
 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825134, the ARTICONF Project.

D7.1: ARTICONF Testing Procedure,
Infrastructure, Software Management,
Deployment and Validation Plan
30/09/2019

Deliverable Responsible: Carlos Rubia, AGI

Ref. Ares(2019)6026558 - 27/09/2019

D7.1: ARTICONF Testing Procedures,
Infrastructure, Software
Management, Deployment and
Validation Plan

smART socIal media eCOsytstem in a blockchaiN Federated environment

Due date 30 September 2019

Work package WP7

Lead partner AGI

Dissemination level PU – Public

Type
R – Document, report (excluding the periodic and
final reports)

Authors

Carlos Rubia, AGI

Cristian Martin, AGI

Nishant Saurabh, UNI-KLU

Long Cui, BY

Aleksander Karadimce, UIST

Spiros Koulouzis, UvA

Alexandre Ulisses, MOG

David Sarlos, VG

Reviewers

Nishant, Saurabh UNI-KLU

Spiros, Koulouzis UvA

Pedro Jacobetty, UEDIN

Radu Prodan, UNI-KLU

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

Document History

Version Date Description

v0.1 01 June 2019 Table of contents distributed to the partners

v0.2 02 July 2019 First version distributed to the partners

v0.3 16 July 2019 Integration of ARTICONF tools and use case descriptions

v0.4 30 July 2019 Refined and homogenised sections with procedures timelines

v0.5 13 August 2019 Timeline clarification and new annexes

v0.6 14 August 2019 Version ready for contents review

v0.7 11 September 2019 Review comments addressed and ready for quality review

V0.8 23 September 2019 Major revision from Quality Manager

V0.9 24 September 2019 Major revision from Project Coordinator

Citation

Carlos Rubia, Cristian Martín, et al. (2019). ARTICONF testing procedure, infrastructure, software
management, deployment and validation plan. ARTICONF Consortium, http://articonf.eu.

Disclaimer

The information in this deliverable is written by the ARTICONF project consortium under EC grant
agreement No 825134 and do not necessarily reflect the views of the European Commission. The
European Commission is not liable for any use that may be made of the information contained herein.

Keyword list

Social Media | Software-Defined Networking | Cloud | Blockchain | Trust | Quality of Service | Quality of
Experience

This report is © ARTICONF Consortium 2019.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

Table of Contents

Table of Contents ... 4

Executive Summary .. 6

Figures ... 7

Tables .. 8

1 Introduction .. 9

2 Testbed Architectural Overview .. 11

2.1 ARTICONF Testbed Specification ... 11

2.2 ARTICONF Testbed Infrastructure ... 13

2.2.1 Trust and Integration Controller (TIC) .. 13

2.2.1 Co-located and Orchestrated Network Fabric (CONF) .. 15

2.2.2 Semantic Model with Self-Adaptive and Autonomous Relevant Technology (SMART) 17

2.2.3 Tools for Analytics and Cognition (TAC) ... 18

2.3 Use Cases Testbed Infrastructure .. 20

2.3.1 Crowd Journalism ... 20

2.3.2 Car Sharing ... 21

2.3.3 Crowd-Cooperative Video Creation ... 23

2.3.4 Smart Energy .. 25

3 Software Management.. 27

4 Deployment Procedure ... 29

5 Testing and Validation Procedures .. 31

5.1 Test Plan .. 31

5.1.1 Unit and Integration Testing .. 31

5.1.2 Functional Testing .. 31

5.1.3 Acceptance Testing .. 32

5.1.4 Testing Workflow and Schedule .. 32

5.2 Validation Plan ... 33

5.2.1 Validation Schedule .. 37

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

5.3 Quality Assurance Team .. 37

6 Software and Tools ... 39

7 Conclusions ... 40

8 Abbreviations ... 41

9 References .. 42

10 Annexes .. 43

10.1 Annex I: Template for Unit and Integration Tests .. 43

10.2 Annex II: Template for Functional Tests ... 44

10.3 Annex III: Template for Platform Evaluation .. 45

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 6

Executive Summary

D7.1 is the first deliverable of the workpackage WP7: Integration, testing and use-cases of the ARTICONF
project, responsible for integration, deployment, testing and evaluation of the tools developed in the
project along with the use cases. Specifically, D7.1 relates to task T7.1: ARTICONF infrastructure, testbed
deployment and management. This task aims to establish an experimental environment and procedures
for all members of the consortium to deploy, run and test the ARTICONF tools. Moreover, T7.1 explores
solutions to integrate these tools with use cases, allowing the consortium members to evaluate the
objectives of the project.

This deliverable makes an initial effort to gather procedures for the software management, deployment
and testing of tools (i.e. TIC, CONF, SMART, TAC) described in deliverable D2.2: ARTICONF Architecture
and Interfaces Definition. The consortium will present a more descriptive testing, deployment and
validation planning measures and methodologies in the revised version D7.3 due at month M18,
encompassing any changes to the ARTICONF architecture and interface requirements.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 7

Figures

Figure 1: TIC architectural workflow. .. 14
Figure 2: CONF architectural workflow. .. 15
Figure 3: SMART architectural workflow. .. 17
Figure 4: TAC architectural workflow. ... 19
Figure 5: Conceptual crowd journalism use case architecture (before ARTICONF). 21
Figure 6: Conceptual crowd journalism use case architecture in ARTICONF. ... 21
Figure 7: Conceptual car sharing use case architecture (before ARTICONF). ... 22
Figure 8: Conceptual car sharing use case architecture in ARTICONF. ... 23
Figure 9: ARTICONF tools deployment and communication in the car sharing use case. 23
Figure 10: Conceptual crowd-cooperative use case architecture (before ARTICONF). 24
Figure 11: Conceptual crowd-cooperative use case architecture in ARTICONF. .. 24
Figure 12: Conceptual smart energy use case architecture (before ARTICONF). 25
Figure 13: Conceptual emart energy use case architecture in ARTICONF. ... 26
Figure 14: SonarQube dashboard example. .. 28
Figure 15: Continuous integration and deployment workflow. .. 30
Figure 16: ARTICONF testing workflow. .. 32
Figure 17: Timeline of the testing process in ARTICONF. .. 33
Figure 18: Timeline of the ARTICONF evaluation process. .. 37

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 8

Tables

Table 1: Testbed infrastructure. .. 11
Table 2: ExoGENi sites and VM resources. .. 12
Table 3: ExoGENi resource specifications. ... 13
Table 4: Crowd journalism use case requirements. .. 34
Table 5: Car sharing use case requirements. ... 35
Table 6: Crowd-cooperative video creation use case requirements... 35
Table 7: Smart energy use case requirements. ... 36

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 9

1 Introduction

This deliverable explains the infrastructure that the ARTICONF consortium will use as a testbed for its
ecosystem. More precisely, the document comprises of essential details including resource availability
and allocation for the deployment of the tools and pilot use cases developed during the project lifecycle.
We describe the ARTICONF testbed with respect to the heterogeneity and the diverse characteristic
features associated to each of them. The current testbed details outlined in the deliverable reflects the
basic testbed structure in accordance to the requirements of Milestones MS1 and MS2 of the project. We
will describe the final version of the testbed in the subsequent updated version of this deliverable (D7.3
due at month M18), which will integrate future changes in the ARTICONF architecture, interface design
and use cases requirements.

Additionally, we present the ARTICONF software management and testing procedures. We also outline
the procedure for using a central and secure software development repository for the code of different
entities, which allows continuous integration of functionalities. In general, we follow the software
development and integration practices mentioned in the deliverable D1.2: Software Quality Assurance,
where code inspection is the first step to ensure code quality, followed by the unit testing and functional
testing of the different tools developed during the project. We explain the testing procedure as a part of
the process to manage the project testbed and appoint a testing team comprising several testing
automation experts from each consortium partner. Every expert holds the responsibility to supervise the
testing, deployment and integration methodology for the developed set of tools and use cases.

