Ant™ version 1.9.4 compiled on April 29, 2014

2. Extract the ConfigurationManagement_SupportingFiles.zip file.

3. The different ANT commands used in this document will have to be executed from

the root folder containing the build.xml file.

4. Download and copy the Force.com Migration Tool file (a.k.a ant-salesforce.com.jar)

in the Libraries folder, which contains the saxon9he.jar file.

5. Modify the build.properties file to reflect your credentials to the target sandbox.

Download the supporting files to complete this build here. The

ConfigurationManagement_SupportingFiles.zip file contains the following:

http://ant.apache.org/manual/install.html
https://org62.my.salesforce.com/sfc/p/#000000000062/a/30000000HWnN/MoU4SfyzfuQrnVN8rB2bLLm9zOIo4H6dfR1F8x_P8_c

Development Lifecycle and Deployment Architecture Resource Guide 19

The ExportFolder.log file is generated by the build.xml script itself and

may be not present when you check the content of your folder.

The 2 folders, ExportFolder and ExportFolder-1, represent 2 distinct packages. The first

contains metadata not compatible with the different rules implemented, and the second

contains metadata compatible with the expected rules.

Considerations

 What deployment tool can be considered?

 Do you need to consider a fully custom solution?

 Can we use existing ANT tasks to fulfill some parts of the requirement?

 Can we find an option without real development?

Development Lifecycle and Deployment Architecture Resource Guide 20

Solution

Best Solution Overview

Different options are possible to fulfill the requirements, but in order to provide a solution

that is flexible, easy to use, and easily customizable, the recommended solution is to

leverage the options that do not involve code.

Requirement #1: Trigger Check

The first requirement is to be able to validate that a particular package, which is a particular

folder, is either not present or does not contain files having a particular extension (here,

“trigger”).

The first part of the requirement is to make sure that no trigger file is present in the usual

Triggers folder available in an ANT package.

The ANT framework provides tasks that can help in this context. The first task used is called

ResourceCount and allows us to count the number of files contained in a particular folder

and matching a particular format. The second task is the Fail task that allows a build to be

stopped (ANT process) under certain circumstances, such as if the number of files

corresponding to triggers is greater than a specific threshold (here, 0). You can find more

information on the ResourceCount and Fail tasks in the following links:

1.https://ant.apache.org/manual/Tasks/resourcecount.html

2.https://ant.apache.org/manual/Tasks/fail.html

With these 2 tasks, we can answer the original requirement. Let’s start with the most

important, which is to be able to make sure that there is no trigger in the usual triggers

folder.

1 <target name="checkTriggersInPackage" depends="trigger.check" if="triggers">
2 <property name="trigger.dir" value="${export.folder}/triggers" />
3 <resourcecount property="count">
4 <fileset id="matches" dir="${trigger.dir}">
5 <patternset id="files">
6 <include name="**/*.trigger"/>
7 </patternset>
8 </fileset>
9 </resourcecount>
10 <fail message="'${count}' triggers have been foumd in '${trigger.dir}'">
11 <condition>
12 <resourcecount when="greater" count="0" refid="matches" />
13 </condition>
14 </fail>
15 </target>

https://ant.apache.org/manual/Tasks/resourcecount.html
https://ant.apache.org/manual/Tasks/fail.html

Development Lifecycle and Deployment Architecture Resource Guide 21

The logic, in bold, counts—thanks to the ResourceCount task—the number of files having

the trigger extension in the triggers folder.

The part, handled by the Fail task, compares the number of files counted thanks to the

preceding task and compares it with the threshold 0 and stops the build if the number of

triggers is greater than 0.

The last part of the first requirement is to make sure that the logic/validation presented

above is executed only if there is a triggers folder present in the analyzed package. In the

previous code snippet, we can see that the target tag has 2 attributes, which are the

depends attribute as well as the if attribute, which execute the target only if the triggers

property is set up by the trigger.check target called by the depends attribute. The

trigger.check target is provided below and creates the trigger's property if there is a

Triggers folder present in the folder dedicated to the analyzed package.

1. <target name="trigger.check">
2. <condition property="triggers">
3. <and>
4. <available file="${export.folder}/triggers" type="dir" />
5. </and>
6. </condition>
7. </target>

The following text shows the output of the target calling the checkTriggersInPackage

target on the ExportFolder folder, representing a package containing triggers.

