Research Statement

Umit Tslak

My research is primarily concerned with probability theory and its interactions with other fields. In
Sections 1 and 2 of my statement below, I discuss my contributions to the areas of concentration
of measure inequalities and Stein’s method, which are my main research interests during my PhD
studies. Section 3 is devoted to a very brief discussion of three other research interests of mine which
I enjoy working on and also plan to pursue further in my future career. These are Markov chain
Monte Carlo methods, Markov chain theory and negative dependence of random variables.

1. Concentration of measure inequalities. My dissertation is on the concentration of measure
inequalities. These inequalities, in a broad sense, explain the phenomenon that a function, with
certain smoothness conditions, of a large number of independent random variables tends to con-
centrate its values in a relatively narrow range. Since the days when Markov proved his famous
tail inequality, concentration of measure has been the focus of extensive research and turned out to
be a valuable tool in many areas of mathematics and related fields. For an excellent book length
treatment of concentration of measure, see [3].

First, for a motivating and historical example, let’s consider the case where X1, Xo,..., X,, are
independent random variables with distribution P(X; = 1) = P(X; = —1) =1/2and S,, = Y ;" | Xi.
For this simple case, it is well known by the strong law of large numbers that S, /n — 0 a.s. as
n — 00, and it is natural to ask how rapid this convergence occurs. For instance, Bernstein’s classical
inequality answers this question by giving the bound P(|S,,/n| > t) < 2exp(—nt?/2(1+1/3)), t >0
which was later improved in several different ways. In a more general setup, we can similarly consider
the concentration of a given random variable Y, or smooth functions of Y.

An important instance that often emerges in applications of concentration of measure inequalities
is the case when Y is a function of dependent random variables. For such Y, Sourav Chatterjee
introduced a novel approach in 2007 [4] with an inspiration from Stein’s method that works out
perfectly in various applications. First part of my results follows the work of Subhankar Ghosh and
Larry Goldstein [11] who employed Chatterjee’s approach by making use of size biased couplings
which are very important for distributional approximations within dependent settings in Stein’s
method literature. We recall from [15] that for a non-negative, integrable random variable Y, another
random variable Y* is said to have the Y size biased distribution if E[Y f(Y)] = E[Y]E[f(Y*)] for
all functions f for which the expectations exist.

Letting u = E[Y] > 0, and assuming the existence of a size biased coupling Y* of Y satisfying
Y?® —Y < C for some constant C' > 0, my first results were the following concentration of measure
inequalities

P(Y — ji < —t) < exp <_2tc2u> and P(Y — 1> 1) < exp <é <t (i +1)log <“:t>>> (0.1)
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which hold for all ¢ > 0.

These concentration bounds improve the results in [11] significantly for both tails. For the upper
tail, the asymptotic order of the bound is improved to exp(—ctlogt) from exp(—ct). This yields the
correct order [18], for example, for generalized matching problems in uniformly random permutations
improving the corresponding results of Chatterjee in [4]. Also the upper tail inequality in (0.1) reveals
the following Bernstein type bound as a corollary

t2
P 20 <o (-0 e )

which still has better constants than the ones given in [11].

For the lower tail, T was able to remove a monotonicity condition (that, Y* > Y a.s.) which was
assumed as a hypothesis for the results of [11]. This is quite useful since in applications size biased
coupling constructions need not be monotone as can be seen from various examples in [12]. In a
recent paper [1], different proofs of my results were given where a slight improvement in the upper
tail inequality was also provided.

As a further note, the boundness condition in the lower tail inequality of (0.1) is indeed relaxable to
E[Y*® —Y|X] < C when Y is a function of some underlying random variables X = (X3, X», ..., Xp).
In 18], T showed that this observation can be used to introduce a new type of dependence, which
I call as the layered dependence, of random variables which helps one to understand functions of
possibly globally dependent random variables. For instance, under this more general assumption
one can obtain the Suen type correlation inequality P(Y = 0) < exp (—%) , that yields significant
improvements to Svante Janson’s results in [20] when the underlying random variables are strongly
dependent.

In a subsequent work with Jay Bartroff and Larry Goldstein [2], we extended the scope of the appli-
cations of the results stated in previous paragraphs. Namely, this work provides a general framework
for construction of bounded size biased couplings for counts based on multivariate occupancy mod-
els M = (M, )aea with log concave marginals. For a flavor of our results, consider the Chung-Lu
random graph G [8] where we have n vertices labeled as 1,2, ...,n and a pair of vertices i and j are
connected to each other with probability p;; = (wjw;/l,) A1, where w;’s are non-negative weights
and [, = Zie[n} w;. Letting di’s be fixed degrees of interest and My, be the degree of vertex kin G, our
results in [2] can be used, for example, to obtain concentration bounds for Y> = >~ 1(M}, > dy,)
using the inequalities in (0.1) with C' = 1 4+ maxg—, ., di. Several applications to other multivari-
ate occupancy models such as multinomial allocation, random graphs, multivariate hypergeometric
sampling and germ-grain models in stochastic geometry are also included in [2], and our results
improve previous efforts in these directions in terms of generality and the constants in bounds.