We follow the standard procedure to ensure coherence and continuous integration of the ARTICONF
features for the deployment of the developed software tools onto the testbed, by establishing a
concurrent interaction between the unit testing procedures and the software deployment. This
deliverable describes the initial testing and integration procedure, along with the associated tool
description and deployment details. However, the testing and deployment procedure of the use cases
differ depending on the specific policies and regulations of the companies. To evade any discrepancy,
testing and deployment of every use case requires using the company’s specific procedural guidelines and
exploiting the ARTICONF testbed described in this deliverable to validate the Key Performance Indicators
(KPIs) of the project. We also outline the associated validation procedures with their respective timelines,
while porting the use cases to the testbed and the specific process for each use case evaluation will follow
in future deliverables.

This deliverable has nine sections:

• Section 2 describes the architecture of the tools and the use cases;

• Section 3 explains the software development management;

• Section 4 explains the deployment procedures for the tools;

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 10

• Section 5 describes the testing procedures, the validation plan and defines the Quality Assurance
(QA) Team to execute and control them;

• Section 6 depicts the tools needed for the testing process, software management and deployment
of services and features;

• Section 7 reports the conclusion gathered in this deliverable;

• Section 8 lists the references found in the deliverable;

• Section 9 introduces the annexes used in the project.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 11

2 Testbed Architectural Overview

ARTICONF is composed of several tools utilised by its use cases to accomplish their objectives. To enable
members to prototype and test their solutions and to allow use cases evaluation, the consortium provides
a testbed for the ARTICONF ecosystem and associated software tools deployment and testing
management. This testbed is composed of specific resources provided by members of the consortium and
it encompasses private resources and public resources from commercial cloud providers.

2.1 ARTICONF Testbed Specification

ARTICONF members provide several servers and machines to create an initial testbed, as summarised in
Table 1. ARTICONF members will use this testbed to deploy, test, improve and add functionalities to the
platform by following a continuous integration approach. This testbed also enables the deployment and
testing of the use cases, including their integration with the ARTICONF ecosystem and associated tools for
subsequent evaluation of the project objectives.

Table 1: Testbed infrastructure.

Member CPU RAM Hard Disk SSD Operating System Provider

UNI-KLU 2x Intel Xeon Gold
6148 12x 32GB 3.5TB Ubuntu 16.04 UNI-KLU (Austria)

UVA

7xvCPU 4x 4GB
1x 8GB

4x 20GB
1x 220GB Debian 9 UvA (Netherlands)

(UvA ExoGENI) 9x Intel
Xeon E5-2670

64 GB 9x 300GB
1x 7TB Debian 9 UvA (Netherlands)

(Typical ExoGENI) 10x
Intel X5650

1x 12GB
10x 4GB

6x 1TB
10x 146GB

UIST 4x 3.3GHz 8GB 1TB Windows 7 Pro UIST (North Macedonia)

BY

Intel Xeon 32GB 640GB Ubuntu 18.04.2 x64 DigitalOcean1
Intel Xeon 32GB 640GB Ubuntu 18.10 x64 DigitalOcean
Intel Xeon 8GB 160GB Ubuntu 16.04.6 x64 DigitalOcean
Intel Xeon 16GB 320GB Ubuntu 16.04.4 x64 DigitalOcean
Intel Xeon 1 GB 25GB Ubuntu 16.04.4 x64 DigitalOcean
Intel Xeon 16 GB 100GB Ubuntu 16.04.4 x64 DigitalOcean
Intel Xeon 32 GB 640GB Ubuntu 18.04.2 x64 DigitalOcean

MOG 8x 2.4GHz 16GB 1TB 512GB Ubuntu 18 MOG (Portugal)

AGI 2x 2.5GHz 8 GB − 100GB Debian 9 AWS Ireland
i7-8700 8 GB 1TB 240GB Ubuntu 18.04 AGI (Spain)

VG 2x 2.5GHz 8 GB − 100GB Debian 9 AWS Ireland

1 The location of DigitalOcean VMs is in Frankfurt (Germany), London (UK) and Amsterdam (Netherlands).

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 12

ExoGENI, provided by UvA, is a multi-domain cloud structure based on an extended infrastructure-as-a-
service cloud model with coordinated provisioning across multiple sites. Currently, ExoGENI consists of 21
sites, each of them maintaining its own rack. Other sites also maintain a similar rack; however, their
hardware specification is constantly changing. Table 1 also provides a typical hardware specification for
an ExoGENI rack, while Table 2 provides a list of currently available sites, including an estimate of the
available Virtual Machines (VMs). For the ARTICONF project, the testbed composition, code deployment
and data management will only use the resources provisioned in Amsterdam (Netherlands). Table 3 shows
the types of VMs ExoGENI may provision.

Table 2: ExoGENi sites and VM resources.

Exogeni Rack Name VM Resources Bare Resources Location
ExoGENI WVN 52 USA, WVN XO
ExoGENI WSU 50 USA, WSU XO

ExoGENI UvA NL 15 Netherlands, UVA XO
ExoGENI UNF 51 USA, UNF

ExoGENI UMass USA,UMASS XO
ExoGENI UH 50 USA, UH XO
ExoGENI UFL 44 USA, UFL XO
ExoGENI UAF 51 USA, UAF XO

ExoGENI TAMU 46 USA, TAMU XO
ExoGENI SL 51 USA, SL XO

ExoGENI RCI 63
ExoGENI PSC 52 USA, PSC XO
ExoGENI OSF 52 USA, OSF XA

ExoGENI NICTA Australia, NICTA
ExoGENI LAT 51 USA, LAT
ExoGENI FIU USA, FIU XO

ExoGENI ExoSM 565 15
ExoGENI Duke USA, Duke

ExoGENI CIENA HQ 25 Canada, CIena XO
ExoGENI CIENA 25 USA, Ciena XO
ExoGENI BBN 33 USA, BBN XO

This testbed hosts the ARTICONF diverse toolset (i.e. SMART, TIC, CONF, TAC), the use cases and software
services needed for the management of the ecosystem. Moreover, it hosts the platform’s integration
environment, including the ARTICONF’s testing platform for the use cases. The testbed allows unit tests
execution with an efficient software management system and the continuous integration principles intact,
as described in in the next sections. The testbed will also facilitate ARTICONF platform performance
evaluation testing by internal and external teams.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 13

Table 3: ExoGENi resource specifications.

Resource Type Name Cores RAM Disk
Bare-metal node ExoGENI-M4 16 48GB 146GB / 600GB

VM XOSmall 1 1GB 10GB
VM XOMedium 1 3GB 25GB
VM XOLarge 2 6GB 50GB
VM XOXLarge 4 12GB 75GB

2.2 ARTICONF Testbed Infrastructure

The initial testbed infrastructure composed of these resources interconnects through the public Internet
by means of application programming interfaces (APIs) developed during the project. In this section, we
provide an overview of the ARTICONF tools (i.e. TIC, CONF, SMART, TAC) and their deployment scenarios,
following the microservices architectural paradigm. At the present stage of the project, however, we only
cover the microservices that we intend to develop in the first 18 months of the project associated to each
specific tool of the ARTICONF ecosystem. The updated version of this deliverable (D7.3) due at month
M18 will cover the entire set of microservices representing the final platform. This section also presents
specific resource descriptions for the microservices deployment and the associated APIs to facilitate intra-
and inter-communication between tools. Currently, most microservices within the different tools are
accessible through a REST API.