Development Lifecycle and Deployment Architecture Resource Guide 22

The next text shows the output of the target calling the checkTriggersInPackage target on

the ExportFolder-1 folder, representing a package containing no triggers.

Requirement #2: Naming Convention

Fileset and Selectors can be used to fulfill the requirement around the validation of the

naming convention. Indeed, Selectors are a mechanism whereby the files that make up a

<fileset> can be selected based on criteria other than file name as provided by the

<include> and <exclude> tags. These can be used to validate the naming convention

thanks to the regex attribute.

You can find more information on the Selectors:

https://ant.apache.org/manual/Types/selectors.html

1. <target name="checkClassesPackage">
2. <property name="class.dir" value="ExportFolder/classes" />
3. <resourcecount property="count">
4. <fileset id="matchesGlobal" dir="${class.dir}">
5. <patternset id="files">
6. <include name="**/*.cls"/>
7. </patternset>
8. </fileset>
9. </resourcecount>
10. <resourcecount property="countNC">
11. <fileset id="matches" dir="${class.dir}">
12. <filename regex="(?:VFC|AP)[0-9][0-9][0-9]_.*.cls"/>
13. </fileset>
14. </resourcecount>
15. <fail message="Found '${count}' classe(s) which do(es) not follow the naming convention in

'${class.dir}'">
16. <condition>
17. <resourcecount when="less" count="${count}" refid="matches" />
18. </condition>
19. </fail>
20. <echo message="Naming convention validation for classes successful"/>
21. </target>

https://ant.apache.org/manual/Types/selectors.html

Development Lifecycle and Deployment Architecture Resource Guide 23

The rest of the previous snippet is very similar to the one used to fulfill

Requirement #1. The only difference is in bold and counts the number of files

matching the expected naming convention.

The following snippet shows the checkClassesPackage-Fail target that calls the

checkClassesPackage target on the ExportFolder folder, representing a package containing

an Apex class which does not follow the naming convention.

1. <target name="checkClassesPackage-Fail">
2. <propertyreset name="export.folder" value="ExportFolder"/>
3. <echo message="Validates if the package present in the '${export.folder}' folder contains some

classes whose name follows the naming convention (in this case the classes do not follow the
naming convention)"/>

4. <antcall target="checkClassesPackage">
5. <param name="class.dir" value="${export.folder}/classes"/>
6. </antcall>
7. </target>

The following text shows the output of the preceding target.

Development Lifecycle and Deployment Architecture Resource Guide 24

The following snippet shows the checkClassesPackage-Success target that calls the

checkClassesPackage target on the ExportFolder-1 folder, representing a package

containing an Apex class that follows the naming convention:

1. <target name="checkClassesPackage-Success">
2. <propertyreset name="export.folder" value="ExportFolder-1"/>
3. <echo message="Validates if the package present in the '${export.folder}' folder contains some

classes whose name follows the naming convention (in this case the classes follow the naming
convention)"/>

4. <antcall target="checkClassesPackage">
5. <param name="class.dir" value="${export.folder}/classes"/>
6. </antcall>
7. </target>

The following text shows the output of the preceding target.

Requirement #3: Design Standard

The object's definitions, as many other metadata files accessible thanks to the metadata

API, are in the XML format. ANT easily leverages XSLT to offer a way to support the

requirement.

The idea here is pretty straightforward and can be described in the following steps:

1. Create a collection of XML documents corresponding to the different objects available in

the Objects folder.

2. Loop through the collections of objects.

3. Loop through the fields and check if the field contains a description. If there is no

description, create a row for this field which will be added to a CSV file generated through

the XSLT transformation.

4. After the generation of the CSV file, the build script will check the size of the CSV file and

will stop the build if the size if greater than 0.

