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2018 OR & Analytics Student Team Competition 
Final Problem Statement – Revised 11/10/17 
 

 

 
1) Background 

 
 
Portfolio optimization refers to the process of finding the optimal proportion of each asset in an 
investor’s portfolio, given a particular investment objective. The two main criteria are to 
maximize return for a given level of risk or, equivalently, to minimize risk for a given level of 
expected return. In order to control risk efficiently an investor will try to construct a portfolio 
that is well diversified, i.e. has as little systematic (non-diversifiable) risk as possible and as 
many uncorrelated assets as possible to protect the portfolio as a whole against losses in 
individual assets. A perfectly diversified, long-only (no short selling allowed) portfolio, will only 
be left with (systematic) market risk that can’t be avoided. The traditional Markowitz Mean-
Variance Optimization framework offers a way to allocate stocks by considering a trade-off 
between risk and expected return. Further diversification can be achieved by avoiding 
concentration in countries, company sizes, sectors, etc.  
 
Institutional investors are generally required to construct portfolios using additional constraints 
such as, limits on the number of unique assets in the portfolio or how many assets outside a 
specified benchmark can or must be added. These additional constraints are designed to control 
the costs that occur when an asset is bought, sold or held while also creating a portfolio that is 
concentrated enough to outperform the market. 
 
Principal Global Investors has a large base of asset under management, mainly from our pension 
and insurance business as well from institutional clients. In order to operate profitably these 
assets get invested in a wide range of asset classes and strategies. One of those asset classes is 
equities, where portfolio construction is the main point of focus. The following problem is an 
accurate representation of what challenges an equity portfolio manager faces on a daily basis.  
 
 

2) Problem Definition 
 
Your challenge is to develop an equity portfolio optimization framework that improves risk 
adjusted excess returns. The optimization framework will minimize the trade-off between risk, 
in the form of tracking error, and expected excess return through time, subject to several 
constraints. The portfolio will only consist of long positions, meaning the decision variable 
(proportion of the portfolio held in each asset) is always positive. The portfolio must also be fully 
invested at all times. In other words, the proportions of all assets must sum to 100%. In order to 
avoid concentration in individual assets, we will limit the proportion that can be held in each 
individual asset. To ensure diversification, there will be constraints on sectors, company sizes 
(market capitalization), and sensitivity to the equity market (Beta). So far, this represents a basic 
Markowitz portfolio optimization problem that can be solved using widely open-source or 
commercial quadratic programming solvers. This Markowitz implementation was also used to 
create the baseline data that is provided and should serve as a starting point to further add the 
following extensions to the problem.  
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As mentioned before, the number of distinct assets in a portfolio is often a requirement in 
portfolio construction. Therefore, we would like you to add a constraint to limit the target 
number of distinct assets in the portfolio to a predefined range. We will also introduce an active 
share constraint which controls how closely we follow a chosen benchmark index in terms of 
active weights (equation 1, difference between portfolio weight and benchmark weight), as well 
as a tracking error (standard deviation of active weights) constraint which also controls how 
closely we follow a benchmark, but in terms of a risk measure rather than return. These final 
three extensions to the Markowitz problem alter the problem definition considerably. This 
formulation can no longer be solved with traditional convex optimization techniques. We 
therefore challenge you to come up with a creative solution for handling these constraints. You 
must consider the dimensionality of the problem and the associated time it will require to 
compute a solution. Think about applying heuristics rather than exact implementations as a 
trade-off for the time it will take to compute a solution.  We also want you to think about 
scalability of the problem, i.e. what would happen if your input data increased dramatically in 
size, e.g. 10-20x? This would typically happen if we want to run this problem on a global equity 
universe. 
 
 

3) Define Notations 
 
Input descriptions: 
 
Risk (Ω) : Return covariance matrix for all assets in the universe, which contains the 
relationships between each pair of historical return series.  Ω is a symmetric matrix where the 
diagonal elements are the variances of the asset returns, the off-diagonal elements are 
covariances. As the matrix is symmetric we will only be providing the upper half of the matrix. 
 
Alpha Score (𝛼): Expected return score, higher values are expected to have higher future 
returns. 
 
Date: Date stamp when portfolio optimizations will be performed, also used for corresponding 
covariance matrices.  
 