In addition to the ARTICONF tools, some services will also use the testbed to provide a suitable
environment to manage the software, the deployment of microservices and the continuous testing of the
code. We will explain the software management functional scenarios in Section 6. We plan to deploy
software management tools in Amazon Web Services (AWS) instances owned by AGI in Ireland (see row
AGI in Table 1).

2.2.1 Trust and Integration Controller (TIC)

Figure 1 depicts the architectural workflow of TIC consisting of four microservices:

• Blockchain Consortium;

• Cloud-based Big Data Storage;

• Relationship System;

• Personal Certificate Authority (PCA).

Each social media application integrates a personal certificate authority (PCA) bundle, which enables local
content encryption before further processing and preserves user privacy by design principles through
public key sharing. Therefore, encryption and decryption take place on the user side only (i.e. end-to-end
encryption) and the blockchain consortium connector only receives anonymous encrypted data. Upon a
new transaction request, the consortium connector invokes the endorser peer in the hyperledger fabric
blockchain that verifies the transaction based on provided certificate information, returning the approval

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 14

or rejection feedback. The returned data also contains the simulated result of the associated smart
contract execution. If approved, the connector sends the authenticated transaction to the ordering peer
that, in turn, delivers the transaction information to all anchor peers, allowing them to update their
ledger. By design, the blockchain transaction only keeps the fingerprint of the actual data, while a cloud-
based big data storage stores all encrypted data, indexed by the fingerprint for fast queries during the
retrieval operation.

Figure 1: TIC architectural workflow.

Blockchain Consortium is the core part of TIC that offers a consistent and traceable mechanism to
maintain trust. One can integrate TIC with third party authentication providers as a verification layer,
alongside different consensus algorithms. TIC consumes requests dispatched from the Connectors that
act as entry points and gateways. The Blockchain Consortium is a decoupled bundle, which one can flexibly
integrate and teste with other bundles.

Cloud-based Big Data Storage is a distributed storage system that collects large shared data. As the
blockchain consortium keeps track of the fingerprints of the cloud stored data, the cloud-based Big Data
Storage offers a fast and persistent query service based on the returned indexing result from blockchain.

Relationship System is a Turing-complete component of the blockchain that handles logic processing. As
different configured permissions map to different relationships, the relationship system verifies the

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 15

relationship logic when generating new transactions and meeting a byzantine fault tolerance consensus
according to a verification algorithm.

Personal Certificate Authority (PCA) is a client-side software development kit that issues a certificate for
each end-user based on the configuration from the central certificate authority, which controls the
permission and authorization. The PCA uses its public key to convert user sensitive data into anonymous
secured data that persists in the blockchain and cloud-based Big Data Storage. Since the private key always
resides locally, the chances of decrypting anonymous data are minimal.

TIC deployment testbed will host the microservices on a Docker swarm cluster across the host machines
available on the DigitalOcean cloud provided by BY (see Table 1), using five VMs with one core, 2GB of
RAM, and 25GB of SSD. This cluster is available as a sample environment for the first 18 months. We will
do a new estimation for every use case provider to define the final testbed of the project. At a later stage,
each use case provider cluster will connect to the TIC cluster to form the Blockchain Consortium.

2.2.1 Co-located and Orchestrated Network Fabric (CONF)

CONF provides adaptive infrastructure provisioning for social media applications over an orchestrated
network. It seamlessly integrates with the cloud edge infrastructure, able to intelligently provision
services based on abstract application service requirements, operational conditions at the infrastructure
level, and time-critical event triggering. The distribution of the networked infrastructure provisioned by
CONF receives information from the intelligent community analytics of SMART and TAC services and
supports them for a smooth and optimised operation. CONF will adopt a microservice architecture
composed of several microservices, described in the following.

Figure 2: CONF architectural workflow.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 16

Orchestration Manager provides a REST web service that allows CONF functions invoked by external
clients. The Orchestration Manager forwards each request to the appropriate component and is
responsible for coordinating all the individual components.

Message Broker implements message validation, transformation, routing, and facilitates communications
between the orchestration manager and the different microservices. It can help compose asynchronous,
loosely coupled applications by providing transparent communications to independent microservices.

Metrics Database enables application and infrastructure agents to store predefined metrics. We plan to
use time series databases (e.g. Cassandra and InfluxDB) that can collect large amounts of data and
seamlessly provide them to the monitoring services.

Application Specifications Repository is a service used by social media applications to store and modify
their specification, including their Quality of Service (QoS) and Quality of Experience (QoE) attributes.
Using this repository, the Planner checks if QoS/QoE attributes for a given scenario and if applications
have potential bottlenecks.

Controller controls and changes the infrastructure solutions based on the QoS metrics of social network
applications and their infrastructures throughout the entire process of planning, provisioning, and
deployment to ensure system self-adaptability.

Planner encapsulates all infrastructure planning functions based on several state-of-the-art scheduling
and planning algorithms. Its goal is to produce efficient infrastructure topologies based on application
retirements and constraints and to select cost-effective VMs.

Provisioner automates the provisioning of infrastructure plans provided by the Planner onto underlying
infrastructure services. More specifically, the provisioner decomposes the infrastructure description and
provisions it across multiple clouds, edge or fog infrastructure with transparent network configuration.

Deployer deploys application microservices onto the provisioned cloud and edge infrastructures. The
Deployer provides a scheduling mechanism based on network bottlenecks and maximises the satisfaction
of deployment deadlines. It is also responsible for deploying a system for autonomous monitoring of the
application and its underlying infrastructure.

Metrics Collector deployed on the provisioned infrastructure collects system and application-level metrics
that assist in the adaptive control of the infrastructure and in maintaining QoS constrains.

CONF deployment testbed will host all these microservices in a Docker swarm cluster at UvA (aggregating
7 vCPU with 24GB of RAM and 300GB of disk), except for the Metrics Collector. For testing the planning,
provisioning, deployment and monitoring, CONF will use the ExoGENI cloud that provides around 1200
VMs with exclusive use. This number, however, depends on each site’s availability and multi-user load.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 17

2.2.2 Semantic Model with Self-Adaptive and Autonomous Relevant Technology (SMART)

SMART’s objective is to improve trust and eliminate malicious actors in participatory exchanges and
collaborative decision making. Therefore, it processes anonymised data from interactions saved in the
blockchain to provide intelligence about consensus decisions, reduce costs and latency by analysing
previous voting outcomes and preferences, and targeting appropriate users for the different use cases.
Additionally, it will give insights about physical events to help resource provisioning in CONF. To fulfil this
goal, SMART adopts a role-stage model integrating various facets of social media to define and classify
users based on social information and content attributes. As the blockchain maintains user privacy by
design, the SMART tool cannot identify individual users or weaken their privacy during this process.
SMART will deploy several microservices during the first 18 months, described in the following.

Figure 3: SMART architectural workflow.

Trace retrieval microservice provides an interface to the blockchain. The blockchain component pushes
all openly available traces to SMART via this interface.

Semantic linking microservice helps to explicitly state implicit connections between users by analysing
extensive and repeated interactions. The explicit information about links will provide the basis for all
further reasoning, classification and intelligence.

Agent discovery microservice labels anonymous logins with individual agents, e.g. a human or an
automated device.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 18

Role discovery microservice labels anonymous users with individual roles which are important for
classification (e.g. family role).

Geo-profiling microservice clusters users physically close to each other. Creating such physical
communities will be one of the time-critical triggers for the event detection microservice.

Stage discovery microservice classifies the roles of individual users (e.g. family role has a stage father),
again important for classification.

Democratic reasoning microservice serves as a central knowledge-based component providing all facts
and rules for other microservices.