Development Lifecycle and Deployment Architecture Resource Guide 25

The files designStandardChecks-KO.xsl and designStandardChecks-OK.xsl are 2 XSL

stylesheets that differ only by the root folder specifying the package analyzed

The code snippet below creates a collection of XML documents corresponding to the

definitions of the custom objects present in the ExportFolder containing 1 object definition

with fields having no description:

1. <xsl:template match="/">
a. <xsl:for-each select="collection(iri-to-

uri('ExportFolder/objects/?select=*.object;recurse=yes'))">
i. <xsl:apply-templates mode="inFile" select=".">

a. <xsl:with-param name="folder">
2. <xsl:value-of select="tokenize(document-uri(.), '/')[last()-1]"/>
3. </xsl:with-param>

a. <xsl:with-param name="filename">
4. <xsl:value-of select="tokenize(document-uri(.), '/')[last()]"/>
5. </xsl:with-param>

i. </xsl:apply-templates>
b. </xsl:for-each>

6. </xsl:template>ion with fields having no description:

The following code snippet loops through every field and checks the presence of the

description attribute, and generates a row for the CSV file if there is no description.

1. <xsl:template match="doc:CustomObject" mode="inFile">
2. <xsl:param name="folder" />
3. <xsl:param name="filename" />
4. <xsl:param name="objectlabel" select="doc:label" />
5. <xsl:param name="curr-label" select="substring-before($filename,'.')"/>
6.
7. <xsl:for-each select="doc:fields">
8. <!-- Check if there is no description -->
9. <xsl:if test="not(doc:description)">
10. <xsl:value-of select="substring-before($filename,'.')"/>
11. <xsl:text>,</xsl:text>
12. <xsl:value-of select="$objectlabel"/>
13. <xsl:text>,</xsl:text>
14. <xsl:value-of select="doc:fullName"/>
15. <xsl:text>,</xsl:text>
16. <xsl:value-of select="doc:type"/>
17. <xsl:text>
</xsl:text>
18. </xsl:if>
19. </xsl:for-each>
20. </xsl:template>

Development Lifecycle and Deployment Architecture Resource Guide 26

The code snippet below shows the designStandardCheck target which has a review

property allowing you to use one of the 2 stylesheets presented above which, behind the

scene, selects a particular package.

1. <target name="designStandardCheck" description="Validate that the fields have a description
attribute">

2. <property name="review" value="designStandardChecks-KO" />
3. <property name="myclasspath" refid="saxonpath"/>
4.
5. <xslt in="dummy.xml" out="${review}.csv" processor

="org.apache.tools.ant.taskdefs.optional.TraXLiaison"
6. style="${review}.xsl" force="true" classpathref="saxonpath">
7. <factory name="net.sf.saxon.TransformerFactoryImpl"/>
8. </xslt>
9.
10. <!-- sets the count property : if the size of the file generated by the XSLT task is 0, we

consider that there is no missing description
11. (when a description is missing for 1 field, a row is created in the CSV file) -->
12. <resourcecount property="count">
13. <fileset id="matchesGlobal" dir=".">
14. <patternset id="files">
15. <include name="${review}.csv"/>
16. </patternset>
17. <size value="0" when="more"/>
18. </fileset>
19. </resourcecount>
20.
21. <fail message="1 or more fields have no description. More information can be found in the

${review}.csv file ">
22. <condition>
23. <!--Check if the count property of the resourcecount task is greater than

0-->
24. <resourcecount when="more" count="0" refid="matchesGlobal" />
25. </condition>
26. </fail>
27. <echo message="All the fields have a description attribute"/>
28. </target>

Development Lifecycle and Deployment Architecture Resource Guide 27

The following output corresponds to the result of the call to the checkDesignStandard-Fail

target that calls the XSLT transformation defined in the designStandardChecks-KO.xsl file.

The content of the CSV file generated is the following, where we can find one row per field

having no description:

Each of the 2 stylesheets generates a CSV: designStandardChecks-OK.csv

and designStandardChecks-KO.csv.

Development Lifecycle and Deployment Architecture Resource Guide 28

Complete Example

A target called "deploy-with-check" has been created, which attempts to deploy the

package only if the different validations are successful.

1. <target name="deploy-with-check" depends="INIT,TO,cond2,checkPackage,deployPackage" />

The following code snippet shows that the checkPackage target that is called just before

the deployPackage target in the depends attribute of the deploy-with-check target above

calls the different targets covering the 3 different validations covered in the previous

sections.