Identifier: SEDOL (Stock Exchange Daily Official List), unique stock identifier 
 
Sector: Information about the industrial sector each asset belongs to 
 
Beta: Measure of an asset’s return sensitivity relative to the equity market return as a whole 
 
Name: Asset’s name 
 
Benchmark weights (𝑤𝑏𝑒𝑛𝑐ℎ): Proportion of each asset in the Benchmark 
 
MCAPQ: Market Cap Quintile, Market Cap is a measure of the asset’s capitalisation size relative 
to the market.  Used to distinguish large companies from small ones. A rank of 1 indicates it is 
part of the largest 20% of companies (by benchmark weight). A rank of 5 indicates it is part of 
the smallest 20% of companies. 
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4 Weekly Returns (𝑟 ): 4 weekly forward returns (the return from the date in question over the 
subsequent 4 weeks) for each asset, these returns can only be used to calculate the portfolio 
performance metrics after the optimizations (i.e. it cannot be part of the optimization itself) 
since this would introduce look-ahead bias. The only proxy for future returns that can be used 
within the objective function, is the Alpha score. 
Terminology: 
 
Long Position: is the buying of a security such as a stock, commodity or currency with the 
expectation that the asset will rise in value. A long position is the opposite of a short (or 
short position). 
 
Institutional Investor: is an entity which pools money to purchase securities, real property, and 
other investment assets or originate loans. Institutional investors include banks, insurance 
companies, pensions, hedge funds, REITs, investment managers, endowments, and mutual 
funds. 
 
 
Variable definitions: 
 
𝒘  : total portfolio 
𝑤𝑖 : proportion (weight) of overall portfolio held in asset i 
𝑑𝑖  : Active weight held in asset i, describes the difference between portfolio weight and 
benchmark weight for each asset and is a measure for how actively a portfolio manager diverts 
from a benchmark, see equation 1. 
 
Scaling parameters: 
𝜆 : tuning parameters to influence how dominant parts of the objective function behave. This is 
a constant. Typical 𝜆𝑠 range from 0 (pure minimum variance), to 10 (very aggressively tilted 
towards targeting expected return). For the provided baseline case, a 𝜆 = 1 was used.  
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4) Mathematical Formulation 
 
We define the problem of portfolio selection as follows: 

 

  𝑑𝑖 =   𝑤𝑖 −   𝑤𝑏𝑒𝑛𝑐ℎ 𝑖 (1) 

 

Markowitz Formulation 

 min
𝑑

𝜎 =  min
𝑑

 (𝑑𝑇Ω 𝑑 −  𝜆 𝑑𝑇𝛼) (2) 

𝑠. 𝑡.   

 𝑤𝑖 ≥ 0   ∀ 𝑖  (3) 

 ∑ 𝑤𝑖 = 1

𝑖

 (4) 

 −0.05 ≤  𝑑𝑖  ≤ 0.05   ∀ 𝑖 (5) 

 −0.1 ≤  ∑ 𝑑𝑖

𝑖  ∊ 𝑠𝑒𝑐𝑡𝑜𝑟 𝑗

 ≤ 0.1  ∀ 𝑗 (6) 

 −0.1 ≤  ∑ 𝑑𝑖 ≤ 0.1

𝑖 ∊ 𝑀𝐶𝐴𝑃𝑄 𝑘

 ∀ 𝑘 (7) 

 −0.1 ≤  ∑ 𝑑𝑖 ∗  𝛽𝑖 ≤ 0.1

𝑖

 (8) 

Extensions to the traditional problem 

 50 ≤ 𝑐𝑎𝑟𝑑(𝑤𝑖 ≠ 0) ≤ 70 (9) 

 
0.6 ≤ 1 − ∑ 𝑚𝑖𝑛(𝑤𝑖 , 𝑤𝑏𝑒𝑛𝑐ℎ 𝑖) ≤ 1 

𝑖

 
(10) 

 0.05 ≤ √𝑑𝑇 Ω 𝑑
 

 ≤  0.1 (11) 

 
 
Constraints Description: 

1. Active weight  Definition 
2. Markowitz Objective Function balancing risk (tracking error) and excess return 
3. Long-only (no negative weights): minimum asset weight = 0% 
4. No leverage, i.e., entire portfolio is invested : ∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 100%  
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5. Min/Max active weights per asset: Benchmark weight +/- 5%  
6. Sector active weight: +/- 10% 
7. Market Cap Quintile active weight: +/- 10% 
8. Beta (β) active weight: -0.1 ≤ β ≤ 0.1 
9. Cardinality: Target range on number of stocks (consider  𝑤𝑖 as 0 if  𝑤𝑖 ≤ 0.001 ) 

between 50 to 70 
10. 0.6 ≤ 𝐴𝑐𝑡𝑖𝑣𝑒 𝑠ℎ𝑎𝑟𝑒 ≤ 1 
11.  Tracking Error (TE): 5% ≤ 𝑇𝐸 ≤ 10% 

 
 

5) Datasets 
 
Data provided is an extract of the constituents of the S&P500 at pre-specified dates. The data 
extract is taken every 4 weeks over a 10-year horizon, starting 2007-Jan-03. The number of 
data points per date will vary slightly. 
 