Reputation calculation microservice estimates users’ trustworthiness considering various conflicting
parameters, such as accuracy, timeliness, latency, and high anonymity preservation.

Event detection microservice publishes information about events to its subscribers. Upon detecting new
communities (e.g. the geo-profiling algorithm assigns a group of users to a physical location), it broadcasts
the physical group discovery event to the consuming services.

Data access microservice offers heuristics and data from SMART to enable other ARTICONF components
to apply evaluation and cognition for different use cases.

RESTful gateway provides public access to all interfaces of the SMART tool’s microservices required by
other components.

Message broker enables loose coupling between all microservices as it abstracts communication.

SMART deployment testbed will host these loosely-coupled microservices with self-contained principles
inside Docker containers within a Kubernetes cluster at UNI-KLU (see Table 1), which enables faster
deployment, better versioning and clearer documentation. The message broker allows integration of any
self-contained microservice and their interfaces without affecting other microservices functionality.

2.2.3 Tools for Analytics and Cognition (TAC)

Like the other tools, TAC also adopts a microservice architecture described in the following.

Guided Analytics Dashboard is responsible for aggregating and exploiting the content diffusion supply
chain across different providers, communities, groups and users. It seeks to provide information that
supports user engagement in collaborative economies with monetary inclusion using two microservices:

• Guided analytics provisions media mining, machine learning and statistics, and knowledge extraction
from selected data. The aggregated summarised information flows to the dashboard and the relevant
microservices.

• Use-case rating microservice provides results for the use case providers to be aware of the users’
activity on the platform and helps them track the rating and functioning of their application.

Augmented Cognition Data Model provides analytics and extract meaningful insights about users’
changing behaviour, cultural and social requirements. These tools collect a large amount of geospatial
and temporal data about user activity within social media applications, as follows:

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 19

Figure 4: TAC architectural workflow.

• Geospatial microservice handles the gathering, display, and manipulation of Global Positioning
System (GPS) data, satellite photography, geo-tagging and historical data based on geographic
coordinates, or implicitly in terms of a street address, postal code, or forest stand identifier.

• Temporal microservice offers support for analysing complex social networks and for providing users
with actionable insights, even for a large amount of data produced over a short time, coupled with
visualisation to uncover influential actors, finding helpful bridging people and identifying destructive
spammers.

• Return on investment (ROI) monitoring microservice helps to explicitly provide business insights and
measurable Return on collaboration (ROC) metrics, quantified in terms of improvement relative to the
capital invested in a given functional area. TAC also provides users with real-time cost per engagement
information to analyse and control their ROC and the success of their specific use case.

• Social-contextual cognitive reasoning and cross-contextual cognitive learning microservices reduces
the uncertainty by double-checking the validity of information and their sources in a hostile
environment. These microservices will improve the collaboration amongst intelligently defined

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 20

communities elaborating over the shared knowledge acquisition and learning, reducing biases and
increasing the benefits.

RESTful API gateway provides public access to all interfaces of the TAC tool’s microservices required by
other components.

Message Broker is an architectural pattern for message validation, transformation, and routing, which
helps in composing asynchronous, loosely coupled applications by providing transparent communication
to independent microservices. The Message Broker allows adding and changing single services and their
interfaces without affecting other microservices.

TAC input interface integrates the TAC ingestion microservice that serves as an input interface for the
TIC, SMART, and CONF tools, responsible for pushing all openly available and anonymised semantic data.

TAC deployment testbed scenario. We will deploy all microservices describe above on a VM container
within a TAC server hosted at UIST (see Table 1), which enables faster deployment, better versioning and
clearer documentation. The message broker allows integration of any self-contained microservice and
their interfaces without affecting other microservices functionality. TAC and its microservices provide easy
integration with the ARTICONF Guided Analytics Dashboard accessible on the Web and as a mobile app.

2.3 Use Cases Testbed Infrastructure

The testbed infrastructure described in Section 2.1 includes the use cases too, which require integration
with the ARTICONF platform tools and their microservices. As the use cases are still in the design stage,
this section presents services involved in every use case at a conceptual level. The final version of the use
cases will describe them in a greater detail at a microservice level as part of the deliverable D7.2 (and its
subsequent updated versions).

2.3.1 Crowd Journalism

The crowd journalism use case intends to stimulate cooperation between ordinary citizens and
professional journalists. This use case allows the production of media content through a cooperative
process that will support both ordinary citizens and journalists.

Citizens will use a mobile phone application which allows them capture and share live video feeds. In
addition to the mobile application, this use case includes other components, such as the media engine,
the central viewing platform, the storage and the marketplace, as defined in the high-level architecture
as presented in the deliverable D2.1: ARTICONF Platform Requirements and Use Cases. The goal is to
properly deploy all modules in a connected fashion, checking the functionalities and validating the
different types of associated workflow tasks, namely videos production, viewing, purchase of video or
other contents. ARTICONF tools provide several mechanisms that will aid the testing and help reducing
the necessity of a full scenario deployment during the tests of this use case. Figure 5 shows the original
conceptual use case architecture, before the deployment of ARTICONF on the testbed. MOG uses a server

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 21

located in its own facilities to deploy the crowd journalism use case services not managed by ARTICONF,
as presented in Table 1.

Figure 5: Conceptual crowd journalism use case architecture (before ARTICONF).

Figure 6 represents the crowd journalism use case deployment on the testbed integrated with the
ARTICONF toolset. Upon ARTICONF testbed deployment, the use case uses the TIC tool to customise and
manage the blockchain network. The SMART tool improves the rating system in the social network. The
TAC tool receives data from SMART and provides insights about the transactions handled by TIC and the
user interactions in the ecosystem. The CONF tool handles the server deployment to host the social
network backend, media engine and the storage components. Moreover, it allows dynamic vertical and
horizontal scaling (i.e. up or down) of the resources according to the requirements.

Figure 6: Conceptual crowd journalism use case architecture in ARTICONF.

2.3.2 Car Sharing

The car sharing use case has four different components: blockchain network, mobile application, social
network and artificial intelligence (AI). As the ARTICONF tools handle several deployments in these

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 22

components, the testbed needed for this use case is minimal. Figure 7 shows the original use case
architecture at a conceptual level, representing the use case scenario before its integration in ARTICONF.
Prior to its integration in the ARTICONF testbed, the car sharing use case uses internal resources in AGI
which are not part of ARTICONF testbed resources for development purpose. Figure 7 shows a conceptual
version of car sharing use case. To make the development easier, we will deploy one VM or container in
the AGI premises for each service. AGI provides a server for hosting the services needed by its car sharing
social network and the database not managed by ARTICONF, as outlined in Table 1. Like other tools
developed by ARTICONF project, AGI will provide a mobile testing environment for its car sharing use case
based on a git repository, enabling a continuous integration and delivery of the services to mobile phones.

Figure 7: Conceptual car sharing use case architecture (before ARTICONF).

Figure 8 shows car sharing use case exploiting the ARTICONF stand-alone tools by means of well-defined
APIs. The TIC tool handles the deployment of the blockchain network on the ARTICONF testbed,
represented as a cloud in the figure. Consequently, the definition of TIC architecture and functionality is
transparent and beyond the scope of car sharing use case testbed definition. Once the car sharing use
case runs in the ARTICONF ecosystem using TIC, the SMART tool improves the rewarding system in its car
sharing social network. Moreover, some resources dedicated to computationally-intensive AI components
reside outside the ARTICONF testbed, exploited by AGI depending on the use case requirements. The
CONF tool handles the deployment of the servers to host the social network backend and database and
provides functionality for scaling up or down of servers, depending on the dynamics of the system.