1 <target name="checkPackage" >
2 <propertyreset name="export.folder" value="ExportFolder-1"/>
3 <antcall target="checkTriggersInPackage">
4 <param name="trigger.dir" value="${export.folder}/triggers"/>
5 </antcall>
6 <antcall target="checkClassesPackage">
7 <param name="class.dir" value="${export.folder}/classes"/>
8 </antcall>
9 <antcall target="checkPagesPackage">
10 <param name="page.dir" value="${export.folder}/pages"/>
11 </antcall>
12 <antcall target="designStandardCheck">
13 <param name="review" value="designStandardChecks-OK"/>
14 </antcall>
15 </target>

Development Lifecycle and Deployment Architecture Resource Guide 29

The following output shows the result of the execution of the deployPackage target, and we

can see that the different validations are done.

Development Lifecycle and Deployment Architecture Resource Guide 30

Extension of the Exercise

The build script contains the necessary targets, and especially the all target, to build a

sequence of actions extracting the metadata from one org, making a set of validations, and

deploying the package if a set of rules is valid.

Troubleshooting

If you receive the following error, this means that you have not added the ant-saleforce.jar

file in the Libraries folder.

Development Lifecycle and Deployment Architecture Resource Guide 31

2. Environment Management

2.4 Describe the benefits and risks of the different implementation

development methodologies, and recommend the appropriate

methodology based on the customer environment.

This document demonstrates a use case on environment management. For more details on

this topic, please read Introduction to the Force.com Development Lifecycle.

Use Case

Universal Containers is using Salesforce.com to run their sales processes. Their business

processes have changed over the years and resulted in some of the legacy overhead being

carried over. They have decided to redesign their application leveraging the latest features

from the platform. As part of this initiative, they want to address the following challenges:

 The company currently has a mix of admins and developers, and everyone pushes

changes to production directly.

 Environment refreshes are not planned, and this results in unavailability of the

updated environment and data when required.

 Deployments are not predictable and sometimes take multiple attempts to succeed.

UC wants to automate the deployment process.

 The production environment needs to be controlled and auditable for every change

that occurs.

Recommend an environment strategy to address these challenges.

Prerequisite Setup Steps

1. Create a Deployment Admin in Salesforce. It's a best practice to have segregation of

roles and responsibilities. It helps with auditing and access control.

Considerations

 What are different types of sandboxes available in each of the editions?

 What are the considerations for recommended sandbox type?

 What are the different deployment tools and techniques available with the

Force.com platform?

 What are the pros and cons for each of the tools?

 What features can we leverage for auditing

https://developer.salesforce.com/docs/atlas.en-us.dev_lifecycle.meta/dev_lifecycle/intro.htm

Development Lifecycle and Deployment Architecture Resource Guide 32

Solution

Best Solution Overview

Step 1: Create a list of environments with actors for each one

 Salesforce provides different types of sandboxes, such as Developer, Developer Pro,

Partial Copy, and Full Copy.

 At a bare minimum, the software development lifecycle has three stages: Build, Test,

and Live.

 The Build stage is owned by the Developer. The environment used during the build

stage will be used by Developers. It will not need a large amount of storage.

 The Quality Assurance team owns the Test stage. The environment used during the

test stage will need data for testing. The data migration testing will need a full set of

data, and a Full Copy sandbox is the right choice.

 Functional Testing or System Integration testing will need some data for testing but

may not need a full set of data, so Developer Pro or Partial Copy sandboxes are the

right fit here.

 Performance testing and User Acceptance Testing are the right use cases for

 a Full Copy sandbox, as it provides a full set of data and baseline application

performance.

 The Live stage is Production and only business users have access to it.

Development Lifecycle and Deployment Architecture Resource Guide 33

Step 2: Map out the environment's structure

Universal Containers is running multiple projects at the same time. However, they want to

standardize the process to ensure that the environments are being used optimally. They

would like complete autonomy for each of the projects, as well.

Universal Containers is using a Software Configuration Management (SCM) tool for version

repository and collaboration. The SCM tool referred to here is Git.

Developer 1 is working on one project in a sandbox, while Developer 2 is working on a

separate project in a different sandbox. Each of the projects continues its development and

commits the code to the SCM repository.