In one other subsequent work with Subhankar Ghosh [13], we established multivariate analogues of
the inequalities in (0.1) which are the first attempts in this direction that use couplings. Namely,
under multivariate bounded coupling assumptions similar to the univariate case, we were able to
prove upper bounds of orders exp(—|[t||3) and exp(—||t||2) for the probabilities P(W — g < —t)
and P(W — p = t), respectively, where W = (Wy, Wy, ..., W) is random vector with nonnegative
coordinates, u = E[W] and t = (t1,ts,...,tx) = 0. Here || - ||2 is the L? norm on R* and the partial
order < on R¥ is the standard componentwise order. Although we believe that the order in the upper
tail inequality can be improved as in the univariate case, we were not able to succeed in this yet



and we keep this as a problem for future research. We also have similar multivariate concentration
bounds by making use of multidimensional exchangeable pairs and our current research is on forming
a general framework for all of these results using the Stein coupling approach of [6].

As a final result on concentration of measure inequalities, in joint work with Larry Goldstein, we
were able to show that one can also prove exponential tail bounds using zero biased couplings,
another important coupling from Stein’s method, in possibly dependent settings. Let’s recall from
[14] that for a mean zero random variable Y with positive, finite variance 02, a random variable Y*
is said to have Y-zero biased distribution if E[Y f(Y)] = o?E[f/(Y*)] for all absolutely continuous
functions f for which the expectation of either side exists. It is well known that the distributional
transformation £(Y) — L£(Y*) has the normal distribution as its unique fixed point and thus,
under a bounded zero biased coupling assumption, it is natural to assume that the tail behavior of
Y will be close to the tails of the normal distribution. One of our main results from [?] justifies this
heuristics by establishing the inequality

2
P(JY]| >1t) <2exp <_2(02+Ct)>’ t>0 (0.2)
whenever one can find a zero biased coupling of ¥ with |Y* — Y| < C for some C > 0. Later
we were also able to show that the orders of the bounds given in (0.2) can actually be improved
to exp(—ctlogt) under similar assumptions. Applications of this approach include the Hoeffding
statistic Y = Y1 | a;r(;) where A = (a;5)1<ij<n € R™ " and the permutation 7 has the uniform
distribution over the symmetric group, and when its distribution is constant on cycle type. In
particular, our bounds provide improvements to Chatterjee’s corresponding results in [4] when 7
has uniform distribution. See [?] for details. We are now in the process of finding new applications,
forming a multivariate framework and exploring connections to statistics of random matrices.

Finally, I would like to note that there are several questions I will pursue in the field of concentration
of measure inequalities in the following years. Here is a short list.

e Agnoted above, the zero biased transformation Y — Y™ has the normal distribution as its unique
fixed point and the statement |Y* — Y| < C for some constant C indicates that the tail behavior
of Y should be similar to the tail behavior of a normal random variable in a certain sengse. With
this motivation, can we use other fixed point transformations from Stein’s method literature to
obtain concentration bounds? As another example, so far I have also obtained results with the
equilibrium transformation which has the geometric distribution as its unique fixed point.

e Chen and Roellin introduced a class of couplings (known as Stein couplings) in [6] which general-
izes various important coupling constructions from Stein’s method literature such as size biasing
and exchangeable pairs. Can we form a general framework in a multidimensional setting for the
previous efforts using the constructions of Chen and Roellin?

e Can we prove Talagrand’s inequality by using the coupling approach discussed above? Now there
is some work in the literature done in this direction, however to the best of my knowledge a
convincing answer has not been given yet.

e Proofs of the technical results stated above involve differential inequalities and the use of Gronwall
type estimates from differential equations literature. There are several other coupling approaches
that result in differential inequalities with time scales. Can one use similar estimates for obtaining
useful concentration bounds for such cases?



2. Stein’s method. My secondary main research interest during my PhD studies was on Stein’s
method. I already discussed the use of couplings from Stein’s method for concentration of measure
inequalities in the previous section. Here our focus will be on distributional approximations for
random variables [23]. In this aspect, the method refers to a general framework for bounding the
distance between the distribution of a random variable X and that of a random variable Z having
some specified target distribution. The metrics for which this approach is applicable are of the form
dn(L(X),L(Z)) = suppey |E[R(X)] — E[h(Z)]| for some suitable class of functions H. Note that
Kolmogorov, total variation and Wasserstein distances are all included as special cases of dy.

The first step in distributional approximations with Stein’s method is to find an operator A such
that E[(Af)(X)] = 0 for all f belonging to some sufficiently large class of functions F if and only
if L(X) = L(Z). Once we have found such an operator A, as a second step, for given h € H
one attempts to solve the equation (Af)(z) = h(x) — E[h(Z)]. If for each h € H, a solution
frn € F exists, then upon taking expectations, absolute values, and supremum, one finds that
dy(L(X),L(Z)) = suppey |E[R(X)] — E[L(Z)]| = suppen [E[(Afr)(X)]|. Surprisingly, it is often
easier to work with the right-hand side of this equation and the techniques for analyzing distances
between probability distributions in this regard are known as Stein’s method. As an example of a
characterizing operator A, we recall from [23] that X ~ N(0,1) if and only if E[X f(X)— f(X)] =0
for all absolutely continuous functions f with || f|lcc < 0o. Also we note that the method has been
used to attain rates of convergence for a variety of distributions other than normal, including the
Poisson, exponential and geometric. For excellent surveys of the subject, see [5] and [22].

