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Traditional scientific discovery discipline always derives handcraft equations from first principles.
Even with expert’s carefully mathematical modeling, there are always situations left behind. The
recent breakthrough in machine learning algorithms enables us to extract useful information and
make useful predictions from data across a wide range of areas, which gives us hope to discover
new physic laws from observational data[3,4,10,11,12,13]. Despite the successes, however, several
key challenges remain when we apply state-of-the-art models for scientific applications, including
physic prediction [3,10,11], medical applications, and climate predictions [3,13]:
+ The NN architectural design is still an art and it lacks basic mathematical principles. When
applying neural networks to scientific problems, how prior physics knowledge can be integrated
into the machine learning system?

+ While robustness and reproducibility is the core of scientific research, the state-of-the-art models
are discovered to be vulnerable to adversarial perturbations, biased towards spurious relations, and
even sensitive to simple domain shift. How to build a robust machine learning systems becomes a
crucial challenge faces if we aim to use data-driven discovery for physic law in scientific research.

Previous Research Experience
My previous research lies at the interface of computational physics, statistics, and signal processing,
and tends to explore this topic from the following two perspectives:
Encoding Physic Information to the Model. Differential equations play an important role in many
disciplines of science and engineering. My research starts from interpreting many effective networks
as different numerical discretizations of (stochastic) differential equations [1,2]. Based on this
perspective, we are able to combine physic information with the deep neural network system via
linking deep learning theory with control theory.
+ In [3,4], we present an initial attempt to learn evolution PDEs from data. This approach combines
the representation power of the deep neural networks and the transparency of the PDE models
which leads to better generalization property towards diverse initial conditions.

+ In [5], we apply this idea to inverse problem. With the understanding of the physic behind the task,
we additional learn an terminal time for different noise level which leads to better generalization
across different noise level and different noise statistics.

+ In [6,7], we apply this idea towards understanding the training process of the deep neural networks.
The control theory view-point enables us to design 1/4-1/5 times faster algorithm for adversarial
training in practice [6] and provide the first convergence proof for stochastic gradient descent
training multi-layer networks in mean-field [7].

Building Robust learning Algorithm via Inductive Bias. Overparametraization, i.e having more model
parameters than necessary, is the core factor behind the success of modern machine learning. However
overparametraization also enables the model to fit any noisy signal which makes the model extremely
vulnerable. My previous research aims to build robust overparametrized model via understanding
the inductive bias.
+ In [8], we discussed the how robust overparameterized neural network can be towards croupted
label, which is unavoidable when we collect physics signals in experiments. We have shown that
although overparameterization can leads to memoryization of all signals, however the discrepancy
of convergence speed of different types of information can help us to distinguish signal from the
noise. This leads to a theoretical understanding on how distillation algorithm can help in the
situation that the supervision signal is noisy
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+ In [14], the authors have shown that although overparametrization will helps for average-case
generalization, but the overparameterized model can’t generalize on the worst-case. I aim to
understand how overparametrized model effects the worst-case generalization in high dimensional
data from the random matrix theory and how meta-learning algorithms can help overparametrized
model generalize uniformly.

Research Plan and Goal
The interdisciplinary challenges addressed by this project are representative of our research in general,
which seeks to apply state-of-the-art machine learning problem to scientific discovery with a rigorous
mathematical theory supporting. The project crosses different domains such as mathematical
analysis, computational physics, high dimensional statistics, causal inference and machine learning
with their application in time series data occurs in physics experiments and biology researches.
The project aims to develop robust, explainable and theoretical guaranteed machine learning tools
for scientific research data such as real biological dataset of a metabolic network (Materials and
Methods) [12] and NEXRAD climate data[15]. Here is the research plan:
+ We have already proposed PDE-Net[3,4] to accurately predict the dynamics of complex systems
and to uncover the underlying hidden PDE models at the same time which enables us to infer the
source of pollution from the observational data. My first step is to scale up the experiment to
noisy real-world climate data. We aim to learn a reduced-order model for climate data with good
interpretability which enable us to infer more information than predicting, as an example finding
out the pollution source from observational data[3]. The immediate challenge is to generalize our
method beyond the regular grid, which needs us to combine our PDE-Net filter with convolutional
graph neural networks.

+ We also aim to understand the theoretical benefit of encoding prior physic information into deep
learning models, including optimization [7], different loss functions [11], representation power
[10,16,17], and generalization of the deep neural networks. We hope the theoretical research
can help us to derive the original neural network structure, training algorithm, and regularization
terms to improve deep learning algorithms for physic, biology problems.

+ To causal predict a dynamical system, we need to consider both the stable and predictive
structures[12]. In this project, we aim to discover the power of meta-learning to improve the
out-of-domain generalization for deep physic models[18]. We hope this approach can break the
known trade-off between worst-case generalization and prediction accuracy[13].

Significance of Proposed Work
With the rapid development of sensors, computational power, and data storage in the past decade,
huge quantities of data can be easily collected and efficiently stored. Such a vast quantity of data
offers new opportunities for the data-driven discovery of physical laws. From experiment design to
data analysis, from physics law discovery to make useful predictions, AI can help to make the full
process of scientific discovery fully automated. However, the lack of guidance of model design and
robustness of the trained model is a clear threat to this area.
To overcome the obstacles mentioned before and make data science become the new scientific
discovery discipline beyond the first principle needs interdisciplinary research. As an ICME student,
my program enables me to be exposed to knowledge and experts in different areas, varying from
basic mathematics to statistics and even physics and biology. Thus, I’m in a pretty good place to
adapt the new ideas from the modern machine learning algorithms to different areas and make full
use of the information from data to help scientific research in the future. I hope in the near future,
physic laws can be discovered from observational data directly and physic law discovered by AI can
help scientific researchers to understand the world better.
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