The Integrated Development sandbox is where both developers commit their project-

related codebases and test them together. This is necessary because Project 1 changes may

conflict with Project 2 changes. The Integration Development environment identifies those

conflicts early in the Software Development Lifecycle so that potential reworking in later

phases is avoided.

If the tests in Integrated Development are successful, the project moves on to System

Integration Testing (SIT), User Acceptance Testing (UAT), Training, and finally Production.

Development Lifecycle and Deployment Architecture Resource Guide 34

The Hotfix is an environment that is introduced to the process if there are any Production

defects that need to be urgently addressed. This environment—also known as QuickFix or

shortest path to Production—is mainly used by the Production Support or Level 1 Support

teams. It corrects critical or serious defects at a faster rate through off-cycle deployment.

Step 3: Define the deployment path from lower environments to

higher environments.

In an enterprise environment, Production and other higher environments are controlled.

That means access to those environments is limited and all the changes to them need to

follow a predefined Change Approval process.

We always recommend that our customers have a different set of environments to aid in

the deployment flow.

We use a version control tool to commit all of our changes, since there will most likely be

multiple developers working on changes. The tool promotes collaboration between the

team and provides auditing on the changes. In this particular diagram, we are using

BitBucket.

We use Jenkins as our continuous integration tool for a stable and predictable build and to

ensure that recent changes are not resulting in broken test cases. We schedule it to run for

every commit into version control.

Development Lifecycle and Deployment Architecture Resource Guide 35

There are two major results that we are achieving:

1. We ensure that our build is always intact by using a Developer sandbox called Build.

Once the first commit has been made, Jenkins retrieves those changes from the

repository, runs all the test classes, and deploys to the Build sandbox to make sure all the

text classes have run successfully.

2. If there are any failures, Jenkins will notify the developer who broke the build. We

don’t have to wait until it deploys to the Production environment to reveal any

defects.

Jenkins also automates deployments with the help of the Force.com Migration Tool. While

Salesforce does provide change sets and the Force.com IDE as deployment options as well,

the Force.com Migration Tool is the best choice for an automated build process. It is an

Ant-based script that supports all metadata and allows migration of metadata from one

environment to another across different production orgs. This option requires moderate

technical skills for initial setup.

Once our build is successfully deployed, it will move into the SIT environment, where the

Quality Assurance (QA) team can run all of our integration tests and functional scripts with

certain defined data and all possible scenarios. Any defects that are found will be sent back

to the Development cycle.

Next, the build will deploy to the User Acceptance Testing environment, where the same

and possibly different scripts will be executed and signed off on by power users or business

SMEs.

Next, we deploy to the Training environment to train the users.

The final deployment is to the Production environment, where all of our sales and service

users will use the system. Any production defects or product enhancement requests will

then feed back to the development cycle.

Development Lifecycle and Deployment Architecture Resource Guide 36

3. Roles and Responsibilities

1.1 Undertake the development and release of applications on the

Force.com platform.

Use Case

Universal Containers has been using Salesforce.com for sales and service for over four

years. You have been asked to perform a review of Universal Containers' environment and

deployment strategy. They would like to re-architect their current strategy to allow them to

be more agile and responsive to their business needs. Over the last four years, they have

been using the Force.com IDE to deploy metadata between their sandbox environments

and also to production. They also used change sets for a limited time, but their developers

found the IDE preferable.

Detailed Requirements

Some challenges they have faced include:

 Unpredictable results when deploying metadata. Sometimes deployments fail when

they worked just fine in another sandbox.

 Lack of auditability of what has been released.

 The number of bugs reported from Production after deployments is consistently

high and rising.

 The QA team is not able to keep up with the development work being done. Their

testing scripts are 80% manual.

 Deployments take upwards of 3 hours, even though the actual deployment in

Salesforce takes only 20 minutes. This is due to several failures before a successful

deployment.

 Sandbox refreshes also take significant time. They have to manually change users,

permissions, and load test data.

 Their release process doesn’t handle parallel development streams very well.

 They are unsure of whether they should have each developer in their own sandbox,

multiple developers in a single sandbox, or some hybrid approach.

Development Lifecycle and Deployment Architecture Resource Guide 37

Current Infrastructure

The current infrastructure at Universal Containers is outlined below:

 They have a 50/50 mix of code developers and point-and-click administrators.