Figure 9 shows the deployment scenario of the car sharing use case testbed and its integration with the
ARTICONF testbed. We will discuss the communication interfaces and complete integration scenarios
between use case and ARTICONF tools in the upcoming deliverables. The figure also shows the physical
geographical deployment locations. The communication between the different tools and the use case
itself takes place through RESTful APIs.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 23

Figure 8: Conceptual car sharing use case architecture in ARTICONF.

Figure 9: ARTICONF tools deployment and communication in the car sharing use case.

2.3.3 Crowd-Cooperative Video Creation

Before its deployment on ARTICONF, the Vialog crowd-cooperative video creation use case consisted of a
centralised reputation system depicted in Figure 10, which neither makes use of Decentralised Identifiers
(DIDs) that allows the users keep control of their own identity independently of any centralised registry,
nor of a blockchain-based reward system. In general, the application uses a classic frontend/backend
architecture (deployed on AWS), leveraging centralised user accounts with a reputation system akin to
reviewer scores on mainstream platforms today.

After ARTICONF deployment, the TIC tool handles the deployment of the blockchain network to
implement operations related to DIDs, including sign-in, transfer and acquisition of financial rewards (i.e.
tokens stored on ARTICONF’s underlying ledger), and storage/management of reputation points of the
created videos (i.e. linked to their DIDs). In general, the Vialog backend increasingly relies on ARTICONF
components as they are available, while deploying the front-end services within the relevant applications

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 24

leaving the DID management to the end users. Furthermore, VG takes the advantage of the CONF
component for deployment and scaling of its backend code and database and uses the SMART tool to
improve the reward system for video reviewers, as showed in Figure 11.

Figure 10: Conceptual crowd-cooperative use case architecture (before ARTICONF).

Figure 11: Conceptual crowd-cooperative use case architecture in ARTICONF.

The code development pertaining to use case is versioned and controlled using Git on Github or any other
Git repository providers. Partners or other third parties use this facility to execute their own frontend (or
an open source reference implementation) leveraging the Vialog video reviews and DIDs, reputation
points and reward system, implemented via ARTICONF in any testing or real-world environment.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 25

2.3.4 Smart Energy

The Smart energy use case uses the bitYoga blockchain smart energy platform depicted in Figure 12, which
allows utility companies incentivise customers to log their consumption and production data. The use case
offers a blockchain platform for recording user transactions concerning energy consumption, production
and trading, which stores all the transaction data as references pointing to a big data cloud storage of
locally encrypted user-related sensitive data. Utility companies benefit from an analytics system for
performing granular predictions on in-home and community-level energy production and consumption.
Additionally, a mobile application is available to users and utility companies. Customers use their mobile
application to register themselves with the bitYoga platform and store their energy production and
consumption data in the locally encrypted platform (i.e. user DB). They also choose to share their data
with utility companies (i.e. Grid Sys) by providing them access to their data, rewarded in form of tokens.
They can trade their excess energy with their neighbourhood and the grid repaid in tokens and
compensate their energy bills using the tokens generated from sharing their data and trading energy.
Utility companies that participate in the sharing economy by rewarding users for sharing their data can
then use those data for predictive analytics, planning and trading.

Figure 12: Conceptual smart energy use case architecture (before ARTICONF).

With ARTICONF in place, the smart energy use case utilises the TIC tool as the blockchain and cloud storage
service underneath, SMART and TAC as intelligent analysis and evaluation tools, and CONF as the resource
auto-provisioning tool. As Figure 13 illustrates, most of the use case components integrate with the
ARTICONF tools and testbed, except for the mobile app and the user sensitive database.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 26

Figure 13: Conceptual emart energy use case architecture in ARTICONF.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 27

3 Software Management

Software management is a foundation to create a robust and stable project. Big projects, such as
ARTICONF, involve a high number of partners and developers who need protocols and tools to work
together. Nowadays, Git repositories are one of the best tools to create and to collaborate on the same
source code within a project. A Git repository allows easy sharing of code and working with new features
without interruptions thanks to its branches approach that allows creating new feature or updates in a
separated branch. Git branches are easy to merge while defining an understandable workflow. The
decentralised branches also provide an isolated environment for every change in the code on the
developer side. New features contained in new branches allow a continuous delivery, while the main
branch contains a stable code version ready for deployment in the staging environment. In addition,
commits in the Git repository show the complete changes in the code and allow to return to a previous
version, if necessary. A Git repository working with a code inspector and a proper work protocol is a good
recipe to create high quality code. A code inspector tool is also important in the development stage,
prohibiting multiple developers working on the same project introduce unexpected bugs that become
important security risks. A good code inspector also informs about suspicious code and about test
coverage. Moreover, some code inspectors like SonarQube inform the developers about the time required
to fix suspicious code or bugs, further providing an improved schedule planning.

ARTICONF uses two main services for the software management plan: Gitlab as the remote Git code
repository and SonarQube as code inspector tool (see Figure 14). Once a partner pushes the code to the
development branch, the continuous integration tool calls the SonarQube service that analyses it and
provides a dashboard with feedback about duplicate code, bugs and other information. SonarQube also
sets a quality gate representing a minimum standard to pass the analysis. In case of major bugs, the code
analysis fails, and the developers need to fix it before merging it into the staging branch, which launches
the deployment on the testbed. The SonarQube code inspector service runs on the same server as the
continuous integration tool and the GitLab services. This service only works in the development
environment and provides quality analysis of the code. The programmers analyse results using the
dashboard and utilise it to improve the quality of the code, reduce duplicate code, eliminate bugs, and
enhance test coverage. To work with GitLab, we will use the Gitflow workflow that allows the developers
to program every feature in a new branch, merged back into the main development branch upon its
completion. This way, the development environment is always ready and contains the latest features for
deployment. Once the merging completes, the software deployment tool launches the SonarQube
analysis that shows the results on its own dashboard.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 28

Figure 14: SonarQube dashboard example.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 29

4 Deployment Procedure

A software deployment procedure encompasses all processes required to prepare a software to run and
become available for usage. The deployment of the software uses the testbed resources described
Section 2.1. This testbed represents a staging environment for the deployment where the consortium
tests the code and evaluate the tools during the project. To achieve this, we designed an automatic
deployment system based on the Jenkins service that facilitates the continuous integration process as a
standard practice for the project development, which allows the developers integrate new code in the
GitLab repository, while making them aware of integration errors during code merging and automated
execution of tests. This approach enables developers prevent integration problems and allows them to
add new features, while easily detecting and locating errors. Moreover, Jenkins allows the deployment of
the entire code developed by different partners in the testbed after completing a new functionality and
passing the unit tests. To provide a stable deployment process, each partner is responsible for provisioning
its own resources in a stable environment and enabling the technical staff automatically deploy the code
every time a new functionality is operational. After the provisioning process, Jenkins configured with the
access profile will deploy the code whenever a merge request comes. The service updates take place for
each technical partner whenever necessary, while providing information about scheduled downtimes to
the rest of the partners.

The established deployment procedure is as follows (see Figure 15):

• Whenever a developer pushes a new code to the development branch, Jenkins callas the code
inspector service to analyse it and provide quality metrics. The service integrated with the deployment
process is SonarQube that provides feedback to developers for maintaining a high code quality
without blocking the deployment process.

• Whenever a developer deploys a new code in the testbed, he/she requests for a merge in the staging
branch. If AGI, as responsible entity for the software management, accepts this merge, an attempt of
the new code deployment will take place over the testbed. This merging triggers the unit tests
integrated with Jenkins in the deployment process. These tests can block the deployment if detecting
errors or inconsistencies in the code. If the deployment process stops because of unit tests, an email
informs the responsible person for the faulty code and the error received.