 Time series data includes the following fields: 
o Date 
o Identifier (SEDOL (Stock Exchange Daily Official List)) 
o Sector 
o Beta 
o Alpha Score 
o Name 
o Benchmark (S&P 500) weight (𝑤𝑏𝑒𝑛𝑐ℎ𝑖

) 

o Market cap quintile (𝑀𝐶𝐴𝑃𝑄𝑖) 
 

 Historical risk model data (upper half of the covariance matrix) used for optimization 
done on the corresponding date.  

 
 Historical returns for each 4 week period in the 10-year horizon for each stock, in 

percentage, e.g. 0.05 = 5% (part of the evaluation criteria, see section 7. Included in the 
results template) 
 

 

6) Simulation Process 
 
A sequence of portfolio rebalances has to be performed on the whole set of data provided. The 
rebalance dates are pre-specified by the data provided. Every rebalance will result in a new set 
of weights for each asset.  
 
Institutional investors are required to rebalance their portfolios at regular intervals, or more 
frequently if market conditions change and therefore portfolio diversification worsens. Typical 
rebalance intervals are daily, weekly, monthly, quarterly, semi-annually or annually. The more 
frequently a portfolio gets rebalanced, the closer it reflects the present market conditions and 
therefore holds less risk and a higher chance to outperform. Unfortunately the cost associated 
with rebalancing the portfolio cannot be neglected and makes or breaks a portfolio manager’s 
performance. It therefore is necessary to find that sweet-spot between rebalancing as frequently 
as necessary to capture the potential excess return and minimizing the cost of doing so. For this 
project we want you to simulate this behaviour of a portfolio manager, by rebalancing your 
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portfolios at pre-defined dates throughout a 10 year history. Every 4 weeks you will be running 
an optimization based on a new dataset. You will be responsible for managing how many assets 
in your portfolio change from rebalance to rebalance, i.e. the portfolio turnover. To reflect the 
costs of trading, the turnover number will be used to reduce your overall returns before you 
calculate how well your portfolio performed over time.  One way of controlling turnover is by 
introducing further constraints. While rebalancing, you can only use information available to 
you up until that point in time, i.e. you cannot look into the future. The outcome of your 
simulation will be a set of assets and the proportion they make up in the portfolio for each 
rebalance date (and the resulting time series of portfolio returns). This information will be used 
in the final step to evaluate how well your portfolio performed compared to a benchmark. The 
first portfolio composition (your starting point) will be provided. Any further rebalance will be 
performed by you.      
 

 
Figure 1: Portfolio simulation timeline 

 

7) Evaluation Criteria 
 
After all the simulations have been performed the provided 4 weekly return numbers will be 
used to compute overall portfolio returns. The returns will be aggregated to a total return for 
the whole portfolio per rebalance date based on each asset’s return and its weight in the 
portfolio on the rebalance date and will be turnover adjusted. In reality, rebalancing is not free. 
The turnover adjustment represents a proxy for the costs that would occur for trading stocks 
to rebalance the portfolio. Every 100% in portfolio turnover will reduce the subsequent overall 
portfolio return by 0.5%.  
 
Start off with calculating the overall turnover numbers (equation 13) for your portfolio for 
every rebalance date t. Then calculate the overall return for your portfolio (equation 14) for 
every date t using your calculated portfolio weights and the 1 month returns (𝑟 ) provided to 
you. In your final step, using equation 15, calculate your turnover adjusted overall portfolio 
returns for each date t. 
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Portfolio turnover for period t  is defined as: 
 

𝑤𝑖,𝑡
𝑃𝑟𝑒 =  

𝑤𝑖,𝑡−1 ∗ (1 +  𝑟𝑖,𝑡−1)

∑ 𝑤𝑖,𝑡−1 ∗ (1 +  𝑟𝑖,𝑡−1)𝑖

 

 

(12) 
𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡 = ∑|𝑤𝑖,𝑡 − 𝑤𝑖,𝑡

𝑃𝑟𝑒|

𝑖

 

 

(13) 

 

Where 𝑤𝑖,𝑡−1 and 𝑤𝑖,𝑡  are your calculated, post-rebalance, portfolio weights at two consecutive 

rebalance dates and 𝑟𝑖,𝑡−1 are the 4 week forward returns from your previous rebalance date. 

To incorporate time variance in the weights since the previous rebalance, due to underlying 

price movements, we have to adjust  𝑤𝑖,𝑡−1 first by using the returns in equation 12. Thus 𝑤𝑖,𝑡
𝑃𝑟𝑒 

represents the weights of the portfolio from time period t-1, adjusted for returns in that prior 
period, prior to the rebalancing that occurs in period t. 
 