 Their Sales Cloud team releases software every month and their Service Cloud team

releases every three months.

 They currently give each developer their own sandbox.

 UC encourages innovation and senior executives often require separate

development environments for their teams' innovation work.

Considerations

1. Who are key individuals/roles involved in the application lifecycle management and

deployment?

2. What role is each individual going to play?

3. What are the responsibilities for each role?

4. How do you align different stakeholders towards organizational goals?

5. What key performance indicators (KPIs) are critical to measure the effectiveness of

release management?

6. How is the roles/responsibilities alignment tracked and measured?

7. Is the role/responsibility matrix is documented? Is it a formal process?

8. Are there audit and compliance requirements from each role?

Development Lifecycle and Deployment Architecture Resource Guide 38

Solution

Best Solution Overview

Center of Excellence (CoE) – Key Release Management Roles and

Responsibilities

Complex development processes spanning multiple release schedules and systems, as well

as the types of changes made in Salesforce orgs, often make the release management

process in Salesforce critical and complex. Key aspects to help solve this problem are:

 Identify the key actors/roles and their responsibilities.

 Identify the tools that will be used.

 Standardize the process.

 Identify the key KPIs.

 Monitor and measure the KPIs.

The day-to-day management of the Salesforce practice will be driven by a program team,

which comprises functional teams that represent Business, IT Development (scrum),

Enterprise Architecture, Environment Management, Release Management, and Support

teams. Each function has a variable level of influence in the way release and change

Management happens with Salesforce and at the enterprise level. Early identification of the

key roles and standardizing their responsibilities will go a long way in ensuring repeatable,

successful releases in Salesforce.

Fig 1. Typical Salesforce Release Management CoE

Development Lifecycle and Deployment Architecture Resource Guide 39

Fig 2. Release Management CoE team

Role Key Responsibilities Sandbox

Type

Sandbox

Access

Level

Program

Release

Manager

 Coordinates and plans the

development projects (work

streams) for code drops and merges

to System Integration Testing (SIT),

Quality Assurance Testing, User

Acceptance Testing (UAT), and

Production Environments.

 Coordinates code, metadata, and

data migrations.

 Smoke tests the release.

 Represents the proposed release

and obtain the approvals from

Change Approval Board (CAB)

/Change Control Board (CCB).

 Creates and sets release calendar

for all features and enhancements.

 Coordinates the release with other

releases of the enterprise.

 Reviews back-out plans and

authorizes the back-out plan

(if required.)

All Admin

Development Lifecycle and Deployment Architecture Resource Guide 40

Role Key Responsibilities Sandbox

Type

Sandbox

Access

Level

Project Lead
 Ensures developers' code is

integrated in the DevInt sandbox

environment on daily basis.

 Ensures that there is a successful

build at the end of every day’s

development effort.

 Ensures daily check-in of code and

metadata elements that were

changed etc. into approved version

control system.

 Responsible for resolving conflicts in

changes made in metadata/code

etc. by the developers.

 Maintains the sanity of DevInt

sandbox.

 Ensures the unit test coverage tests

are invoked after every build

activity.

 Ensures early resolution of conflicts

in changes. For example, code or

metadata is reconciled in a timely

manner.

 Ensures that no unauthorized

developer makes changes in code

beyond the DevInt sandbox

environment.

 Ensures that access to the DevInt

sandbox is limited to authorized

developers only.

 Provides necessary metrics and data

that show the health of changes in

Dev sandboxes as they move to the

DevInt Environment. For example,

the dashboard of successful builds

versus failed builds in DevInt

sandbox, etc.

All Admin

Development Lifecycle and Deployment Architecture Resource Guide 41

Role Key Responsibilities Sandbox

Type

Sandbox

Access

Level

Enterprise

Architecture

Team

 Makes recommended list of

products/tools, such as:

□ Enterprise version control

system(s).

□ Enterprise testing tools

(performance testing, test

automation tools).

□ Enterprise Integration tools.

□ Enterprise Master Data

Management tools.

□ Enterprise release management

tools.

□ Enterprise mobile device

management tools.