• Once the unit tests pass, the system deploys the code in the testbed or the staging environment
available for testing and evaluation. If resources are not available or Jenkins cannot access them, the
code becomes unavailable to the users, while informing the responsible person for the error received.

• If the automatic deployment correctly completes, the Jenkins service deploys the new developed code
in the testbed and makes it available in the staging environment.

This integration process will deploy the software tools developed by the ARTICONF project: TIC, SMART,
CONF and TAC. The deployment of the use cases will use a combination of resources available in the
ARTICONF testbed and on partners’ own premises. For the latter case, the companies will apply

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 30

methodologies and processes specific to their use cases development code that does not conflict with
their security and resource accesses policies from external services. Therefore, even though the use cases
will finally use the same deployment testbed, the industrial partners will manage them according to their
own internal policies for deployment.

Figure 15: Continuous integration and deployment workflow.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 31

5 Testing and Validation Procedures

Testing is the process of verifying the code developed in the project at several levels, avoiding errors,
vulnerabilities and inconsistencies in the applications or tools. This process takes place automatically or
manually, but always pursues the objective of guaranteeing the quality of the software. The evaluation of
the platform is the process of testing the ARTICONF platform through its use cases and evaluating its KPIs
through specific functional and non-functional testing of use cases. Since these use cases are still within
the design phase, we will present the final plan for these tests in the upcoming deliverables within WP7.

5.1 Test Plan

The procedure to test the tools developed by the ARTICONF project (i.e. TIC, SMART, CONF, TAC) consists
of several processes that aims to test the code from different viewpoints. The procedure follows the
standard IEEE 29119 adapted to the project for simplifying the process of testing the software.

5.1.1 Unit and Integration Testing

A unit is the smallest part of any software, usually with a few inputs and one output. The deployment
system managed by the Jenkins service automatically carries out these tests designed by code unit
developers. Individual unit tests take place in isolation from other units and aim to verify the correct
implementation of the detailed design. The unit tests have many benefits:

1. It discovers defects early so that they do not propagate into subsequent phases where detection
becomes more difficult;

2. It simplifies the integration and testing and produces that are easier to maintain;

3. It ensures that individual modules or units correctly operate, independently of other system
components. This is usually the task of each coding team responsible for testing its own units.

In this stage, the integration tests also verify the interfaces as a part of the unit testing. Testing other units
linked with the tested ones is important for verifying the behaviour of more complex subsystems, as many
errors arise in later stages because of problems with the interfaces between units. In this context,
integration testing aims to verify the integration at a low level, while the entire system integration takes
place in a second stage using functional tests.

The developers typically design and engineer the tests before implementing them. In this case, the QA
Team performs and supervises the unit and integration tests, specifically appointed for this task (see
Section 5.3). The report of these tests will follow the document presented in Annex I, which will serve as
a guide for developers to test the integrity and integration of the code.

5.1.2 Functional Testing

The second stage performs functional tests to check complete functionalities and a higher level of
interface testing using real data communication and separately covering each functionality. This stage

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 32

verifies that the functionalities of the tools work comply with original requirements. Testers or individuals
not necessarily involved in the code development cycle carry out these tests and the QA Team specifically
appointed for this task supervises them (see Section 5.3). Annex II shows the template for the functional
testing report used by the QA Team to report results and descriptions of the process.

The multi-stage testing procedure described in this document cannot further proceed until having the
result of functional tests, which holds a stable version of the code after its completion. The QA Team
records and documents the testing results and their execution procedures. Upon detecting anomalies,
the tests restart from the first stage (unit testing) after correcting the malfunction. Every new release
repeats these functional tests with extended or new functionalities.

5.1.3 Acceptance Testing

Acceptance or compliance testing ensures that the functionalities developed in the ARTICONF project
comply with the market viewpoint. External users, close to the ARTICONF target market, perform these
tests in two steps:

1. automated testing based on testing scripts;

2. external user group testing defined at a later stage.

This external user group composed of beta testers relates to the ARTICONF market and uses the received
feedback to modify or add new functionalities to the project. Furthermore, the same QA Team defined
Section 5.3 will create a specific report to gather these feedbacks or market insights.

5.1.4 Testing Workflow and Schedule

The process of different testing stages takes place according to the the schema presented in Figure 16. In
this workflow, the unit testing is a continuous process performed during the entire development cycle,
while the other tests have specific time slots during the project. Figure 17 shows the timeline of the testing
process aligned with the milestones of the project.

Figure 16: ARTICONF testing workflow.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 33

Figure 17: Timeline of the testing process in ARTICONF.

Regarding the use cases, the unit and functional testing follow the specific company policies, which are
out of the scope of this procedure. This approach aims not to enter conflict with these testing processes
and the policies regarding documentation and internal schedules. The functional testing, according to the
functional description of use cases provided in the deliverable D2.1, aims to test the final integration of
the ARTICONF tools in the testbed after releasing and deploying both prototypes of the ARTICONF
platform at months M24 and M30 (as part of Task T7.4 of WP7).

5.2 Validation Plan

The validation plan encompasses only functional and non-functional systems tests, which takes place after
testing the individual ARTICONF tools and their integration with the use cases. The objective of the
validation plan is to check that the platform fulfils the requirements of the use cases and to check the final
KPIs of the project. In this context:

• Functional tests check the functionality and integration of the use cases with the ARTICONF platform
and tools;

• Non-functional tests check non-functional aspects of a software application, usually related to
performance and usability under different thresholds of stress.

Table 4, Table 5, Table 6 and Table 7 gather the initial requirements of the four use cases under evaluation,
as described in the deliverable D2.1.

To test all these requirements, we will define a specific set of experiments (systems tests) after the
integration of the use cases with the prototype of ARTICONF platform in the testbed. We will explain the
system tests to carry out the evaluation of the platform in upcoming deliverables within WP7 in
accordance to appropriate use case.

Test item & test type 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
TIC

Unit/Integration Tests
Functional Tests

SMART
Unit/Integration Tests

Functional Tests
CONF

Unit/Integration Tests
Functional Tests

TAC
Unit/Integration Tests

Functional Tests
ARTICONF Compliance Tests
Use Cases Testing

Unit Tests
Functional Tests

Milestone MS4
First integrated ARTICONF Platform MS5
Final integrated ARTICONF Platform MS6
Testing and demonstration of
pilot use cases MS7
Final Report

Month

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 34

Table 4: Crowd journalism use case requirements.

Requirement Description Success Criterion

ART.REQ.MOG.1

Guarantee full quality raw input data bandwidth
from mobile cameras to feed transcoders;
Guarantee normalised quality resolution
connections between transcoders and switcher.

100 new contracts in 5
minutes

ART.REQ.MOG.2 Horizontally scale transcoders (based on the number
of cameras) and replicating components.

Dynamic scale between 1
and 50 users

ART.REQ.MOG.3 Vertically scale switcher to accept all incoming
channels in high resolution.

On demand provisioning of
resources

ART.REQ.MOG.4
Choreograph deployment and scale
interconnectivity of all distributed components;
Specify and monitor QoS/QoE for each component.

Automated deployment,
scaling and orchestration of
application modules

ART.REQ.MOG.5
Provide a decision mechanism that determines
where to deploy the application based on
geographical location of crowd location.

Edge based deployment
(when applicable)

ART.REQ.MOG.6
Maintain compatibility with the operating systems
required by the use-case applications; Build
functional blocks for x86_64 architectures.

x86_64 support

ART.REQ.MOG.7 Map use case functional blocks to virtual containers Virtual containers support
ART.REQ.MOG.8 Offer a high degree of reliability. 99,99% reliability

ART.REQ.MOG.9 Provide high availability in every functional block and
in the global system. 99,99% service availability

ART.REQ.MOG.10 Ensure operational, productivity, and strategic ROI
for efficiency of investment and revenue growth.