Overall return for period t of your portfolio is defined as: 
 

 𝑟𝑂𝑝𝑡 𝑡 =  ∑ 𝑤𝑖,𝑡

𝑖

∗ 𝑟𝑖,𝑡  (14) 

 
Adjusted returns (return adjusted = 4 weekly return – cost penalty * turnover) for period t: 

 

 𝑟𝑇𝑥𝑎𝑑𝑗 𝑡 =  𝑟𝑂𝑝𝑡 𝑡 −  0.5% ∗  𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟𝑡  (15) 
Metrics: 
 

 Adjusted information ratio 
 

 

 𝐼𝑅 =  
∏ (1 + 𝑟𝑇𝑥𝑎𝑑𝑗 𝑡)𝑡 − ∏ (1 + 𝑟𝑏𝑒𝑛𝑐ℎ 𝑡)𝑡

𝑠𝑡𝑑(𝑟𝑇𝑥𝑎𝑑𝑗 𝑡 − 𝑟𝑏𝑒𝑛𝑐ℎ 𝑡)
 

 
(16) 

 
Calculate 𝑟𝑏𝑒𝑛𝑐ℎ  for every date t, using the provided benchmark weights 𝑤𝑏𝑒𝑛𝑐ℎ and the 
1 month returns (𝑟 ). std() represents the standard deviation of the difference of the 
adjusted returns and the benchmark returns, where the standard deviation is taken 
over all the time periods in the simulation. 
 

 Simulation run time (< 3 min per rebalance date, on a standard 8 core machine) 
 Turnover 
 Elegance and implementability of solution and framework 

 
 

8) Submission 
 

 Performance statistics such as: Cumulative return for portfolio and benchmark (see 
equation 17), annualized return for portfolio and benchmark (see equation 18), 
annualized excess return for portfolio vs. benchmark (see equation 19) where n = total 
number of rebalances and 13 the number of rebalances per year, annualized tracking 
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error (see equation 20), Sharpe ratios for portfolio and benchmark (see equation 21) and 
information ratio (see equation 16). Performance numbers must be calculated using 
transaction cost adjusted returns (see equation 15). Feel free to include additional output 
metrics you consider valuable.  

 
 
 
 
 

𝑅𝑐𝑢𝑚𝑢𝑙 = ∏(1 + 𝑟 𝑡) − 1

𝑡

 (17) 𝑅𝑎𝑛𝑢𝑎𝑙 = (1 + 𝑅𝑐𝑢𝑚𝑢𝑙)
13

𝑛⁄ − 1 (18) 

 
 

 𝑅𝑒𝑥𝑐𝑒𝑠𝑠,𝑎𝑛𝑢𝑎𝑙 =  𝑅𝑎𝑛𝑢𝑎𝑙,𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜 −  𝑅𝑎𝑛𝑢𝑎𝑙,𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘  (19) 

 
 

𝑇𝐸 =  √13 ∗  𝑠𝑡𝑑(𝑟𝑇𝑥𝑎𝑑𝑗 𝑡 − 𝑟𝑏𝑒𝑛𝑐ℎ 𝑡) (20) 𝑆𝑅 =  
∏ (1 + 𝑟𝑡) − 1𝑡

𝑠𝑡𝑑(𝑟𝑡)
 (21) 

 
 
 

 Portfolio rebalance output data: 
o Date of rebalance 
o SEDOLs selected 
o Associated weights for each SEDOL 

 Complete codebase to run the simulation 
 Documentation, including details on any libraries or commercial packages used 
 Specify any additional techniques used, e.g. parallel processing (no distributed 

computing) 
 A template will be provided that will determine the format for submitting your results.  

Included in the results template is the ‘FOUR_WEEKLY_RETURN’ data, which can only be 
used to calculate the performance statistics. 

 
 
 
Highly Recommended: 
Attention has to be paid to whether all constraints will be implementable in the chosen 
framework, non-traditional implementations might be necessary, i.e. non-convex. Furthermore, 
the project will involve a large data set, therefore a programming framework should be chosen 
that can handle large amounts of data points.  It is also highly recommended to try different 𝜆 
values in your objective functions to get a feeling for how much your risk levels scale to achieve 
higher returns. If you find yourself in a situation where your trading  
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costs/ turnover gets too high, consider implementing a constraint based on equation 13, to limit 
your turnover to a certain threshold. In case you encounter any data issues, i.e. missing entries, 
replace them with dummy entries, in case of the covariance matrix, set 0 for the off-diagonal and 
0.5 for the diagonal elements. 
 
 
Bonus Question: 
In the previous discussion, 𝛼 and Ω have been assumed to be deterministic. In reality, they are 
estimates. How would you handle them if they are treated as stochastic variables and reflect the 
uncertainty in the estimates? 