 Makes recommended processes

around:

□ Data migration (large volumes).

□ Metadata migration.

□ Code migration.

 Representation in Change Approval

Board (CAB)/Change Control Board

(CCB).

All Admin

Development

Coordinator

 Responsible for daily builds in the

DevInt sandbox environment.

 Dev Sandbox refreshes.

 Data priming on Dev Sandboxes.

 1st-level merge coordinator for

parallel developments.

 Responsible for maintaining the

Developer and DevInt sandboxes.

Dev, SIT, UAT Admin

Development Lifecycle and Deployment Architecture Resource Guide 42

Role Key Responsibilities Sandbox

Type

Sandbox

Access

Level

Environment

Manager

 Maintains all the environments

excluding PROD instance.

 Authorizes Sandbox refreshes.

 Publishes sandbox refresh

schedules.

 Plans full sandbox refreshes.

 Authorizes the data loads in to

sandbox environments.

 Report on comparison of various

sandbox environments.

Dev, SIT, UAT

(all except

Production)

Admin

Developers
 Ensure early resolution of conflicts

in changes; code or metadata is

reconciled in a timely manner.

Dev, SIT,

Hotfix

Admin

Configuration

Manager

 Ensures adherence to configuration

management policies.

 Provides Subversion access.

 Responsible for trunk/branch

creation for new releases and

service packs.

 Responsible for providing tag/label

for release and code drops.

 Ensures code drop tag is not

modified after specified point in

time.

All Admin

Salesforce

Admin

 Provides requisite access to

Salesforce users.

 Provides snapshot reports (for

metadata comparison purposes).

 Sandbox creation and refreshes.

 Data loads.

 Code migration to the System

Integration Test (SIT), Performance

Quality Testing (PQT), User

Acceptance Testing (UAT), Training,

and Prod environments.

All Admin

Development Lifecycle and Deployment Architecture Resource Guide 43

Role Key Responsibilities Sandbox

Type

Sandbox

Access

Level

Test Team
 Creates test plan and test scripts

applicable for the release.

 Performs PQT on developed

product.

 Reports defects.

All End User

Level

Support Team
 Supports ongoing production

issues.

 Troubleshoots issues reported.

 Reproduces issue in the training/full

copy sandbox.

 Tests and validates hotfix.

Production,

Training, UAT,

Hotfix

Delegated

Admin

Roles and Responsibilities in the Incident Resolution End-to-End

Process

Day-to-day end user support is critical to the overall success of the platform and from the

end user experience point of view. Very much similar to the overall development and

deployment process, team members and their roles are critical in incident resolution. The

overall program benefits from a well-defined process and clearly defined roles and

responsibilities. The incident management process also helps the development team fully

focus on various projects in flight while support resources manage day-to-day support with

a clearly defined escalation process (tiered support model). The following table illustrates

various roles in the incident resolution process:

Role Responsibilities

End User

 Reports issue through well-defined process and tool; for example,

reporting via a portal (submitting a case or sending an email). We

highly recommend a case management process.

 Follows up on the issue.

 Tests reported issue in the sandboxes.

 Confirms the closure of the issue.

Development Lifecycle and Deployment Architecture Resource Guide 44

Role Responsibilities

Support Team
 Logs the issue.

 Reproduces the issue in the Full Copy Sandbox. The Support Team

often has a delegated admin to Production environment where a

team member could try to follow steps as an end user.

 Follows up with the end user for any additional details.

 Escalates the case to the next level of support (admin or designated

developer) for fix.

 Coordinates efforts to get issue fixes in sandboxes.

 Communicates with end users with the progress and estimated

delivery date of the fix.

 Closes the issue.

Test Team
 Tests issues in various sandboxes as defined by the incident

management process.

Admin
 Fixes issues in the Hotfix environment and Production as per the

deployment process (for configuration related issues.)

Developers
 Troubleshoots and fixes development related issues.

 Coordinates with the Release Manager to promote changes in the

sandboxes as per the defined Hotfix process.

Environment

Manager

 Coordinates efforts in code/config migration among Full

Copy/Training, Hotfix, and other sandboxes based on fixes getting

deployed. This process ensures that a production issue getting fixed is

not reintroduced and that the fix is patched/merged in all

environments.