30% better investment and
revenue; 80% improved
engagement consumer rate

ART.REQ.MOG.11
Provide efficient and configurable blockchain
deployment for smart transactions between content
providers and content consumers.

Automated deployment of
blockchain framework

ART.REQ.MOG.12
Provide mechanisms to define, create and execute
smart contracts between users associated with
different crowd journalism use case deployments.

10 new smart contracts per
minute

ART.REQ.MOG.13 Provide tools to increase the speed of adding
members in the blockchain consortium.

10 new users per minute to
blockchain consortium

ART.REQ.MOG.14 Define and implement configurable security
measures between blockchain members.

Blockchain security
configurable toolkit

ART.REQ.MOG.15
Provide tools to store user and content identity in
blockchain and video data in separate storage; Make
necessary links among different elements.

Federated use case data

ART.REQ.MOG.16 Provide mechanisms to lower fake news in crowd
journalism and malicious actors.

80% improved information
accuracy

ART.REQ.MOG.17 Provide democratic and decentralised content
classification by studying user behavioural patterns.

80% improved information
accuracy

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 35

Table 5: Car sharing use case requirements.

Requirement Description Success Criterion

ART.REQ.AGI.1 Guarantee deployment of a high number of
smart contracts in short time. 100 new contracts in 5 minutes

ART.REQ.AGI.2 Provide a continuous service at any time. 99,99% service availability

ART.REQ.AGI.3
Horizontal scaling according to demand; Easily
deploy use cases keeping connectivity and
interoperability among components.

On demand resources provisioning

ART.REQ.AGI.4 Provide federated blockchain network with
correct communication of user information.

Same user data across different
networks

ART.REQ.AGI.5
Store data streams from different sources;
Provide elastic resource provisioning; Provide
fast response and store throughput.

Real-time data gathering from
social network and geolocation
data sources

ART.REQ.AGI.6
Choreograph deployment, scaling and
interconnectivity distributed components;
Specify and monitor QoS/QoE for components.

Automated deployment, scaling
and orchestration of components;
32% better reaction time

ART.REQ.AGI.7
Provide decision mechanism to classify and
remove malicious content in real-time; Score
and trace malicious users.

90% reliable use

ART.REQ.AGI.8
Analyse user data, classify users and set
strategies to target them; Increase ROI for car
sharing companies and private vehicle owners.

80% improved engagement
consumer rate

ART.REQ.AGI.9 Allow exchanges among platform participants
to reduce car sharing cost. 40% cost reduction

ART.REQ.AGI.10 Easily deploy a new blockchain network; Define
parameters for composing network.

Automated parameterised
blockchain network deployment

Table 6: Crowd-cooperative video creation use case requirements.

Requirement Description Success Criterion

ART.REQ.VG.1 Reputation point ledger: provide a public persistent
reputation point ledger attached to DIDs.

100 new contracts
in 5 minutes

ART.REQ.VG.2 Token balance ledger: provide a public persistent
token ledger attached to DIDs.

Dynamic scale between 1 and
50 users

ART.REQ.VG.3
Immutable transactions: prohibit rollback once
reaching consensus about transactions validity and
storing it on underlying ledger.

On demand resource
provisioning

ART.REQ.VG.4
Low transaction confirmation time: confirm video
metadata write and reputation point/token
transactions on underlying ledger in real-time.

Automated deployment,
scaling and orchestration of
application components

ART.REQ.VG.5
Low query time: retrieve metadata, balances and
transaction data from underlying ledger in real-time
regardless the query initial location.

Edge based deployment (when
applicable)

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 36

ART.REQ.VG.6
Standard (public) interface: store and retrieve valid
data and transactions from ledger through standard
HTTP endpoints with publicly accessible queries.

x86_64 support

ART.REQ.VG.7 Scalability: scale to thousands of concurrent users Virtual container support

ART.REQ.VG.8 Uptime guarantee: high accessibility and reliability
to reduce use case maintenance costs. 99,99% reliability

Table 7: Smart energy use case requirements.

Requirement Description Success Criterion

ART.REQ.BY.1

Allow individuals integrate, operate and interact with smart
energy platform using their social identity management
system (tied with Norwegian services sector); Allow use case
owners use PCA from TIC to register themselves.

Integration with public
identity system

ART.REQ.BY.2

Allow individuals register energy profile and utilities with the
system, integrate existing smart meter APIs, solar panel
meters and other IoT-enabled utilities, register and encrypt
data streams, and store data fingerprint on TIC blockchain.

Integration with third
party energy system

ART.REQ.BY.3

Allow individuals advertise and trade energy within
neighbourhood and grid; Allow grid providers bid on their
energy; Use TIC relationship management package to create
smart contracts for this purpose, hosted on blockchain.

99,99% service
availability; 1000
transactions per second

ART.REQ.BY.4

Allow deployment of reward mechanisms for individuals to
earn incentives for trading and redeem value, facilitated by
the grid operation as a minor beneficiary; Use relationship
management to create smart contracts that allow
deployment of reward mechanisms and tracks fulfilment of
such schemes, hosted by blockchain package.

Reward system that
allows configuration of
custom rewards and
redeem scheme

ART.REQ.BY.5

Allow deployment of gamification tasks issued by grid
operator that specify weekly goals to drive user behaviour
towards optimal energy use; Allow individuals earn rewards
by adhering to such tasks; Use relationship management to
create smart contracts hosted by blockchain package.

Incentivation system for
custom reward
schemes and
monitoring success
criteria

ART.REQ.BY.6

Offer secure and rewarding mechanisms to share in-house
energy production and consumption to grid operators for
better planning and scheduling without violating the
household privacy using PCA, relationship management,
data storage and blockchain packages of TIC.

Analytics system that
provides insights into
micro grid production
and consumption

ART.REQ.BY.7 Facilitate in-house energy consumption change leading to
peak shaving and reduction of greenhouse emission.

20% less peak hours;
consumption; 5% less
in-house emissions

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 37

5.2.1 Validation Schedule

Figure 18 illustrates the timeline of the evaluation together with the milestones of the project covering
two expected prototypes. The first prototype is due at month M24 and the second prototype at month
M30. Following this schedule, the first prototype will represent the first attempt to evaluate the platform,
while the final evaluation starts at month M34 (representing milestone 6 of the project) after finishing
the final integration of the use cases and lasts until the project completion. The QA Team (see Section 5.3)
manages, supervises and performs the evaluation of the platform. We will document the results of these
tests and evaluations following the template in Annex III (see Section 9.3).

Figure 18: Timeline of the ARTICONF evaluation process.

5.3 Quality Assurance Team

A QA Team controls the testing procedure along with the evaluation of the platform. The objective of this
team is to supervise the completeness of the testing process along with documentation associated with
it. At this stage of the project, the roles and people appointed in the QA Team are as follows:

• Testing Manager is Cristian Martín from AGI whose responsibilities are to:

o Schedule of testing activities, creating a timeline that fits in the software release planning of
the project.

o Ensure that the Testing Team has the necessary resources to execute the testing activities;

o Prepare the report of testing activities and make them available to the testing team;

o Regularly update the scientific coordinator about the progress of testing activities.