My involvement with Stein’s method began by studying applications to random permutation statis-
tics. My first result [19] was answering a question of Jason Fulman in [10] by proving the asymp-
totic normality of the number of inversions in a random permutation p € S,, that is inv(p) =
>icj L(p(i) > p(j)), where the permutation results from a biased riffle shuffle. Proof of this the-
orem makes use of inverse shuffles, and one also obtains a convergence rate of order 1//n in the
Kolmogorov distance. During the course of analysis of this problem, I have become very interested
in non-parametric statistical tests, and kept working on various other statistics related to extreme
points of random sequences throughout my PhD studies.

A more recent work of mine in this direction is on the length of longest alternating subsequences in
uniformly random permutations and (possibly non-uniform) random words on finite alphabets. Due
to a characterization [16] of longest alternating subsequences in terms of local extremes, obtaining
convergence rates for the case of uniformly random permutations is straightforward using standard
results on locally dependent random variables. Same problem for random words turns out to be
rather hard as one may have repeated values in a random word causing a necessary change in
the definitions of local extremes, thus making the dependence of the underlying random variables
global. However, I was still able to prove asymptotic normality with convergence rates by using the
right coupling approach. My current research is on studying statistics of multisets having symbols
with fixed multiplicities (which is equivalent to riffle shuffles with fixed cuts). I am also planning to
explore the connections of this latter study to problems related to DNA sequences in the future.

A second approach I focused in the area of Stein’s method is the concentration inequality approach
of Chen and Shao [7]|. One of my results [17] here is a proof of the asymptotic normality of Zf\;”l X;
where X, ..., X,, are locally dependent random variables with certain assumptions and N, is an-
other non-negative integer valued random variable independent of X;’s. This result generalizes the
work done by [7] for sums of independent random variables and I believe that it will be useful



for interesting non-parametric statistical tests in future research. One other question to follow in
this direction will be extending my result on random sums to the case where N,, and X;’s are not
independent which is very important as in many applications N,,’s are actually stopping times.

There are various other problems I will be working on in the following years some of which are:

e Can we use Stein’s method to study convergence rates for Markov chaing? Persi Diaconis’ work
in [9] where he discusses a very simple example provides a good starting point for this study.

e The bounded coupling constructions we gave in |2] raised the possibility of studying distribu-
tional approximations for various interesting occupancy statistics. Is it possible to provide a
unifying framework in this direction by using our constructions which simplifies and improves
various previous efforts?

e Can we develop a Stein’s method framework for Tracy-Widom distribution which appears in
limits of important statistics in random permutations, random matrix theory and percolation?

3. Other research interests. In this section I will describe three of my other research interests
which I enjoy working on, and very briefly will discuss my ongoing progress.

3.1 MCMUC - Perfect sampling. My master’s thesis was on the Propp-Wilson algorithm and
its generalizations which are used to obtain exact samples from stationary distributions of certain
Markov chains. I was able to show that these methods can be considered as corollaries of Letac’s
principle and analyzed how backward processes can be used to obtain convergence rates in Marko-
vian processes. There are various drawbacks of the algorithms in the lines of Propp and Wilson’s
work such as the user impatience bias, correct choice of the iterative function system and uniform
ergodicity requirement. My current research in this direction is on designing alternative algorithms
that can be used in more general settings.

3.2 Markov chains. My research is closely related to Markov chain theory as described in the
previous sections. Here 1T will briefly mention two other problems I am planning to work on in
the following years. (1) As discussed above, I am planning to adapt Stein’s method techniques for
analysis of statistics driven by Markov chains. As an exemplary special case, I am interested in
obtaining bounds to normality for finite or countable Markovian random words statistics, like the
lengths of longest alternating subsequences. Asymptotic normality in this latter problem was shown
in [16], but it would still be very interesting to obtain convergence rates as this will require one
to deal with a global dependence situation which may provide a route to understand several other
problems. (2) My second main interest in Markov chains lies in shuffling chains. My research so far
is focused on mostly riffle shuffles and riffle shuffles with fixed cuts, but I am planning to extend
my research by working on other different shuffling models and plenty of cut-off problems that are
unsolved.

3.3 Negative dependence. I became interested in negative dependence [21] of random variables
due to its close connection to my research in concentration of measure inequalities and Stein’s
method. There are several problems to attack in this field for the following years, most of which are
related to the connections between log concavity, negative dependence and couplings from Stein’s
method. Besides these general considerations, so far I also worked on understanding weaker formu-
lations of negative association, and finding applications of these different classes. | am planning to
extend my research in these directions in the near future.
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