Release

Manager

 Identifies the date and time to promote the fix in Production.

 Deploys the fix in Production.

Roles and Responsibilities in the Incident Resolution End-to-End

Process

Day-to-day end user support is critical to the overall success of the platform and from the

end user experience point of view. Very much similar to the overall development and

deployment process, team members and their roles are critical in incident resolution. The

overall program benefits from a well-defined process and clearly defined roles and

responsibilities. The incident management process also helps the development team fully

focus on various projects in flight while support resources manage day-to-day support with

a clearly defined escalation process (tiered support model). The following table illustrates

various roles in the incident resolution process:

Development Lifecycle and Deployment Architecture Resource Guide 45

Role Responsibilities

End User
 Reports issue through well-defined process and tool; for example,

reporting via a portal (submitting a case or sending an email). We

highly recommend a case management process.

 Follows up on the issue.

 Tests reported issue in the sandboxes.

 Confirms the closure of the issue.

Support Team
 Logs the issue.

 Reproduces the issue in the Full Copy Sandbox. The Support Team

often has a delegated admin to Production environment where a team

member could try to follow steps as an end user.

 Follows up with the end user for any additional details.

 Escalates the case to the next level of support (admin or designated

developer) for fix.

 Coordinates efforts to get issue fixes in sandboxes.

 Communicates with end users with the progress and estimated

delivery date of the fix.

 Closes the issue.

Test Team
 Tests issues in various sandboxes as defined by the incident

management process.

Admin
 Fixes issues in the Hotfix environment and Production as per the

deployment process (for configuration related issues.)

Developers
 Troubleshoots and fixes development related issues.

 Coordinates with the Release Manager to promote changes in the

sandboxes as per the defined Hotfix process.

Environment

Manager

 Coordinates efforts in code/config migration among Full

Copy/Training, Hotfix, and other sandboxes based on fixes getting

deployed. This process ensures that a production issue getting fixed is

not reintroduced and that the fix is patched/merged in all

environments.

Release

Manager

 Identifies the date and time to promote the fix in Production.

 Deploys the fix in Production.

Development Lifecycle and Deployment Architecture Resource Guide 46

RACI (Responsible, Accountable, Consulted, Informed) Matrix

RACI is an acronym for:

R = Responsible: owns the project/program/initiative

A = to whom “R” is Accountable. Person who must sign-off or approve.

C = to be Consulted — the one who must be consulted for advice.

I = to be Informed — the one who should be informed about the success or issues but not

necessarily consulted.

A complex environment and matrix-driven organization could benefit from defining a RACI

Matrix. The RACI Matrix helps define the role of various individuals at the program level. It

helps with transparency and alignment, improves on decision-making, and establishes

accountability. Variations of the RACI matrix could be established at project, program,

and/or at the Enterprise level. A sample of RACI Matrix (or also known as RACI Chart) is

illustrated below.

Here are a few techniques or potential steps to develop a RACI Matrix:

 Identify major processes and sub-processes. Activities should be listed in the first

column of the matrix.

 Identify all the roles and list them in the header of your chart.

 Fill out the matrix with R, A, C, I for each activity and role.

 Resolve overlaps if there are any.

Development Lifecycle and Deployment Architecture Resource Guide 47

It is okay to have more than one role for a few activities. For example, a business- type role

could be R (Responsible) as well I (Informed) for a release.

Development Lifecycle and Deployment Architecture Resource Guide 48

Request a Practice Org

To request a Practice Org that contains information from some of the Build Materials,

please click here to open a case.

Select Question Type: Architect Support

Question Detail: Request Practice Org

ALERT: If you are not active within your practice org for 6 months, it may be

deactivated.

http://certification.salesforce.com/open-a-case

Development Lifecycle and Deployment Architecture Resource Guide 49

Join the Salesforce Architect Success Group
 Want to make sure you don’t miss any content release updates or news regarding the

Salesforce Architect Journey?

 Looking to connect with others that have the same interest?

Click here and request to join the Salesforce Architect Success Group

https://success.salesforce.com/loginswitcher?startURL=%2F_ui%2Fcore%2Fchatter%2Fgroups%2FGroupProfilePage%3Fg%3D0F930000000blKv