• Testing Team consists of seven groups, one per technical partner in the consortium, responsible for
their own parts of the testing activities. A Test Team Leader conducts each group ensures the its
communication with the Testing Manager, as follows: Alexander Lercher (UNI-KLU), Rusell Wolff (BY),
Spiros Koulouzis (UvA), Pavel Taskov (UIST), Pedro Santos (MOG), Jorge Pérez Cerpa (AGI), and
Jeremiah Smith (VG). The tasks of the Testing Team are to:

o Design and perform unit tests and functional tests over the use cases;

o Provide information to the Test Team Leader on how to perform system tests over the testbed
to evaluate final KPIs;

o Inform to the Test Team Leader about the resource and requirements for software testing;

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Evaluation of the ARTICONF

Milestone MS4
First integrated ARTICONF Platform MS5
Final integrated ARTICONF Platform MS6
Testing and demonstration of
pilot use cases MS7
Final Report

Month

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 38

o Prioritise testing activities to meet schedule requirements;

o Document the test cases and report defects and solutions for the anomalies.

The annexes in Section 9 include the documentation templates for the testing and evaluation reports.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 39

6 Software and Tools

During the project and particularly for the testbed used, the ARTICONF partners will work with several
software services and tools, which we explain in this section.

GitLab2 is the main software management tool of ARTICONF. GitLab is an application designed for all
stages of the project lifecycle allowing the different teams work together and concurrently on the same
project. GitLab enables teams to collaborate and work in a single tool, instead of managing multiple
application and channels of communication. Moreover, GitLab provides a single data store to keep the
code safe, one friendly user interface, and one permission model, allowing teams to collaborate and focus
on building quality software. Lastly, GitLab includes tools for continuous integration and delivery such as
Jenkins.

Jenkins3 is an open source automation tool used to build and test the software, allowing continuous
integration and delivery. The concept of continuous integration is one of the basic pillars of a quality
project. Jenkins facilitates a continuous integration approach allowing early detection of integration
failures. It also provides automated testing, and enables the automated building and deployment of the
project on the testbed with a stable code. It has a high impact on the speed of development and on the
effort to accomplish a good integration. We chose the Jenkins tool owing to its capability of adapting to
any technology or language through open source plugins.

SonarQube4 is a web-based open source platform to measure and analyse the source code quality.
SonarQube receives source code files as input, analyses them, calculates important metrics, and displays
them on a dashboard. This analysis automatically detects bugs and alerts developers to fix them, warns
about code smells, informs about duplicate code, and provides rating with respect to the quality of the
code. This allows the developers fix and improve the code, keeping the quality intact with improved
sustainability, while preventing the occurrence of bugs and security risks in an automated fashion.

2 https://about.gitlab.com/
3 https://jenkins.io/
4 https://www.sonarqube.org/

https://about.gitlab.com/
https://jenkins.io/
https://www.sonarqube.org/

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 40

7 Conclusions

This deliverable compiled the information related to the initial ARTICONF infrastructure to deploy and test
its tools, APIs, software services, testing and deployment management, and use cases. This infrastructure
encompasses different resources provided by the project partners as a combination of consortium private
and public resources and commercial cloud providers. The deployment of the code uses this testbed
following a continuous integration approach. This methodology allows developers continuously add new
functionalities to the platform from a common software repository, enabled and provisioned to the
consortium. To facilitate this procedure, we selected several open source services expected to provide a
stable technical development environment.

This deliverable also established a formal testing process for the project, covering several layers of testing
to ensure a healthy and high quality code, as well as integration and functional integrity. The process
follows a timeline aligned with the project milestones and expected software releases of the final
platform. Although the specific tests are still under design, we proactively defined an initial platform
evaluation plan that measures the different platform metrics through its use cases. The work schedule
defined for this evaluation provides a balanced view in accordance to the testing and timeline of the
ARTICONF platform prototypes.

This document serves as a foundation for the next steps in WP7 and includes relevant information about
porting the use cases, as well as platform testing and evaluation reports. We will cover such
documentation in the upcoming deliverables and according to the project developments.

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 41

8 Abbreviations

Abbreviation Description
AI Artificial Intelligence

API Application Programming Interface
ARTICONF smART socIal media eCOsystem in a blockchaiN Federated environment

AWS Amazon Web Services
CONF Collocated and Orchestrated Network Fabric
DID Digital Identifier
GPS Global Positioning System
KPI Key Performance Indicator
MS Milestone
PCA Personal Certificate Authority
QA Quality Assurance
QoE Quality of Experience
QoS Quality of Service
REST Representational State Transfer
ROC Return on collaboration
ROI Return on investment

SMART Semantic Model with self-adaptive and Autonomous Relevant Technology
TAC Tools for Analytics and Cognition
TIC Trust and Integration Controller
VM Virtual Machine
WP Workpackage

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 42

9 References

Alexandre Ulisses, Ivone Amorim, et al. (2019). ARTICONF Platform Requirements and Use Cases.
ARTICONF Consortium, http://articonf.eu.

Radu Prodan, Nishant Saurabh, et al. (2019). ARTICONF Architecture and Interfaces Definition.
ARTICONF Consortium, http://articonf.eu.

http://articonf.eu/
http://articonf.eu/

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 43

10 Annexes

10.1 Annex I: Template for Unit and Integration Tests

ARTICONF Project: Unit / Integration Tests
Tool or Use Case under Test

Test
ID Test Type Test

Description Inputs Outputs Test
Date

Associated
Tool / Use

Case

Test
Status Comment

Unit /
Integration

Describe the
function,

interaction or
module to test

Inputs
for the

unit
test

Expected
outputs

Tool: TIC /
TAC/ SMART

/ CONF

Use case:
AGI / MOG /

BY/ VG

Passed
/ failed

If failed,
explain

why

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 44

10.2 Annex II: Template for Functional Tests

ARTICONF Project: Functional Tests
Tool or Use Case under Test

Test
ID

Test
Description

Preconditions /
Dependencies

Expected
Result

Test
Date Actual Result Test

Status

Description of
the test case

E.g. previously
registered user for a

login

Expected
outputs

Only if different
to expected

result

Passed /
failed

 D7.1: ARTICONF Testing Procedures, Infrastructure, Software Management,
Deployment and Validation Plan

825134 – ARTICONF

 45

10.3 Annex III: Template for Platform Evaluation

ARTICONF Project: Evaluation Tests

Test ID Test Type Test
Description

Precondition /
Dependencies

Expected
Result

Test
Date

Actual
result Test Status

Same id
than in
other

deliverables

Functional
/ Non-

functional

Description
of the test

E.g. previously
registered user

for a login

Expected
outputs

Result
of the
test

Passed /
Failed

compared to
initial

requirements
or KPIs

	Table of Contents
	Executive Summary
	Figures
	Tables
	1 Introduction
	2 Testbed Architectural Overview
	2.1 ARTICONF Testbed Specification
	2.2 ARTICONF Testbed Infrastructure
	2.2.1 Trust and Integration Controller (TIC)
	2.2.1 Co-located and Orchestrated Network Fabric (CONF)
	2.2.2 Semantic Model with Self-Adaptive and Autonomous Relevant Technology (SMART)
	2.2.3 Tools for Analytics and Cognition (TAC)

	2.3 Use Cases Testbed Infrastructure
	2.3.1 Crowd Journalism
	2.3.2 Car Sharing
	2.3.3 Crowd-Cooperative Video Creation
	2.3.4 Smart Energy

	3 Software Management
	4 Deployment Procedure
	5 Testing and Validation Procedures
	5.1 Test Plan
	5.1.1 Unit and Integration Testing
	5.1.2 Functional Testing
	5.1.3 Acceptance Testing
	5.1.4 Testing Workflow and Schedule

	5.2 Validation Plan
	5.2.1 Validation Schedule

	5.3 Quality Assurance Team

	6 Software and Tools
	7 Conclusions
	8 Abbreviations
	9 References
	10 Annexes
	10.1 Annex I: Template for Unit and Integration Tests
	10.2 Annex II: Template for Functional Tests
	10.3 Annex III: Template for Platform Evaluation

